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ON UNIFORM OBSERVABILITY OF GRADIENT FLOWS
IN THE VANISHING VISCOSITY LIMIT

BY CaAMILLE LAURENT & MATTHIEU LLEAUTAUD

Asstract. — We consider a transport equation by a gradient vector field with a small viscous
perturbation —eAgy. We study uniform observability (resp. controllability) properties in the
(singular) vanishing viscosity limit ¢ — 0%, that is, the possibility of having a uniformly
bounded observation constant (resp. control cost). We prove with a series of examples that
in general, the minimal time for uniform observability may be much larger than the minimal
time needed for the observability of the limit equation ¢ = 0. We also prove that the two
minimal times coincide for positive solutions. The proofs rely on a semiclassical reformulation
of the problem together with (a) Agmon estimates concerning the decay of eigenfunctions in
the classically forbidden region [HS84] (b) fine estimates of the kernel of the semiclassical heat
equation [LY86].

Résumi (Sur 'observabilité uniforme des flots de gradient dans la limite de viscosité évanescente)

Nous considérons ’équation de transport par un champ de gradient avec une petite per-
turbation visqueuse —eAy. Nous étudions la propriété d’observabilité (resp. de controlabilité)
uniforme dans la limite (singuliére) de viscosité évanescente ¢ — 071, c’est-a-dire la possibilité
d’avoir une constante d’observabilité (resp. un coit du contrdle) uniforme. Nous prouvons avec
une série d’exemples que le temps minimal pour I'observabilité uniforme peut étre bien plus
grand que le temps minimal pour I’équation limite ¢ = 0. Nous montrons aussi que les deux
temps minimaux coincident pour les solutions positives. Les preuves reposent sur une refor-
mulation semiclassique du probléme ainsi que (a) des estimées d’Agmon de décroissance des
fonctions propres dans la zone classiquement interdite [HS84] (b) des estimées fines du noyaux
de la chaleur semiclassique [LY86].
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1. INTRODUCTION AND MAIN RESULTS

1.1. IntrODUCTION. — Given a smooth connected compact manifold M without
boundary (the case of a bounded domain of R™ is also discussed in Section 1.3
below), a smooth real valued vector field X on M and a real valued potential ¢(x),
we consider the question of observability /detectability for the autonomous transport
equation

(11) {(at—X—q)u:Q in R x M,

Ult=0 = up, on M,

from an observation (open) set w C M through the time interval (0, T"). More precisely,
the question is whether there exists a constant Cy = Cy(T,w) > 0 such that

T
(12) 2 / / Jult, 2)Pds(@)dt > [u(T)][2 0
for all ug € L*(M) and u solution of (1.1).

Here, ds(x) denotes any positive density measure(™) on M, and the L? norm is defined
accordingly. The observability question (1.2) is naturally solved by introducing an
appropriate Geometric Control Condition (recall OM = @): we say that (M, X,w,T)
satisfies (GCC) if for all x € M, there is t € (0,7) such that ¢_;(x) € w, where
(¢¢)ter denotes the flow of X (see Section 2.3 for precise statements and proofs).
We also say that (M, X,w) satisfies (GCC) if (M, X,w, T does for some T' > 0; and if
s0, we denote by Taoc(M, X, w) the infimum of times for which (M, X, w, T) satisfies
(GCCQC).

On the other hand, endowing M with a Riemannian metric g, one may want to
investigate the observability question for the viscously damped transport equation:

(O —X —qg—eAyu=0, inR}xM,
(1.3)
uls=o = uo, on M,

from the same observation set (0,7) x w. The question is whether there exists a
constant Co(T,e) > 0 such that

T
(1.4) CO(T,5)2/0 / [u(t, @)Pds(@)dt > [lu(T)]IZ2 o)
for all ug € L*(M) and u solution of (1.3),

(and one may then choose the Riemannian volume density ds(z) = d Vol,(z) without
changing the problem). For fixed ¢ > 0, Equation (1.3) is of parabolic type and the
observability inequality (1.4) is known to hold for any open set w # @ and T' > 0,
see [FI96] (see also [LR95] and its variant in [Léal0]). Of course, in such results, the

(DSee e.g. [Leel3, Chap. 16 p. 427]: given a local chart (Ux, k) of M, we have fU,{ uds = fn(Uﬁ) uo
k71 (y)¢" (y)dy for an appropriate smooth positive function ¢*, and for any u € C9(Uy).
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(ON UNIFORM OBSERVABILITY OF GRADIENT FLOWS IN THE VANISHING VISCOSITY LIMIT /|/|I

observability constant Co(T, ¢) in (1.4) depends a priori on €. For many different rea-
sons (some of them described in Section 1.2 below), it is interesting to investigate the
behavior of the observability constant Co(T', €) in the vanishing viscosity limit ¢ — 0T.
This problem was first studied in the one-dimensional setting by Coron and Guerrero
in [CGO5], and later extended to any dimension by Guerrero and Lebeau [GL0T7]. Their
main result in this direction can be formulated (in the present geometric context, see
the remark preceding Proposition 5.7) as follows.

Tueorem 1.1 (Guerrero-Lebeau [GLO07]). — Given an open set w C M, the following
two results hold.

— [GL07, Th.1] Assume (M,X,w,T) does not satisfy (GCC). Then there is
C,e0 > 0 such that any constant Co(T,€) in (1.4) satisfies Co(T,e) = exp(C/e) for
g € (0750).

- [GLO7, Th.3] Assume (M, X,w) satisfies (GCC). Then there is Tynis(w) =
ToceM, X, w) and Ko > 0 such that for all T > Tynit(w), (1.4) holds with
Co(T,e) < Ky for alle < 1.

Note that the results in [GL07] are even more general since time-dependent vector
fields are allowed and the boundary-value problem is also considered (with Dirichlet
boundary conditions). We also refer to our Proposition 1.12 below for a more precise
lower bound of the constant C' when (GCC) is not satisfied.

Note that if (1.4) holds for some Ty and constant Cy(Tp, ), then it also holds for
all times T' > Ty with the same constant Co(Tp,€). In [GLOT7], the question of the
minimal time T\p;¢(w), more precisely defined by

Tunif(w) = inf{T > 0 for which there exist Kg,eq >0

such that (1.4) holds with Co(T,¢) < K, for all € € (0,0)},
and its link with the minimal observation time Teoc(M, X, w) associated to the limit
problem (1.1) is left open. In particular, the formulation of the results in [GLOT]

(see e.g. Th.2 and the discussion thereafter in that reference) suggests the possible
existence of a universal constant £ > 1 such that

(1.5) Tunit(w) < & Taco(M, X, w).

The present article investigates this question in a very particular case, namely
assuming the vector field X is a gradient vector field, i.e., X = V,f for a function
f € W2°(M;R) (note that the gradient is taken with respect to the Riemannian
metric g). Hence, Equation (1.3) becomes

(1.6) {(at_vgf'vg_q‘g%uzﬁ in R x M,

ult=0 = uo, on M,

Here, given two vector fields Y7 and Ys, we have denoted Y; - Yo = ¢g(Y1,Y3) or
(Y1 - Y2)(x) = Yi(x) - Ya(z) = g-(Yi(x),Ya(z)) for all x € M. We denote similarly

JE.P.— M., 2021, tome 8
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Y], = VY - Y the associated Riemannian norm of a vector (or a vector field). Note
that the vector field V4 is canonically identified with the derivation V4f- V.

In this context, the first consequence of our main results can be (loosely) stated as
follows.

Taeorem 1.2
(1) There are geometries (M, g) such that for all A > 0, one can find f € C>°(M)
and w open such that (M, Vf,w) satisfies (GCC) and Tynir(w) = A Tacc(M, V,f,w).
(2) There are (M, f, X,w) such that for all A > 0, one can find a metric gn on M
such that
- X = Vg,
- (M, X,w) satisfies (GCC),
— Tunit(w) = A Teoe(M, X, w).

In particular, Theorem 1.2 states that there is no & such that (1.5) holds for all
(M, X, w).

The second item in Theorem 1.2 stresses the importance of the viscosity one
chooses. Namely, with the same vector field X, changing the metric g, that is the
viscous perturbation, may change the minimal uniform observability time. We also
obtain related results for domains of R™ (see Section 1.3.1).

Our second main result in this setting concerns the uniform observability of positive
solutions to (1.6). Recall that nonnegative data ug > 0 give rise to positive solutions
to (1.6). We define C;f (T, ) the observability constant for positive solutions, that is
for which (1.2) holds for all ug > 0, and accordingly set
(1.7) T

unif

(w) = inf{T > 0 for which there exist Ko,eo > 0 such that (1.4) holds
for all ug > 0, with C’S‘(T7 g) < Ky foralle e (0,50)}.

Turorem 1.3 (Positive solutions). — For all f € C3(M;R), and w C M such that
(M, V,4f,w) satisfies (GCC), we have T (w) = Tacc(M, Vyf,w).

unif

As usual, these uniform observability /non-observability results can be reformu-
lated in terms of uniform controllability /non-controllability statements for an adjoint
controlled equation, see Section 2.1.1 below.

1.2. BACKGROUND AND MOTIVATION. Uniform controllability problems for singular
perturbations of partial differential equations already appeared in the reference book
of Lions [Lio88, Chap. 3]. In the context of transport/heat equation in vanishing vis-
cosity limit, this study was initiated by Coron and Guerrero on the 1D problem with
constant speed in [CGO05], where the authors make a conjecture on the minimal time
needed to achieve uniform controllability. Then, the estimates on this minimal time
have been improved successively in [Glal0, Lis12, Lisl4, Lis15]. We also refer to the
articles [Miin18, AM19b, AM19a] proposing numerical experiments to find the optimal
minimal time. Such uniform control properties in singular limits are also addressed for
vanishing dispersion in [GG08] and for vanishing dispersion and viscosity in [GG09].

JIEP. — M., 2021, tome 8
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Whereas the one-dimensional problem with a constant vector field has received a lot
of attention in the past fifteen years, there are very few results in higher dimension
or for non-constant vector fields. Besides [GL07] we are only aware of the results
of [BP20a] and [BP20b] for the flat Laplace operator and the vector field 9,,, with
several boundary conditions.

19

Note that controllability problems for nonlinear conservation laws in vanishing
viscosity have also been studied in [GG07], [Léal2], and [Mar14].

There are several motivations for studying the vanishing viscosity limit. A first mo-
tivation comes from the theory of conservation laws, for which the vanishing viscosity
criterion is a selection principle for the physical (called entropy) solution, see [Kru70]
or [Daf00, Chap.6]. It is therefore very natural, when considering control problems
for conservation laws, to study the cost of the viscosity, that is, to determine if known
controllability properties for the hyperbolic equation are still valid for the model with
small viscosity, and how the size of the control evolves as the viscosity approaches 0.
So far the only known results in this directions seem to be [GG07] and [Léal2].

Another important motivation for studying singular limits in control problems
is the seek of controllability properties for the perturbed system itself. This is well-
illustrated by the papers [Cor96, CF96, Cha09, CMS20], where the authors investigate
the Navier-Stokes system with Navier slip or slip-with-friction boundary conditions.
They use a global controllability result for the inviscid equation (in this case, the Euler
equation) to deduce global approximate controllability of the Navier-Stokes system.

On the other hand, the study of gradient fields naturally arises as the simplest
dynamical situation among all vector fields. The importance of gradient vector fields
with a vanishing viscosity coefficient also appears in theoretical physics and differential
topology, through the Witten-Helffer-Sjostrand theory [Wit82, HS85]. See e.g. the
monographs [Hel88, CFKS87]. In that theory, the operator —V,f -V, — Ay (and
its analogues acting on forms) is conjugated to a particular semiclassical Schrédinger
operator, namely

Vol
4

(1.8) P.=—&*A, + + gAgf,
sometimes called the Witten Laplacian. Topological properties of the couple (M, f)
(e.g. the Morse inequalities, linking the number of critical points of the Morse func-
tion f with the Betti numbers of M) are deduced from spectral properties of the Witten
Laplacian. We also refer to [DR20] for the understanding of other links between the
spectral theories of the Witten Laplacian and the vector field V,f-V, (in appropriate
spaces linked to the dynamics of the gradient flow), in the semiclassical limit e — 0.
Viscous perturbations of gradient dynamics also arise naturally in molecular dy-
namics. Indeed, in R™, the operator —V§-V —eA is the infinitesimal generator of the
so-called overdamped Langevin process

dX, = V§{(X;) dt + V/2e dBy,

J.E.P. — M., 2021, tome 8
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where X; € R™ and (B;);»0 is a standard Brownian motion of dimension n. This
stochastic process is a classical model in statistical physics. It is used in particular
for the simulation of molecular dynamics at low temperature (proportional to ¢),
see [Cha43, SMT79]. The possible convergence to equilibrium, as well as the so-called
metastability phenomenon are closely related to the low-lying eigenvalues (and asso-
ciated eigenfunctions) of —V§-V —eA, or equivalently of the Witten Laplacian (1.8).
For a very precise asymptotic study of the exponentially small eigenvalues of this
operator, we refer e.g. to [HKNO04, Micl9] in the case of a compact manifold and
[HNO6, LP10, DGLLPN20] in the case with boundary (see also the references therein).

We finally remark that the above-mentioned works concerning the Witten Lapla-
cian mostly study the behavior of the bottom of the spectrum P. (thus linked to
critical points of f). In the present work, we rely on a similar conjugation.

1.3. Mai~ resuLts. — As already seen in the end of Section 1.1, the results of this
article go in two different directions.

In a first part (Section 3), we prove some general lower bounds on the time Typif(w)
for a general class of domains and vector fields. This implies in particular that the quite
natural idea that Tynit(w) is Tecc(M, X, w) or even RTgcc(M, X, w) for a universal
constant R is false in general. This might be interpreted by the fact that in the
vanishing viscosity limit, some strong oscillations can be responsible for concentration
phenomena. The latter are not only described by the flow of X, but other parameters
where an Agmon distance plays a crucial role. We also study (in Section 4) the
particular case of surfaces of revolutions where we obtain refined lower bounds. This
analysis also shows that the global geometry of the Riemannian manifold we consider
has an effect on the vanishing viscosity limit. In particular, with a fixed vector field,
we show that the choice of the Laplacian A, can change drastically the time Typnir(w)
of uniform controllability. This shows definitely that the flow of the vector field is not
the unique parameter defining Ty nir(w).

In a second part (Section 5), our results go exactly in the opposite direction, but for
a specific class of solutions, namely positive solutions. As announced in Theorem 1.3,
we prove that Tynif(w)t = Tooc (M, V4f, w) for positive solutions. This shows that the
dynamics of positive solutions are actually well represented by the sole flow of V4j.

In both cases, using the change of unknown v = el/?5u, see Section 2.2, the problem
is reduced (modulo lower order terms, and in weighted spaces) to observability of
solutions of a semiclassical heat equation

g0 — e Agu+ Vo =0,

where V' = |V4f|2/4. Note that most of the results we obtain are of interest for this

particular question as well.

1.3.1. A general lower bound. — The first family of results in this paper concern the
general setting of a compact connected Riemannian manifold (M, g), with or without
boundary OM, and the associated internal/boundary observability question. Namely,

JIEP. — M., 2021, tome 8



(ON UNIFORM OBSERVABILITY OF GRADIENT FLOWS IN THE VANISHING VISCOSITY LIMIT /|/|5

we consider the parabolic—transport problem with small viscosity € > 0 and Dirichlet
boundary conditions:

(O —X —qg—eAg)u=0, in (0,T) x Int(M),
(1.9) u=0 on (0,T) x IM,
u\t:() = Uog, in M.

Moreover, we assume that the vector field X is a gradient vector field for the metric g,
that is: there is f € W2°°(M) (at least) such that

X =V,f-V,.

For the Dirichlet problem (1.9) as well as for the case OM = & discussed in Sec-
tion 1.1, one may discuss the behavior of the observability constant (and in particular
its possible uniform boundedness in the limit ¢ — 07) in the internal observability
inequality (1.4). Also, a boundary observability problem for (1.9) can be formulated
as follows (see [GLO7] and Section 2.1.2 below). Given 6 € C'*°(OM), there exist a
constant Co(T,e) > 0 such that

T
(110) Co(Te)? [ 180utlore(®)rs oo e > 10l g
for all ug € Hy (M) and u solution of (1.9).

Here 0, denotes a unit normal (for the metric g) vector field to 9M. Then, the uniform
observability question is whether Cy(T, ) remains uniformly bounded in the limit
e — 0%, and the associated minimal uniform observation time is defined again by

Tunif(0) = inf{T > 0 for which there exist Ky,eg > 0 such that (1.10) holds
for all ug € Hy(M), with Co(T,£) < Ko for all € € (0,&0) }.

Before going further, let us first give the definition of an analogue of the condition
(GCCQ) in case of a manifold with boundary OM # & (called here Flushing Condition),
as used in the Guerrero-Lebeau result [GLO7]. For this, we need to extend (M, g) in
a slightly bigger Riemannian manifold (JV[, g), i.e., such that M C Int(3\~/[) and g any
Riemannian metric on M such that glm = g. In the case of a bounded domain of
R™, one may choose M = R". We also extend f € W2 (M) as a compactly supported
function f € Wg’w(ﬁ) such that flac = .

Derinition 1.4. — For z € M, denote by ~, the maximal solution to

'YT(t) = 7v§f(7m(t))v ’}{T(O) = Z.
Note that this solution is defined globally in time since ? is compactly supported.
We say that (M, V,f,T) (resp. (M, V4f,w,T)) satisfies the Flushing Condition
(FC) if for all x € M there is ¢ € (0,T) such that ~,(¢t) ¢ M (resp. vz(t) ¢ M or
72(t) € w). We also say that (M, Vyf) (resp. (M, V4f,w)) satisfies (FC) if there is
T > 0 such that (M, V,f,T) (resp. (M, V4f,w,T)) does. We then define accordingly

JE.P.— M., 2021, tome 8



446 C. Laurent & M. Léavraup

the time Tpc(M, V4f) (resp. Trc(M,w, V4f)) as the infimum of T > 0 for which this
property holds. N N
Remark finally that these definitions do not depend on the extensions (M, §) and §.

Guerrero-Lebeau [GLO7] prove an analogue of Theorem 1.1 in the present setting
(and for general vector fields), namely: if (M, V4f) (resp. (M, V4f,w)) satisfies the
Flushing Condition, given # any nontrivial observation function, then there is 7, > 0
and Ky > 0 such that for all T' > T, (1.10) holds (resp. (1.4) holds for all solutions
to (1.9)), with Cy(T,¢) < K for all e < 1.

Two important geometric quantities in our results are the potential associated to
the function f, defined by

Vi)

4 )
and the Agmon distance (see e.g. [Hel88, Chap. 3]) to the minimum of this potential,
namely, with Ey = miny¢ V,

(L.11) V(x):

da(,y) = inf{ [ V@) =B e, € 0 <x,y>},

Ui (z,y) = {7 € WH([0,1: M) 5 7(0) = 2,7(1) =y},
1.12 d =da(z,VYE))) = inf da(z,y).
( ) A(z) Al (Eo)) yEVlPl(EO) al@,y)
Here V~1(Ep) is the classically allowed region at the potential minimum,

(V(z) — Eo) , = max(V(x) — Eo,0),

and d4(z) is the Agmon distance of z to the set V~1(Ey) for the (pseudo-)metric
(V — Ep)+g. Remark that the index (-)4 is not needed at the bottom energy Ey =
minyg V; however, we keep it here since the definition (1.12) will also be useful for a
general energy level.

Our main result in this general setting formulates as follows.

Turorem 1.5. — We assume that f € W2°(M) (hence V.€ WL>(M)) and q €

L>°(M). We let Eg = miny V, set

f(z)
2

and fitw CM (resp. 8 € C°(OM) ), and in the case of boundary estimates, we further
assume f,q € C°(M). For any § > 0, there is €g > 0 such that for all € € (0,e) the
observability inequality (1.4) (resp. (1.10)) with constant Co(T,e) implies

Wg,(x) = +da(x),

1/ . f
Co(T,e) > exp - (mwln Wg, — V{I}%I}E{o) 3~ EoT — 5),

1
resp. Co(T,e) = exp — ( min Wg, — max j — ET — (5).
€ \supp @ V-1(Eo) 2

JIEP. — M., 2021, tome 8



(ON UNIFORM OBSERVABILITY OF GRADIENT FLOWS IN THE VANISHING VISCOSITY LIMIT /|/|7

In particular, we have

(1.13) EoTunit(w) > min W, — Jmex f/2,
(1.14) (resp. EoTunit(0) > Sggpne Wk, — VI*I}?EO) f/2>

Note that the quantity in the right hand-side of (1.13)-(1.14) as well as Ej are
invariant under the change f — f+ C for C' constant on M. This is consistent with
the fact that the equations remain unchanged by such a modification of f. Note also
that if Ey =0 and V—1(Ey) Nw = @ (resp. V~1(Ep) Nsupp(f) = &), a more precise
version of this result (see Theorem 3.1 below) actually shows that Co(T,¢) > /¢
for one ¢ > 0 and all time T > 0 (in particular, uniform observability never holds).
This is consistent with (and a particular case of) the Guerrero-Lebeau [GLO7] result
(first part of Theorem 1.1 above) for in this case, (M, V4f,w) does not satisfy (GCC).
Indeed, a point xg € V~!(Ep) satisfies V4f(z¢) = 0 and is thus a stationary point of
the gradient dynamics.

We refer to Remark 3.5 concerning the additional smoothness assumption for the
boundary estimate.

Turorem 1.6. — Assume M = Q where 0 C R™ is any smooth bounded connected
open set endowed with g = Bucl the Euclidean metric and ¢ € L>°(M). There exist
w C Q and constants c,,,d > 0 such that for any X > 0, there is a function f5 € C>(Q)
such that:

— (Q, Vfx,w) satisfies (FC) and Trc (2, Vi, w) < diam(Q);
= Tunit(w) = cuA;
— A% < Vil o g < A? diam(Q)2 + n.

In particular, for all A > 0, there is § € C*°(Q) such that

Tunif(w) 2 ATFC (57 Vf& w) .

The result of Theorem 1.6 is already of interest in dimension one. In this case
Q = (=L, L), the vector field we consider is §(x)d; with f > 1 on [—L, L] and
f(0) = 1 and the observation set w is a neighborhood of the boundary point L
(note that this would correspond to the case M < 0 in the Coron-Guerrero prob-
lem with the notation of [CGO05]). Note that the function fy in this result satisfies
max fy —minfy ~ A. As a consequence, one cannot even hope to have existence of a
constant & > 0 depending only on min,¢o z) f'() (a uniform flushing time) such that
Tunit(w) < & Trc (9, Vir,w). However, at this point, it does not seem hopeless that
such a constant & depends only on ||Vf,\||Loo(Q), at least for a fixed metric.

Remark 1.7. — Inthe case 9M = &, Theorem 1.5 does not seem to suffice to construct
functions f,w having Tynit(w)/Tacc(M, V4f,w) arbitrarily large. In a domain of R™,
Theorem 1.5 is however enough to provide counterexamples.
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Another drawback of Theorem 1.5 is that it does not produce any useful lower
bound in case w is a whole neighborhood of 9M (or in the boundary observation case
from the whole boundary dM).

We remedy these issues in the next section on surfaces of revolution.

1.3.2. Lower bounds on surfaces of revolution. — In Theorems 1.5 and 1.6 above, the
lower bound of the minimal uniform observability time is essentially due to the contri-
bution of the potential V(z) = |Vyf(x)|2/4 (and the difference between its maximal
and minimal values on M). In this section, we consider a family of geometric settings,
namely surfaces of revolution, for which the contribution of the geometry of (M, g)
plays an important role. This leads in particular to explicit versions of Theorem 1.2.

The precise description of the geometry of the surfaces we consider is given in
Section 4.1 and we only describe here features required to state the result. We may
consider either:

(1) M = 8 C R? a smooth compact surface diffeomorphic to the sphere S?;

(2) M =8 C R? a smooth compact surface diffeomorphic to the disk D;

(3) M =8 C R? a smooth compact surface diffeomorphic to the cylinder [0, 1] x S*;
(4) M = 8 a smooth compact surface diffeomorphic to the torus T2 = S! x S!.

We assume moreover that it has revolution invariance around an axis. In particular,
the axis may intersect 8 in two points (sphere), one point (disk) or no point (cylinder or
torus). Except near these points, 8§ has a global coordinate chart (s,8) € (0, L) x S!
for some L > 0. In the first three cases, the surface is endowed with the metric g
inherited from the Euclidean metric on R? which writes

(1.15) g = ds®> + R(s)*d0?,

on account to the rotation invariance. Here the function R : (0, L) — (0, 00) describes
the shape of 8§ (distance to the revolution axis). In the torus case, we simply endow T?
with the metric (1.15).

We further assume that the function f and ¢ are themselves rotationally invariant,
that is f = f(s) and ¢ = ¢(s) in these coordinates. In this setting (and as opposed to
results presented in above Section 1.3.1), the relevant quantities for our analysis are
the following.

We define for any ¢ > 0 (that can be chosen) the (6-invariant) effective potential

c? ' (s)[?
1.16 V. = .
( ) c (S) R(8)2 + 4
Note that, as opposed to the potential appearing in (1.11), this potential V, is different

from [V 4f|2/4 = |f'(s)|?/4. Moreover, it depends explicitly on the geometry (namely,
on R). We shall make the simplifying assumption that

(1.17) V. Y (min V) = {smin} consists in a single point spyiy.

Note that in case S has a boundary, one may have sy, at the boundary (see Section 4
for more precise statements). As in the previous section, we introduce the associated
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Agmon distance, which simply writes in the first three cases:

[V Vi),

Smin

(1.18) dS (s) =

In the fourth case 8§ =S} x S!, an analog of (1.12) still makes sense on S} when V, is
defined on S} . We may choose a representation of S = R/LZ in which sy, = 0+LZ,
a definition of the Agmon distance then reads

(119) o) = i || [ VT Vil
We also set
(1.20) We(s) =d%(s) + @, for s € (0, L).

2

Then our main result in this geometric context can be (loosely) stated as follows.

Tueorem 1.8. — Letc > 0, assume that V, satisfies (1.17) and that, in the coordinates
(s,0) € (0,L) x S, we have w = (0,0) x SLU (L —§,L) x St (this can be rewritten in
an intrinsic way on 8 ). Assuming the observability inequality (1.4) (resp. (1.10)) with
constant Co(T,e,w) (resp. Co(T,e,{L} x SY)), there is a sequence g, — 0 such that
for any § > 0, there is ko(d) > 0 such that

C()(T, 5k7w) > e(l/Ek)(WS_W,C,L—Vc(Smin)T—(;) fO’F all k > I{?Q((S), W€ = min Wc,

resp.  Co(T, ey, {L} x S') > 6(1/5’“)(WC(L%W’C’“'*VC(S‘“‘“)T*&) for all k = ko(9),

where WS, = inf o 1y W€. In particular, we have

(121) ‘/C(Smin)Tunif(w) > W(f; - W;m
(1.22) Ve Sumin) Tanit({ L} x S*) > W¢(L) — W<,

Theorem 1.8 differs from Theorem 1.5 in several respects. First notice that the
potential appearing in Theorem 1.5 is |f'(s)|?/4, that is V;(s) with the definition of V,
in (1.16). In particular, it does not depend on R: neither does its minimal value, nor
the associated Agmon distance and function W?°. Therefore, in this very particular
geometric context, the results of Theorem 1.5 do not depend on the geometry of R,
and hence only formulate as a one-dimensional result in the s variable. As such, they
do not care about the “transverse dynamics” in the #-variable. Theorem 1.8 overcomes
this lack and shows that both have to be taken into account.

Another difference with the estimates of Theorem 1.5 is that —maxy —1(g,) f/2 =
—maxy-1(g,) W is here replaced by —inf(g ) W¢. This improvement is due to the
“one-dimensional” underlying framework (in which localization properties of eigen-
functions are better understood).

Again, we remark that the initial problem is invariant by changing f by a constant
f + Co. In Estimate (1.21), both the potential V.. and the quantity W< — W, are as
well invariant by this change of the function f.
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We now state three particular examples of application of Theorem 1.8. The latter
imply Theorem 1.2.

Cororrary 1.9. — Assume 8 is a surface of revolution in R3 diffeomorphic to S?
(resp. D) and such that R™'(maxR) is a single point (R has a unique maz-
imum). Denote by N,S (resp. N only) the north/south poles of 8, which are
the only two (resp. the unique) invariant points under the revolution symmetry.
Then, for any § > 0, there exists f5 € C*(8) invariant by rotation such that with
ws = By(N,0) U By(S,0) (resp. ws = By(N,9d)) we have
(1) (8,Vyfs,ws) satisfies (GCC) (resp. satisfies (FC)) and
TGC(;(S, ng(;,w(g) =L-20< L= diStg(]V7 S)
(resp.  Twc(8,Vgfs,ws) =L —6 < L =disty(N,08));

(2) for all ¢ > 0, there is 0o, C > 0 such that for all § € (0,dp)

2 -1
T'unif(wé) 2 (m + i) (ClOg(l/(;) — C)

This result proves the first item in Theorem 1.2. In particular, the limit § — 0T
prevents from the existence of a universal constant & > 1 such that

T'unif(w) < R TGCC (M7 X7 w)'

Note that in this construction, the vector fields V4fs - V4 are rotationally invariant
and independent of the metric g. Moreover, for § < §’, the two functions fs and fs
coincide on M \ wy.

In our second result, the geometry is close to that of Corollary 1.9. However, we
consider fixed w and f (and even a fixed vector field), but let the metrics g vary.
We denote St = R/LZ and S! =S} _.

Cororrary 1.10. — Assume 8 = SL x S! with coordinates (s,0) and let f € C*°(S}).
Let w = I, x S* with I, a nonempty interval such that I,, # SlL.
Then, there is a constant C > 0 such that for any 6 € (0,1), there exists a function
Rs € C°°(SL;RY) such that
(1) the vector field V 45§-V g5 = §'(5)0s (defined by (1.15) associated to Rs) does not
depend on the metric gs, the triple (8,V,,f,w) satisfies (GCC) if and only if ' # 0
on S} \ 1, and, in this case, we have
/ ds
SIL\IM f,(s)

(2) for the transport equation (1.6) with viscosity given by the metric g5 under the
form (1.15) associated to Rs, we have

Tunif(-[w X Sl) 2 0571/2;
(3) 6'/2(1 — C6) < ming1 Rs < 6'/2 for all 6 € (0,1).

Tgcc(s, Vgaf, I, x Sl) = < +00;

This result implies the second item in Theorem 1.2.
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Another application is given by the following result, which is an analogue of Corol-
lary 1.10 for the boundary observability problem in the cylindrical geometry.

Cororrary 1.11. — Assume 8 = [0, L] x S' (whence 08 = ({0} U{L}) x St), and let
f € C>([0,L]). Then, for any v > 2, 69 > 0 there is a constant C' > 0 such that for
all 6 € (0,00], there exists a function Rs : [0, L] — R} such that

(1) the vector field X = Vg, f- Vg = §(5)0s does not depend on the metric gs
(defined by (1.15) with Rs);

(2) (8,Vy,f) satisfies (FC) (in the sense of Definition 1.4) if and only if f # 0 on

[0, L] and in this case,
/L ds
o (s)

(3) for the transport equation with viscosity and Dirichlet boundary conditions

TFC(M7 vgsf) = < +00;

(1.6), and with metric gs under the form (1.15) associated to Rs, we have

Ton99) > (7)1~ ©)

(s +6)72(1 — C(s 4+ 6)) < Rs(s) < (s + 6)1/? for s € [0, L/4],
(L—5+6)2(1—C(L—s46)<Rs(s)<(L—s+06)"? forsc[3L/4,L].

Note the link between the asymptotic singularity of the metric Rs(s) ~ (s + §)7/2
(i.e., 8 becomes close to a “conical geometry” for small §) and the blowup of the
minimal time Typnir > 1/67/27 1. Note also that the limit case v = 2, all calculations
can be done as well and lead to Rs(s) ~ s+ ¢ together with Tynir = —logd. This
corresponds to the case where the geometry of the cylinder degenerates towards that
of the disk, leading to the same blowup estimate as in Corollary 1.9.

1.3.3. Observability for positive solutions. — As already mentioned, our last result con-
cerns the uniform observability question for positive solutions of (1.6), and is restricted
to the case OM = @. We also assume f € C3. Note that if ug € L?(M;RT), then the
associated solution u to (1.6) satisfies u(¢t,z) > 0 for a.e. (¢,x) € RT xM (see e.g. Th. 9
in §7.1 p. 369 together with Problem 7 in §7.5 in [Eva98], or Chap.III, Th.7.1, p. 181
in [LSU68]).

We consider the observability inequality for nonnegative solutions:

T
(123) Cf@ep [ [ uia)aseye > D)o,
w
for all ug € L*(M;R™) and u solution of (1.6).

and the associated minimal time Tlltnf
tion, already defined in (1.7). The main result we obtain in this context is the above
Theorem 1.3, stating that T\ .(w) = Tacc(M, V,4f,w). As a byproduct of our anal-
ysis, we also obtain a lower estimate on the blow up of the control cost when the

Geometric Control Condition is not satisfied. It involves the definition of a quantity

(w) of uniform observability for positive solu-
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that roughly speaking, measures how two points are far from being the image of a
trajectory at time ¢, namely

(120 dsglont) = gint{ [ 1) - V0D dsi 1€ Uit}

Uy(z,y) = {7y € W([0,t]; M) ; 7(0) = z,y(t) = y}.

Note that we have dy j(z,y,t) =~ d(x,¢_;(y)) for bounded ¢, where d denotes the
Riemannian distance and ¢; the flow of the vector field V,f (see Lemma A.2 where
dv ,(x,y,t) is interpreted as a control cost from x to ¢_;(y) with time varying metric).

Prorosirion 1.12. Assume that (M, V f,W) does not satisfy (GCC). Then, we have

d([0,1),m) = sup ugg dv,i(z,y,t) > 0.

Moreover, for any 6 > 0, there is e9 > 0 such that for all € € (0,e9), we have
(1.25) Co(T,e) > Cf (T, e) > eldwonm=d/e,

Note that this exponential blowup is a refinement of the Guerrero-Lebeau [GLOT]
result (first part of Theorem 1.1 above). However, we provide here with a precise
geometric rate (namely d((o,1),)) quantifying this blowup phenomenon.

The proofs of Theorem 1.3 and Proposition 1.12 rely on estimates on the kernel of
the associated equation. Note that kernel estimates have already been used in [Mil04]
to prove lower bounds for the cost of controllability of the usual heat equation in the
short time asymptotics, and in [LL21a] to prove observability of positive solutions to
the heat equation with optimal constants.

1.4. Furtner rEmarks. — In this section, we collect several remarks and comments
related to our results.

(1) The principal interest of working with gradient vector fields X = V,f is that
the associated operator —V,f —eA, can be conjugated to a selfadjoint Schrédinger
operator (1.8). And the limit ¢ — 01 then corresponds to the semiclassical limit,
which has been the object of many studies (see e.g. [Wit82, Sim83, HS84, HS85, Hell8,
CFKS87, All98, HKN04, HN06]). This conjugation does no longer hold in case X is
not a gradient vector field. One could also consider that giving counter-examples with
gradient flows is “stronger” than general counter-examples. We do not know whether
an analogue of Theorem 1.3 for positive solutions remains true for general vector
fields X. This seems to be an interesting open problem.

(2) In the context of surfaces of revolution, as presented in Section 1.3.2, we only
provide with lower bounds of Tyy;t. It would of course be interesting to obtain related
upper bounds on this uniform control time. This would require to provide a very
precise description of several spectral quantities (spectral gaps, localization of eigen-
functions at all energy levels...) for the semiclassical Schrédinger operator P: in (1.8),
and seems to be a difficult question. See the companion paper [LL21b] for an upper
bound in a related one-dimensional situation.
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(3) The one-dimensional one-well problem is considered in [LL21b]. In this very
particular situation, we are able to provide with

— improved lower bounds on the minimal time when compared to Theo-
rem 1.5;
— an upper bound on the minimal time.
This requires the knowledge of precise information on the spectral gap and the local-
ization of eigenfunctions at all energy levels E > Ey (whereas Theorem 1.5 is only
concerned with the bottom energy level Ey). See also the discussion at the beginning
of Section 3.

(4) Notice that if one is not interested in null-controllability (i.e., driving the so-
lution exactly to zero at time T'), but rather in approximate controllability with a
reasonable cost (and a precision depending on the viscosity €), one might be satisfied
by the following statement.

Proposition 1.13. Suppose IM = & and (M, X,w,T) satisfies (GCC) (resp. OM
@ and M, X,w,T) satisfies (FC)). Then, there exist C,Cy > 0 such that for all
Yo € L2(M), € € (0,1] there is h = h. € L?((0,T) x w) with

1hell L2 0,7y %) < C Yol L2 ovey »

such that the associated solution to (2.1) satisfies
19Tl L2 ) < Ce=Co/e lvoll 2y -

—Co/= close to zero with a uniformly

That is to say, one can drive the solutions e
bounded cost. This result follows from Proposition 5.7 below (a particular case of
[GLO7, Prop.3]) together with [LL21c, App.]. This can be particularly useful for
numerical purposes, since e~¢0/¢ = 0 numerically for ¢ small enough.

In the situation of Theorems 1.5 or 1.8, this means that for intermediate
times 7' € (Tgee(M, Vgf,w), Tunit(w)) (resp. for T € (Tpc(M, Vf, w), Tunit(w)) if
OM # &), controlling the solution e~ %0/ close to zero costs ~ 1, whereas controlling
the solution exactly to zero costs ~ e€/¢.

(5) Note that in the context of revolution surfaces of Section 1.3.2, we can prove a
complementary result compared to [LL21a, Th.1.9/Cor. 1.10]. The techniques used in
Proposition 4.9 show that in all cases of Section 1.3.2, for any rotationally invariant
set w, we have (with the notation of [LL21al, the constant Re;q(w) being the smallest

constant & in the inequality [[¢x[[z2(5r) < CeVA [¥all 2 (o) where —Agthy = Ahy)

Reig(w) = R(Smin)da(w), with da(w) = irelf da(x).

In [LL21a], we only proved Reig(w) 2 R(Smin)da(w) (and only in case § is diffeomor-
phic to a sphere). This result is close to that of Allibert [A1198], which already proves
this in case § is diffeomorphic to a cylinder and the function R has a single local
maximum which is non-degenerate.
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2. PRELIMINARIES: DUALITY, CONJUGATION OF GRADIENT FLOWS AND (GCC)

2.1. UNIFORM CONTROLLABILITY PROBLEMS AND DUAL FORMULATION. In this section,
we reformulate the above uniform observability questions in terms of uniform control-
lability statements. This follows essentially the classical duality approach, see [DR77]
or [Cor07, Chap. 2.3].

2.1.1. Duality between internal control and observation problems. — 1In this section, we
present the controllability problems associated to the above observability questions,
and we briefly describe the duality between the control and the observation problems.
We introduce the internal control problem

(O + X +divg(X) —qg—eAg)y =1, h, in (0,T) x M,
(2.1) y=0, on (0,T) x M,
Ylt=0 = Yo, on M.

Notice that, as opposed to (1.3), the operator appearing in these control problems is
X* = —X —divy(X), where the adjoint is taken in the space L?(M, d Voly).

That the appropriate dual observation problem is (1.3) is a consequence of the
following lemma.

Lemma 2.1 (Duality equation). — For all solutions u € C°([0,T]; L?(M)) of (1.3)
on [0,T] with Dirichlet boundary conditions and all y € C°([0,T]; L2(M)) solution
to (2.1) with h € L?>((0,T) x M), we have

T
(22)  (u(T),y0) 2y — (w0, y(T)) 2w +/0 (Tou(t), M(T — t))Lz(M)dt =0.

Notice that one passes from the observed evolution to the controlled evolution by
changing (X, ¢) into (=X, ¢ — div,(X)). The interest of adding a potential term g¢(x)
in these equations is that the free equation (1.9) and the controlled equation (2.1)
then have the same form (i.e., the adjoint of a vector field is not a vector field but
the adjoint of a first order differential operator is a first order differential operator).

Derinition 2.2 (Controllability and cost). — Given (w,e,T), we say that (2.1) is
null-controllable from (w,T) if for any yo € L?(M), there is h € L?((0,T) x M) such
that the associated solution to (2.1) satisfies y(7) = 0. If (2.1) is null-controllable
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from (w,T), we define for yo € L?(M) the set U(yg) # @ of all such controls h €
L2((0,T) x M), and the cost function

€o(T,e)i= s { inf | s
! ) yoeL? (M) hGU(yg)H ”LQ((O,T)xM)
lyoll L2 (ay <1

As a corollary of Lemma 2.1, together with classical arguments (see e.g. [DR77]
or [Cor07, Chap. 2.3]) we deduce the following statement.

Cororrary 2.3 (Observability constant = control cost). — Given (w,e,T), Equa-
tion (2.1) is null-controllable from (w,T) if and only if the observability inequal-
ity (1.4) holds. Moreover, we then have Co(T, ) = Co(T,€).

As a consequence, all lower bounds on Cy(T', €) formulated in Theorems 1.5 and 1.8
translate into lower bounds on Cy(T,€). The time Tynir(w) is equal to the minimal
time of uniform controllability, and all lower bounds on the time Tyni¢(w) obtained in
Theorems 1.5 and 1.8 and their corollaries apply.

The uniform observability result for positive solutions of the heat equation in
Theorem 1.3 also has a controllability counterpart. This fact was indeed proved by
Le Balc’H [LB20, Th.4.1] for the classical heat equation. In the present context,
the uniform observability estimate for positive solutions, associated to Theorem 1.3,
implies the following controllability result.

CoroLLARY 2.4. Let M be a compact Riemannian manifold with OM = @, X = Vf
where § € C3(M), and w C M an open subset. Assume that (M,V,f,w) satisfies
(GCC), and T > Tacc(M, V4f,w). Then, there exist C,eq > 0 so that for any yo €
L2(M) and 0 < € < &g, there exists a control h € L*([0,T], L*(w)) with

1l L2 0,77, 22wy) < C lwoll L2 vy
such that the solution of (2.1) satisfies y(T') = 0.

We refer to Section 5.4 for a proof.

2.1.2. Duality between boundary control and observation problems. — We now briefly
discuss the boundary case and we refer to [GLO7] for the details. The boundary control
problem under interest is

(O + X +divg(X) —g—eAy)y =0, in (0,7) x Int(M),
(2.3) y = 6h, on (0,7) x OM,
Ylt=o0 = Yo, on M,

where § € C°(OM;R) is meant to be a smooth version of 1p,I' C OM. Solutions
of (2.3) are defined in the sense of transposition, and a well-posedness statement can
be written as follows.
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1

Lemma 2.5 (Guerrero-Lebeau [GLO7] pp 1814-1815). Assume X is a L wvector
field on M with divy(X) € L>®(M), ¢ € L>®(M), and let T > 0. Then, there exists
C > 0 such that for all yo € H=Y(M), all h € L*(0,T; H~Y/2(0M)) and all ¢ > 0,
there is a unique solution y to (2.3) in the sense of transposition, which satisfies
y € L*((0,T) x M) N C°([0, T); H=1(M)) n HY(0, T; H=2(M)) with

19l 20,7y vy + 19l oo 0,751 (vey) + 108l L2 0,75 5120
C
< ;(H?JOHH—l(M) + 20 2o 11200 -

Such solutions in particular solve the first equation of (2.3) in the sense of distri-
butions.

Derinirion 2.6 (Controllability and cost). — Given (0, e, T), we say that (2.3) is null-
controllable from (6, T) if for any yo € H~*(M), there is h € L?(0,T; H=/2(0M))
such that the associated solution to (2.3) satisfies y(7') = 0. If (2.3) is null-controllable
from (0,T), we define for yo € H1(M) the set U(yg) # @ of all such controls
h € L*(0,T; H-'/2(OM)), and the cost function

eo(Te) = swp  { inf Al !
" yocH () ~heU(wo) Wl 20 1172 o0y
”yOHH*I(M)gl

We now describe the link with the boundary observation problem (1.9). We start
with the duality identity.

Lemma 2.7 (Duality equation). For all solutions u € C°([0,T]; HE(M)) of (1.9) on
[0,T] and all y € C°([0,T); H-1(M)) solution to (2.1) with h € L?(0,T; H-'/2(M)),
we have

(W(T), yo)my - — (w0, (1)) 2 1
T
_ /0 <0€8VU|BM (t)a h(T — t)>H1/2(0M),H—1/2(8M) dt = 0.

The proof is omitted here and only consists in an integration by parts for smooth
solutions, and then a density argument. As in the internal case, classical duality
arguments (see [DR77] or [Cor07, Chap. 2.3]) yield the following statement.

Cororrary 2.8 (Observability constant = control cost). — Given (0,¢,T), Equa-
tion (2.3) is null-controllable from (0,T) if and only if the observability inequal-
ity (1.10) holds. Moreover, we then have Co(T, ) = Co(T,¢).

Again, all lower bounds on Cy(T,¢) formulated in Theorems 1.5 and 1.8 trans-
late into lower bounds on €y (7, ). The time T,pis(#) is equal to the minimal time of
uniform controllability, and all lower bounds on the time Typ;¢(#) obtained in Theo-
rems 1.5 and 1.8 and their corollaries apply.
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2.2, Tur VANISHING VISCOSITY LIMIT FOR GRADIENT FLOWS. (,]()NJIIGATI()N AND REFORMU-
LATION

We focus in this article on the very particular case (1.6) where X is a gradient
vector field (with respect to the same metric g defining the viscous perturbation eAy)
of a weight function f: M — R, that is X = V,f- V,. In this case, it is classical (see
e.g. [Wit82, HS85]) that the operator —eA, — V,f - V4 — ¢ can be conjugated to a
“semiclassical selfadjoint operator”. Here, X - Y is the inner product of the two vector
fields X and Y given by the metric g in TM.

The first basic computation is the following:

1 Vo2 A
We denote by
1 |Vgﬂ52; Agf q . 2 |v9ﬂg2;
(2.4) = P.i=-As+ 122 + e 2 that is P, := —e“Ags+ 1 + gy,

where ¢; = (A4f/2) — ¢q. The above computation implies that
—f/2¢ (L . 1 q
(25) e f/2 (? Ps)ef/z = 7Ag — g ng . Vg — g

The interest of this conjugation is that the operator P. is selfadjoint in L?(M, d Vol,)
endowed with domain D(P.) = H2(M) N HE(M). Henceforth, the operator

Ay — (1/e)Vy4f-Vy4—q/e

is also selfadjoint in L?(M, el/?d Voly). Let us now reformulate the uniform observ-
ability problem (1.4) in terms of the heat equation involving the operator P. defined
in (2.4).

Note that the constant coefficient one-dimensional problem introduced in [CGO05]
enters the “gradient flow” setting with M = (0,L) C R, g =1, Ay = 92, ¢ = 0,
f =Mz for M € R, and thus V,f-V, = M3,. In that context, this form together
with its formulation (2.4) have already been used in [CG05, Glal0, Lis14, Lis15].

Lemva 2.9, Given Ty, Co,e > 0 and a function u, the following statements are
equivalent.

(1) The function u solves

(2.6) (O —Vyf-Vg—g—eAyu=0, in (0,Tp) x Int(M),
u=0 on (0,Tp) x OM,
To
(2.7) resp T < 5 [l dt
To
(25) resp (T < €3 [ 10e0uulondlip xong .
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(2) The function v(t,z) = el®)/2y(t, x) solves

(2.9) edw + P.v =0, in (0,Tp) x Int(M),
. v=0 on (0,Tp) x OM,
T,
(2.10) resp. He 1280 (Tp) HLz 002/0 OHB_H%UHiz(w)dtv
To
(2.11) resp.  ||e”"/2%0(Tp) HHl(M) < Cg/o Hee_f/%gavvbMHi{l/z(am)dt'

(3) The function w(t,z) = v(t/e,x) = eI @/2y(t/e, x) solves

1
Ayw + = Pow=0, in (0,7p) x Int(M),

(2.12)
w=0 on (0,Ty) x OM,
/2 2 =T —§/2 2
resp. He 2¢0(eTy) HL2(M) CO/O He f 5wHL2(W)dt,
eTo
(2.13) resp. He F/24 (eTp) HLQ(M) Cg/o ||He_f/zasa,,wnip/z(aM)dt.

Proof. — Start e.g. with u satisfying (2.6). Using (2.5) and the definition of P., Equa-
tion (2.6) rewrites equivalently as

1
dyu + e71/%¢ R P.ef/*u =0, tel0,Ty.

The function v=e//?y then satisfies (2.9) (and conversely). Setting w(t, z) =v(t/e, x)
then satisfies (2.12), and conversely.

The proof that (2.8) < (2.11) < (2.13) uses additionally that, on account to the
Dirichlet boundary condition, we have 9, (ef/25u)|ant = €220, u|an. |

2.3. (GCC) AND CONTROLLABILITY OF THE LIMIT EQUATION € = 0. — In this section, we
characterize the observability inequality (1.2) for solutions of (1.1) in terms of the
Geometric Control Condition (GCC). In this section, M is always assumed without

boundary.
We denote by (¢¢):er the flow of the vector field X, namely
(2.14) ¢u(w) = X (d1(2)),  do(w) =z € M.

This flow is globally defined on account to the compactness of M. We consider the
following definition of the geometric control condition in the manifold M for the vector
field X and the set w, which we denote (GCC).

Derinition 2.10. — Let M be a compact manifold without boundary, X a Lipschitz
vector field on M, w C M, x € C9(M), I C R and interval and T > 0. We say that

- (M, X,w, I) satisfies (GCCQ) if for all z € M, there is ¢ € I such that ¢_;(x) € w;
- (M, X,w,T) satisfies (GCC) if (M, X,w, (0,T)) satisfies (GCC);

- (M, X,w) satisfies (GCC) if there is T > 0 such that (w,T’) satisfies (GCC);

- (M, X, x,T) satisfies (GCC) if (M, X, {x # 0}, T) satisfies (GCC);

— (M, X, x) satisfies (GCC) if (M, X, {x # 0}) satisfies (GCC).
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In this section, the manifold M is fixed. To lighten notation, we omit the dependence
on M in (M, X,w,I) and we simply write (X,w, ) instead of (M, X,w,I) (with a
similar notation for the other definitions).

Note in particular that an open set w satisfying (GCC) must contain all singular
points of the vector field X (i.e., all points x € M such that X(xz) = 0). We now
provide with different reformulations of this property.

Lemma 2.11. Let M be a compact manifold and X a Lipschitz vector field on M.
Given w C M and T > 0, the following properties are equivalent:

(1) (X,w,T) satisfies (GCC);
2) Useo,r) ¢t(w) O M;

(2)
(3) Uie(o,r) ¢—t(w) O M;
(4) (—X,w,T) satisfies (GCC).

Proof. — The definition of (X,w,T') satisfying (GCC) is equivalent to: for all z € M,
there is t € (0,7) such that z € ¢;(w). Equivalence between the Items (1) and (2)
follows. Item (3) is equivalent to ;e (o) ¢7-t(w) O ¢7(M) = M after having ap-
plied ¢r, which itself is equivalent to Item (2). Equivalence between Item (4) and
Item (3) finally follows from the fact that the flow of —X is (¢_;)ier. O

Prorosition 2.12. Assume M is a compact manifold, X is a Lipschitz vector field
on M, ds is a positive density on M, and ¢ € L=(M). Given w C M, x € C°(M) and
T > 0, the following statements hold true:

(1) If (X,w,T) satisfies (GCC), then the observability inequality (1.2) for solutions
of (1.1) is true.

(2) The observability inequality (1.2) for solutions of (1.1) implies that (X,w,[0,T])
satisfies (GCC).

(3) The observability inequality

T
(2.15) Cg/o /M Px(@)u(t, 2)[Pds()dt > [[u(T) 172 o0);
for all ug € L*(M) and u solution of (1.1)

holds true if and only if (X, x,T) satisfies (GCC).
4) In all the above observability statements, ||u(T)]|2 ., can be equivalently repla-
L2(M)

ced by u(0)]|22 xe)-

The proof below is inspired by that in [DL09, LL16] for the wave equation. It is
constructive and would also yield a characterization of the HUM control operator (see
e.g. [HKL15] or [Léal8, §1.2] for more on controllability/stabilization properties for
transport equations).
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1

Proof. — First notice that for ug € L?(M), the unique solution to (1.1) is explicitly
given by
u(t,z) = el aodi—r(@)dTy o oi(z) € CO(R; L2(M)).
A first direct consequence is the existence of a constant Cr , > 1 such that
Cr g7z vy < (D) 7200 < Crgllu(0) 720y, for all solutions to (1.1),

which proves Item (4). Next, we write the observation term in (1.2) (the same holds
for (2.15) if we replace 1,, by x) as

/ / lu(t, z)|>ds(z)dt = / / x)|u(t, z)|*ds(x)dt
/ / w)ud o gy (x)e? Jo 1= DI G () .

Using the change of variable y = ¢¢(z) (see e.g. [Leel3, Prop. 16.42 p432]), we obtain

/ | Iutt.o)Pastayae = / [t e B 0o s )

(note that divgs(X) is defined by (¢} ds)|;—o = divgs(X)ds, so that this expression
simplifies slightly in case divg4s(X) = 0). Using that the density is positive on the
compact M, we get the existence of Cp > 1 such that

Crlds(y) < €? Jo 1°0-- W7 (4* ds)(y) < Cpds(y)  uniformly for (¢,y) € [0,T] x M.

As a consequence, we obtain

Cfl/OT/M Lo, (¢—t(y))u / / x)|u(t, z)|*ds(x)dt
<Cr / /M Lo (6—o(y))ud(y)ds(y)dt.

G (y) = / Lo (6-o(y))dt € L=(N)

Hence setting

T
resp. gyr()i= [ (-t € CO00),

C%l/Mgw,T(y) / / o) |u(t, ) |*ds(z)dt
(2.16) <CT/Mng( Yud(y)ds(y).

Recalling that w is an open set and M compact, together with Definition 2.10, we
deduce that if (X, w, T) satisfies (GCC), then we have the existence of ¢ > 0 such that
9w,r(y) = c for a.e. y € M. The lower bound in (2.16) then implies the observability
inequality (1.2), and Item (1) follows.

we deduce
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Concerning Item (2), if (X,, [0,T]) does not satisfy (GCC), then there is a point
xo € M such that ¢_;(xo) Nw = @ for all t € [0,T]. The set W x [0, T] being compact,
there is a neighborhood U of z¢ such that ¢_;(U) Nw = @ for all ¢t € [0,T]. Setting
up = 1y, we have on the one hand that [|ug[|z2( > 0. On the other hand, we have
1,0¢_4(y) =0forally € U andt € (0,7). This implies that g, ruo = gw,r(y)1y =0
a.e. and, according to the upper bound in (2.16), that fOT [, lu(t, z)[*ds(x)dt = 0. This
contradicts (2.16) and concludes the proof of Item (2).

Finally, the proof of Item (3) is split in two parts. That (X, x,T) satisfies (GCC)
implies the observability inequality (2.15) follows as in the proof of Item (1). Now
assume that (X, x,T") does not satisfy (GCC). Then there is a point o € M such
that ¢_+(xo) N{x # 0} = @ for all t € (0,T). Hence, we have

T
9x,7(20) = /0 X2(¢—t(£lio))dt =0.

We now choose a sequence of continuous real-valued initial data (uf})n,en such that
|ugll2(a) = 1 and (u?)?(z)ds(x) — d., in the sense of measures on M. The fact
that g, r is continuous on M together with the upper bound in (2.16) implies that,
denoting by u™ the solution of (1.1) with initial datum uf, we have

|| @ o) Pdstorde < O [ g wdsto)
0 M M
— OT<5woagx,T>Meas,CO = 07

which contradicts the observability inequality (2.15), and concludes the proof of
Item (3). O

3. GENERAL LOWER BOUNDS WITHOUT GEOMETRIC ASSUMPTION

In this section, we consider a general manifold (with or without boundary) M,
and prove the lower bound for the minimal time of uniform controllability provided
in Theorem 1.5. We also give a proof of Theorem 1.6 as a corollary. To do this, we
use the semiclassical reformulation (2.9)-(2.10) of the problem in Lemma 2.9, as well
as exponential decay properties of eigenfunctions of the operator P.. We rely on the
Helffer-Sjostrand theory as developed in [HS84, Hel88, DS99]. All results presented
in this section apply as well for the semiclassical heat equation.

The result of Theorem 1.5 is stated for a potential minimum. However, we shall
prove a seemingly more general result, at any energy level in V(M). We shall then
explain why this latter result is not more general, and how it can be improved in
dimension one. We recall the definition of V in terms of f in (1.11), and define the
classically allowed region at any energy level E:

Kg={xeM; V(z) < E}.

JE.P. — M., 2021, tome 8



462 C. Laurent & M. Liautaup

We then define the Agmon distance (see e.g. [Hel88, Chap. 3]) to the set K at the
energy level E:

da,p(z,y) = inf{/ol V V(@) — E) [7(#)|gdt s v € Ul(xay)},

Ui(z,y) = {7 € WH([0,1; M) ; 7(0) = z,7(1) =y},

3.1 d = inf d .
(3.1) A,EB(T) ot AE(T,Y)

That is to say, da g(x) is the distance of z to the set Kg for the (pseudo-)metric
(V — E);g. Here again (V(z) — F), = max (V(z) — F,0). We will use, as in (1.12)
the notation d4 = da, g, where Ey = miny V for the Agmon distance at the bottom
energy. Note that d4 g vanishes identically on Kg (and only on this set). Finally, an
important function in the estimates below is given by

(3.2) Wg(z) = dap(z) + @

We shall prove in this section the following result.

Tueorem 3.1. Assume the observability estimate (2.7) (resp. the boundary observ-
ability inequality (2.8)) for all solutions to (2.6) with constant Cy = Cy(Ty,€). Then,
for all E € V(M) = [miny V,maxy V] and all § > 0, there is g > 0 such that we
have for all e € (0,¢0)

1
Co(To,¢) > exp *(HEHWE —maxWp — 6 — ETo),
9 w E
in the internal observation case, and
1
Co(To,e) = exp — (min Wg —maxWg —§ — ETO),
ENT Kg

in the boundary observation case.
In particular, we have for all E € V(M), for each respective case,

1
. > inWgp — W
Tumf(w) = E (H%n E H]l{aE,X E),

1
Tonir(T) > (mfin Wi —max W ).
Theorem 1.5 is then the particular case E = Ey = miny¢ V' in Theorem 3.1. Unfor-
tunately, the function F +— (1/E)(ming Wgr — maxg, Wg) is a decreasing function of
E. Indeed,

— the sets K are increasing in F, hence the function F'+— max g, Wg=maxy .f/2
increases;

— E — da, g(x) is decreasing in E, hence the function E +— ming Wg decreases.
Therefore, the estimate of Theorem 3.1 simply reduces to that for E = Fy, that
is Theorem 1.5 in the introduction. This comes from the fact that the estimate in-
volving the term maxg, Wg is very rough (see Section 3.2 below for a more precise
discussion). This can be improved in the one-dimensional one-well case, see [LL21b].
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Moreover, it is interesting to notice that the proof of Theorem 3.1 is not more in-
volved than the direct proof of Theorem 1.5, and we shall re-use part of it in case of
revolution surfaces in Section 4.

3.1. E1GENFUNCTIONS OF SEMICLASSICAL SCHRODINGER OPERATORS. — In this section, we

collect classical results concerning eigenfunctions of semiclassical Schréodinger opera-

tors, and some of their decay properties. Recall that

Vol
4

is defined in (2.4). We first need to prove existence of eigenfunctions near any energy

level.

P.=-&*A, + +egy = 2Dy +V + eg;

Levma 3.2 (Existence of eigenfunctions). — Assume V€ W1°(M) and ¢; € L>°(M)
are both real valued. For oll E € V(M) = [minyg V, maxa V] and all € € (0,1], there
is E. = E + 0 (£%/3) and ¢. € H*(M) N H3(M) such that Py, = E.tp..

Note that the O (52/ 3) precision is relatively poor, and can be improved in different

situations (e.g. if there is a critical point of V' at energy F). These refinements are
however not needed here.
Proof. — The proof consists in constructing a (very rough) quasimode. Assume first
that E is reached by an interior point, i.e., there is zg € Int(M) such that V(z¢) = E.
We then only work in a local chart near xg, centered at xy (hence we work in R™ in
a neighborhood of 0).

We take a cutoff function x € C°(R) such that xy =1 in a neighborhood of 0. We
set uf(z) = e "/3x(e72/3|z|), so that u® is smooth and moreover supported in the
chart for all € < gg with ¢ sufficiently small, and thus u® € H?(M) N H(M). Notice
also that

e 22 ey = / [ (2) 2/ Ig] () dz = / YDVl Py)dy = co +0(),

with ¢ > 0. We now estimate (P. — E)u®. For this, we first have |eqju®|,;. < Ce.
Second, we always have the rough estimate V(z) — E = V(z) =V (0) = O (|z|) so that
we have

(3:3) I(V = E)uf||7> < C/ S CadE))
Third, we have

2 2
2 A uf 22 = Hs 9 (g |glojus
a0l = | T o (o7 Vi) |
<t S [ [oulg Vgl lal)e 2o (=)
" 2 dx

ii X; _ —
+ (67 lalel) 2 e o0 ()

dx
£2n/3

< Ce?/3.

(3.4) < Cet/3,
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Combining the above four estimates yields the existence of D, ey > 0 such that for all
e < €9, we have,

(P — )| . < Ce¥3 < D ||uf| 2 -

Hence, if E ¢ Sp(P:), this implies H(PE — E)*1HL2_)L2 > (De?/?)~1. Finally, the

operator P. being selfadjoint, we have, for z € C ~\ Sp(P.), ||(P: — 2) Y p2espe =

1/d(z,Sp(P:)), so that, if E ¢ Sp(F:),
1

d(E,Sp(P.)) > (D)

In any case, this implies d(E, Sp(P.)) < De?/?, and using that the spectrum of P. is
purely pointwise, this proves the sought result.

Assume now that E is not reached by an interior point, i.e., E ¢ V(Int(M)).
This means in particular that there is zp € OM such that V(zg) = E. Then, we
again work in a local chart near xg, centered at zy. In this chart, M is given by
R”~! x R~ and x¢ by 0. We denote (2/,z,,) € R*"! x R~ local coordinates. We
then take x as above and further define x € C°(R), non-identically vanishing, such
that supp(x) C (—1,0). We define u®(z) = e "/3x(e=?/32,)x(¢72/3|2'|). One can
check that all above properties of u® are still satisfied, and in particular (3.3)—(3.4).
In addition, we have suppu® C R"! x R, and thus u® € H?(M) N Hi(M). The
remainder of the proof then follows the same as in the first case. O

Remark 3.3. Note that near a noncritical value of V', or near the boundary of M,
the appropriate local model is —£292 + z. Considering concentrating quasimodes of
the form x(x/e%) leads to

2
e?0; (X(I/EO‘)):;@X"(z/é"‘), and  xx(z/e”) = e®(x/e%)x(x/e").

Henceforth, the right scaling is given by 2 — 2« = a, that is @ = 2/3. The quasimode
we construct are then O (52/ 3). If one wants to obtain a better remainder, one could
replace x by an Airy function, as one should replace x by a Hermite function in the
case of bottom of potential (in which case the precision of the quasimode is improved).
Also, the remainder £2/3 is actually the worst possible case.

The next result states the decay estimates for eigenfunctions in the classically
forbidden region, and is a consequence of so-called Agmon estimates (see [HS84, Hel88,
DS99]). Here, it is a particular case of [Hel88, Prop.3.3.1 & 3.3.4]. Note that with
respect to [Hel88, Prop. 3.3.1], our operator P. contains an additional term, namely
multiplication by eq;. However, this contribution is of lower order and can be absorbed
in the proof of the Agmon estimates.

Turorem 3.4 (Decay of eigenfunctions in the classically forbidden region)
Assume V€ WH>°(M) and g; € L>(M). Let

E € V(M) = [min V, max V]
M M
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and assume . € H2(M) N HY (M) and E. satisfy
(3-5) Py, = E)., ||7/}s||L2(M) =1, maX(Ee - E, 0) = 0(1) ase — 07",

Then for all 6 > 0, there exist C = C(0),e0 = £9(d) > 0 such that, for all e < g, we
have

(3.6) ||e2/=d4.Bqp, , S Ce’re,

2 e
Assuming further that V,q; € C>°(M), we have ¢, € C*(M) and for all 6 > 0 and

all smooth vector field Y on M, there exist C = C(§),e9 = €0(0) > 0 such that, for
all 0 < e < g9, we have

3.7) V- (@) + [(Ye) ()] < Cem (/N das@=0) = for gll z € M.

Remark 3.5. — Note that the smoothness assumption V, ¢z € C*°(M) (as well as the
smoothness assumptions in Theorem 1.5) is essentially only used in [HS84, Hel88,
DS99] to perform elliptic regularity estimates so that the pointwise estimate (3.7)
makes sense. A finer (much less demanding) regularity assumption can be formulated.

As a direct corollary, we have that most of the norm of 1. is near Kg, see [Hel88,
Cor. 3.3.2].

Cororrary 3.6 (Most of the norm is in the classically allowed region)
Let E € V(M) = [miny V,maxy V] and assume e, E. satisfy (3.5). For any
open set U containing Kg, there is §,eq > 0 such that for all 0 < € < gg, we have

el oy = 1+ 0(e™7).

3.2. ROUGH LOCALIZATION OF EIGENFUNCTIONS, AND A PROOF OF THEOREM 3.1

From the decay estimates in the classically forbidden region (Theorem 3.4) and the
rough localization of the L? mass of eigenfunctions (Corollary 3.6), together with the
existence of eigenfunctions at any energy level (Lemma 3.2), we may now deduce a
proof of Theorem 3.1. Recall that W is defined in (3.2). We first prove the following
proposition, from which Theorem 3.1 will follow.

Prorosiriox 3.7. Let E € V(M) = [miny V, maxy V] and assume ¢, € H*(M) N
H} (M) and E. satisfy (3.5). Then for all § > 0, there exists eg = £o(5) > 0 such that,
for any open set w C M and for all € < g, we have

(3.8) He—f/%wEHLZ(M) > o~ (1/€)(maxic, Wi+)
(3.9) ||eff/2a¢€||L2(M) < ¢~ (1/2)(miny We—5)
(310) He_f/zswEHLZ(w) < 6_(1/6)(minUWE—5)_

Assuming also that V,q; € C*°(M) and I' C OM, we have

11 73720y e M =),
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Note that Estimate (3.8) is very rough, due to our lack of knowledge on the loca-
lization of ¢. in the classically allowed region Kg. In the one-dimensional one-well
case, this bound can be refined, see the companion paper [LL21b].

We first prove Proposition 3.7, and then deduce a proof of Theorem 3.1.

Proofof Proposition 3.7. — First, setting Us = {x € M ; f(z) < maxg,f+ 0} D Kg,
we have

He_f/%waHm(M) Z He_f/QET/JEHLz(U&) = e_(l/s)(maXKEWQH(WQ))H¢5’|L2(U5)

= 1 e_(l/f)(maXKE (7/2)+(3/2))
2 )

after having used Corollary 3.6 in the last inequality for € < €q(¢). This proves (3.8),
recalling that d4 p =0 on Kg.
Second, notice that (3.9) is a consequence of (3.10). Third, to prove (3.10),
we use (3.6) as follows
L I e o
6*(1/6)(minw(f/2+dA,E))||6(1/€)dA,E¢6HL2(w)

N

e—(l/s)(minw(f/Z-&-dA,E))065/6.

N

Finally, to prove (3.11), we proceed similarly using (3.7) (instead of the sole (3.6))
with Y = 0,. We have

=772, .|| < e 2 CeanE=a| < Ce— (/o) (ming(/2+da. 5)=5)

L2(D)

which concludes the proof of the proposition. O

Proof of Theorem 3.1 from Proposition 3.7 and Lemma 3.2. — We use the reformula-
tion in Lemma 2.9 and consider the observability estimate (2.10) for solutions to the
evolution equation (2.9).

More precisely, we select E € V(M), and we let v. be the solution to (2.9) associated
to the initial condition v.(0) = 1., where 1. is given by Lemma 3.2. That is to say,
ve(t, ) = e~ (Fe/)ty_ (). We estimate both sides of (2.10).

Firstly, using (3.8), we have

’|67f/28U5(T0)HL2(M) = ¢ B/ ||€7f/26¢5”L2(M)
> 1 e~ (Be/e)To o—(1/e)(maxy ;, Wr+8/2)
2 b

for € < £9(0). Recalling that E. = E+0O (¢2/3), this implies the existence of e4(5) > 0
such that for € < ¢(0),

1
le™ 720 (T0) | pa o) = 3 e” (/) ETotmaxicy Wetd),
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Secondly, concerning the internal case, using (3.10), we have

To —§/2e.. ||2 o —2(E./e)t|| ,—f/2¢ 2

J e e e e
€
2F,

As a consequence of these two estimates, applying (2.10) implies

(1- efZ(Eg/s)To)||eff/26¢e||i2(w) < Ce—(2/€)(ming Wp—6)

67(2/5)(ETg+maxKE WE+46) < CO(TO’8)2067(2/5)(min5WE75)’

which concludes the proof.

In the case of observation from part of the boundary, we simply replace the above
use of (3.10) by that of (3.11). O
3.3. AN EXPLICIT COUNTER-EXAMPLE FOR A DOMAIN oF R™. — The purpose of this section
is to prove Theorem 1.6. Here M = Q where @ C R" is an open set, endowed with
the Euclidean metric. For § > 0, we may assume, up to an appropriate translation of
the domain €2, that there is n > 0 such that

(3.12) B(0,n) C Q.
(3.13) wcC (@Qn{x; >0,29>0,...,2, >0}), and B(0,n)Nw=a.
We let fa(x1,...,2,) be defined as follows:

t n
(3.14) () = /0 VAZs2 4+ 1ds  and  fa(z1,...,2,) = Z fa(z).
i=1

With this definition, the associated gradient vector field and potential are given respec-

tively by
Vi1, ..., xn) = Z fa(zi)e; = Z \/A22? + le;,
i=1 i=1
A Y e
V)\(l’) - 4 - 4 )
where (e, ...,e,) denotes the canonical basis of R™.

The proof of Theorem 1.6 now directly follows from the following Lemmas 3.8
and 3.9, when taking A large enough.

Lemma 3.8. In the above setting, recalling (3.12), (3.13) and that f\ is defined
in (3.14), we have Tunie(w) = An?/n for all X > 0.

Lemma 3.9. In the above setting, recalling (3.12), (3.13) and that f\ is defined
in (3.14), (Q, Vi, w) and (Q, V§y) both satisfy (FC) and we have for all A > 0

Trc(Q, Vv, w) < Tre(Q, Vi) € min (magx -v—minz- v)
VER"7>\\(/)|;1 e zeQ
v-e; >0Vi

(3.15) < diam(Q).

In particular, both are bounded by a constant uniformly in A > 0.
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We recall that (FC) and Trc are defined in this context in Definition 1.4. Notice
that the quantity max, »cq TV represents the minimal Euclidean distance
between two parallel hyperplanes (normal to v) such that 2 is contained between the
two hyperplanes.

qLv—min

Proof of Lemma 3.8. The minimum of V), is reached at i, =0 and V) (Xmin) =n/4.
The Agmon distance (3.1) at the bottom energy Vi (zmin) can be explicitly computed
for points z € B(0,7) C Q \ w. Indeed, for x € Q we have

\/V/\ V)\ xmm) -

b) |z

and thus for x € B(0,7),
1
date) =5 int{ [ OISOty € W (0,15:0).4(0) = 0,(1) = o}

2 1 2
At [y At

where, by symmetry arguments, we have noticed that the straight line ~(t) :=
reaches the infimum for x € B(0,7). Recalling that V5(0) = n/4 and §(0) = O
application of (1.13) in Theorem 1.5 implies

n
(3.16) 1 Tunit(w) = Va(0)Tunie(w) = mw n(f/24da).
By a connectedness argument, for any x € @, we have from (3.13)

da(z) > min da(y) > /4.
alz) 2 min - daly) = Ar/
Moreover, the condition (3.13) together with the definition of f in (3.14) imply that

fa(z) = 0 for z € w. We thus have

An?
mln(f,\/2—|—d,4) mw n(da) = Z
Combined with (3.16), this concludes the proof of the lemma. O

Proof of Lemma 3.9. — Notice first that given v € R” with |v| = 1 such that e; -v > 0
for all i € {1,...,n}, we have for all z € (),

(3.17)  Viz(z V—Z\//\ZxQ—I-lelv Zelv S (e v)2 = v = 1.

Second, following Deﬁnltlon 1.4, we extend f)\ as a smooth compactly supported
function § in R Given z € Q, we denote by 7, the maximal (global) solution to
Yo (t) = =Vir(72(t)) with 7, (0) = z, defined in R™ for ¢ € R.

Given v € R™ with |v| = 1 such that e; - v > 0, Estimate (3.17) thus implies
that 4, (t) - v = —Vfr(72(t)) - v < —1. Integrating this between 0 and t, we obtain
Yo (t) - v —x v < —t. Assuming that T> max, gy v —mn, qy-v thus implies

Y(T) v—z-v< -T< — (maxy-v—miny-v),
yeQ yeQ
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that is
x-v—"(T) v>maxy -v—miny-v.
yeN yeN
Since = € €, this implies v,(T) ¢ Q. This holds true for any z € Q. Recalling the
definition of (FC) in Definition 1.4, we have obtained that this condition is satisfied
by both (9, Vfx,T) and (Q, Vix,w,T). Moreover, given the definition of Trc as an
infimum, we have also obtained that
Trc (9, Vi, w) < Tre(Q, Viy) < maxy - v —miny - v.
yEeN yeN

Since this holds for all v, we have proved (3.15), which concludes the proof of the
lemma. g

4. SURFACES OF REVOLUTION

4.1. GeENERAL seETTING. — In this section we introduce the geometric setting for the
results presented in Section 1.3.2. We are concerned with a revolution surface § C R3
being either

(1) Case 1: diffeomorphic to a sphere S? (in which case 98 = @);

(2) Case 2: diffeomorphic to a disk (in which case 98 is a circle embedded in R3);

(3) Case 3: diffeomorphic to a cylinder [0,1] x S* € R? (in which case d8 consists
in two disjoint circles embedded in R3, and belonging to two parallel hyperplanes).

We follow [LL21a] and [Bes78, Chap. 4B p95] for the precise geometric description of
such manifolds. At some places, we also consider the case of the torus T?, endowed
with a metric invariant in one direction.This setting does not strictly speaking enter
the framework of the present section, but is much simpler to describe (and we thus
do not mention it in the present section).

Definition and differentiable structure. — We assume that (8, g) is an embedded 2D
submanifold of R?® (endowed with the induced Euclidean structure), having S! =
(R/27Z) ~ SO(2) as an effective isometry group. The action of S* on 8, denoted by
0 — Rp (such that RypS = 8) has:

(1) exactly two fixed points denoted by N, S € § called North and South poles in
Case 1; we write On8 = {N} and 958 = {S};

(2) exactly one fixed point denoted by N € 8 called North pole in Case 2; in this
case, we write In8 = {N}, and 058 = 08 has a single connected component (called
“south boundary”) which is also invariant by Rg;

(3) no fixed point in Case 3; in this case 98 has two connected components denoted
OnS and 9s8 (called “north and south boundaries”) which are both invariant by Ry.

We denote by P the set of poles, that is P = {N,S} in Case 1, P = {N} in Case 2
and P = @ in Case 3 and set

(4.1) U=8\7.
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We now describe a nice parametrization of (8, ¢), and, in particular, useful coordinates
on the set U. We set L = dist,(On8, 0sS) and denote by

(4.2) I, =(0,L)in Case 1, I =(0,L]in Case 2, I =][0,L]in Case 3.

We let 7o be a geodesic curve of 8§ joining N (resp. dn8 in case 3) to S (resp. 058 in
Cases 2 and 3). Note in particular that length(yg) = L. For any 6 € S!, the isome-
try Ry transforms the geodesic 7o into Ry (7o), which is another geodesic joining N
(resp. On8) to S (resp. 0s8). For every m € U (defined in (4.1)), there exists a unique
6 € S such that m belongs to Rg(7p). The geodesic Ry(7o) can be parametrized by
arclength

p:10,L] — Rg(10), p(0) € xS, p(L) € 058,
s = disty(p(s), On8) = L — dist,(p(s), 0s8S),

and there exists a unique s € I, such that p(s) = m. We use (s, ) as a parametrization
of U CS8:

C:U=8~P—1Ip xS
m— ((m) = (s, 0).

In Case 3, P = @ and thus the whole surface § = U is diffeomorphic to the cylinder
I, x St via €. In Cases 3 and 1, we further need to describe coordinate charts around
the poles. In cases 1 and 2, we define another exponential chart (Uy, () centered at
the pole N by

Unv ={N}u¢ " ((0,L/2) x S') = B, (N, L/2) C8,
(v :Un — Br2(0,L/2), (n(N)=0.
with the transition map
(vo( T :¢(UNUy) =(0,L/2) xS' — (v (UNUy) = Bga (0, L/2) ~ {0}
(s,0) — (scos(), ssin(6)).
In Case 1, we add similarly a last exponential chart (Ug, (s) centered at the pole S by
Us={Stu¢ ' ((L/2,L) xS") = B, (S,L/2) C8,
(s :Us — Br2(0,L/2), (s(5) =0,
with the transition map
Cs0( ' :¢(UNUs) = (L/2,L) x S* — ¢s(UNUs) = Bg2 (0,L/2) ~ {0}
(s5,0) — ((L — s)cos(8), (L — s)sin(0)).
We shall need the following notation. For a subset J C I, we denote by
Cy=C'IxS)={m=("s,0)eU;seJ}CcUCS

the Ry invariant set which projects down to J. We will also extend this definition to
sets J C [0, L] by adding the point N if 0 € J (in Cases 1 and 2) and the point S if
L € J (in Case 1).
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Riemannian structure and operators involved. On the cylinder Iy, x S', the metric g
is given by
(4.3) (1) = ds® + R(s)*de?,

for some smooth function R : Iy, — R (the function R can be interpreted as the
Euclidean distance in R3 of the point parametrized on § by s to the symmetry axis,
see e.g. [LL21a, §3]). Since g is a smooth metric on 8, [Bes78, Prop. 4.6] gives that R
extends to a C* function [0, L] — R* satisfying moreover

(4.4) R(O)=0, R(©0)=1, R®)0)=0 foranypeN, in Cases 1 and 2,
R(L)=0, R(L)=-1, R®P(L)=0 forany peN, in addition in Case 1.

For other parametrizations of surfaces of revolution, or direct computations on the
sphere S? and the disk D, we refer to [LL21a, §3].

Exampre 4.1. — In particular, we consider here the following three examples:

— the unit sphere of R? is given by case 1 L = 7, s € (0,7), R(s) = sin(s) (and the
maximum of R is reached at sg = 7/2)

— the unit disk of R? is given by case 2 with L = 1 and R(s) = s;

— flat cylinder of length L > 0 and radius Ry > 0 is given by case 3 with R(s) = Ro.

In these coordinates, the Riemannian volume form is hence R(s)dsdf, the Rie-
mannian gradient of a function is

0

1 0 . 2 1 2
(4.5) Vgu=0su s + R(s)? Opu 90 with g(Vgu, Vau) = |0sul” + R(s)2 |Opus],
and the Laplace-Beltrami operator is given by
1 1
As = 57\ Us s RYRY) 2-
0 R0s) 0sR(s)0s + R(s)? 0;

We define by L%(8) := L?(8,d Vol,) the space of square integrable functions, which is
also invariant by the action of (Rg)gecs:- We will sometime also use the same definition
for L*(Cy) := L*(Cy,dVol,) for J C [0, L].

Another important operator is the infinitesimal generator Xy of the group (Rg)gest,
defined, for u € C*(8), by

(4.6) Xou = lim 9~ (uo Ry — u).
9¥—0

In the chart (U, (), the action of Ry is given by ((71)*Rg(u, ') = (u, 0" + ), so that
((~1)* Xy = p. It is proved in [LL21a, §3.2] that Xy is a smooth vector field on 8. Note
also that Xy(IN) = Xy(S) = 0 and that its norm is given by +/g(Xy, Xo)(s,0) =

(in the coordinates of U).

Now, remark that (Rg)gest acts as a (periodic) one-parameter unitary group on
L3(8) by f ~ foRg. The Stone Theorem (see e.g. [RS80, Th. VIII-8, p. 266]) hence
implies that its infinitesimal generator is iA, where A is a selfadjoint operator on
L?(8) with domain D(A) C L*(8). Since iAf = Xyf for f € C*°(8) (which is dense
in D(A)) according to (4.6), we have that A is the selfadjoint extension of Xjy/i.
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From now on, we slightly abuse the notation and still denote Xy /i for its selfadjoint
extension A.

Gradient vector field and conjugated operator. — We finally introduce a function f§ :
§ —+ R, at least of class W2 to define the gradient flow. Throughout this section,
we assume that Xgf = 0, i.e., f is invariant by rotation and the same property holds
for ¢. In the coordinates of U, we shall thus simply write f = §(s). These regularity
assumptions can be written in the coordinate of U by

s+ f(s) € W*(0, L), with

(4.7) #(0) =0 (in Cases 1 and 2), and f(L) =0 (in Case 1).
We may now define as in (2.4) the conjugated operator P: as
N A1 -V
P =—c"Ay+ 1 T8
1 1 lf'(s))? e 1
4. = —&2(—— 9, s+ —— 02 h s / _
(18) == ( 555 BB+ 7 OB) + o+ 5 Ry BB ) —ea,

where the second writing, in the coordinates of U, uses the invariance of f. Note that
the last term in this expression acts as a multiplication operator by a function in
L>°(8) with size e. We shall often consider it as a lower order term, and keep the
shorter notation A,f in place of (1/R(s)) 9s(R(s)f (s)).
Since both g and § are invariant by the action of Ry, we have

(4.9) [Xo, P-] = 0.

Moreover, P is selfadjoint in L?(8,d Vol,) with domain H?(8) N H(8) (= H*(8)
in Case 1), and has compact resolvent. Therefore, the operators P. and Xy share a
common basis of eigenfunctions (see e.g. [LL21a, §3.2] for a proof). If A € R is an

eigenvalue of P, then (in the coordinates of U) the associated eigenfunction can be
written as e?*%v(s) with k € Z, v € H2 (1) N L? ((0, L), R(s)ds) satisfying

loc

2 2 10\ (2

_E o K ()l
RG5O (R)90) +2° grssv+ (55

together with v(L) = 0 in Case 2 and v(0) = v(L) = 0 in Case 3.

Restoring the dependence of the eigenelements in the parameter ¢, we call the nor-

(4.10)

+ 6Qf)’U = \v,

malized eigenfunctions of Pe: ¢f ,, = eikevi’n(s) with eigenvalues Aj ., where n € N.
In particular, for all € > 0, we can write L*(8) = ®€k,n)erN span(¢y, ,,)-
We further denote

L} =ker(Xp —ik) = {p € L*(8) ; ¢ju = ™ f(s), f € L* ((0,L), R(s)ds)},

and H = D(P.)NL? = H*(8)NH(8)NL3. The commutation property (4.9) implies
that for all e > 0, P.H? C L%, so we can define the operator
(4.11) P — P5|L2 ,  with domain H7,
k
which is selfadjoint. This can be seen for instance directly on the simultaneous diago-

nalization which implies an isometry L*(8) ~ ¢%(Z x N) where L2 ~ {(k,n) ; n € N}
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as a closed subspace of £?(Z x N). The fact that P. has compact resolvent implies that
this is also the case for Pg(k). With a slight abuse of notation, we shall still denote
by P™ the one-dimensional operator (¢ _1)*P€(k)c * defined on I, namely

: B )P
4.12 PR = ——— 0, (R(s)d.w) + (= )
@) PO = o) + (g + T e
4.2. Tue conprrions (GCC) anp (FC) ON SURFACES OF REVOLUTION. In this section,

we characterize the conditions (GCC) (see Definition 2.10 if OM = @) and (FC) (see
Definition 1.4 if 9M # @) in the above very particular geometry, and further assuming
that the observation region w is rotationally invariant as well. In case OM # @,
we consider the two cases of internal and boundary observation, and describe the
associated minimal times Tgrc.

Prorosirion 4.2. — Let § > 0 and recall that f is assumed to be 0-invariant.

(1) In Case 1, we consider the set w = By(N,§)UB,(S,0); then (8, V f,w) satisfies
(GCCQ) if and only if

L—¢6
f(s)#£0 forall s € [5,L—0] and Tacc(S, Vyf,w) ’ / ds

(2) In Case 2, we consider the set w = By(N,§); then (8, V4f,w) satzsﬁes (FC) if
and only if

§'(s) #£0 for all s € [6,L] and Trc(S,Vyf,w) ‘/ ds/f'(s
(3) In Case 3, (8,Vf) satisfies (FC) if and only if
L
§'(s) #£0 for all s € [0,L] and Trc(8,V,f) = ’/ % .
0

Note that in Case 2, the situations f > 0 and § < 0 play two different roles (see the
proof below). Indeed, in case f > 0, all trajectories of —f" enter the controlled region w,
whereas, in case f' < 0, all trajectories of —f' flow out of the domain 8 through 98
(without passing into w). However, the definition of (FC) in Definition 1.4 does not
make a distinction between these two situations.

Proof. — We only prove the second item; the other two items are proved similarly.
According to Definition 1.4, (4.5) and the 6-invariance of f, it suffices to check under
which conditions the solutions to $(¢t) = —f'(s(¢)) all enter w = By(N, ) (resp. all
exit 8, that is satisfy s(7T") > L). If there is sg € [§, L] such that f(sg) = 0, then the
associated solution satisfies s(t) = so € [0, L] for all ¢t € R, and (8, V,4f,w) does not
satisfy (FC).

If f > 0 on [§, L], then s(t) is decreasing, and for any oo, 01 € R, one has

/5(0’1) ds
—— =09 —01.
s(oo) f/(S) ’ !

J.E.P. — M., 2021, tome 8



474 C. Laurent & M. Léavraup

The longest trajectory that does not enter w is such that s(0) = L and s(T") = ¢ so
that T = féL ds/f (s). This proves
L
ds
TFc(S, v f, w) = VRN
! s (s)
in this case.
Finally, if f < 0 on [4, L], then s(¢) is increasing, and for any o9, 01 € R, one has

/s("l) ds
s(o0) f,(s) oo

The longest trajectory that does not enter w is such that s(0) = 6 and s(T') = L so
that —T = f5L ds/f (s). This proves

L
ds
Trc(8, Vyf,w) = —/ —
! s (s)
in this case, and hence the proposition. O
4.3. EXISTENCE OF EIGENFUNCTIONS. — One may consider different asymptotic regimes

in the parameters ¢ — 07 and k — +oco. Note that the case k bounded would
correspond to the one-dimensional situation treated in the companion paper [LL21b].
Here, we shall consider the limit & — 400 and make the following choice of the
parameter €:

(4.13) e=¢ep=ck !

considered as a semiclassical parameter, where ¢ > 0 is a fixed parameter (i.e., which
does not depend on k) that will be chosen but fixed. All constants that appear below
might depend on c. The analysis of the asymptotic of the constant involved as ¢ — 0
(low level of rotation) or ¢ — oo (high level of rotation) would be interesting but
would require much more work.

In view of (4.12), the choice (4.13) naturally leads to consider
O

RG24

(4.14) s+— Vo(s) :=

as the effective potential of the operator Pg(f ) in the semiclassical limit & = gp =
ck~! — 0%. In particular, the operator Pg(k) is now a semiclassical operator with
small parameter e and (4.12) can be rewritten
£k
R(s)
In the present section, we recall the existence of eigenfunctions (Analogue of
Lemma 3.2 above) associated to any value of the effective potential V.. More pre-
cisely, in the chosen regime (4.13), for any so € I, (recall that I, is defined in (4.2)),
we construct a sequence 1y such that P., vy = (Vo(so) + r(k))vk, with r(k) — 0 as
k — 4o00. As in Section 3.1, the precision r(k) might depend on whether V!(sg) # 0
or V/(sp) = 0 but we will only state the worst estimate, which is sufficient for our

(4.15) PPy = ——E- 9 (R(s)0sw) + (Va(s) + ergs) w.
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needs. We shall later on prove localization properties of the 1’s assuming further
that Vg(sg) = miny, V. (which is a global assumption). We recall the choice (4.13)
and the definition (4.14).

Lemma 4.3 (Existence of eigenfunctions). For all sg € Iy, there is kg > 0 such
that for all k € N,k > ko, there exists vy, € H?(8) N L in case 1 (resp. ¢y €
H2(8) N HY(8) N LE in Cases 2-3), and py, € R such that

_ 2/3y _ c? 7" (s0)/? 2/3

Pothr = e, Uelles) =1, vn(s,0) = e*py(s),
with P. defined in (4.8) and ey, in (4.13).

The proof is very similar to Lemma 3.2. Indeed, the study of the operator P, in L?
reduces to the 1D problem for the operator P defined in (4.11) and (4.15). The
proof consists first in constructing quasimodes exactly as in the proof of Lemma 3.2.
Deducing existence of an exact eigenfunction from a quasimode requires the use of
the right selfadjoint extension Pg(,f ). This issue is however treated in detail in [LL21a,
Lem. 3.6]. Note that so € I, implies that it cannot be a pole so that R(so) ™! is finite.

4.4. GEOMETRIC ASSUMPTIONS AND THE AGMON DISTANCE. The next step is to study
the behavior of the eigenfunction ¢, constructed in Lemma 4.3. This will require some
global assumptions on the effective potential V.. Recall that V. is defined in (4.14),
is continuous on I, and tends to +0o near to the poles. Indeed, in Cases 1 and 2 we
have for instance

c? c?
ch(S) s—r:(/)Jr W s—r:(/)Jr ? szi
as a consequence of (4.4) and (4.7) (and similarly when s — L~ in Case 1). As a
consequence, V. admits a minimum on the interval I, which we denote by

+00,

Vinin = ?enerl Ve(s) € RY.

In the following, we make Assumption (1.17) on the set where V, reaches its global
minimum.

AssuMPTION 4.4. The set V.7 (Vipin) = {Smin} C I1 consists in a single point.

Note that this is assumption is generic. Here it is not strictly needed to prove
the main results, but simplifies the presentation and statements slightly. We again
introduce the relevant Agmon distance at the minimal energy level Vi, defined in
the coordinates of U by the eikonal equation

(& 2 C (&
((dA)/<5)) — (Ve(8) = Ve(5min)) = 0, d%(Smin) =0, Sgn((dA)/(S)) = 5g0(5 — Smin);
or, more explicitly, for s € I, by (1.18). In view of the W2 regularity of f on § and

the definition of V. in (4.14), the function d4 is of class C? away from Syin, 0 and L,
and is locally Lipschitz on Ij. Note that this includes Lipschitz regularity up to the
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boundary s = L in Case 2 and to both boundaries s = 0,L in Case 3. We also
consider d as a f-invariant function on the surface 8.

Lemwa 4.5 (Properties of d% ). — Under Assumption 4.4, we have d% € C?(I{Smin})
together with

(4.16) d5(s) = —clog(s) + O (1), ass— 0", in Cases 1 and 2,
(4.17) d5(s) = —clog(L—s)+0(1), ass— L™, in Case l.

Proof. — We only consider the asymptotics as s — 0%, that is, prove (4.16). The proof
of (4.17) follows the same. Remark that according to (4.4), we have 1/R(y) — +o0
as y — 07 with

R(s) = s+ 0(s®), when s — 0.
As a consequence, since f € W2°°(I1), we have

02

Ve(s) = " +0(1), whens— 0%,
With (1.18), we obtain

a5(5) =

/S £(1+0(y))dy| = —clog(s) + O(1) as s — 0", O

Smin

4.5. UPPER BOUNDS FOR EIGENFUNCTIONS: AGMON ESTIMATES. — As far as upper bounds
on vy, are concerned, we have the following Agmon type estimate.

ProrostTion 4.6. Under Assumption 4.4, assume that p, = Vo(Smin) + 7(k) with
r(k) = 0 and ¢y, € H?(8) N L3(8) solves

Peythe = b, on'S, Yplos =0,  [[Yrlz2s) =1,

with P, defined in (4.8) and ey, in (4.13). Then for all0 < 6 < 1, there exist C = C(6),
ko = ko(6) > 0 such that, for all k € N, k > ko, the following integral is well defined
with the estimate

/ez(1—5)d;(m)/sk|¢k|2(m)dvolg(m) < Ce?len,
s

Also, if 08 # @ (that is, in Cases 2 and 3), for all 0 < § < 1, there exist C = C(J),
ko = ko(0) > 0 such that, for all k € N, k > ko,

||35¢k(L,)||§11(31) 06—2(1—5)(12(11)/8197

10530, )11 o)
where the last estimate (at s = 0) holds true in Case 3 only.

(4.18)

NN

Ce2(1=0)5(0) /2

Note that given the asymptotic expansion of d$ in Lemma 4.5, this estimate implies
that 1, vanishes strongly near the poles of 8. The proof is made with classical Agmon
type identity with some care with respect to the degeneracy at the poles. It is very
similar to the one performed in [LL21a, Th. 3.9] and we omit it. Note that, as opposed
to [LL21a, Th. 3.9], we do not assume here that the minimum be non-degenerate, and
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only deduce an estimate with loss (§ > 0), which is sufficient for our needs. In the non-
degenerate case, one can take § = 0 in this estimate and replace the right hand-side
by a polynomial bound of the type ; ™, see [LL21a, Th.3.9].
The proof of the boundary estimate also requires a bootstrap argument to estimate
higher H® norms and the use of a trace estimate, see [Hel88, Prop.3.3.1 & 3.3.4].
We obtain the following two direct Corollaries.

CoroLLARY 4.7. — Under the assumptions of Proposition 4.6, for all 0 < § < 1,
there exist C = C(9), ko = ko(d) > 0 such that, for all k € N, k > ko, and for all

rotationally invariant set w, we have

SEw

/mk m)d Vol,(m) < Ce~ /e ((1=0da(@)=0) = yyith 49 (w) = inf d5(s).

Proof. — This is a direct consequence of the following estimate:
DT [ i P m)aVol, (m) < [ A= g 2 m)a Vol (m)

< / 2005 (m)/=k |4y 12 (1) d Vol (m)
s

g 0625/6k ,
where we have used Proposition 4.6 in the last inequality. ]
CoroLLARY 4.8 (most of the norm is close to the minimum). Under the assumptions

of Proposition 4.6, for any p > 0, there exists kg € N so that

lWeliaien, o oy 2 1/2 forallk € N,k > ko

Proof. — Applying Corollary 4.7 with w = 8 N\ C,. —p siun+p) ensures that for any
6 > 0, there is kg € N such that for all £ > kg, we have

/|¢k| m)d Vol,(m) < C(8)e~ /e ((1=0)da(w)=0), with d5 (w) = inf d5(s).

From Assumption 4.4, we have d5(s) > 0 for all s € I, \ {Smin}- That w is closed
and does not contain Sy, implies that d$(w) > 0. Then we fix ¢ > 0 small enough
so that (1 — §)d%(w) —d > 0. There is ky € N such that we have H¢k||i2(w) — 0 for
k > kg, which implies the result. O

4.6. LLOWER BOUNDS FOR EIGENFUNCTIONS: ALLIBERT ESTIMATES. — In Corollary 4.7, we
proved that the family of eigenfunctions 1, decays on w at least like e~%a(«)/ex The
purpose of this section is to prove the converse, i.e., that the ¥’s decay at most like
e~%(@)/ek up to § loss. This comes from the particular one-dimensional underlying
context. We follow in this section the method of Allibert [Al198]. More precisely, we
prove the following estimates.

Prorosition 4.9. Under Assumption 4.4, assume further that

(4.19) k= Ve(Smin) + r(k) with r(k) — 0,
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and i, € H*(8) N L2(8) solves

Pakwk = ,U/k:'(/)ka on 87 ¢k|88 - 07 Ilwk||L2(5) == 1; 1/%(3’ 0) = eikg@k(s)a
with P. defined in (4.8) and ey, in (4.13).
Then, for any n,0 > 0, there exist ko, C' > 0 so that

||wk||L2(CB(s ) 2 Ce= Ve dal)+0)  for all k > ko and s € Iy, s.t. dist(s, P) > 7.

Note that 7 is a safety distance to the set of poles P defined in Section 4.1. The
proof of Proposition 4.9 relies on two lemmas, which we give in the next section.

4.6.1. Two preliminary lemmas. — In this section, we assume that the assumptions
of Proposition 4.9 are satisfied. In particular, the eigenfunctions under consideration
are of the form 1 (s,0) = ey (s). We define the following “semiclassical energy
densities” of the eigenfunctions vy, for s € I, by

(4.20) € (s) = exl0syul*(s) + (Ve(s) — pur + D)In[*(s)
= erlokl*(s) + (Ve(s) — e + Dlr*(s),
(4.21) €L (s) 1= exl0sthi]*(s) + (Vels) — p) [Wok]*(5)
= erlokl*(s) + (Ve(s) — ) lowl*(5)-

Note that according to elliptic regularity, we have ¢y, € Hﬁjc([ 1) and, due to Sobolev
embeddings, @%,Ek,gz € C°I) and in particular &y, & v are defined everywhere
on Ij. For s,t € I, we define I,; to be the interval between the real numbers s

and t, that is, either [s,t] or [t, s]. We also set
(4.22) E,={sel.;|s—p|l >a forall pe P, and |s — smin| > a}.
Recall that P is the set of poles defined in Section 4.1 (and is aimed at covering all

Cases 1-3 at the same time) and sy, is the point at which V, reaches its minimum.

Levma 4.10. —  Assume the assumptions of Proposition 4.9 and recall that & is
defined in (4.21). Then, for any a,é > 0, there exists ko > 0 so that for all s,t € I,
such that I, ; C E, we have

g;:(t) < 6(2/€k)(\d2(8)*di;(t)|+5)g;(s), for all k > k.

Lemma 4.10 provides with a Gronwall type estimate on the energy Eﬁ, with a
precise description of the constant, under the condition that we remain finitely away
from spmin. It is an analogue of [All98, Lem. 12] in our setting (with an additional
uniform dependence).

Note that |d(s) — d (t)] = d5 (s, t) is the Agmon distance between s and t at the
lowest energy level.

Proofof Lemma 4.10. — On the interval z € I, C E,, we differentiate €}, yielding

(&5)'(2) = 25 Re(Tr'w) + Vi (2) i + 2(Ve(2) — p) Re(orPr).
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We recall the choice of i, in (4.13) from the definition of P., in (4.8), and the definition
of P in (4.10)-(4.15) that we have

/
2 1 2

prpr = Peyop = —€05 — €k R 902 + Vewr + €rg5 k-

Replacing Ezgog in the above identity yields

(1) (=) = 2(Ve(2) — e + 1)) Re(ani) — 262 - 1ok P + Vi) lnl?
+2(Ve(2) — pue) Re(err)

R/
(4.23) = (4(Ve(2) = pr) + 2en45) Re(prpr’) — 2¢j; T o l? + V() lenl*.

First, using the continuity of V. on I; and the compactness of E, in I}, we see
that V. reaches its minimum on F,. This, together with the fact that sy, ¢ E,,
implies that C5? < V.(8) — Vo(Smin) < C2 uniformly for s € E,. Recalling (4.19), this
yields the existence of k() such that for k& > ko(«), we have V.. — py, > 1/2C,, > 0
on F,.

We now estimate each of the terms in (4.23). We first have

40V — ) Re(oair)| < e Ve = o (erlehl) (VVe = puelion)
< 260 'V Ve — i [eR100 1P + (Ve — i) ok’
=2/ Ve — i €.

Moreover according to (4. 19) there exists a constant C, > 0 such that we have

< Ve — Ve(Smin) + Cqlr(k)| uniformly for s € E,. Together with the
above 1nequahty, this implies

14(Ve — ) Re(0x )| < €5 (2v/ Ve — Ve(Smin) + Calr(k))ES,  on E,.

Second, we have
Velenl?| =
Third, we have

V/
‘ | (Ve = plenl? < 200 Vo ey € 00 P

lergs Re(prpr’)| < Co€),  on E,.
Finally, since R'/R is bounded on E,, we have
‘% R |80k| ‘ Caciloil” < Cali  on E,.

Combining the last four estimates in (4.23) yields for another constant C, > 0 and
for all k > ko(«)

[(E5) (2)] < 2¢;° {\/—srmn+0|r )+ Ca ek}ﬁ( ), forall z € E,.

Applying the Gronwall Lemma on the interval I, ; contained in E, yields

Ef(s)<e Ve(@)—Ve(smin)dz|+Ca|r (k) [+Cacx ) £+ (1)

which is the sought result. |
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The next lemma is aimed at giving a rough Gronwall type estimate for the en-
ergy &, without precise constants. The interest of this less precise result is that it
remains true close to the minimum sp;,. This allows to compensate the fact that
Lemma 4.10 is not uniform when s is close to Smin. Similarly as F, in (4.22), we
define

Fo={s€l.; |s—p|l>a, forall p e P}

Lemma 4.11. — Assume the assumptions of Proposition 4.9 and recall that & is
defined in (4.20). For any a > 0, there exist Co, Dy, > 0 so that for all s,t € F,, we
have

Er(s) < Cae(Q/E’“)Dals_“Ek(t), for all k > k.

Lemma 4.11 is an analogue of [All98, Lem. 11] in our setting. Recall that P is the
set of poles defined in Section 4.1.

Proof. — The proof is quite close to that of Lemma 4.10. We only use the fact that
there exists C,, so that C;1 < V. — pux +1 < C, on F, if k > ko(«). This gives a
constant D, > 0 such that
Dt (erlehl® + lenl?) < €k < Da (eR]@il? + @xl?)  on Fa.
The same computation as in (4.23) gives
k= (E0) + 2Re(0rPr)
/

R
= (4(Ve = ) + i + 1) Re(o@r) — 265 7 Ieil” + VI,

with supg_rp — 0 as k — 400. As a consequence, for k > ko(a), we have constants
C!,CY such that for all z € F,

|(€0)'(2)] < €7 Cq (Rlenl® + lowl®) < e ' CRER(2),

which allows to conclude as in the proof of Lemma 4.10 above by Grénwall estimates.
O

4.6.2. Proofof Proposition 4.9 from Lemmas 4.10 and 4.11. — The sketch of the proof
of Proposition 4.9 is as follows:

(1) the total mass of ¢y is dominated by its mass near the minimum sp;, via
Corollary 4.8;

(2) the mass near Sy, is dominated by the energy at spin — p via Lemma 4.11
(with a small loss if p is small);

(3) the energy at sy, — p is dominated by the energy near s via Lemma 4.10 (with
a geometric constant e(?/5#)da(s));

(4) the energy near s is dominated by the L? norm of ¢, (or 1) near s via elliptic
regularity.

Proof of Proposition 4.9. — Without loss of generality, we can assume s < Spin — 7.
Indeed, the case s > spmin + 7 is treated similarly, and the case s € [Smin — 7, Smin + 7]
is a direct consequence of Corollary 4.8 applied for p = n/2.
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Now, since $pmin € I, notice that we have necessarily d := dist(smin, P) > 0, and
we may also assume that 6 < d/4. Lemma 4.11 can be applied with o = d/4 and
produces some constants C' = C,, D = D,,. Let us now choose

p = ps = min(5/(4D), d/4,n/2).
Application of Lemma 4.11 gives for any © € (Smin—p, Smin+p) (S0 that dist(u, P) > n)
Ei(Smin — p) = C_le_(4/s’“)DpEk(u) > C’_le_‘s/s’“é'k(u).

Integrating in u € (Smin — P, Smin + p) gives

Smin+p
(4.24) Ek(Smin — p) = 22 e~0/ek / Er(u) du > Cre 05,
p s

min —pP

where we have used € (u) > %[py|?(u) (for k large enough) and Corollary 4.8.

Taking y € [s, s+1/2], we still have y < spin — p from the definition of p. Choosing
a = p/2 < n, we can check that [y, Smin — p] C Eq, so that Lemma 4.10 applies on E,
and gives

EF(y) > e~ /e () ~da (smin—p) H0) g (g
(4.25) ¢ W) . e )
> e @@ gt (g o)

where we have noticed

|d%(y) — d% (Smin — p)| = d3(y) — d% (Smin — p) < d%(y) — d4 (Smin) = d%(y)-

Since Smin is a strict minimum, there are constants ko(p,d) = ko(d,n) > 0 and
C(p,mn) = C(6,m) > 0 such that for k > ko(9),

‘/c(smin - p) — Mk = ch(smin - P) - ch(smin) + T(k) 2 C(6a 77)_1
This implies
Ek(Smin —0) = & + |or> < EL+C(0, ) (Ve — ) o> < (1+C(6,1)) €} ($min — 0),

where all functions are taken at the point (Spyin —6). Combining this estimate together
with (4.25) and (4.24) yields

Er(y) g+( )= Ce™ (2/exr)(d% y)+5)g+(5min —p) = 067(2/8k)(d2(y)+5)gk(smin —p)

>
> Ce= /(@ W+20) 5 (p=(2/20)(d5(2)+26)

where C' is a new constant depending only on ¢ and 7. Note that in the last inequality,
we have used that d$(s) > d (y). Integrating for y € [s, s +1/2], we get

(4.26) / En(y)dy = Ce—(2/erx)(d5(s)+26)
[s:5+n/2]
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Now, turning to the global manifold and recalling that 1 (s, 8) = e**%y(s), (4.5) and
(4.13), we have

/ Ex(y)R(y)dy = e} / |V gk |2d Vo,
Closotn/2) Cls,54n/2]
\V4 2
(e
Cls,s+n/2]
(4.27) < Clellzrcy o)

Finally, an interpolation estimates together with P. vy = pxtr and the definition
of P, in (4.8) gives

2 2
2 < oWy Wl B )
- 2
(4.28) < Cper? Wk”m(qrn,ﬁn]) .
Now combining (4.26)—(4.27)—(4.28) gives

2 _ < (s
||wk||L2(C[877718+7]]) > C&ke (2/Ek)(dA( )+25)7 k > k0(57 77)

Finally noticing that €2 > e~%/%k for k > ko(d) ends the proof of Proposition 4.9 up
to replacing ¢ by /3. |

47 MINIMAL TIME FOR UNIFORM CONTROLLABILITY IN THE LIMIT £ — 0+

The main purpose of this section is the proof Theorem 1.8 and its corollaries.

4.7.1. Proofof Theorem 1.8. Recall that we consider the following situation:

— 8 is a surface of revolution as described in Section 4.1, ¢ > 0 is a fixed constant.
Moreover, Assumption (1.17) is fulfilled.

— For k € N, e = g = ck~! and vy, is the set of solutions of P, 1, = uxty defined
in Lemma 4.3 associated to sg = Smin is the minimum of V..

— the function

(4.29) oty z) = e /=y (2)

is the solution to (2.9), namely (¢,0; + P, )vr = 0, vglos = 0, and vg|i=o = k.
Here, 1 denotes the eigenfunction constructed in Section 4.3 above (in particular
¥kl p2(s) = 1) and studied in Sections 4.5-4.6.

We now want to test Inequality (2.10) on vy, and thus estimate both sides of this
inequality. This is achieved in Lemmas 4.12 and 4.13. Theorem 1.8 is then a direct

consequence of these two lemmas. We recall that V. is defined in (1.16) and W¢
in (1.20).

Lemva 4.12. — For any 0 > 0, there exist C, ko > 0 such that for all k > kg and all
0< Ty <!, we have

le=/22 0 (T > Qe Velomm Tt Wot0)/en e — min W,
L

)HL2(S)
with vy, defined in (4.29) and W¢(s) = d(s) + f(s)/2.
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Proof. Note first that the function W€ = d%+§/2 is continuous on I, and converges
to 400 close to the poles p € P, according to the asymptotics of d§ in Lemma 4.5.
Hence, it reaches its minimum in (at least) one point that we denote s; € Iy, that
is We(s1) = WE = miny, W° We take 0 < n < dist(s1,P) small enough so that
[f(s) — f(s1)| < ¢ for |s — s1| < n. We have for k > ko large enough

HB*T/QEUIC(TO — ef(uk/Ek)TOHG*f/QEwk

)HLz(S) ||L2(5)

> e~ (i /ex)To He—f/%wk |‘L2(C(317m81+n))

—(p To —(f(s1)+68)/2
> ¢ el e (e EkHwkHLQ(C(S1fn,S1+7I))

> Ce—(i/er)To o= (F(s1)+6)/2ey, e—(l/sk)(di(51)+5)’

where we have used Proposition 4.9 for the last estimate. Since pp — Ve(S$min), we have
wkTo < Ve(Smin)To + 0 for k large enough, which, together with the above estimate,
concludes the proof (up to changing 34 into 9). |

Lemva 4.13. — For any w C 8 and > 0, there exist C,kg > 0 such that for all
k> ko, and all 0 < Ty < 671, we have

To
/ e 20k (t, )|} 2y dt < Ce 2V We = min e,
; (@) ]
To 9 .
/ He_f/2583vk(t)|S:LHHI(Sl)dt < Ce2WHD)=0)/ek - yp Cases 2 and 3,
0

To
/ Heif/zsasvk(t)‘S:()Hi{l(Sl)dt < Ce2WHD=0/ex i Case 3,
0
with vy, defined in (4.29).

Proof. Since we need an upper bound, we can assume without loss of generality
that w is invariant by rotation. Also, W¢ is finite except in the trivial case w C P. Let
6 >0.

We first estimate the contribution close to the poles in case P # &. There, the
function 1, (hence vy) is supposed to be very small since d¢ is large. More precisely,
using the asymptotics of d% close to P given by Lemma 4.5, there exists 77 > 0 so that

ds . ~
(4.30) A2<S> > WS+ ”f”; +1, foralls e Ny={sel; dist(s,P) <7}

We start with the estimate

To 9 5 To
(4.31) /0 ||€7f/2€”k||L2<chﬁ>dt < el g7z o) /0 e /ety
We have

To To(2uk/ex)
/ e~ 2uk/eR)t gy — gik/ e %ds < Cg—k <1, for k large.
0 2 0 2pg
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Corollary 4.7 applied to the set Cy, and the constant § = 1/2, together with (4.30)
implies

—(1/er) WS+l Loo /2)

”"/JkHLz(CNﬁ) < Ce (1/ex IFllzoe/2),

With (4.31), this gives
To
— 2 _ c _ c
/0 e f/QEkaL%meNﬁ)dt < Cellflloe /2= @/er) Wit oo /2) = o= (2/er)WE

which is the expected bound for this part.

Let us now treat the contribution of the norm away from the poles (which is the
whole Iy, in Case 3). Since f is uniformly continuous on [0, L] and d is uniformly
continuous on the compact set N% := I, \ Ng, there exists 7 > 0 so that

(4.32) s,6' € N% and [s— 5| <n = [f(s) — f(s')] <6 and |[d5(s) — d5(s')] < 6.

We now select a finite sequence s; € Ng, i = 1,..., N so that {|s — s;[ <n} is a finite
covering of N%. This property gives the estimate

TO TO
—f/2e 2 -2 € —f/2e 2
LI < [ e
0 7 0 icd v K
where J = {i=1,...,N; (s; = 1,8 + 1) Nw # &}. Using |f(s) — f(s;)] < 6 and
|dS (s) —d%(si)| < d for s € (s; —m, s; +n) and then Corollary 4.7 with some 0 < §’ <
0/(14d%(s;)) so that (1 —8")dS(s;) — 8" > d5(si) — 6, we obtain
_ —(f(ss)+6
He f/QawkHl’z(C(Si < € (f( )+ )/26 ||¢k||L2(C(si*Thsi+n))
Co—(Fs0)+8)/22 y—(1/e) (1=8')d5 (s:)~8") .6/ =

*71351"*’77))

NN

Co—(Wo(s)=18) /o),

We finally obtain
To
—f/2e 2 8d /e —2W°(s;)/e
LI 0 o il < O mae g
We remark from (4.32) that min;eg W€(s;) > WS —24. This finishes the proof since §
is arbitrary and k can be chosen large enough.

Finally, the proof of the boundary estimates simply consists in replacing the use
of Corollary 4.7 by that of the inequality (4.18). O

We may now conclude the proof of Theorem 1.8 from Lemmas 4.12 and 4.13

Proofof Theorem 1.8. — Using Lemma 2.9, if uniform observability holds for Tj, then,
we have the inequality

To
le™/220(@0) |75y < O3 /0 om0t

for any solution v of (2.9). In particular, this inequality holds true for the sequence vy
described above. So, combining Lemmas 4.12 and 4.13, we obtain

e~ Velomm) Tt Watd)/en  Cpe=Wo0/er | > ko(5),  for all k > ko.
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This implies V. (smin)To = WS — WS — 2§ when letting k& — +oo, which gives the
expected result since ¢ is arbitrary. The proof of the boundary observability esti-
mate (1.22) follows the same. We also notice that all the previous results also apply
in the case with the alternative Definition 1.19 of the Agmon distance which is also
Lipschitz with the same properties that we used. O

4.7.2. Proof of Corollaries of Theorem 1.8. — Corollaries 1.9, 1.10 and 1.11, stated
in the introduction, are significant examples of application of Theorem 1.8. In this
section, we prove these three results.

Proofof Corollary 1.9. — We first consider the case § diffeomorphic to S?, i.e., Case 1.
The case 8 diffeomorphic to D, i.e., Case 2, is discussed at the end of the proof. We de-
fine f5(s) = fos Xs(t)dt where x5 € C((0,L);[0,1]), xs(s) =1 in a neighborhood of
[0, L — ¢]. Such a function f5 is constant near 0 and L, and hence can be extended
by continuity as a C'* function on 8 (see e.g. [Bes78, Prop.4.6]). We notice that
f5(s) =1 for s € [0, L — §], so the statements about Tgcc are direct consequences of
Proposition 4.2.
Notice now that we have

Let us call sy € (0,L) the unique point such that R(smin) = max R, that is
1/R(Smin)? = min1/R2.

Cramv. — For all ¢ > 0, there is 69 > 0 such that for all 6 € (0,dp), we have
%(Smin) = mln‘/c and V;_l(vc(smin)) = {Smin}-

To prove the claim, we let §o > 0 be such that

c? c?

1
Smin € [00, L — do], and R20) > FEE + 1 for s ¢ [0, L — o]

(note that §p thus depends on c). This is possible since R(s) — 0 as s — 07 and
s — L~ . Hence, recalling the definitions of xs and V, for 6 < Jy we have

c? 1 c? 1
Ve(Smin) = m + T Ve(s) > Reom)? + 1 for all s € [0, L — do] \ {Smin},
together with
c? c? 1
Ve(s) 2 > — f 80, L — 8o).
)2 ) 7 Rl 710 P00

As a consequence, V. reaches its minimum at s,,;, only, which proves the claim.
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Now Assumption 4.4 is satisfied and sy, does not depend on §. We compute the
Agmon distance (1.18)

/ V' Ve «(Smin) dy

Smin

2 1
R Y|
Snnn R(Smin)2 4

2
oo P 11
4 4 4
uniformly with respect to § so that the asymptotic expansion of Lemma 4.5 is valid
uniformly in ¢: there are C,~ > 0 such that for all § € (0, dp),

|d5(s) + clog(s)] < C  for s € (0,7],
|d%(s) + clog(L —s)| < C, forse[L—~,L).
NOW we recall the definition of W = d + f5/2, notice that 0 < f5 < 1 so that

< fs(s) < L for s € Ir. As a consequence, using that d > 0 and d$(smin) = 0, we
have for 6 € (0,7],

Notice that

)

, , : L ., L
W = minW‘ = min(di; +15/2) < 3 —|—Irllindf4 < 3
L

WS = manC mlndA —clog(6) —C  for w= By(N,d) U By(S,0).

w

The bound (1.21) of Theorem 1.8 then yields

c? 1 L
o 4 ) Tuni(w) > —clog(8) — C — =,
(R(smin)z + ) Tonit() > —clog(8) 2
and hence concludes the proof in the case § diffeomorphic to S?, i.e., Case 1.
In the case 8 diffeomorphic to D, i.e., Case 2, we instead define f5 fo X (t)dt

where x5 € C2°((0, L]; [0,1]), xs(s) = 1 in a neighborhood of [4, L]. Then the remain-
der of the proof is the same except that the minimum can be achieved at s = L, and
all sets of the form [0y, L — dp] have to be replaced by [0g, L] (i.e., only a neighborhood
of zero is avoided, and not a neighborhood of L). O
Proof of Corollary 1.10. — For the sake of simplicity, we may identify
St =[-L/2,L/2] and I, = (—a,a) forac (0,L/2).

We first choose ys € C°°(S}) even in this identification, and spi, = £L/2 ¢ (—a,a)
such that

x5 =z on [~3(a+L/2), b+ L/2)], Xolsmin) =1

5
X5(s) =0 if and only if s € [~ (v + L/2), 3 (a + L/2)] or s = Spin.
Note that x5 = 1/§ in a neighborhood of (—«, «), and that for § < 1, xs reaches at

Smin = £L/2 a unique global minimum and in partlcular Xs = 1 on Sl We then set

VO(s)i=xs+ M, M:= né?,xh’\ /4,
L
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so that V°(s) > |f(s)[?/4 on S}, and

Rsls) = (VO(s) — [F(s)2/4) /%, Ry € C(SL;RY),

where we have used that § € C°°(S}). Notice that with these definitions, we have
(where V; denotes V, with ¢ = 1)

_ 1 () _
Vi(s) = TROL +7 = VO(s).

Notice then that V9 admits a unique global minimum at sy, = +L/2.
On the one hand, we have

(xs(s) + M)~ /2 < Rs(s) < x5 /% (s).

On the other hand, since x; is even and with the appropriate definition (1.19), we have
for s € [0, L/2],

i, (s) = /L/2 \/v5 —V(L/2)dy —/L; Vxs(y) — 1dy.

As a consequence, we have (recall w = (—a, ) x St)

L
Wi = min W* = min (d5 +/2) < (d3 +/2) (L/2) = w

WS > mind$ +minj/2 = d4(a) + minf/2,

WV

L/2 3 (a+L/2) 3 (a+L/2)
“@= [ Vol ldy / V() —ldy = / /8 —1dy

((L/2) =) (612 = 1)
for § < 1. Applying Theorem 1.8 concludes the proof of the corollary. a

We next prove Corollary 1.11, stated in the introduction. The proof is close to that
of Corollary 1.10.

Proofof Corollary 1.11. — We first take x € C°°(R;[0,1]) such that yx = 1 on
[0, L/4] and supp x C [0, L/2). Next, with

M = 4,
r[rolaXIfl/

we set

__x(s)
Vi(s) = G +(1—x(s)(s—LJ2)* + M, forsel0,L/2],
V(s):=V(L—s) forsel[L/2,L].

This function is symmetric about L/2, smooth on [0,L], and satisfies V(s) >
f'(s)|?/4 on [0, L]. Hence, defining Rs as

Rs(s) := (Vo(s) — If (s)2/4) 72,
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and using that f € C*°([0, L]), we deduce that Rs € C>°([0, L]; R;"). Notice that with
these definitions, we have (where V7 denotes V, with ¢ = 1)

_ 1 () _
Vi(s) = Ry ()2 +7= = VO(s).

Notice then that V¢ admits a unique global minimum at Sy, = L/2.
We have on the one hand that for all s € [0, L/4] and ¢ € (0, do],

1
1+ M(s+0)

1/2

(s +0)7/2 = (V3(s)) ""* < Rsls) < (VO(s) — M) /% = (s + 6/,

which proves the Item 4 (on account to the symmetry V?(s) := V(L — s)).
On the other hand, recalling that sy, = L/2, we have for s € [0, L/2]

V1<5min) = V(S(L/Q) =

- /LS/Q \/V5(y) = V(smin) dy‘
) // \/<SX+(S(3>7 + (1= x(9) (s = L/2)° dy‘.

As a consequence, we have

_ o . )
Wiy = min IV = min (d +§/2) < (d5 +§/2) (L/2) = B2

Wiy = W(0) > d5(0) + @

where

(0 //\/ MO xo) - 127 /”4,/

§1=v/2 (6 +L/4)" —v/2 §1=7/2

+0(1), for~vy>2.

Ty2—1 0 y2-1 0 q/2-1
By symmetry of V° about L/2, we also have d (L) = d<(0). Applying Theorem 1.8
concludes the proof of the corollary. O

5. [:NIFORM TIME OF OBSERVABILITY FOR POSITIVE SOLUTIONS

The proofs of Theorem 1.3 and Proposition 1.12 rely on fine estimates on the
semiclassical heat kernel, which we borrow from [LY86]. The latter are first presented
in Section 5.1. Then, in Section 5.2, we deduce L' observability statements and finally
conclude the proofs of Theorem 1.3 and Proposition 1.12 in Section 5.3. Throughout
this section, we assume OM = &.
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5.1. ESTIMATES ON THE SEMICLASSICAL HEAT KERNEL. The main tool we use to esti-
mate the heat kernel in the semiclassical limit is the following theorem taken from
Li-Yau [LY86] (see also [Sim83], for a similar result on R™).

Tueorewm 5.1 (Theorem 6.1 of [LY86]). — Let M be a compact manifold without bound-
ary. Suppose V. =V + eq with V,q € C?>(M). For any € > 0, we consider H., the
fundamental solution of
1
Ow — Agw + = Ve(z)w =0, on (0,+00) x M.
Then, we have
(5.1) lime log He(x,y,et) = —p(x,y,t),
e—0

where

(5:2) pla.y.1)
_ inf{ | RO +VO)ds 3 € W ([0.4:30.4(0) = 2.9(0) = y}-

Moreover, the limit in (5.1) is uniform on any compact set of M? x (0, +0o0).
We recall that H.(x,y,t) is defined to be the unique solution to

(8,5 AV E%%(x))HE(x,y,t) =0, for (t,r) € R} x M,

(5.3)
Ha(xvyat”tzo = 5w:y7 for x € M7

where y € M is fixed, and the differential operator —A, + (1/£2)V.(z) acts in
the z-variable. We also recall that H.(x,y,t) is (well-defined and) continuous in
M2 x (0,+0o0) as soon as V. € L (M), see e.g. [Sim82, Th. B.7.1 (a”’)], so that point-
wise estimates like (5.1) make sense.
The statement of Theorem 5.1 is not strictly speaking a consequence of [LY86,
Th. 6.1] for the following two reasons:
— the potential V; is assumed independent of ¢ in [LY86];
— the uniformity of the limit on any compact subset is not explicitly written
in [LYS6].
However, let us explain why the proof of [LY86, Th.6.1] actually contains these two
points. The limit (5.1) is proved in two steps, a lower bound and an upper bound.
The lower bound
limelog He(x,y,et) > —p(z,y,t)
e—0

is obtained as a consequence of the explicit estimate ([LY86, Th.2.1])
€ IOg HE($, Y, Etl) e IOg HE(xv Y, Et) + €2A1/E(t - tl) + pa,R(xv Yyt — t1)7

for all 0 < t; < t, @ > 1 and where the constant Ay (A = e~! in our context) only
depends on
||AgV6HLoc(M)> vaVE”Lm(M) and a.
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In particular, the limit lim._,o€A;,. = 0 holds uniformly. The proof finally proceeds
by taking the limit R — +o0, and then o — 1% (in which case piR(x,y,t — 1)) =
pV=(x,y,t — t;), uniformly on compact sets; here p"= denotes the function p defined
by (5.2) with V replaced by V.). Taking finally the limit ¢ — 0T, and then ¢; — 07,
and noticing that

lim lim elog H.(z,y,et1) >0
t1s0+ 30+ g E( 5 Y, 1) =

concludes the proof of the lower bound. This last argument relies only on a uniform
upper bound on ||V¢|| Loo (M) together with a comparison argument, namely Inequa-
lity [LY86, (6.3)]. It can be checked that the convergence is uniform on any com-
pact set since it involves the asymptotics on the diagonal of kernels of heat equa-
tions on large balls and without potential, which are known to be uniform on com-
pact sets, see for instance [Var67, Th.4.6]. It only remains to notice that the limit
limy, o+ lim. o+ p¥% (2, y,t — t1) = p(x,y,t) is uniform on compact sets.
The upper bound

hH(l)é‘ IOg H, ($7 Y, Et) < _,0(1', Y, t)
E—

follows from [LY86, Th.3.3]. As for the lower bound, this result also furnishes an
explicit and uniform bound involving another constant Ay enjoying the same type of
convergence properties as for the lower bound.

Note that we have chosen to use the estimate of the semiclassical limit of the kernel
of [LY86] but it is likely that we could have obtained the observability inequality
starting directly from Harnack type inequalities like [LY86, Th.2.1], as we did in
[LL21a).

Here, we are mostly interested in the case V(x) = i|ng(:c)|§. In this situation, we
can reformulate the result in terms of the transport equation with vanishing viscos-
ity (1.6).

We next define K. (x,y,t), the fundamental solution of (1.6) on M? x (0, +0c0) by
the unique solution to

(5 4) (875—ng'Vg—q—eng)KE(l‘,y,t) 207 for (t,l’) GR:F X M7
. Ks<xay7t)|t:0 = (;at:y; for x € M,

where y € M is fixed, and the differential operator —V,f -V, — ¢ — €A, acts in the
z-variable. Recall that for vy € L'(M), the function

u(t,z) = /M K. (z,y,t)uo(y)d Voly(y)

is the unique solution of (1.6) on (0, +00) x M issued from u|;—¢ = uo (This uses the
choice of volume form d Vol, in the embedding L*(M) < D'(M)).

Cororrary 5.2. — Let M be a compact manifold without boundary. Suppose X =V f
where f is a C® function defined on M. For any e > 0, we consider K., the fundamental
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solution of (1.6) on (0,400) x M. Then, we have
lime IOg KE('ra Y, t) = —dvgf(l‘; Y, t)a
e—0

with
z) —jly
(55) g, (2. ) = ply.1) + NI,
where p(x,y,t) is defined by (5.2) with V(z) = |ng|§/4. Moreover, the limit is uni-
form on any compact set of M? x (0, +0o0).
In particular, for any 6 > 0 and any compact subset I € (0,+00), there exists
go > 0 such that

(5.6) e (dvgi(zyt)+8)/e < K.(z,y,t) < e~ (dvgi(z.y,t)=d)/e
for any (x,y,t) € M2 x I and 0 < ¢ < 0.

Note that the definition of dy s in (5.5) is not the same as that given in (1.24) in
the introduction. Equivalence between these two definitions is proved in Lemma A.2.

Note that although the kernel H.(x,y,t) is symmetric (with respect to the Rie-
mannian volume measure d Voly) since —A, + % V. is, this is no longer the case for
the kernel K. (z,y,t) (since the operator in (1.6) is not symmetric in L?(M, d Vol,)).
Similarly, p(x,y,t) is symmetric whereas dv j(,y,t) is not.

Proof. — Setting uy (t,z) = K.(z,y,t) and wy(t,z) = ef@/25y, (t/e, ), we have from
Equation (5.4) and Lemma 2.9 that w, (¢, z) solves (2.12). Moreover, we have

wy(0,x) = 7 @/2y, (0, 2) = f@/25,_, = SW/25, _ .

This implies that w,(t,r) = ef¥/2¢H_(z,y,t) where H.(x,y,t) is defined in (5.3)
with Vo = [Vyf|2/4 + € (A4f/2 — ). Finally, we have proved that

H.(x,y,et) = ef(””)/%e_f(y)/%KE(a:,y7t),

and hence

: _fly) —f=) _ fly) —f(=)

limelog K (x,y,t) = 3 + limelog He (2, y,et) = 5 p(,y,t),
after having applied (5.1). O
5.2. L' OBSERVABILITY ESTIMATES FOR POSITIVE SOLUTIONS. — We first prove interme-

diate observability statements in L'. The following elementary abstract lemma shows
that concerning positive solutions, observability in a (possibly weighted) L! norm is
equivalent to the “observability of the kernel”.

Prorosition 5.3. Let M be a compact Borel space (on which we denote by dx a
distinguished measure) and T > 0. Take K = K(z,y,t) € CO(M x M x (0,T]) be a
nonnegative kernel. Assume further that

@MHWMWMMW:AKmmm
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is uniformly bounded for (t,y) € (0,T] x M. Define for t € (0,T] the operator
S(0): Meas() — C°00), (S0} &) = | Kl 0)dn(y) = (o K (.11

where Meas(M) denotes the space of Radon measures on M. Let wy € L*([0,T] x w)
and we € L (M) be two nonnegative weight functions.
Then, for all T, s,Cy > 0, the following statements are equivalent

(1) Observability of positive measures:

(5.7) l[wa [S(s)plll i vy < Co llwa[SCIalll L1 (0,71 xw)

for any p € Meas (M) nonnegative Radon measure.
(2) Observability of positive L' functions:

[wz [S(s)uolll L1y < Co llw [S()uo]ll Lo, 7yx)

for any ug € L*(M, dx) with nonnegative value.
(3) Observability of Dirac distributions:

w2 [S(5)0y ]l L1 ney < Co llwn [SCIOll 0,7y

for any y € M.
(4) Observability of the kernel:

I;(y) < CoOr(y), forally e M,

where
T
Or(y) = / / wi(t,y)K (2,9, )dedt, and  L,(y) = / wa(@)K (2,y, 8)dz.
0 w M

Note first that under the assumption of the theorem, both terms in (5.7) are well-
defined. Indeed, the Tonelli theorem (all functions/measures are nonnegative) implies

T
SOl = [ [ wita) (S @)dodt

_ /O ' /w wi(t, ) /M K(z,y, )du(y)dedt

_ /0 ! /M ( /w wl(t,x)K(x,y,t)da:> du(y)dt

S Tllwill oo o, 77x ) lell7v sup sup / K(x,y,t)dr < +o0,
’ te[0,T] yeM Jw
by assumption. Here ||u||rv denotes the total variation of the measure p. Note also
that w(t) = [S(¢)(n)] is a continuous nonnegative function for any nonnegative mea-
sure p and ¢ > 0. Remark that Or(y) is essentially the observation of solutions starting
from 6, while I(y) is the weighted norm of this solution at time s.
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Proof. — Remark first that

Y) _/()TAwl(t,y)K(x,y,t)dzdt_/()T/wwl(t,y)@y,f((x,~,t)>da:dt

= lwr [SCI L1 0,77 x0)

Ii(y) = /M wa(x) K (2, y, S)dl’:/ wa()(8y, K (2, -, 8))dw = [lwz [S(5)8y]l L1 ()

M
so that Ttem (3) < Ttem (4). Moreover, applying the Fubini Theorem, we get

T
SOl = [ [ [ wntn)Kla.0dut) dode = (1.0r)
0 zEw JyeM

s S0l ey = [ [ wa(t.a) K ey, ) d e = (. 1)

Therefore, Item (1) is equivalent to (u, CoOr — I) > 0 for any p € Meas (M) and
Item (2) to [y, uo(y)(CoOr — I,)(y)dy > 0 for any ug € L} (M, dz). That Item (4) <
Item (1) < Item (2) follows from the general fact that if f € C°(M), one has

fz0onM < (u, f) >0 for all u € Meas; (M)

= / uo(y) f(y)dy > 0 for all ug € L (M, dz). O
M

We now give the L' observability estimate for positive solutions to (1.6).

Prorosirion 5.4. — Assume that T > Taoc(M, Vgf,w). Then, for any é,s > 0, there
exists eg > 0 so that we have

(5.8) lu(s) o) < € lull i oryney »  for all e € (0,e0),
for any ug € L*(M) with non-negative values and u solution of (1.6).

Remark that we only use the case s =T below. It is however remarkable that the
stronger result for s > 0 small holds as well. This is linked to the L' setting here.

Note also that in L!, we have a “converse inequality”, which we state for the sake of
the comparison. Proposition 5.4 is proved afterward.

Lemva 5.5, — Assume OM = &. For all T > 0, there is Cp > 0 such that for all
ug € L*(M;RT) and u the associated solution of (1.6), we have

(5.9) [u@®l ey < O 1w p1aey»  for allt €[0,T] and £ > 0.

In particular, this implies that one cannot hope to replace the loss e’/¢ by a
gain e7%/¢ in (5.8).

Proofof Lemma 5.5. — Assume first that ug € W2(M) with ug > 0 a.e. on M. Then,
notice that u(¢,z) > 0 for a.e. (t,z) € (0,T) x M. Integrating (1.6) on M, we obtain
after an integration by parts (using that oM = @)

/uf/ (divg X —q)u=0.
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Since u > 0, this implies
d
2 1u(t )l = v llul, ), forallt >0,

with v = infy(divy X — ¢). The Gronwall inequality yields (5.9). The conclusion for
a general ug € L' follows from a density argument. O

We now turn to the proof of the L' observability estimate of Proposition 5.4, which
will use the following lemma.

Lemma 5.6. — Assume (M, V,f,w, (8,T)) satisfies (GCC) (see Definition 2.10) for
some &' > 0.Then, for all 6 > 0 there is Cs > 0 such that for all y € M there
is an open set Uy C w x (', T) with |Uy| > Cs and for all (z,t) € Uy, we have
dvgf(xa Y, t) < 4.
Proofof Lemma 5.6. The assumption (GCC) implies that for any yo € M, there is

€ (0',T) and zy, = ¢4, (Yo) € w where (¢¢)ser is the flow of V4f. The trajectory
Y(s) = ds(xy,) satisfies Y(s) = Vyf(s) with y(0) = z,, and y(ty,) = yo so that
Proposition A.4 implies dv (2, Yo,ty,) = 0. In particular, we obtain that for any
Yo € M, there is t,,, € (0, T) and x,, € w such that dv ;(zy,, Yo, ty,) = 0.

By uniform continuity of dy,; (on the compact set M? x [6/2,T + ¢']) together
with the fact that w x (§’,T) is open, there exists vy, > 0 so that

By(@yys Vyo) X [tyo = Vyos tye + Vo] Cw x (6, 7),

and for any y € By(yo,Vy,), T € Bg(Tyy,Vy,)) and t € [ty, — Vyo, tye + Vyol, We have
dv ,i(z,y,t) < 6. By compactness, we can cover M by M = (J;o; By(vi,vy,) where [
is finite. Then, for any y € M, there is i € I such that y € By(y;,vy,), and the set

Uy := Bg(@y,,vy,) X [ty, — vy, ty, + vy,
satisfies the sought properties. O

As a consequence of this lemma together with Corollary 5.2 and Proposition 5.3,
we may now deduce a proof of the L' observability estimate of Proposition 5.4.

Proof of Proposition 5.4. — Without any loss of generality, we can assume 0 < § < s.
According to Proposition 5.3, it is enough to study the “observability of the kernel”.
Using Corollary 5.2, for any § >0, there exists g so that (5.6) holds for all (z,y) € M?,
t €[6,671], 0 < e < go. Proposition 5.3 leads to compare

// K (z,y,t)dedt with I / K (z,y,s)dx.

From (5.6), the fact that K.(x,y,t) = 0 for (z,y,t) € M? x (0,00), and s > 4, we

deduce
03 [ [ etstennsor wma pg< [ st
’ rzeM
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where 0’ > 0 is chosen sufficiently small so that (M,ng,w, (o' 7T)) still satisfies
(GCC), which is possible since T' > Tacc(M, V4f,w). Using Lemma 5.6 (where U,
and Cs are defined), we now have

(5.10) Or(y) > /

o~ (0% @y O+ /2 g > / B/ qidy > Cpe—20/%.
(z,t)eU,

(z,t)eU,

Also, for any s > ¢, using that dy,; > 0 (see Proposition A.4), we have
I(y) < Vol, (M)ed/=.

When combined with (5.10), we obtain Or(y) > Ce™3%/¢I,(y). By Proposition 5.3,
this gives (5.8) which concludes the proof of the proposition (up to changing 46
into 9). O

5.3. From L' 10 L? OBSERVABILITY ESTIMATES FOR POSITIVE SOLUTIONS. — In this sec-
tion, we conclude the proofs of Proposition 1.12 and Theorem 1.3. We first prove the
negative result of Proposition 1.12 (uniform observability of positive solutions does
not hold for T' < Tgcc(M, V,f, w), with an exponential lower bound of the cost).

Proof of Proposition 1.12. — Let us check the first part of the proposition (geometric
statement). Since (M, V,f,,T) does not satisfy (GCC), there is yo € M, so that
for all t € [0,T], ¢_+(yo) ¢ w. In particular, for any (¢t,x) € [0,7] x @, we have
#t(x) # Yo, which implies dv _;(z,yo0,t) > 0 by Proposition A.4. By compactness of
[0,T] x @, infyez,ici0,1) dv,§(, Yo, t) > 0. Therefore, d(jo 71,z > 0 as expected.

For the second part, for any § > 0, select yg € M so that

inf d t)<d =) +6/8.
(t,a:)el[r(l),T]xw ng(ﬂi,y(), ) (0,17, )+ /

By uniform continuity of dv j(x,yo,t) defined on [0,27 x@, we can also find n>0
so that infy ,)ejo,74nx@ dv,i(T,Y0,t) = dqorm — 0/4 and dv 5(z,y0,m) < 0/4
for « € B(yo,n). We take as initial datum wug(x) = K.(x,yo,n), yielding u(t,z) =
K (z,y0,t+ 1) (see the definition of K. in (5.4)) as the associated solution of (1.6).
We have ug € L?(M) together with a lower bound coming from (5.6) with a sufficiently
small 0 (replaced by 6/4)

llwoll L2 (vey = 1wl 25y, = C(n)e"/>.

Concerning the observation term, we deduce from the upper bound in (5.6) that for
€ small enough,

T
/ / lu(t, z)|*dedt = / /KE (z,y0,t +n)*dxdt
0 w

< Volg(w)T sup e 2(dvyi(z,y0,t)=6/4) /e
T€w,t€[n,T4n)

CG*Q(d( 0.1)@)~0/2)/¢
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Applying the observability inequality (1.23) to u thus implies that
of(r, 8)26_2(d([0,T],U)_6/4)/5 > C,
uniformly in e € (0,&¢], which concludes the proof of the proposition. O

To conclude the proof of Theorem 1.3, we need the following dissipation result
taken from Guerrero-Lebeau [GLO7]. In that reference, it is written on an open subset
) C R™ with the flat metric; however, it can be checked that the result also applies to
the case of a Riemannian manifold (M, g) without boundary and with an additional
potential q.

Prorosirion 5.7 (Proposition 3 of [GLO7], m = 1). — Assume that OM = & and that
M, X,w,T) satisfies (GCC). Then, there exist C,Cy > 0 such that

T
(5.11) ||u(T)Hiz(M) < O(/O / lu|? dt dz 4 e=C0/¢ ||u(0)||ig(M)>

for all ¢ € (0,1] and any (not necessarily positive) solution u to (1.3) (and a for-
tiori for all solutions u to (2.6)). The same statement holds true if OM # & and
(M, X, w,T) satisfies (FC).

We shall also need the following lemma in the proof of Theorem 1.3.

Lemma 5.8. — For any & > 6§ > 0, there exists g > 0 so that
(5.12) 148 2y < C 1) g ay < CE% (022 ey
for any solution u to (2.6) and 0 < & < &g.

Proof. — Since the manifold is compact, we only need to prove the L> bound which
follows from the bound [[Kc (-, -, 6" = 0)[| poe (rexne) < Ce%/¢ on the kernel. This esti-
mate follows from Corollary 5.2 (e.g. (5.6) together with the fact that dv ; > 0, see
Proposition A.4). O

Proof of Theorem 1.3. — Inequality (1.25) of Proposition 1.12 directly yields
Tl (W) = Taoc(M, V,f,w).

unif
Note that it was mostly proved in Guerrero-Lebeau [GL0O7, Th. 1] since one can check
that the counterexample they build is a nonnegative solution.
Now, we prove 1" (w) < Tocc(M, V,f,w). For any § > 0 (we will later need
2§ < Cy where Cj is the constant in (5.11)), and for T' > Tacc(M, V4f,w) + 26, we
prove the observability inequality for positive solution

T
(5.13) (T 172 a0 gc/o /|u|2dtdx.

The combination of (5.11) on the time interval (20,7T) together with (5.12) on the
time interval (d,20) implies

(5.14) u(T) 72 o) < C</2

T

S /wuzdtdm—i—e_co_‘s/su(6)||2Ll(M)).
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Now, applying (5.8) with A > 0 such that AT' = §, we obtain

T
(5.15) w11 ey <e5/5/ /udtdm.
0 w

Combining (5.14), (5.15) together with the Holder inequality, we deduce

T
[Tl 20y < (€ + Cem(Co=20)/2) / / o dt da.
0 w

Choosing ¢ € (0, Cy/2) implies (5.13) uniformly for € € (0,e0(4)], and hence concludes
the proof of the theorem. |

54 FrROM OBSERVABILITY OF POSITIVE SOLUTIONS TO A CONTROLLABILITY STATEMENT

This section is devoted to the proof of the controllability result of Corollary 2.4
from the observability of positive solutions. It relies on the following lemma. The
result and its proof follow [LB20, Th.4.1].

Levmva 5.9. — Let 'V be a closed convex set of L*(M) with 0 € V and V CV so that
VCV—w for any v € V. Assume moreover that there exists Cy > 0 so that

T
6.16) CoT.2 [ [ jut)Pas@at > [u(T) 2 a0,
for all ug € V and u solution of (1.3).
Then, for any yo € L>(M) and 0 < ¢ < &, there exists a control
h € L*([0,T], L*(M))
with
1l L2 0,77, 22 (vey) < Cv(T5€) llwoll 2oy

so that the solution of (2.1) satisfies (y(T'),uo) p2(yry = 0 for any ug € V.

For the proof of Corollary 2.4, we apply this lemma to the sets V=V=1I2 (VMG RT).
Notice that Lemma 5.9 also contains one implication (namely Observability = Con-
trollability) in Corollary 2.3 when applied to V =V = L?(M;R).

Proof. — For any a > 0, we consider the functional J, defined for any ug € V by

17 «a
Totuo) = 5 [ [ utt.a) e+ 5 luolFaca + (T 1200

where u is the solution of (1.3). The functional J, is continuous, convex and coer-
cive. Therefore, J, admits a minimum ug € V (see e.g. [ET74, Chap.II, Prop.1.2]).
The minimality condition gives (see e.g. [ET74, Chap.II, Proposition 2.1]) for any
po € L*(M) that can be written py = vg — ug o, with vy € V,

T
610 [ [ pltua(t) dede+a o0z 00 + 0005200 >0

where p (resp. uq) denotes the solution of (1.3) with p(0) = po (resp. u(0) = ug q)-
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Now, let y, be the solution of (2.1) with control function h(t,z) = uo(T — ¢, x)
and initial datum y,(0) = yo. The duality equation (2.2) gives for any py € L*(M)
initial datum for p solution of (1.3)

T
| [ plteruatt.n) dids = o,y 0y — BT 90) -
0 w
Combined with (5.17), this implies
(518) (pana(T))L2(M) +a(p0au0,a)L2(M) 2 07

for every pyp €'V —1uy,,. This also holds for any pg € V since VCV— Uy, by assumption.
To obtain an estimate of the control, we apply (5.17) to pg = 0 — ug o. After an
application of the Cauchy-Schwarz inequality, we have

T
2
| [ et dede + alhuoala o < oDl 0l -

The observability inequality (5.16) applies to ug o € V, so that

T
/ / ot ) 2 dt d + a uo.aln oy
0 w T 1/2
<cv<T,e>(/ / |ua<t,x>|2dtdx) loll 2o, -
0 w

We obtain successively

T
(5.19) /0 / fua(t,2) 2 dt dz < Cv(T, )2 [lyoll2 e
w

2 2
(5.20) a fluo,allzzae < Cv(T€)? llyollz2 ) -

We obtain that 1, is bounded in L?([0, 7] x M) uniformly in @ > 0. Take a sequence
a, — 0 so that 1,u,, — Tyu in L2([0,T) x M). The associated solutions y,, with
control 1,u,, (T — t,z) is therefore bounded in L*°([0,77], L?(M)) and, again up to
a subsequence, converges weakly-* to a solution y of (2.1) with control h(t,x) =
1,u(T — t,z) and initial datum yo. Moreover, up to a subsequence, we can impose
Yo, (T) — y(T) in L?(M). Passing to the limit in (5.18) using (5.20), we finally obtain

(o, y(T))L2(M) >0

for any pg € V. We finally get the expected estimate on h(t,x) = (T — t, z) passing
to the limit in (5.19). O

We may now conclude the proof of Corollary 2.4 from Lemma 5.9.

Proofof Corollary 2.4. — We apply Lemma 5.9, with V =7V = L2(M;R"). Note that
the Lemma applies because for any v € L2(M;RT), L2(M;R*) c L2(M;RY) — v.
Indeed, any u € L?(M;RT) can be written u = (u +v) — v € L*(M;RT) — v since
u + v > 0. This gives a control A with the expected uniform bound and so that
(y(T), u0) p2(pr) = 0 for any ug € L?(M;RT). This implies y(T) > 0. O
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APrPENDIX. ABOUT THE DISTANCES
In this appendix, (M, g) is a compact Riemannian manifold without boundary.
A.T. A GENERAL LEMMA. We start with a general lemma.

Lemma AL1. Let V. € WHo°(M) with nonnegative value. Then, for all x,y € M2,
we have

3 ni{ [ B+ VO s 1> 07 € Uitea) |
_ E}f{/ot 1K)y V(1 (3))ds 5 > 0, € Ut(o:,y)}
- igf{/ol (s)|g v/ V(7(s))ds ; v € Ul(:z:,y)},

where Uy(z,y) = {v € WH([0,t]; M) ; v(0) = z,~(t) =y} fort > 0.

This lemma is particularly useful for V = (V — E); in which case the (pseudo-)
distance defined is the Agmon distance at energy level E.

Proof. — We denote by dy, da, ds respectively the three (pseudo-)distances defined in
the statement of the lemma. Then, we notice that the last two quantities are invariant
by reparametrization, so that do = d3 after a change of variable in the integral. Then,
the inequality ab < %(a2 + b?) directly yields ds < dj. Let us now prove the converse
inequality, namely ds > dy. For ¢ > 0 there exist 6 > 0 and a path v : [0,1] = M

such that 1
| HOIAVEE) + dds < da +-e.
0

We can further assume |y(s)|, > 0 with the same estimate (indeed, defining a new
parametrization ¢ by y(t) = ((¢(t)) with ¢(t) = fot |7(s)|4ds even yields a Lipschitz
reparametrization with constant positive speed, see e.g. [ABB20, Proof of Lem. 3.16]).
Using an approximation argument, we can further assume that ~ is smooth up to
replacing € by 2e. We now define the following reparametrization ¥(s) = v(¢(s)),
where ¢ solves

VOl +o V6

Fle(s)ly  ~ maxgo [l

so that |§(s)|g = +/V(3(s)) + 6 for any s € [0, !(1)]. In particular,

() vV E() +6 = %(l?(S)Iﬁ +V(F(s)) +9)

p(s) = >0, ¢(0)=0,

and
(1)

e ), o .
% /0 (W(s>|§+vﬁ(s))+6) ds = /0 7(s)gv/ V(G (s)) + 6ds
= /O 15(8) g vV (7(s5)) + dds < ds + 2,

which gives d; < d3 + 2¢, and concludes the proof of the lemma. O
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A.2. EQUIVALENCE BETWEEN THE TWO DEFINITIONS OF dvy . In this section, we prove
equivalence between the two definitions of dy s, respectively given in (1.24) in the
introduction and in (5.5). We further give an equivalent quantity in terms of the
Riemannian distance and the flow ¢; of V4f. The function § is assumed to be C?
throughout the section.

We recall that p is defined in (5.2) with V' = |V4f|2/4, that is to say

(a0 plot) = int{ [ O+ 0D 1€ U |

with Uy(z,y) = {7y € WH=([0,; M) ; 7(0) = x,~(¢) = y}. Note that it is proved
in [LY86, App.] that p is continuous on M? x (0, +00) and, for all ¢+ > 0 fixed, Lip-
schitz continuous as a function of (z,y) € M2 These quantities are related to the
Agmon distance but in finite time, see Section A.3 below. Note that the quantity p is
symmetric, p(z,y,t) = p(y, x,t), and remains unchanged under the change of § by —f.
This is not the case for dy ;.

Lemva A.2. — The function dv 5 defined as

f(z) = §(y)

(A2) dvgf(xvyvt) = p(x,yvt) + 9

is continuous on M? x (0,+00) and, for all t > 0 fived, Lipschitz continuous as a
function of (x,y) € M2. Moreover, we have

(43)  deyr0nt) = pine] [ )+ VufOEDEds s 1 € Uit
(A1) = tnt{ [ 56) - Vi) s € Ui .
(A5) = pne{ [ B ds 7 e W (0.6:20,

wm—av@—¢twﬁ,

where Uy(z,y) = {y € Wh>( ] M) ; ¥(0) = z,y(t) =y}, and g5 is the time vary-

¢s(Y)l,-

[0,
=D
In particular, for any T > 0, there exists some constant Cr > 0 so that

C:I_“ld(xv ¢—t(y)) < dvgf(x7y7t) < CTd(xa (Z)—t(y))a fOT allt S [OvTL

where d denotes the Riemannian distance (associated to g).

ing metric defined by |Y|gs

Proof. — The continuity property directly follows from that of p proved in [LY86,
App.]. To prove (A.3), we remark that for any path v so that v(0) = y,y(¢) = =,
we have

o) =) = [ o= [ Vi)
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In particular, from the definition of dy_; in (A.2) and p in (A.1), we can rewrite
dv 5(z,y,t) as

de,s(o.0) = gt { [ B+ I9,006) + 29,50() - 3(5)ds 7 € Uitaus) |

= 1t [ )+ Wl ds v € Uite |

The statement (A.4) is obtained thanks to the change of path F(s) = v(t — s).
Now, we compute dv ;(z,¢:(y),t) according to formula (A.4). To this aim, let
v € WHoe([0,]; M) so that y(0) = z, ¥(t) = ¢¢(y). Let (s) = ¢_s(7(s)) so that
3(s) = Vyf(1(5)) + Doy (V(s))-

In particular,

. < 2 B 2

(s) = Voi(v())[; = [Des (), = Fi(s)] -
It gives (A.5) since any path v € W1°°([0,¢]; M) so that v(0) = z, y(t) = y can be
written y(s) = ¢s(Y(s)) with ¥(0) = z, ¥(t) = ¢_+(y), and conversely. O
A.3. FURTHER LINKS BETWEEN THE DIFFERENT DISTANCES. — In this section, we relate

the above quantities p(x,y,t),dv ;(z,y,t) with the Agmon distance to the bottom
energy (see 1.12 for V = |Vyf(x)|2/4 and Ey = minyg V = 0), that is to say

0 daton) = gint{ [ IVl dsi 7€ Ui

with Uy (z,y) = {y € WH([0,1]; M) ; 4(0) = z,7(1) = y} and the associated quan-
tity (compare with the definition of dy _; in terms of p in (A.2))

) —
(A7) W(a.y) = da(a,y) + 10T
The results of this section are not explicitly used in the proofs of the main part of the
paper; however we believe these links are interesting and enlightening. Indeed, they
relate the quantity da(x,y) appearing in all general bounds of Section 3 together
with the quantities p(z,y,t), dv,(z,y,t) appearing in results of Section 5 concerning

positive solutions.

Lemma A3, For all (x,y) € M2, we have

(A-8) da(z,y) = inf p(z,y,1),
(A.9) W(z,y) = inf dv (2, y.1).

Moreover, if V4f(y) =0, then we have da(x,y) = , liin plx,y,t).
—+o00

Proof. — Equality in (A.8) is a consequence of Lemma A.1 applied to V = |ng|§.
Then, (A.9) is a direct consequence of the expression of W and dv ; in terms of d4
and p in (A.7), (A.2), together with (A.8).
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Finally, if V,f(y) = 0, then the function ¢t — p(x,y,t) is non-increasing. Indeed,
taking t1 < tq, from a path 7 : [0, t1] — M such that ;1 (0) = z and v (t1) = y, we can
construct the path s : [0,t2] = M by Y2(s) = 11(s) for s € [0,#1] and va(s) =y for
s € [t1,t2]. This yields a path in W1>°(]0, to]; M) if 3 € W1°(]0,¢1]; M), and thus the
set of admissible paths on [0, 2] is larger than the set of admissible paths on [0, ¢1].
Since the contribution f:f [F2(5)|* + [Vg72(s)2ds = 0 we deduce that p(z,y,t2) <
p(x,y,t1). This proves that the inf is actually a tlfffloo in this case. a

Note that related properties are proved in the appendix of [HS85]. For instance,
[HS85, Lem. A2.2] with our notations can be loosely stated as follows: If W (z,y) = 0,
then every minimizing geodesic of d4 is a generalized integral curve of V.

Finally, we state a last result that explains that dv,(z,y,t) measures how far
is the final state of a path of the vector field at time ¢ and starting at y. Part of this
result is contained in the last statement of Lemma A.2; we here give a different proof,
which, we believe, is interesting in itself.

Prorosition A4, — With dy ;(z,y,t) defined in (5.5), we have for all (x,y,t) €
M2 x (0, +00),

(1) dv,f(z,y,t) > 0;

(2) dv,5(z,y,t) = 0 if and only if there exists a trajectory of (s) = V4f(v(s)) with
v(0) = z,v(t) =y, that is if and only if y = ¢i(x).
In particular, (M, V4f,w,T) satisfies (GCC) if and only if for any x € M, there exist
y€wandt e (0,T) so that dv ;(z,y,t) = 0.

Recall that the flow (¢¢):er is defined in (2.14) and the Geometric Control Condi-
tion (GCC) is defined in Definition 2.10.

Proof. — Statement 1 follows from the definition of dy; in (A.4). Let us now consider
Statement (2). Assume first that there exists a trajectory of ¥(s) = V,f(y(s)) with
7(0) = z and () = y. Then, by definition of the infimum in (A.4), this yields
dv,5(z,y,t) < 0 and hence dv j(z,y,t) = 0. Conversely, assume dv ;(z,y,t) = 0.
Take a minimizing sequence in (A.4), that is to say that v, € WH°°([0,t]; M) such
that v, (0) = z, v, (t) = y and 4, — V4f(n) = Ry, (bounded continuous with values
in the tangent bundle of M) with

(A.10) /Ot |Rn(s)|2ds — 0.

Since V 4f is bounded on M, the sequence fg‘ [m (5)]2ds is then uniformly bounded in R.
As a consequence, the sequence of paths (v, )nen is equicontinuous. From Ascoli’s
theorem, we may extract a subsequence (which we do not relabel) (v,)nen which
converges strongly for the topology C°([0,¢]; M) to a limit v € C°([0, ¢]; M). The latter
thus has the same and endpoints (0) = = and (t) = y. It is solution of % = V4f(7) in
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the distributional sense according to (A.10). Bootstrapping in the differential equation
implies v € W1°°([0, 1]; M) and + is a strong solution to 4 = V,f(7). This concludes
the proof of Statement 2.

According to Lemma 2.11 Item (4), that (M, X, w, T') satisfies (GCC) is equivalent
to the fact that for any x € M, there exist ¢t € (0,7T) such that y := ¢(z) € w. As a
consequence of Item (2), this is equivalent to having dv (z,y,t) = 0. |

Note that an analogue statement for the function W in (A.9) is proved in [HS85,
Lem. A2.2], and could also be deduced from Proposition A.4.
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