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ON UNIFORM OBSERVABILITY OF GRADIENT FLOWS

IN THE VANISHING VISCOSITY LIMIT

by Camille Laurent & Matthieu Léautaud

Abstract. —We consider a transport equation by a gradient vector field with a small viscous
perturbation −ε∆g . We study uniform observability (resp. controllability) properties in the
(singular) vanishing viscosity limit ε → 0+, that is, the possibility of having a uniformly
bounded observation constant (resp. control cost). We prove with a series of examples that
in general, the minimal time for uniform observability may be much larger than the minimal
time needed for the observability of the limit equation ε = 0. We also prove that the two
minimal times coincide for positive solutions. The proofs rely on a semiclassical reformulation
of the problem together with (a) Agmon estimates concerning the decay of eigenfunctions in
the classically forbidden region [HS84] (b) fine estimates of the kernel of the semiclassical heat
equation [LY86].

Résumé (Sur l’observabilité uniforme des flots de gradient dans la limite de viscosité évanescente)
Nous considérons l’équation de transport par un champ de gradient avec une petite per-

turbation visqueuse −ε∆g . Nous étudions la propriété d’observabilité (resp. de contrôlabilité)
uniforme dans la limite (singulière) de viscosité évanescente ε → 0+, c’est-à-dire la possibilité
d’avoir une constante d’observabilité (resp. un coût du contrôle) uniforme. Nous prouvons avec
une série d’exemples que le temps minimal pour l’observabilité uniforme peut être bien plus
grand que le temps minimal pour l’équation limite ε = 0. Nous montrons aussi que les deux
temps minimaux coïncident pour les solutions positives. Les preuves reposent sur une refor-
mulation semiclassique du problème ainsi que (a) des estimées d’Agmon de décroissance des
fonctions propres dans la zone classiquement interdite [HS84] (b) des estimées fines du noyaux
de la chaleur semiclassique [LY86].
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440 C. Laurent & M. Léautaud

1. Introduction and main results

1.1. Introduction. — Given a smooth connected compact manifold M without
boundary (the case of a bounded domain of Rn is also discussed in Section 1.3
below), a smooth real valued vector field X on M and a real valued potential q(x),
we consider the question of observability/detectability for the autonomous transport
equation

(1.1)
{

(∂t −X − q)u = 0, in R×M,

u|t=0 = u0, on M,

from an observation (open) set ω ⊂M through the time interval (0, T ). More precisely,
the question is whether there exists a constant C0 = C0(T, ω) > 0 such that

(1.2) C2
0

∫ T

0

∫
ω

|u(t, x)|2ds(x)dt > ‖u(T )‖2L2(M),

for all u0 ∈ L2(M) and u solution of (1.1).

Here, ds(x) denotes any positive density measure(1) on M, and the L2 norm is defined
accordingly. The observability question (1.2) is naturally solved by introducing an
appropriate Geometric Control Condition (recall ∂M = ∅): we say that (M, X, ω, T )

satisfies (GCC) if for all x ∈ M, there is t ∈ (0, T ) such that φ−t(x) ∈ ω, where
(φt)t∈R denotes the flow of X (see Section 2.3 for precise statements and proofs).
We also say that (M, X, ω) satisfies (GCC) if (M, X, ω, T ) does for some T > 0; and if
so, we denote by TGCC(M, X, ω) the infimum of times for which (M, X, ω, T ) satisfies
(GCC).

On the other hand, endowing M with a Riemannian metric g, one may want to
investigate the observability question for the viscously damped transport equation:

(1.3)
{

(∂t −X − q − ε∆g)u = 0, in R+
∗ ×M,

u|t=0 = u0, on M,

from the same observation set (0, T ) × ω. The question is whether there exists a
constant C0(T, ε) > 0 such that

(1.4) C0(T, ε)2

∫ T

0

∫
ω

|u(t, x)|2ds(x)dt > ‖u(T )‖2L2(M),

for all u0 ∈ L2(M) and u solution of (1.3),

(and one may then choose the Riemannian volume density ds(x) = dVolg(x) without
changing the problem). For fixed ε > 0, Equation (1.3) is of parabolic type and the
observability inequality (1.4) is known to hold for any open set ω 6= ∅ and T > 0,
see [FI96] (see also [LR95] and its variant in [Léa10]). Of course, in such results, the

(1)See e.g. [Lee13, Chap. 16 p. 427]: given a local chart (Uκ, κ) of M, we have
∫
Uκ

u ds =
∫
κ(Uκ)

u◦
κ−1(y)ϕκ(y)dy for an appropriate smooth positive function ϕκ, and for any u ∈ C0

c (Uκ).
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On uniform observability of gradient flows in the vanishing viscosity limit 441

observability constant C0(T, ε) in (1.4) depends a priori on ε. For many different rea-
sons (some of them described in Section 1.2 below), it is interesting to investigate the
behavior of the observability constant C0(T, ε) in the vanishing viscosity limit ε→ 0+.
This problem was first studied in the one-dimensional setting by Coron and Guerrero
in [CG05], and later extended to any dimension by Guerrero and Lebeau [GL07]. Their
main result in this direction can be formulated (in the present geometric context, see
the remark preceding Proposition 5.7) as follows.

Theorem 1.1 (Guerrero-Lebeau [GL07]). — Given an open set ω ⊂M, the following
two results hold.

– [GL07, Th. 1] Assume (M, X, ω, T ) does not satisfy (GCC). Then there is
C, ε0 > 0 such that any constant C0(T, ε) in (1.4) satisfies C0(T, ε) > exp(C/ε) for
ε ∈ (0, ε0).

– [GL07, Th. 3] Assume (M, X, ω) satisfies (GCC). Then there is Tunif(ω) >
TGCC(M, X, ω) and K0 > 0 such that for all T > Tunif(ω), (1.4) holds with
C0(T, ε) 6 K0 for all ε 6 1.

Note that the results in [GL07] are even more general since time-dependent vector
fields are allowed and the boundary-value problem is also considered (with Dirichlet
boundary conditions). We also refer to our Proposition 1.12 below for a more precise
lower bound of the constant C when (GCC) is not satisfied.

Note that if (1.4) holds for some T0 and constant C0(T0, ε), then it also holds for
all times T > T0 with the same constant C0(T0, ε). In [GL07], the question of the
minimal time Tunif(ω), more precisely defined by

Tunif(ω) = inf
{
T > 0 for which there exist K0, ε0 > 0

such that (1.4) holds with C0(T, ε) 6 K0 for all ε ∈ (0, ε0)
}
,

and its link with the minimal observation time TGCC(M, X, ω) associated to the limit
problem (1.1) is left open. In particular, the formulation of the results in [GL07]
(see e.g. Th. 2 and the discussion thereafter in that reference) suggests the possible
existence of a universal constant K > 1 such that

(1.5) Tunif(ω) 6 K TGCC(M, X, ω).

The present article investigates this question in a very particular case, namely
assuming the vector field X is a gradient vector field, i.e., X = ∇gf for a function
f ∈ W 2,∞(M;R) (note that the gradient is taken with respect to the Riemannian
metric g). Hence, Equation (1.3) becomes

(1.6)
{

(∂t −∇gf · ∇g − q − ε∆g)u = 0, in R+
∗ ×M,

u|t=0 = u0, on M,

Here, given two vector fields Y1 and Y2, we have denoted Y1 · Y2 = g(Y1, Y2) or
(Y1 · Y2)(x) = Y1(x) · Y2(x) = gx(Y1(x), Y2(x)) for all x ∈ M. We denote similarly

J.É.P. — M., 2021, tome 8



442 C. Laurent & M. Léautaud

|Y |g =
√
Y · Y the associated Riemannian norm of a vector (or a vector field). Note

that the vector field ∇gf is canonically identified with the derivation ∇gf · ∇g.
In this context, the first consequence of our main results can be (loosely) stated as

follows.

Theorem 1.2
(1) There are geometries (M, g) such that for all Λ > 0, one can find f ∈ C∞(M)

and ω open such that (M,∇gf, ω) satisfies (GCC) and Tunif(ω) > Λ TGCC(M,∇gf, ω).
(2) There are (M, f, X, ω) such that for all Λ > 0, one can find a metric gΛ on M

such that
– X = ∇gΛ

f,
– (M, X, ω) satisfies (GCC),
– Tunif(ω) > Λ TGCC(M, X, ω).

In particular, Theorem 1.2 states that there is no K such that (1.5) holds for all
(M, X, ω).

The second item in Theorem 1.2 stresses the importance of the viscosity one
chooses. Namely, with the same vector field X, changing the metric g, that is the
viscous perturbation, may change the minimal uniform observability time. We also
obtain related results for domains of Rn (see Section 1.3.1).

Our second main result in this setting concerns the uniform observability of positive
solutions to (1.6). Recall that nonnegative data u0 > 0 give rise to positive solutions
to (1.6). We define C+

0 (T, ε) the observability constant for positive solutions, that is
for which (1.2) holds for all u0 > 0, and accordingly set

(1.7) T+
unif(ω) = inf

{
T > 0 for which there exist K0, ε0 > 0 such that (1.4) holds

for all u0 > 0, with C+
0 (T, ε) 6 K0 for all ε ∈ (0, ε0)

}
.

Theorem 1.3 (Positive solutions). — For all f ∈ C3(M;R), and ω ⊂ M such that
(M,∇gf, ω) satisfies (GCC), we have T+

unif(ω) = TGCC(M,∇gf, ω).

As usual, these uniform observability/non-observability results can be reformu-
lated in terms of uniform controllability/non-controllability statements for an adjoint
controlled equation, see Section 2.1.1 below.

1.2. Background and motivation. — Uniform controllability problems for singular
perturbations of partial differential equations already appeared in the reference book
of Lions [Lio88, Chap. 3]. In the context of transport/heat equation in vanishing vis-
cosity limit, this study was initiated by Coron and Guerrero on the 1D problem with
constant speed in [CG05], where the authors make a conjecture on the minimal time
needed to achieve uniform controllability. Then, the estimates on this minimal time
have been improved successively in [Gla10, Lis12, Lis14, Lis15]. We also refer to the
articles [Mün18, AM19b, AM19a] proposing numerical experiments to find the optimal
minimal time. Such uniform control properties in singular limits are also addressed for
vanishing dispersion in [GG08] and for vanishing dispersion and viscosity in [GG09].

J.É.P. — M., 2021, tome 8



On uniform observability of gradient flows in the vanishing viscosity limit 443

Whereas the one-dimensional problem with a constant vector field has received a lot
of attention in the past fifteen years, there are very few results in higher dimension
or for non-constant vector fields. Besides [GL07] we are only aware of the results
of [BP20a] and [BP20b] for the flat Laplace operator and the vector field ∂x1

, with
several boundary conditions.

Note that controllability problems for nonlinear conservation laws in vanishing
viscosity have also been studied in [GG07], [Léa12], and [Mar14].

There are several motivations for studying the vanishing viscosity limit. A first mo-
tivation comes from the theory of conservation laws, for which the vanishing viscosity
criterion is a selection principle for the physical (called entropy) solution, see [Kru70]
or [Daf00, Chap. 6]. It is therefore very natural, when considering control problems
for conservation laws, to study the cost of the viscosity, that is, to determine if known
controllability properties for the hyperbolic equation are still valid for the model with
small viscosity, and how the size of the control evolves as the viscosity approaches 0.
So far the only known results in this directions seem to be [GG07] and [Léa12].

Another important motivation for studying singular limits in control problems
is the seek of controllability properties for the perturbed system itself. This is well-
illustrated by the papers [Cor96, CF96, Cha09, CMS20], where the authors investigate
the Navier-Stokes system with Navier slip or slip-with-friction boundary conditions.
They use a global controllability result for the inviscid equation (in this case, the Euler
equation) to deduce global approximate controllability of the Navier-Stokes system.

On the other hand, the study of gradient fields naturally arises as the simplest
dynamical situation among all vector fields. The importance of gradient vector fields
with a vanishing viscosity coefficient also appears in theoretical physics and differential
topology, through the Witten-Helffer-Sjöstrand theory [Wit82, HS85]. See e.g. the
monographs [Hel88, CFKS87]. In that theory, the operator −∇gf · ∇g − ε∆g (and
its analogues acting on forms) is conjugated to a particular semiclassical Schrödinger
operator, namely

(1.8) Pε = −ε2∆g +
|∇gf|2g

4
+
ε

2
∆gf,

sometimes called the Witten Laplacian. Topological properties of the couple (M, f)

(e.g. the Morse inequalities, linking the number of critical points of the Morse func-
tion f with the Betti numbers ofM) are deduced from spectral properties of the Witten
Laplacian. We also refer to [DR20] for the understanding of other links between the
spectral theories of the Witten Laplacian and the vector field ∇gf ·∇g (in appropriate
spaces linked to the dynamics of the gradient flow), in the semiclassical limit ε→ 0+.

Viscous perturbations of gradient dynamics also arise naturally in molecular dy-
namics. Indeed, in Rn, the operator −∇f ·∇− ε∆ is the infinitesimal generator of the
so-called overdamped Langevin process

dXt = ∇f(Xt) dt+
√

2ε dBt,

J.É.P. — M., 2021, tome 8



444 C. Laurent & M. Léautaud

where Xt ∈ Rn and (Bt)t>0 is a standard Brownian motion of dimension n. This
stochastic process is a classical model in statistical physics. It is used in particular
for the simulation of molecular dynamics at low temperature (proportional to ε),
see [Cha43, SM79]. The possible convergence to equilibrium, as well as the so-called
metastability phenomenon are closely related to the low-lying eigenvalues (and asso-
ciated eigenfunctions) of −∇f ·∇− ε∆, or equivalently of the Witten Laplacian (1.8).
For a very precise asymptotic study of the exponentially small eigenvalues of this
operator, we refer e.g. to [HKN04, Mic19] in the case of a compact manifold and
[HN06, LP10, DGLLPN20] in the case with boundary (see also the references therein).

We finally remark that the above-mentioned works concerning the Witten Lapla-
cian mostly study the behavior of the bottom of the spectrum Pε (thus linked to
critical points of f). In the present work, we rely on a similar conjugation.

1.3. Main results. — As already seen in the end of Section 1.1, the results of this
article go in two different directions.

In a first part (Section 3), we prove some general lower bounds on the time Tunif(ω)

for a general class of domains and vector fields. This implies in particular that the quite
natural idea that Tunif(ω) is TGCC(M, X, ω) or even KTGCC(M, X, ω) for a universal
constant K is false in general. This might be interpreted by the fact that in the
vanishing viscosity limit, some strong oscillations can be responsible for concentration
phenomena. The latter are not only described by the flow of X, but other parameters
where an Agmon distance plays a crucial role. We also study (in Section 4) the
particular case of surfaces of revolutions where we obtain refined lower bounds. This
analysis also shows that the global geometry of the Riemannian manifold we consider
has an effect on the vanishing viscosity limit. In particular, with a fixed vector field,
we show that the choice of the Laplacian ∆g can change drastically the time Tunif(ω)

of uniform controllability. This shows definitely that the flow of the vector field is not
the unique parameter defining Tunif(ω).

In a second part (Section 5), our results go exactly in the opposite direction, but for
a specific class of solutions, namely positive solutions. As announced in Theorem 1.3,
we prove that Tunif(ω)+ = TGCC(M,∇gf, ω) for positive solutions. This shows that the
dynamics of positive solutions are actually well represented by the sole flow of ∇gf.

In both cases, using the change of unknown v = ef/2εu, see Section 2.2, the problem
is reduced (modulo lower order terms, and in weighted spaces) to observability of
solutions of a semiclassical heat equation

ε∂tv − ε2∆gv + V v = 0,

where V = |∇gf|2g/4. Note that most of the results we obtain are of interest for this
particular question as well.

1.3.1. A general lower bound. — The first family of results in this paper concern the
general setting of a compact connected Riemannian manifold (M, g), with or without
boundary ∂M, and the associated internal/boundary observability question. Namely,

J.É.P. — M., 2021, tome 8



On uniform observability of gradient flows in the vanishing viscosity limit 445

we consider the parabolic–transport problem with small viscosity ε > 0 and Dirichlet
boundary conditions:

(1.9)


(∂t −X − q − ε∆g)u = 0, in (0, T )× Int(M),

u = 0 on (0, T )× ∂M,

u|t=0 = u0, in M.

Moreover, we assume that the vector field X is a gradient vector field for the metric g,
that is: there is f ∈W 2,∞(M) (at least) such that

X = ∇gf · ∇g.

For the Dirichlet problem (1.9) as well as for the case ∂M = ∅ discussed in Sec-
tion 1.1, one may discuss the behavior of the observability constant (and in particular
its possible uniform boundedness in the limit ε → 0+) in the internal observability
inequality (1.4). Also, a boundary observability problem for (1.9) can be formulated
as follows (see [GL07] and Section 2.1.2 below). Given θ ∈ C∞(∂M), there exist a
constant C0(T, ε) > 0 such that

(1.10) C0(T, ε)2

∫ T

0

‖θε∂νu|∂M(t)‖2H1/2(∂M) dt > ‖u(T )‖2H1
0 (M),

for all u0 ∈ H1
0 (M) and u solution of (1.9).

Here ∂ν denotes a unit normal (for the metric g) vector field to ∂M. Then, the uniform
observability question is whether C0(T, ε) remains uniformly bounded in the limit
ε→ 0+, and the associated minimal uniform observation time is defined again by

Tunif(θ) = inf
{
T > 0 for which there exist K0, ε0 > 0 such that (1.10) holds

for all u0 ∈ H1
0 (M), with C0(T, ε) 6 K0 for all ε ∈ (0, ε0)

}
.

Before going further, let us first give the definition of an analogue of the condition
(GCC) in case of a manifold with boundary ∂M 6= ∅ (called here Flushing Condition),
as used in the Guerrero-Lebeau result [GL07]. For this, we need to extend (M, g) in
a slightly bigger Riemannian manifold (M̃, g̃), i.e., such that M ⊂ Int(M̃) and g̃ any
Riemannian metric on M̃ such that g̃|M = g. In the case of a bounded domain of
Rn, one may choose M̃ = Rn. We also extend f ∈W 2,∞(M) as a compactly supported
function f̃ ∈W 2,∞(M̃) such that f̃|M = f.

Definition 1.4. — For x ∈M, denote by γx the maximal solution to

γ̇x(t) = −∇g̃ f̃(γx(t)), γx(0) = x.

Note that this solution is defined globally in time since f̃ is compactly supported.
We say that (M,∇gf, T ) (resp. (M,∇gf, ω, T )) satisfies the Flushing Condition

(FC) if for all x ∈ M there is t ∈ (0, T ) such that γx(t) /∈ M (resp. γx(t) /∈ M or
γx(t) ∈ ω). We also say that (M,∇gf) (resp. (M,∇gf, ω)) satisfies (FC) if there is
T > 0 such that (M,∇gf, T ) (resp. (M,∇gf, ω, T )) does. We then define accordingly

J.É.P. — M., 2021, tome 8



446 C. Laurent & M. Léautaud

the time TFC(M,∇gf) (resp. TFC(M, ω,∇gf)) as the infimum of T > 0 for which this
property holds.

Remark finally that these definitions do not depend on the extensions (M̃, g̃) and f̃.

Guerrero-Lebeau [GL07] prove an analogue of Theorem 1.1 in the present setting
(and for general vector fields), namely: if (M,∇gf) (resp. (M,∇gf, ω)) satisfies the
Flushing Condition, given θ any nontrivial observation function, then there is Tu > 0

and K0 > 0 such that for all T > Tu, (1.10) holds (resp. (1.4) holds for all solutions
to (1.9)), with C0(T, ε) 6 K0 for all ε 6 1.

Two important geometric quantities in our results are the potential associated to
the function f, defined by

(1.11) V (x) :=
|∇gf(x)|2g

4
,

and the Agmon distance (see e.g. [Hel88, Chap. 3]) to the minimum of this potential,
namely, with E0 = minM V ,

dA(x, y) = inf

{∫ 1

0

√
(V (γ(t))− E0)+|γ̇(t)|gdt, γ ∈ U1(x, y)

}
,

U1(x, y) =
{
γ ∈W 1,∞([0, 1];M) ; γ(0) = x, γ(1) = y

}
,

dA(x) = dA(x, V −1(E0)) = inf
y∈V −1(E0)

dA(x, y).(1.12)

Here V −1(E0) is the classically allowed region at the potential minimum,

(V (x)− E0)+ = max(V (x)− E0, 0),

and dA(x) is the Agmon distance of x to the set V −1(E0) for the (pseudo-)metric
(V − E0)+g. Remark that the index (·)+ is not needed at the bottom energy E0 =

minM V ; however, we keep it here since the definition (1.12) will also be useful for a
general energy level.

Our main result in this general setting formulates as follows.

Theorem 1.5. — We assume that f ∈ W 2,∞(M) (hence V ∈ W 1,∞(M)) and q ∈
L∞(M). We let E0 = minM V , set

WE0
(x) =

f(x)

2
+ dA(x),

and fix ω ⊂M (resp. θ ∈ C∞(∂M)), and in the case of boundary estimates, we further
assume f, q ∈ C∞(M). For any δ > 0, there is ε0 > 0 such that for all ε ∈ (0, ε0) the
observability inequality (1.4) (resp. (1.10)) with constant C0(T, ε) implies

C0(T, ε) > exp
1

ε

(
min
ω
WE0 − max

V −1(E0)

f

2
− E0T − δ

)
,

resp. C0(T, ε) > exp
1

ε

(
min

supp θ
WE0

− max
V −1(E0)

f

2
− E0T − δ

)
.
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In particular, we have

E0Tunif(ω) > min
ω
WE0

− max
V −1(E0)

f/2,(1.13) (
resp. E0Tunif(θ) > min

supp θ
WE0

− max
V −1(E0)

f/2
)
.(1.14)

Note that the quantity in the right hand-side of (1.13)-(1.14) as well as E0 are
invariant under the change f → f + C for C constant on M. This is consistent with
the fact that the equations remain unchanged by such a modification of f. Note also
that if E0 = 0 and V −1(E0) ∩ ω = ∅ (resp. V −1(E0) ∩ supp(θ) = ∅), a more precise
version of this result (see Theorem 3.1 below) actually shows that C0(T, ε) > ec/ε

for one c > 0 and all time T > 0 (in particular, uniform observability never holds).
This is consistent with (and a particular case of) the Guerrero-Lebeau [GL07] result
(first part of Theorem 1.1 above) for in this case, (M,∇gf, ω) does not satisfy (GCC).
Indeed, a point x0 ∈ V −1(E0) satisfies ∇gf(x0) = 0 and is thus a stationary point of
the gradient dynamics.

We refer to Remark 3.5 concerning the additional smoothness assumption for the
boundary estimate.

Theorem 1.6. — Assume M = Ω where Ω ⊂ Rn is any smooth bounded connected
open set endowed with g = Eucl the Euclidean metric and q ∈ L∞(M). There exist
ω ⊂ Ω and constants cω, δ > 0 such that for any λ > 0, there is a function fλ ∈ C∞(Ω)

such that:
– (Ω,∇fλ, ω) satisfies (FC) and TFC(Ω,∇fλ, ω) 6 diam(Ω);
– Tunif(ω) > cωλ;
– λ2δ 6 ‖∇fλ‖2L∞(Ω) 6 λ

2 diam(Ω)2 + n.

In particular, for all Λ > 0, there is f ∈ C∞(Ω) such that

Tunif(ω) > ΛTFC(Ω,∇f, ω).

The result of Theorem 1.6 is already of interest in dimension one. In this case
Ω = (−L,L), the vector field we consider is f′(x)∂x with f′ > 1 on [−L,L] and
f′(0) = 1 and the observation set ω is a neighborhood of the boundary point L
(note that this would correspond to the case M < 0 in the Coron-Guerrero prob-
lem with the notation of [CG05]). Note that the function fλ in this result satisfies
max fλ −min fλ ' λ. As a consequence, one cannot even hope to have existence of a
constant K > 0 depending only on minx∈[0,L] f

′(x) (a uniform flushing time) such that
Tunif(ω) 6 K TFC(Ω,∇fλ, ω). However, at this point, it does not seem hopeless that
such a constant K depends only on ‖∇fλ‖L∞(Ω), at least for a fixed metric.

Remark 1.7. — In the case ∂M = ∅, Theorem 1.5 does not seem to suffice to construct
functions f, ω having Tunif(ω)/TGCC(M,∇gf, ω) arbitrarily large. In a domain of Rn,
Theorem 1.5 is however enough to provide counterexamples.

J.É.P. — M., 2021, tome 8



448 C. Laurent & M. Léautaud

Another drawback of Theorem 1.5 is that it does not produce any useful lower
bound in case ω is a whole neighborhood of ∂M (or in the boundary observation case
from the whole boundary ∂M).

We remedy these issues in the next section on surfaces of revolution.

1.3.2. Lower bounds on surfaces of revolution. — In Theorems 1.5 and 1.6 above, the
lower bound of the minimal uniform observability time is essentially due to the contri-
bution of the potential V (x) = |∇gf(x)|2g/4 (and the difference between its maximal
and minimal values on M). In this section, we consider a family of geometric settings,
namely surfaces of revolution, for which the contribution of the geometry of (M, g)

plays an important role. This leads in particular to explicit versions of Theorem 1.2.
The precise description of the geometry of the surfaces we consider is given in

Section 4.1 and we only describe here features required to state the result. We may
consider either:

(1) M = S ⊂ R3 a smooth compact surface diffeomorphic to the sphere S2;
(2) M = S ⊂ R3 a smooth compact surface diffeomorphic to the disk D;
(3) M = S ⊂ R3 a smooth compact surface diffeomorphic to the cylinder [0, 1]×S1;
(4) M = S a smooth compact surface diffeomorphic to the torus T2 = S1 × S1.

We assume moreover that it has revolution invariance around an axis. In particular,
the axis may intersect S in two points (sphere), one point (disk) or no point (cylinder or
torus). Except near these points, S has a global coordinate chart (s, θ) ∈ (0, L) × S1

for some L > 0. In the first three cases, the surface is endowed with the metric g
inherited from the Euclidean metric on R3 which writes

(1.15) g = ds2 +R(s)2dθ2,

on account to the rotation invariance. Here the function R : (0, L)→ (0,∞) describes
the shape of S (distance to the revolution axis). In the torus case, we simply endow T2

with the metric (1.15).
We further assume that the function f and q are themselves rotationally invariant,

that is f = f(s) and q = q(s) in these coordinates. In this setting (and as opposed to
results presented in above Section 1.3.1), the relevant quantities for our analysis are
the following.

We define for any c > 0 (that can be chosen) the (θ-invariant) effective potential

(1.16) Vc(s) :=
c2

R(s)2
+
|f′(s)|2

4
.

Note that, as opposed to the potential appearing in (1.11), this potential Vc is different
from |∇gf|2g/4 = |f′(s)|2/4. Moreover, it depends explicitly on the geometry (namely,
on R). We shall make the simplifying assumption that

(1.17) V −1
c (minVc) = {smin} consists in a single point smin.

Note that in case S has a boundary, one may have smin at the boundary (see Section 4
for more precise statements). As in the previous section, we introduce the associated

J.É.P. — M., 2021, tome 8



On uniform observability of gradient flows in the vanishing viscosity limit 449

Agmon distance, which simply writes in the first three cases:

(1.18) dcA(s) =

∣∣∣∣∫ s

smin

√
Vc(y)− Vc(smin)dy

∣∣∣∣.
In the fourth case S = S1

L×S1, an analog of (1.12) still makes sense on S1
L when Vc is

defined on S1
L. We may choose a representation of S1

L = R/LZ in which smin = 0+LZ,
a definition of the Agmon distance then reads

(1.19) dcA(s) = min
smin∈LZ

[∣∣∣∣∫ s

smin

√
Vc(y)− Vc(smin)dy

∣∣∣∣].
We also set

(1.20) W c(s) = dcA(s) +
f(s)

2
, for s ∈ (0, L).

Then our main result in this geometric context can be (loosely) stated as follows.

Theorem 1.8. — Let c > 0, assume that Vc satisfies (1.17) and that, in the coordinates
(s, θ) ∈ (0, L)× S1, we have ω = (0, δ)× S1 ∪ (L− δ, L)× S1 (this can be rewritten in
an intrinsic way on S). Assuming the observability inequality (1.4) (resp. (1.10)) with
constant C0(T, ε, ω) (resp. C0(T, ε, {L}× S1)), there is a sequence εk → 0+ such that
for any δ > 0, there is k0(δ) > 0 such that

C0(T, εk, ω) > e(1/εk)
(
W c
ω−W

c
m−Vc(smin)T−δ

)
for all k > k0(δ), W c

ω = min
ω
W c,

resp. C0(T, εk, {L} × S1) > e(1/εk)
(
W c(L)−W c

m−Vc(smin)T−δ
)

for all k > k0(δ),

where W c
m = inf(0,L)W

c. In particular, we have

Vc(smin)Tunif(ω) >W c
ω −W c

m,(1.21)
Vc(smin)Tunif({L} × S1) >W c(L)−W c

m.(1.22)

Theorem 1.8 differs from Theorem 1.5 in several respects. First notice that the
potential appearing in Theorem 1.5 is |f′(s)|2/4, that is V0(s) with the definition of Vc
in (1.16). In particular, it does not depend on R: neither does its minimal value, nor
the associated Agmon distance and function W 0. Therefore, in this very particular
geometric context, the results of Theorem 1.5 do not depend on the geometry of R,
and hence only formulate as a one-dimensional result in the s variable. As such, they
do not care about the “transverse dynamics” in the θ-variable. Theorem 1.8 overcomes
this lack and shows that both have to be taken into account.

Another difference with the estimates of Theorem 1.5 is that −maxV −1(E0) f/2 =

−maxV −1(E0)W is here replaced by − inf(0,L)W
c. This improvement is due to the

“one-dimensional” underlying framework (in which localization properties of eigen-
functions are better understood).

Again, we remark that the initial problem is invariant by changing f by a constant
f + C0. In Estimate (1.21), both the potential Vc and the quantity W c

ω −W c
m are as

well invariant by this change of the function f.
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We now state three particular examples of application of Theorem 1.8. The latter
imply Theorem 1.2.

Corollary 1.9. — Assume S is a surface of revolution in R3 diffeomorphic to S2

(resp. D) and such that R−1(maxR) is a single point (R has a unique max-
imum). Denote by N,S (resp. N only) the north/south poles of S, which are
the only two (resp. the unique) invariant points under the revolution symmetry.
Then, for any δ > 0, there exists fδ ∈ C∞(S) invariant by rotation such that with
ωδ = Bg(N, δ) ∪Bg(S, δ) (resp. ωδ = Bg(N, δ)) we have

(1) (S,∇gfδ, ωδ) satisfies (GCC) (resp. satisfies (FC)) and
TGCC(S,∇gfδ, ωδ) = L− 2δ 6 L = distg(N,S)

(resp. TFC(S,∇gfδ, ωδ) = L− δ 6 L = distg(N, ∂S));

(2) for all c > 0, there is δ0, C > 0 such that for all δ ∈ (0, δ0)

Tunif(ωδ) >
( c2

R(smin)2
+

1

4

)−1(
c log(1/δ)− C

)
.

This result proves the first item in Theorem 1.2. In particular, the limit δ → 0+

prevents from the existence of a universal constant K > 1 such that
Tunif(ω) 6 K TGCC(M, X, ω).

Note that in this construction, the vector fields ∇gfδ · ∇g are rotationally invariant
and independent of the metric g. Moreover, for δ < δ′, the two functions fδ and fδ′

coincide on Mr ωδ′ .
In our second result, the geometry is close to that of Corollary 1.9. However, we

consider fixed ω and f (and even a fixed vector field), but let the metrics g vary.
We denote S1

L = R/LZ and S1 = S1
2π.

Corollary 1.10. — Assume S = S1
L × S1 with coordinates (s, θ) and let f ∈ C∞(S1

L).
Let ω = Iω × S1 with Iω a nonempty interval such that Iω 6= S1

L.
Then, there is a constant C > 0 such that for any δ ∈ (0, 1), there exists a function

Rδ ∈ C∞(S1
L;R+

∗ ) such that
(1) the vector field ∇gδ f·∇gδ = f′(s)∂s (defined by (1.15) associated to Rδ) does not

depend on the metric gδ, the triple (S,∇gδ f, ω) satisfies (GCC) if and only if f′ 6= 0

on S1
L r Iω, and, in this case, we have

TGCC(S,∇gδ f, Iω × S1) =

∣∣∣∣∫
S1
LrIω

ds

f′(s)

∣∣∣∣ < +∞;

(2) for the transport equation (1.6) with viscosity given by the metric gδ under the
form (1.15) associated to Rδ, we have

Tunif(Iω × S1) > Cδ−1/2;

(3) δ1/2(1− Cδ) 6 minS1 Rδ 6 δ1/2 for all δ ∈ (0, 1).

This result implies the second item in Theorem 1.2.
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Another application is given by the following result, which is an analogue of Corol-
lary 1.10 for the boundary observability problem in the cylindrical geometry.

Corollary 1.11. — Assume S = [0, L]× S1 (whence ∂S = ({0} ∪ {L})× S1), and let
f ∈ C∞([0, L]). Then, for any γ > 2, δ0 > 0 there is a constant C > 0 such that for
all δ ∈ (0, δ0], there exists a function Rδ : [0, L]→ R+

∗ such that
(1) the vector field X = ∇gδ f · ∇gδ = f′(s)∂s does not depend on the metric gδ

(defined by (1.15) with Rδ);
(2) (S,∇gδ f) satisfies (FC) (in the sense of Definition 1.4) if and only if f′ 6= 0 on

[0, L] and in this case,

TFC(M,∇gδ f) =

∣∣∣∣∫ L

0

ds

f′(s)

∣∣∣∣ < +∞;

(3) for the transport equation with viscosity and Dirichlet boundary conditions
(1.6), and with metric gδ under the form (1.15) associated to Rδ, we have

Tunif(∂S) >
(

max
[0,L]

|f′|2

4

)−1( 1

δγ/2−1

1

γ/2− 1
− C

)
;

(4)

(s+ δ)γ/2(1− C(s+ δ))6Rδ(s)6(s+ δ)γ/2 for s ∈ [0, L/4],

(L− s+ δ)γ/2(1− C(L− s+ δ))6Rδ(s)6(L− s+ δ)γ/2 for s ∈ [3L/4, L].

Note the link between the asymptotic singularity of the metric Rδ(s) ∼ (s+ δ)γ/2

(i.e., S becomes close to a “conical geometry” for small δ) and the blowup of the
minimal time Tunif & 1/δγ/2−1. Note also that the limit case γ = 2, all calculations
can be done as well and lead to Rδ(s) ∼ s + δ together with Tunif & − log δ. This
corresponds to the case where the geometry of the cylinder degenerates towards that
of the disk, leading to the same blowup estimate as in Corollary 1.9.

1.3.3. Observability for positive solutions. — As already mentioned, our last result con-
cerns the uniform observability question for positive solutions of (1.6), and is restricted
to the case ∂M = ∅. We also assume f ∈ C3. Note that if u0 ∈ L2(M;R+), then the
associated solution u to (1.6) satisfies u(t, x) > 0 for a.e. (t, x) ∈ R+×M (see e.g. Th. 9
in §7.1 p. 369 together with Problem 7 in §7.5 in [Eva98], or Chap. III, Th. 7.1, p. 181
in [LSU68]).

We consider the observability inequality for nonnegative solutions:

(1.23) C+
0 (T, ε)2

∫ T

0

∫
ω

|u(t, x)|2ds(x)dt > ‖u(T )‖2L2(M),

for all u0 ∈ L2(M;R+) and u solution of (1.6).

and the associated minimal time T+
unif(ω) of uniform observability for positive solu-

tion, already defined in (1.7). The main result we obtain in this context is the above
Theorem 1.3, stating that T+

unif(ω) = TGCC(M,∇gf, ω). As a byproduct of our anal-
ysis, we also obtain a lower estimate on the blow up of the control cost when the
Geometric Control Condition is not satisfied. It involves the definition of a quantity
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that roughly speaking, measures how two points are far from being the image of a
trajectory at time t, namely

d∇gf(x, y, t) =
1

4
inf

{∫ t

0

|γ̇(s)−∇gf(γ(s))|2g ds ; γ ∈ Ut(x, y)

}
,(1.24)

Ut(x, y) =
{
γ ∈W 1,∞([0, t];M) ; γ(0) = x, γ(t) = y

}
.

Note that we have d∇gf(x, y, t) ≈ d(x, φ−t(y)) for bounded t, where d denotes the
Riemannian distance and φt the flow of the vector field ∇gf (see Lemma A.2 where
d∇gf(x, y, t) is interpreted as a control cost from x to φ−t(y) with time varying metric).

Proposition 1.12. — Assume that (M,∇gf, ω) does not satisfy (GCC). Then, we have

d([0,T ],ω) := sup
y∈M

inf
x∈ω
t∈[0,T ]

d∇gf(x, y, t) > 0.

Moreover, for any δ > 0, there is ε0 > 0 such that for all ε ∈ (0, ε0), we have

(1.25) C0(T, ε) > C+
0 (T, ε) > e(d([0,T ],ω)−δ)/ε.

Note that this exponential blowup is a refinement of the Guerrero-Lebeau [GL07]
result (first part of Theorem 1.1 above). However, we provide here with a precise
geometric rate (namely d([0,T ],ω)) quantifying this blowup phenomenon.

The proofs of Theorem 1.3 and Proposition 1.12 rely on estimates on the kernel of
the associated equation. Note that kernel estimates have already been used in [Mil04]
to prove lower bounds for the cost of controllability of the usual heat equation in the
short time asymptotics, and in [LL21a] to prove observability of positive solutions to
the heat equation with optimal constants.

1.4. Further remarks. — In this section, we collect several remarks and comments
related to our results.

(1) The principal interest of working with gradient vector fields X = ∇gf is that
the associated operator −∇gf − ε∆g can be conjugated to a selfadjoint Schrödinger
operator (1.8). And the limit ε → 0+ then corresponds to the semiclassical limit,
which has been the object of many studies (see e.g. [Wit82, Sim83, HS84, HS85, Hel88,
CFKS87, All98, HKN04, HN06]). This conjugation does no longer hold in case X is
not a gradient vector field. One could also consider that giving counter-examples with
gradient flows is “stronger” than general counter-examples. We do not know whether
an analogue of Theorem 1.3 for positive solutions remains true for general vector
fields X. This seems to be an interesting open problem.

(2) In the context of surfaces of revolution, as presented in Section 1.3.2, we only
provide with lower bounds of Tunif. It would of course be interesting to obtain related
upper bounds on this uniform control time. This would require to provide a very
precise description of several spectral quantities (spectral gaps, localization of eigen-
functions at all energy levels...) for the semiclassical Schrödinger operator Pε in (1.8),
and seems to be a difficult question. See the companion paper [LL21b] for an upper
bound in a related one-dimensional situation.

J.É.P. — M., 2021, tome 8



On uniform observability of gradient flows in the vanishing viscosity limit 453

(3) The one-dimensional one-well problem is considered in [LL21b]. In this very
particular situation, we are able to provide with

– improved lower bounds on the minimal time when compared to Theo-
rem 1.5;

– an upper bound on the minimal time.
This requires the knowledge of precise information on the spectral gap and the local-
ization of eigenfunctions at all energy levels E > E0 (whereas Theorem 1.5 is only
concerned with the bottom energy level E0). See also the discussion at the beginning
of Section 3.

(4) Notice that if one is not interested in null-controllability (i.e., driving the so-
lution exactly to zero at time T ), but rather in approximate controllability with a
reasonable cost (and a precision depending on the viscosity ε), one might be satisfied
by the following statement.

Proposition 1.13. — Suppose ∂M = ∅ and (M, X, ω, T ) satisfies (GCC) (resp. ∂M 6=
∅ and (M, X, ω, T ) satisfies (FC)). Then, there exist C,C0 > 0 such that for all
y0 ∈ L2(M), ε ∈ (0, 1] there is h = hε ∈ L2((0, T )× ω) with

‖hε‖L2((0,T )×ω) 6 C ‖y0‖L2(M) ,

such that the associated solution to (2.1) satisfies

‖y(T )‖L2(M) 6 Ce
−C0/ε ‖y0‖L2(M) .

That is to say, one can drive the solutions e−C0/ε close to zero with a uniformly
bounded cost. This result follows from Proposition 5.7 below (a particular case of
[GL07, Prop. 3]) together with [LL21c, App.]. This can be particularly useful for
numerical purposes, since e−C0/ε = 0 numerically for ε small enough.

In the situation of Theorems 1.5 or 1.8, this means that for intermediate
times T ∈

(
TGCC(M,∇gf, ω), Tunif(ω)

)
(resp. for T ∈

(
TFC(M,∇gf, ω), Tunif(ω)

)
if

∂M 6= ∅), controlling the solution e−C0/ε close to zero costs ≈ 1, whereas controlling
the solution exactly to zero costs ≈ eC/ε.

(5) Note that in the context of revolution surfaces of Section 1.3.2, we can prove a
complementary result compared to [LL21a, Th. 1.9/Cor. 1.10]. The techniques used in
Proposition 4.9 show that in all cases of Section 1.3.2, for any rotationally invariant
set ω, we have (with the notation of [LL21a], the constant Keig(ω) being the smallest
constant K in the inequality ‖ψλ‖L2(M) 6 Ce

K
√
λ ‖ψλ‖L2(ω) where −∆gψλ = λψλ)

Keig(ω) = R(smin)dA(ω), with dA(ω) = inf
x∈ω

dA(x).

In [LL21a], we only proved Keig(ω) > R(smin)dA(ω) (and only in case S is diffeomor-
phic to a sphere). This result is close to that of Allibert [All98], which already proves
this in case S is diffeomorphic to a cylinder and the function R has a single local
maximum which is non-degenerate.
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2. Preliminaries: duality, conjugation of gradient flows and (GCC)

2.1. Uniform controllability problems and dual formulation. — In this section,
we reformulate the above uniform observability questions in terms of uniform control-
lability statements. This follows essentially the classical duality approach, see [DR77]
or [Cor07, Chap. 2.3].

2.1.1. Duality between internal control and observation problems. — In this section, we
present the controllability problems associated to the above observability questions,
and we briefly describe the duality between the control and the observation problems.
We introduce the internal control problem

(2.1)


(∂t +X + divg(X)− q − ε∆g)y = 1ωh, in (0, T )×M,

y = 0, on (0, T )× ∂M,

y|t=0 = y0, on M.

Notice that, as opposed to (1.3), the operator appearing in these control problems is
X∗ = −X − divg(X), where the adjoint is taken in the space L2(M, dVolg).

That the appropriate dual observation problem is (1.3) is a consequence of the
following lemma.

Lemma 2.1 (Duality equation). — For all solutions u ∈ C0([0, T ];L2(M)) of (1.3)
on [0, T ] with Dirichlet boundary conditions and all y ∈ C0([0, T ];L2(M)) solution
to (2.1) with h ∈ L2((0, T )×M), we have

(2.2) (u(T ), y0)L2(M) − (u0, y(T ))L2(M) +

∫ T

0

(
1ωu(t), h(T − t)

)
L2(M)

dt = 0.

Notice that one passes from the observed evolution to the controlled evolution by
changing (X, q) into (−X, q − divg(X)). The interest of adding a potential term q(x)

in these equations is that the free equation (1.9) and the controlled equation (2.1)
then have the same form (i.e., the adjoint of a vector field is not a vector field but
the adjoint of a first order differential operator is a first order differential operator).

Definition 2.2 (Controllability and cost). — Given (ω, ε, T ), we say that (2.1) is
null-controllable from (ω, T ) if for any y0 ∈ L2(M), there is h ∈ L2((0, T )×M) such
that the associated solution to (2.1) satisfies y(T ) = 0. If (2.1) is null-controllable
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from (ω, T ), we define for y0 ∈ L2(M) the set U(y0) 6= ∅ of all such controls h ∈
L2((0, T )×M), and the cost function

C0(T, ε) := sup
y0∈L2(M)
‖y0‖L2(M)61

{
inf

h∈U(y0)
‖h‖L2((0,T )×M)

}
.

As a corollary of Lemma 2.1, together with classical arguments (see e.g. [DR77]
or [Cor07, Chap. 2.3]) we deduce the following statement.

Corollary 2.3 (Observability constant = control cost). — Given (ω, ε, T ), Equa-
tion (2.1) is null-controllable from (ω, T ) if and only if the observability inequal-
ity (1.4) holds. Moreover, we then have C0(T, ε) = C0(T, ε).

As a consequence, all lower bounds on C0(T, ε) formulated in Theorems 1.5 and 1.8
translate into lower bounds on C0(T, ε). The time Tunif(ω) is equal to the minimal
time of uniform controllability, and all lower bounds on the time Tunif(ω) obtained in
Theorems 1.5 and 1.8 and their corollaries apply.

The uniform observability result for positive solutions of the heat equation in
Theorem 1.3 also has a controllability counterpart. This fact was indeed proved by
Le Balc’H [LB20, Th. 4.1] for the classical heat equation. In the present context,
the uniform observability estimate for positive solutions, associated to Theorem 1.3,
implies the following controllability result.

Corollary 2.4. — Let M be a compact Riemannian manifold with ∂M = ∅, X = ∇gf
where f ∈ C3(M), and ω ⊂ M an open subset. Assume that (M,∇gf, ω) satisfies
(GCC), and T > TGCC(M,∇gf, ω). Then, there exist C, ε0 > 0 so that for any y0 ∈
L2(M) and 0 < ε 6 ε0, there exists a control h ∈ L2([0, T ], L2(ω)) with

‖h‖L2([0,T ],L2(ω)) 6 C ‖y0‖L2(M)

such that the solution of (2.1) satisfies y(T ) > 0.

We refer to Section 5.4 for a proof.

2.1.2. Duality between boundary control and observation problems. — We now briefly
discuss the boundary case and we refer to [GL07] for the details. The boundary control
problem under interest is

(2.3)


(∂t +X + divg(X)− q − ε∆g)y = 0, in (0, T )× Int(M),

y = θh, on (0, T )× ∂M,

y|t=0 = y0, on M,

where θ ∈ C∞(∂M;R) is meant to be a smooth version of 1Γ,Γ ⊂ ∂M. Solutions
of (2.3) are defined in the sense of transposition, and a well-posedness statement can
be written as follows.
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Lemma 2.5 (Guerrero-Lebeau [GL07] pp 1814-1815). — Assume X is a L∞ vector
field on M with divg(X) ∈ L∞(M), q ∈ L∞(M), and let T > 0. Then, there exists
C > 0 such that for all y0 ∈ H−1(M), all h ∈ L2(0, T ;H−1/2(∂M)) and all ε > 0,
there is a unique solution y to (2.3) in the sense of transposition, which satisfies
y ∈ L2((0, T )×M) ∩ C0([0, T ];H−1(M)) ∩H1(0, T ;H−2(M)) with

‖y‖L2((0,T )×M) + ‖y‖L∞(0,T ;H−1(M)) + ‖∂ty‖L2(0,T ;H−2(M))

6
C

ε

(
‖y0‖H−1(M) + ε1/2 ‖h‖L2(0,T ;H−1/2(∂M))

)
.

Such solutions in particular solve the first equation of (2.3) in the sense of distri-
butions.

Definition 2.6 (Controllability and cost). — Given (θ, ε, T ), we say that (2.3) is null-
controllable from (θ, T ) if for any y0 ∈ H−1(M), there is h ∈ L2(0, T ;H−1/2(∂M))

such that the associated solution to (2.3) satisfies y(T ) = 0. If (2.3) is null-controllable
from (θ, T ), we define for y0 ∈ H−1(M) the set U(y0) 6= ∅ of all such controls
h ∈ L2(0, T ;H−1/2(∂M)), and the cost function

C0(T, ε) := sup
y0∈H−1(M)
‖y0‖H−1(M)61

{
inf

h∈U(y0)
‖h‖L2(0,T ;H−1/2(∂M))

}
.

We now describe the link with the boundary observation problem (1.9). We start
with the duality identity.

Lemma 2.7 (Duality equation). — For all solutions u ∈ C0([0, T ];H1
0 (M)) of (1.9) on

[0, T ] and all y ∈ C0([0, T ];H−1(M)) solution to (2.1) with h ∈ L2(0, T ;H−1/2(M)),
we have

〈u(T ), y0〉H1
0 ,H

−1 − 〈u0, y(T )〉H1
0 ,H

−1

−
∫ T

0

〈θε∂νu|∂M(t), h(T − t)〉H1/2(∂M),H−1/2(∂M) dt = 0.

The proof is omitted here and only consists in an integration by parts for smooth
solutions, and then a density argument. As in the internal case, classical duality
arguments (see [DR77] or [Cor07, Chap. 2.3]) yield the following statement.

Corollary 2.8 (Observability constant = control cost). — Given (θ, ε, T ), Equa-
tion (2.3) is null-controllable from (θ, T ) if and only if the observability inequal-
ity (1.10) holds. Moreover, we then have C0(T, ε) = C0(T, ε).

Again, all lower bounds on C0(T, ε) formulated in Theorems 1.5 and 1.8 trans-
late into lower bounds on C0(T, ε). The time Tunif(θ) is equal to the minimal time of
uniform controllability, and all lower bounds on the time Tunif(θ) obtained in Theo-
rems 1.5 and 1.8 and their corollaries apply.
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2.2. The vanishing viscosity limit for gradient flows. Conjugation and reformu-
lation

We focus in this article on the very particular case (1.6) where X is a gradient
vector field (with respect to the same metric g defining the viscous perturbation ε∆g)
of a weight function f : M→ R, that is X = ∇gf · ∇g. In this case, it is classical (see
e.g. [Wit82, HS85]) that the operator −ε∆g − ∇gf · ∇g − q can be conjugated to a
“semiclassical selfadjoint operator”. Here, X ·Y is the inner product of the two vector
fields X and Y given by the metric g in TM.

The first basic computation is the following:

e−f/2ε∆ge
f/2ε = ∆g +

1

ε
∇gf · ∇g +

|∇gf|2g
4ε2

+
∆gf

2ε
.

We denote by

(2.4) 1

ε2
Pε := −∆g +

|∇gf|2g
4ε2

+
∆gf

2ε
− q

ε
, that is Pε := −ε2∆g +

|∇gf|2g
4

+ εqf,

where qf = (∆gf/2)− q. The above computation implies that

(2.5) e−f/2ε
( 1

ε2
Pε

)
ef/2ε = −∆g −

1

ε
∇gf · ∇g −

q

ε
.

The interest of this conjugation is that the operator Pε is selfadjoint in L2(M, dVolg)

endowed with domain D(Pε) = H2(M) ∩H1
0 (M). Henceforth, the operator

−∆g − (1/ε)∇gf · ∇g − q/ε

is also selfadjoint in L2(M, ef/2εdVolg). Let us now reformulate the uniform observ-
ability problem (1.4) in terms of the heat equation involving the operator Pε defined
in (2.4).

Note that the constant coefficient one-dimensional problem introduced in [CG05]
enters the “gradient flow” setting with M = (0, L) ⊂ R, g = 1, ∆g = ∂2

x, q = 0,
f = Mx for M ∈ R, and thus ∇gf · ∇g = M∂x. In that context, this form together
with its formulation (2.4) have already been used in [CG05, Gla10, Lis14, Lis15].

Lemma 2.9. — Given T0, C0, ε > 0 and a function u, the following statements are
equivalent.

(1) The function u solves{
(∂t −∇gf · ∇g − q − ε∆g)u = 0, in (0, T0)× Int(M),

u = 0 on (0, T0)× ∂M,
(2.6)

resp. ‖u(T0)‖2L2(M) 6 C
2
0

∫ T0

0

‖u‖2L2(ω) dt,(2.7)

resp. ‖u(T0)‖2H1
0 (M) 6 C

2
0

∫ T0

0

‖θε∂νu|∂M‖2H1/2(∂M) dt.(2.8)
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(2) The function v(t, x) = ef(x)/2εu(t, x) solves{
ε∂tv + Pεv = 0, in (0, T0)× Int(M),

v = 0 on (0, T0)× ∂M,
(2.9)

resp.
∥∥e−f/2εv(T0)

∥∥2

L2(M)
6 C2

0

∫ T0

0

∥∥e−f/2εv∥∥2

L2(ω)
dt,(2.10)

resp.
∥∥e−f/2εv(T0)

∥∥2

H1
0 (M)

6 C2
0

∫ T0

0

∥∥θe−f/2εε∂νv|∂M∥∥2

H1/2(∂M)
dt.(2.11)

(3) The function w(t, x) = v(t/ε, x) = ef(x)/2εu(t/ε, x) solves∂tw +
1

ε2
Pεw = 0, in (0, T0)× Int(M),

w = 0 on (0, T0)× ∂M,
(2.12)

resp.
∥∥e−f/2εw(εT0)

∥∥2

L2(M)
6 C2

0

∫ εT0

0

∥∥e−f/2εw∥∥2

L2(ω)
dt,

resp.
∥∥e−f/2εw(εT0)

∥∥2

L2(M)
6 C2

0

∫ εT0

0

∥∥θe−f/2εε∂νw∥∥2

H1/2(∂M)
dt.(2.13)

Proof. — Start e.g. with u satisfying (2.6). Using (2.5) and the definition of Pε, Equa-
tion (2.6) rewrites equivalently as

∂tu+ e−f/2ε
1

ε
Pεe

f/2εu = 0, t ∈ [0, T0].

The function v=ef/2εu then satisfies (2.9) (and conversely). Setting w(t, x)=v(t/ε, x)

then satisfies (2.12), and conversely.
The proof that (2.8) ⇔ (2.11) ⇔ (2.13) uses additionally that, on account to the

Dirichlet boundary condition, we have ∂ν(ef/2εu)|∂M = ef/2ε∂νu|∂M. �

2.3. (GCC) and controllability of the limit equation ε = 0. — In this section, we
characterize the observability inequality (1.2) for solutions of (1.1) in terms of the
Geometric Control Condition (GCC). In this section, M is always assumed without
boundary.

We denote by (φt)t∈R the flow of the vector field X, namely
(2.14) φ̇t(x) = X(φt(x)), φ0(x) = x ∈M.

This flow is globally defined on account to the compactness of M. We consider the
following definition of the geometric control condition in the manifoldM for the vector
field X and the set ω, which we denote (GCC).

Definition 2.10. — Let M be a compact manifold without boundary, X a Lipschitz
vector field on M, ω ⊂M, χ ∈ C0(M), I ⊂ R and interval and T > 0. We say that

– (M, X, ω, I) satisfies (GCC) if for all x ∈M, there is t ∈ I such that φ−t(x) ∈ ω;
– (M, X, ω, T ) satisfies (GCC) if (M, X, ω, (0, T )) satisfies (GCC);
– (M, X, ω) satisfies (GCC) if there is T > 0 such that (ω, T ) satisfies (GCC);
– (M, X, χ, T ) satisfies (GCC) if (M, X, {χ 6= 0}, T ) satisfies (GCC);
– (M, X, χ) satisfies (GCC) if (M, X, {χ 6= 0}) satisfies (GCC).
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In this section, the manifoldM is fixed. To lighten notation, we omit the dependence
on M in (M, X, ω, I) and we simply write (X,ω, I) instead of (M, X, ω, I) (with a
similar notation for the other definitions).

Note in particular that an open set ω satisfying (GCC) must contain all singular
points of the vector field X (i.e., all points x ∈ M such that X(x) = 0). We now
provide with different reformulations of this property.

Lemma 2.11. — Let M be a compact manifold and X a Lipschitz vector field on M.
Given ω ⊂M and T > 0, the following properties are equivalent:

(1) (X,ω, T ) satisfies (GCC);
(2)

⋃
t∈(0,T ) φt(ω) ⊃M;

(3)
⋃
t∈(0,T ) φ−t(ω) ⊃M;

(4) (−X,ω, T ) satisfies (GCC).

Proof. — The definition of (X,ω, T ) satisfying (GCC) is equivalent to: for all x ∈M,
there is t ∈ (0, T ) such that x ∈ φt(ω). Equivalence between the Items (1) and (2)
follows. Item (3) is equivalent to

⋃
t∈(0,T ) φT−t(ω) ⊃ φT (M) = M after having ap-

plied φT , which itself is equivalent to Item (2). Equivalence between Item (4) and
Item (3) finally follows from the fact that the flow of −X is (φ−t)t∈R. �

Proposition 2.12. — Assume M is a compact manifold, X is a Lipschitz vector field
on M, ds is a positive density on M, and q ∈ L∞(M). Given ω ⊂M, χ ∈ C0(M) and
T > 0, the following statements hold true:

(1) If (X,ω, T ) satisfies (GCC), then the observability inequality (1.2) for solutions
of (1.1) is true.

(2) The observability inequality (1.2) for solutions of (1.1) implies that (X,ω, [0, T ])

satisfies (GCC).
(3) The observability inequality

(2.15) C2
0

∫ T

0

∫
M

|χ(x)u(t, x)|2ds(x)dt > ‖u(T )‖2L2(M),

for all u0 ∈ L2(M) and u solution of (1.1)

holds true if and only if (X,χ, T ) satisfies (GCC).
(4) In all the above observability statements, ‖u(T )‖2L2(M) can be equivalently repla-

ced by ‖u(0)‖2L2(M).

The proof below is inspired by that in [DL09, LL16] for the wave equation. It is
constructive and would also yield a characterization of the HUM control operator (see
e.g. [HKL15] or [Léa18, §1.2] for more on controllability/stabilization properties for
transport equations).
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Proof. — First notice that for u0 ∈ L2(M), the unique solution to (1.1) is explicitly
given by

u(t, x) = e
∫ t
0
q◦φt−τ (x)dτu0 ◦ φt(x) ∈ C0(R;L2(M)).

A first direct consequence is the existence of a constant CT,q > 1 such that

C−1
T,q‖u(0)‖2L2(M) 6 ‖u(T )‖2L2(M) 6 CT,q‖u(0)‖2L2(M), for all solutions to (1.1),

which proves Item (4). Next, we write the observation term in (1.2) (the same holds
for (2.15) if we replace 1ω by χ) as∫ T

0

∫
ω

|u(t, x)|2ds(x)dt =

∫ T

0

∫
M

1ω(x)|u(t, x)|2ds(x)dt

=

∫ T

0

∫
M

1ω(x)u2
0 ◦ φt(x)e2

∫ t
0
q◦φt−τ (x)dτds(x)dt.

Using the change of variable y = φt(x) (see e.g. [Lee13, Prop. 16.42 p432]), we obtain∫ T

0

∫
ω

|u(t, x)|2ds(x)dt =

∫ T

0

∫
M

1ω(φ−t(y))u2
0(y)e2

∫ t
0
q◦φ−τ (y)dτ (φ∗−tds)(y)dt

(note that divds(X) is defined by d
dt (φ

∗
t ds)|t=0 = divds(X)ds, so that this expression

simplifies slightly in case divds(X) = 0). Using that the density is positive on the
compact M, we get the existence of CT > 1 such that

C−1
T ds(y) 6 e2

∫ t
0
q◦φ−τ (y)dτ (φ∗−tds)(y) 6 CT ds(y) uniformly for (t, y) ∈ [0, T ]×M.

As a consequence, we obtain

C−1
T

∫ T

0

∫
M

1ω(φ−t(y))u2
0(y)ds(y)dt 6

∫ T

0

∫
M

1ω(x)|u(t, x)|2ds(x)dt

6 CT

∫ T

0

∫
M

1ω(φ−t(y))u2
0(y)ds(y)dt.

Hence setting

gω,T (y) :=

∫ T

0

1ω(φ−t(y))dt ∈ L∞(M)

resp. gχ,T (y) :=

∫ T

0

χ2(φ−t(y))dt ∈ C0(M),

we deduce

C−1
T

∫
M

gω,T (y)u2
0(y)ds(y) 6

∫ T

0

∫
M

1ω(x)|u(t, x)|2ds(x)dt

6 CT

∫
M

gω,T (y)u2
0(y)ds(y).(2.16)

Recalling that ω is an open set and M compact, together with Definition 2.10, we
deduce that if (X,ω, T ) satisfies (GCC), then we have the existence of c > 0 such that
gω,T (y) > c for a.e. y ∈ M. The lower bound in (2.16) then implies the observability
inequality (1.2), and Item (1) follows.
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Concerning Item (2), if (X,ω, [0, T ]) does not satisfy (GCC), then there is a point
x0 ∈M such that φ−t(x0)∩ω = ∅ for all t ∈ [0, T ]. The set ω× [0, T ] being compact,
there is a neighborhood U of x0 such that φ−t(U) ∩ ω = ∅ for all t ∈ [0, T ]. Setting
u0 = 1U , we have on the one hand that ‖u0‖L2(M) > 0. On the other hand, we have
1ω ◦φ−t(y) = 0 for all y ∈ U and t ∈ (0, T ). This implies that gω,Tu0 = gω,T (y)1U = 0

a.e. and, according to the upper bound in (2.16), that
∫ T

0

∫
ω
|u(t, x)|2ds(x)dt = 0. This

contradicts (2.16) and concludes the proof of Item (2).
Finally, the proof of Item (3) is split in two parts. That (X,χ, T ) satisfies (GCC)

implies the observability inequality (2.15) follows as in the proof of Item (1). Now
assume that (X,χ, T ) does not satisfy (GCC). Then there is a point x0 ∈ M such
that φ−t(x0) ∩ {χ 6= 0} = ∅ for all t ∈ (0, T ). Hence, we have

gχ,T (x0) =

∫ T

0

χ2(φ−t(x0))dt = 0.

We now choose a sequence of continuous real-valued initial data (un0 )n∈N such that
‖un0‖L2(M) = 1 and (un0 )2(x)ds(x) ⇀ δx0

in the sense of measures on M. The fact
that gχ,T is continuous on M together with the upper bound in (2.16) implies that,
denoting by un the solution of (1.1) with initial datum un0 , we have

∫ T

0

∫
M

|χ(x)un(t, x)|2ds(x)dt 6 CT

∫
M

gχ,T (y)(un0 )2(y)ds(y)

−→ CT 〈δx0
, gχ,T 〉Meas,C0 = 0,

which contradicts the observability inequality (2.15), and concludes the proof of
Item (3). �

3. General lower bounds without geometric assumption

In this section, we consider a general manifold (with or without boundary) M,
and prove the lower bound for the minimal time of uniform controllability provided
in Theorem 1.5. We also give a proof of Theorem 1.6 as a corollary. To do this, we
use the semiclassical reformulation (2.9)-(2.10) of the problem in Lemma 2.9, as well
as exponential decay properties of eigenfunctions of the operator Pε. We rely on the
Helffer-Sjöstrand theory as developed in [HS84, Hel88, DS99]. All results presented
in this section apply as well for the semiclassical heat equation.

The result of Theorem 1.5 is stated for a potential minimum. However, we shall
prove a seemingly more general result, at any energy level in V (M). We shall then
explain why this latter result is not more general, and how it can be improved in
dimension one. We recall the definition of V in terms of f in (1.11), and define the
classically allowed region at any energy level E:

KE = {x ∈M ; V (x) 6 E}.
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We then define the Agmon distance (see e.g. [Hel88, Chap. 3]) to the set KE at the
energy level E:

dA,E(x, y) = inf

{∫ 1

0

√
(V (γ(t))− E)+ |γ̇(t)|gdt ; γ ∈ U1(x, y)

}
,

U1(x, y) =
{
γ ∈W 1,∞([0, 1];M) ; γ(0) = x, γ(1) = y

}
,

dA,E(x) = inf
y∈KE

dA,E(x, y).(3.1)

That is to say, dA,E(x) is the distance of x to the set KE for the (pseudo-)metric
(V − E)+g. Here again (V (x)− E)+ = max (V (x)− E, 0). We will use, as in (1.12)
the notation dA = dA,E0 where E0 = minM V for the Agmon distance at the bottom
energy. Note that dA,E vanishes identically on KE (and only on this set). Finally, an
important function in the estimates below is given by

(3.2) WE(x) = dA,E(x) +
f(x)

2
.

We shall prove in this section the following result.

Theorem 3.1. — Assume the observability estimate (2.7) (resp. the boundary observ-
ability inequality (2.8)) for all solutions to (2.6) with constant C0 = C0(T0, ε). Then,
for all E ∈ V (M) = [minM V,maxM V ] and all δ > 0, there is ε0 > 0 such that we
have for all ε ∈ (0, ε0)

C0(T0, ε) > exp
1

ε

(
min
ω
WE −max

KE
WE − δ − ET0

)
,

in the internal observation case, and

C0(T0, ε) > exp
1

ε

(
min

Γ
WE −max

KE
WE − δ − ET0

)
,

in the boundary observation case.
In particular, we have for all E ∈ V (M), for each respective case,

Tunif(ω) >
1

E

(
min
ω
WE −max

KE
WE

)
,

Tunif(Γ) >
1

E

(
min

Γ
WE −max

KE
WE

)
.

Theorem 1.5 is then the particular case E = E0 = minM V in Theorem 3.1. Unfor-
tunately, the function E 7→ (1/E)(minωWE −maxKE WE) is a decreasing function of
E. Indeed,

– the sets KE are increasing in E, hence the function E 7→maxKEWE=maxKE f/2

increases;
– E 7→ dA,E(x) is decreasing in E, hence the function E 7→ minωWE decreases.

Therefore, the estimate of Theorem 3.1 simply reduces to that for E = E0, that
is Theorem 1.5 in the introduction. This comes from the fact that the estimate in-
volving the term maxKE WE is very rough (see Section 3.2 below for a more precise
discussion). This can be improved in the one-dimensional one-well case, see [LL21b].
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Moreover, it is interesting to notice that the proof of Theorem 3.1 is not more in-
volved than the direct proof of Theorem 1.5, and we shall re-use part of it in case of
revolution surfaces in Section 4.

3.1. Eigenfunctions of semiclassical Schrödinger operators. — In this section, we
collect classical results concerning eigenfunctions of semiclassical Schrödinger opera-
tors, and some of their decay properties. Recall that

Pε = −ε2∆g +
|∇gf|2g

4
+ εqf = −ε2∆g + V + εqf

is defined in (2.4). We first need to prove existence of eigenfunctions near any energy
level.

Lemma 3.2 (Existence of eigenfunctions). — Assume V ∈W 1,∞(M) and qf ∈ L∞(M)

are both real valued. For all E ∈ V (M) = [minM V,maxM V ] and all ε ∈ (0, 1], there
is Eε = E + O

(
ε2/3

)
and ψε ∈ H2(M) ∩H1

0 (M) such that Pεψε = Eεψε.

Note that the O
(
ε2/3

)
precision is relatively poor, and can be improved in different

situations (e.g. if there is a critical point of V at energy E). These refinements are
however not needed here.

Proof. — The proof consists in constructing a (very rough) quasimode. Assume first
that E is reached by an interior point, i.e., there is x0 ∈ Int(M) such that V (x0) = E.
We then only work in a local chart near x0, centered at x0 (hence we work in Rn in
a neighborhood of 0).

We take a cutoff function χ ∈ C∞c (R) such that χ = 1 in a neighborhood of 0. We
set uε(x) = ε−n/3χ(ε−2/3|x|), so that uε is smooth and moreover supported in the
chart for all ε < ε0 with ε0 sufficiently small, and thus uε ∈ H2(M) ∩H1

0 (M). Notice
also that

‖uε‖2L2(M) =

∫
|uε(x)|2

√
|g|(x)dx =

∫
χ2(|y|)

√
|g|(ε2/3y)dy = c0 + O(ε2/3),

with c0 > 0. We now estimate (Pε − E)uε. For this, we first have ‖εqfuε‖L2 6 Cε.
Second, we always have the rough estimate V (x)−E = V (x)−V (0) = O (|x|) so that
we have

(3.3) ‖(V − E)uε‖2L2 6 C
∫
|x|2χ2(ε−2/3|x|) dx

ε2n/3
6 Cε4/3.

Third, we have∥∥ε2∆gu
ε
∥∥2

L2 =

∥∥∥∥ ε2√
|g|

∑
i,j

∂i

(
gij
√
|g|∂juε

)∥∥∥∥2

L2

6 Cε4
∑
i,j

∫ [
∂i
(
gij
√
|g|xj/|x|

)
ε−2/3χ′

(
ε−2/3|x|

)
+
(
gij
√
|g|xj/|x|

) xi
|x|

ε−4/3χ′′
(
ε−2/3|x|

)]2 dx

ε2n/3

6 Cε4/3.(3.4)
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Combining the above four estimates yields the existence of D, ε0 > 0 such that for all
ε < ε0, we have,

‖(Pε − E)uε‖L2 6 Cε2/3 6 Dε2/3 ‖uε‖L2 .

Hence, if E /∈ Sp(Pε), this implies
∥∥(Pε − E)−1

∥∥
L2→L2 > (Dε2/3)−1. Finally, the

operator Pε being selfadjoint, we have, for z ∈ C r Sp(Pε), ‖(Pε − z)−1‖L2→L2 =

1/d(z,Sp(Pε)), so that, if E /∈ Sp(Pε),
1

d(E,Sp(Pε))
> (Dε2/3)−1.

In any case, this implies d(E,Sp(Pε)) 6 Dε2/3, and using that the spectrum of Pε is
purely pointwise, this proves the sought result.

Assume now that E is not reached by an interior point, i.e., E /∈ V (Int(M)).
This means in particular that there is x0 ∈ ∂M such that V (x0) = E. Then, we
again work in a local chart near x0, centered at x0. In this chart, M is given by
Rn−1 × R− and x0 by 0. We denote (x′, xn) ∈ Rn−1 × R− local coordinates. We
then take χ as above and further define χ̌ ∈ C∞c (R), non-identically vanishing, such
that supp(χ̌) ⊂ (−1, 0). We define uε(x) = ε−n/3χ̌(ε−2/3xn)χ(ε−2/3|x′|). One can
check that all above properties of uε are still satisfied, and in particular (3.3)–(3.4).
In addition, we have suppuε ⊂ Rn−1 × R−∗ , and thus uε ∈ H2(M) ∩ H1

0 (M). The
remainder of the proof then follows the same as in the first case. �

Remark 3.3. — Note that near a noncritical value of V , or near the boundary of M,
the appropriate local model is −ε2∂2

x ± x. Considering concentrating quasimodes of
the form χ(x/εα) leads to

ε2∂2
x (χ(x/εα)) =

ε2

ε2α
χ′′(x/εα), and xχ(x/εα) = εα(x/εα)χ(x/εα).

Henceforth, the right scaling is given by 2− 2α = α, that is α = 2/3. The quasimode
we construct are then O

(
ε2/3

)
. If one wants to obtain a better remainder, one could

replace χ by an Airy function, as one should replace χ by a Hermite function in the
case of bottom of potential (in which case the precision of the quasimode is improved).
Also, the remainder ε2/3 is actually the worst possible case.

The next result states the decay estimates for eigenfunctions in the classically
forbidden region, and is a consequence of so-called Agmon estimates (see [HS84, Hel88,
DS99]). Here, it is a particular case of [Hel88, Prop. 3.3.1 & 3.3.4]. Note that with
respect to [Hel88, Prop. 3.3.1], our operator Pε contains an additional term, namely
multiplication by εqf. However, this contribution is of lower order and can be absorbed
in the proof of the Agmon estimates.

Theorem 3.4 (Decay of eigenfunctions in the classically forbidden region)
Assume V ∈W 1,∞(M) and qf ∈ L∞(M). Let

E ∈ V (M) = [min
M

V,max
M

V ]
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and assume ψε ∈ H2(M) ∩H1
0 (M) and Eε satisfy

(3.5) Pεψε = Eεψε, ‖ψε‖L2(M) = 1, max(Eε − E, 0) = o(1) as ε −→ 0+.

Then for all δ > 0, there exist C = C(δ), ε0 = ε0(δ) > 0 such that, for all ε < ε0, we
have

(3.6)
∥∥e1/εdA,Eψε

∥∥
L2(M)

6 Ceδ/ε.

Assuming further that V, qf ∈ C∞(M), we have ψε ∈ C∞(M) and for all δ > 0 and
all smooth vector field Y on M, there exist C = C(δ), ε0 = ε0(δ) > 0 such that, for
all 0 < ε < ε0, we have

(3.7) |ψε(x)|+ |(Y ψε)(x)| 6 Ce−(1/ε)(dA,E(x)−δ), for all x ∈M.

Remark 3.5. — Note that the smoothness assumption V, qf ∈ C∞(M) (as well as the
smoothness assumptions in Theorem 1.5) is essentially only used in [HS84, Hel88,
DS99] to perform elliptic regularity estimates so that the pointwise estimate (3.7)
makes sense. A finer (much less demanding) regularity assumption can be formulated.

As a direct corollary, we have that most of the norm of ψε is near KE , see [Hel88,
Cor. 3.3.2].

Corollary 3.6 (Most of the norm is in the classically allowed region)
Let E ∈ V (M) = [minM V,maxM V ] and assume ψε, Eε satisfy (3.5). For any

open set U containing KE, there is δ, ε0 > 0 such that for all 0 < ε < ε0, we have

‖ψε‖2L2(U) = 1 + O(e−δ/ε).

3.2. Rough localization of eigenfunctions, and a proof of Theorem 3.1

From the decay estimates in the classically forbidden region (Theorem 3.4) and the
rough localization of the L2 mass of eigenfunctions (Corollary 3.6), together with the
existence of eigenfunctions at any energy level (Lemma 3.2), we may now deduce a
proof of Theorem 3.1. Recall that WE is defined in (3.2). We first prove the following
proposition, from which Theorem 3.1 will follow.

Proposition 3.7. — Let E ∈ V (M) = [minM V,maxM V ] and assume ψε ∈ H2(M) ∩
H1

0 (M) and Eε satisfy (3.5). Then for all δ > 0, there exists ε0 = ε0(δ) > 0 such that,
for any open set ω ⊂M and for all ε < ε0, we have∥∥e−f/2εψε∥∥L2(M)

> e−(1/ε)(maxKE WE+δ),(3.8) ∥∥e−f/2εψε∥∥L2(M)
6 e−(1/ε)(minMWE−δ),(3.9) ∥∥e−f/2εψε∥∥L2(ω)
6 e−(1/ε)(minωWE−δ).(3.10)

Assuming also that V, qf ∈ C∞(M) and Γ ⊂ ∂M, we have

(3.11)
∥∥e−f/2ε∂νψε∥∥L2(Γ)

6 e−(1/ε)(minΓ WE−δ).
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Note that Estimate (3.8) is very rough, due to our lack of knowledge on the loca-
lization of ψε in the classically allowed region KE . In the one-dimensional one-well
case, this bound can be refined, see the companion paper [LL21b].

We first prove Proposition 3.7, and then deduce a proof of Theorem 3.1.

Proof of Proposition 3.7. — First, setting Uδ = {x ∈M ; f(x) < maxKE f + δ} ⊃ KE ,
we have∥∥e−f/2εψε∥∥L2(M)

>
∥∥e−f/2εψε∥∥L2(Uδ)

> e−(1/ε)(maxKE (f/2)+(δ/2))
∥∥ψε∥∥L2(Uδ)

>
1

2
e−(1/ε)(maxKE (f/2)+(δ/2)),

after having used Corollary 3.6 in the last inequality for ε < ε0(δ). This proves (3.8),
recalling that dA,E = 0 on KE .

Second, notice that (3.9) is a consequence of (3.10). Third, to prove (3.10),
we use (3.6) as follows∥∥e−f/2εψε∥∥L2(ω)

6
∥∥e−f/2εe−(1/ε)dA,Ee(1/ε)dA,Eψε

∥∥
L2(ω)

6 e−(1/ε)(minω(f/2+dA,E))
∥∥e(1/ε)dA,Eψε

∥∥
L2(ω)

6 e−(1/ε)(minω(f/2+dA,E))Ceδ/ε.

Finally, to prove (3.11), we proceed similarly using (3.7) (instead of the sole (3.6))
with Y = ∂ν . We have∥∥e−f/2ε∂νψε∥∥L2(Γ)

6
∥∥e−f/2εCe−(1/ε)(dA,E−δ)

∥∥
L2(Γ)

6 Ce−(1/ε)(minΓ(f/2+dA,E)−δ),

which concludes the proof of the proposition. �

Proof of Theorem 3.1 from Proposition 3.7 and Lemma 3.2. — We use the reformula-
tion in Lemma 2.9 and consider the observability estimate (2.10) for solutions to the
evolution equation (2.9).

More precisely, we select E ∈ V (M), and we let vε be the solution to (2.9) associated
to the initial condition vε(0) = ψε, where ψε is given by Lemma 3.2. That is to say,
vε(t, x) = e−(Eε/ε)tψε(x). We estimate both sides of (2.10).

Firstly, using (3.8), we have∥∥e−f/2εvε(T0)
∥∥
L2(M)

= e−(Eε/ε)T0
∥∥e−f/2εψε∥∥L2(M)

>
1

2
e−(Eε/ε)T0e−(1/ε)(maxKE WE+δ/2),

for ε < ε0(δ). Recalling that Eε = E+O
(
ε2/3

)
, this implies the existence of ε0(δ) > 0

such that for ε < ε0(δ),∥∥e−f/2εvε(T0)
∥∥
L2(M)

>
1

2
e−(1/ε)(ET0+maxKE WE+δ),
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Secondly, concerning the internal case, using (3.10), we have∫ T0

0

∥∥e−f/2εvε∥∥2

L2(ω)
dt =

∫ T0

0

e−2(Eε/ε)t
∥∥e−f/2εψε∥∥2

L2(ω)
dt

=
ε

2Eε
(1− e−2(Eε/ε)T0)

∥∥e−f/2εψε∥∥2

L2(ω)
6 Ce−(2/ε)(minωWE−δ).

As a consequence of these two estimates, applying (2.10) implies

e−(2/ε)(ET0+maxKE WE+δ) 6 C0(T0, ε)
2Ce−(2/ε)(minωWE−δ),

which concludes the proof.
In the case of observation from part of the boundary, we simply replace the above

use of (3.10) by that of (3.11). �

3.3. An explicit counter-example for a domain of Rn. — The purpose of this section
is to prove Theorem 1.6. Here M = Ω where Ω ⊂ Rn is an open set, endowed with
the Euclidean metric. For δ > 0, we may assume, up to an appropriate translation of
the domain Ω, that there is η > 0 such that

B(0, η) ⊂ Ω.(3.12)
ω ⊂ (Ω ∩ {x1 > 0, x2 > 0, . . . , xn > 0}) , and B(0, η) ∩ ω = ∅.(3.13)

We let fλ(x1, . . . , xn) be defined as follows:

(3.14) fλ(t) :=

∫ t

0

√
λ2s2 + 1ds and fλ(x1, . . . , xn) :=

n∑
i=1

fλ(xi).

With this definition, the associated gradient vector field and potential are given respec-
tively by

∇fλ(x1, . . . , xn) =

n∑
i=1

f ′λ(xi)ei =

n∑
i=1

√
λ2x2

i + 1ei,

Vλ(x) =
|∇fλ|2

4
=
λ2|x|2 + n

4
,

where (e1, . . . , en) denotes the canonical basis of Rn.
The proof of Theorem 1.6 now directly follows from the following Lemmas 3.8

and 3.9, when taking λ large enough.

Lemma 3.8. — In the above setting, recalling (3.12), (3.13) and that fλ is defined
in (3.14), we have Tunif(ω) > λη2/n for all λ > 0.

Lemma 3.9. — In the above setting, recalling (3.12), (3.13) and that fλ is defined
in (3.14), (Ω,∇fλ, ω) and (Ω,∇fλ) both satisfy (FC) and we have for all λ > 0

TFC(Ω,∇fλ, ω) 6 TFC(Ω,∇fλ) 6 min
v∈Rn,|v|=1
v·ei>0∀i

(
max
x∈Ω

x · v −min
x∈Ω

x · v
)

6 diam(Ω).(3.15)

In particular, both are bounded by a constant uniformly in λ > 0.
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We recall that (FC) and TFC are defined in this context in Definition 1.4. Notice
that the quantity maxx∈Ω x·v−minx∈Ω x·v represents the minimal Euclidean distance
between two parallel hyperplanes (normal to v) such that Ω is contained between the
two hyperplanes.

Proof of Lemma 3.8. — The minimum of Vλ is reached at xmin =0 and Vλ(xmin)=n/4.
The Agmon distance (3.1) at the bottom energy Vλ(xmin) can be explicitly computed
for points x ∈ B(0, η) ⊂ Ω r ω. Indeed, for x ∈ Ω we have√

Vλ(x)− Vλ(xmin) =
λ

2
|x|

and thus for x ∈ B(0, η),

dA(x) =
λ

2
inf

{∫ 1

0

|γ(t)||γ̇(t)|dt, γ ∈W 1,∞([0, 1];M), γ(0) = 0, γ(1) = x

}
=
λ|x|2

2

∫ 1

0

tdt =
λ|x|2

4
,

where, by symmetry arguments, we have noticed that the straight line γ(t) := xt

reaches the infimum for x ∈ B(0, η). Recalling that Vλ(0) = n/4 and f(0) = 0,
application of (1.13) in Theorem 1.5 implies

(3.16) n

4
Tunif(ω) = Vλ(0)Tunif(ω) > min

ω
(f/2 + dA) .

By a connectedness argument, for any x ∈ ω, we have from (3.13)

dA(x) > min
y∈∂B(0,η)

dA(y) > λη2/4.

Moreover, the condition (3.13) together with the definition of fλ in (3.14) imply that
fλ(x) > 0 for x ∈ ω. We thus have

min
ω

(fλ/2 + dA) > min
ω

(dA) >
λη2

4
.

Combined with (3.16), this concludes the proof of the lemma. �

Proof of Lemma 3.9. — Notice first that given v ∈ Rn with |v| = 1 such that ei · v > 0

for all i ∈ {1, . . . , n}, we have for all x ∈ Ω,

(3.17) ∇fλ(x) · v =

n∑
i=1

√
λ2x2

i + 1ei · v >
n∑
i=1

ei · v >
√∑n

i=1(ei · v)2 = |v| = 1.

Second, following Definition 1.4, we extend fλ as a smooth compactly supported
function f̃λ in Rn Given x ∈ Ω, we denote by γx the maximal (global) solution to
γ̇x(t) = −∇f̃λ(γx(t)) with γx(0) = x, defined in Rn for t ∈ R.

Given v ∈ Rn with |v| = 1 such that ei · v > 0, Estimate (3.17) thus implies
that γ̇x(t) · v = −∇f̃λ(γx(t)) · v 6 −1. Integrating this between 0 and t, we obtain
γx(t) · v − x · v 6 −t. Assuming that T > maxy∈Ω y · v −miny∈Ω y · v thus implies

γx(T ) · v − x · v 6 −T < −
(

max
y∈Ω

y · v −min
y∈Ω

y · v
)
,
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that is
x · v − γx(T ) · v > max

y∈Ω
y · v −min

y∈Ω
y · v.

Since x ∈ Ω, this implies γx(T ) /∈ Ω. This holds true for any x ∈ Ω. Recalling the
definition of (FC) in Definition 1.4, we have obtained that this condition is satisfied
by both (Ω,∇fλ, T ) and (Ω,∇fλ, ω, T ). Moreover, given the definition of TFC as an
infimum, we have also obtained that

TFC(Ω,∇fλ, ω) 6 TFC(Ω,∇fλ) 6 max
y∈Ω

y · v −min
y∈Ω

y · v.

Since this holds for all v, we have proved (3.15), which concludes the proof of the
lemma. �

4. Surfaces of revolution

4.1. General setting. — In this section we introduce the geometric setting for the
results presented in Section 1.3.2. We are concerned with a revolution surface S ⊂ R3

being either
(1) Case 1: diffeomorphic to a sphere S2 (in which case ∂S = ∅);
(2) Case 2: diffeomorphic to a disk (in which case ∂S is a circle embedded in R3);
(3) Case 3: diffeomorphic to a cylinder [0, 1]× S1 ⊂ R3 (in which case ∂S consists

in two disjoint circles embedded in R3, and belonging to two parallel hyperplanes).
We follow [LL21a] and [Bes78, Chap. 4B p95] for the precise geometric description of
such manifolds. At some places, we also consider the case of the torus T2, endowed
with a metric invariant in one direction.This setting does not strictly speaking enter
the framework of the present section, but is much simpler to describe (and we thus
do not mention it in the present section).

Definition and differentiable structure. — We assume that (S, g) is an embedded 2D
submanifold of R3 (endowed with the induced Euclidean structure), having S1 =

(R/2πZ) ∼ SO(2) as an effective isometry group. The action of S1 on S, denoted by
θ 7→ Rθ (such that RθS = S) has:

(1) exactly two fixed points denoted by N,S ∈ S called North and South poles in
Case 1; we write ∂NS = {N} and ∂SS = {S};

(2) exactly one fixed point denoted by N ∈ S called North pole in Case 2; in this
case, we write ∂NS = {N}, and ∂SS = ∂S has a single connected component (called
“south boundary”) which is also invariant by Rθ;

(3) no fixed point in Case 3; in this case ∂S has two connected components denoted
∂NS and ∂SS (called “north and south boundaries”) which are both invariant by Rθ.
We denote by P the set of poles, that is P = {N,S} in Case 1, P = {N} in Case 2
and P = ∅ in Case 3 and set

(4.1) U = Sr P.
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We now describe a nice parametrization of (S, g), and, in particular, useful coordinates
on the set U . We set L = distg(∂NS, ∂SS) and denote by

(4.2) IL = (0, L) in Case 1, IL = (0, L] in Case 2 , IL = [0, L] in Case 3.

We let γ0 be a geodesic curve of S joining N (resp. ∂NS in case 3) to S (resp. ∂SS in
Cases 2 and 3). Note in particular that length(γ0) = L. For any θ ∈ S1, the isome-
try Rθ transforms the geodesic γ0 into Rθ(γ0), which is another geodesic joining N
(resp. ∂NS) to S (resp. ∂SS). For every m ∈ U (defined in (4.1)), there exists a unique
θ ∈ S1 such that m belongs to Rθ(γ0). The geodesic Rθ(γ0) can be parametrized by
arclength

ρ : [0, L] −→ Rθ(γ0), ρ(0) ∈ ∂NS, ρ(L) ∈ ∂SS,
s = distg(ρ(s), ∂NS) = L− distg(ρ(s), ∂SS),

and there exists a unique s ∈ IL such that ρ(s) = m. We use (s, θ) as a parametrization
of U ⊂ S:

ζ : U = Sr P −→ IL × S1

m 7−→ ζ(m) = (s, θ).

In Case 3, P = ∅ and thus the whole surface S = U is diffeomorphic to the cylinder
IL× S1 via ζ. In Cases 3 and 1, we further need to describe coordinate charts around
the poles. In cases 1 and 2, we define another exponential chart (UN , ζN ) centered at
the pole N by

UN = {N} ∪ ζ−1
((

0, L/2
)
× S1

)
= Bg (N,L/2) ⊂ S,

ζN : UN −→ BR2 (0, L/2) , ζN (N) = 0.

with the transition map

ζN ◦ ζ−1 : ζ
(
U ∩ UN

)
= (0, L/2)× S1 −→ ζN

(
U ∩ UN

)
= BR2 (0, L/2) r {0}

(s, θ) 7−→
(
s cos(θ), s sin(θ)

)
.

In Case 1, we add similarly a last exponential chart (US , ζS) centered at the pole S by

US = {S} ∪ ζ−1
((
L/2, L

)
× S1

)
= Bg (S,L/2) ⊂ S,

ζS : US −→ BR2 (0, L/2) , ζS(S) = 0,

with the transition map

ζS ◦ ζ−1 : ζ
(
U ∩ US

)
= (L/2, L)× S1 −→ ζS

(
U ∩ US

)
= BR2 (0, L/2) r {0}

(s, θ) 7−→
(
(L− s) cos(θ), (L− s) sin(θ)

)
.

We shall need the following notation. For a subset J ⊂ IL, we denote by

CJ = ζ−1(J × S1) =
{
m = ζ−1(s, θ) ∈ U ; s ∈ J

}
⊂ U ⊂ S

the Rθ invariant set which projects down to J . We will also extend this definition to
sets J ⊂ [0, L] by adding the point N if 0 ∈ J (in Cases 1 and 2) and the point S if
L ∈ J (in Case 1).
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Riemannian structure and operators involved. — On the cylinder IL× S1, the metric g
is given by

(4.3) (ζ−1)∗g = ds2 +R(s)2dθ2,

for some smooth function R : IL → R+
∗ (the function R can be interpreted as the

Euclidean distance in R3 of the point parametrized on S by s to the symmetry axis,
see e.g. [LL21a, §3]). Since g is a smooth metric on S, [Bes78, Prop. 4.6] gives that R
extends to a C∞ function [0, L]→ R+ satisfying moreover

R(0) = 0, R′(0) = 1, R(2p)(0) = 0 for any p ∈ N, in Cases 1 and 2,(4.4)

R(L) = 0, R′(L) = −1, R(2p)(L) = 0 for any p ∈ N, in addition in Case 1.

For other parametrizations of surfaces of revolution, or direct computations on the
sphere S2 and the disk D, we refer to [LL21a, §3].

Example 4.1. — In particular, we consider here the following three examples:
– the unit sphere of R3 is given by case 1 L = π, s ∈ (0, π), R(s) = sin(s) (and the

maximum of R is reached at s0 = π/2)
– the unit disk of R2 is given by case 2 with L = 1 and R(s) = s;
– flat cylinder of length L > 0 and radius R0 > 0 is given by case 3 with R(s) = R0.

In these coordinates, the Riemannian volume form is hence R(s)dsdθ, the Rie-
mannian gradient of a function is

(4.5) ∇gu = ∂su
∂

∂s
+

1

R(s)2
∂θu

∂

∂θ
, with g(∇gu,∇gu) = |∂su|2 +

1

R(s)2
|∂θu|2,

and the Laplace-Beltrami operator is given by

∆s,θ =
1

R(s)
∂sR(s)∂s +

1

R(s)2
∂2
θ .

We define by L2(S) := L2(S, dVolg) the space of square integrable functions, which is
also invariant by the action of (Rθ)θ∈S1 . We will sometime also use the same definition
for L2(CJ) := L2(CJ , dVolg) for J ⊂ [0, L].

Another important operator is the infinitesimal generatorXθ of the group (Rθ)θ∈S1 ,
defined, for u ∈ C∞(S), by

(4.6) Xθu = lim
ϑ→0

ϑ−1(u ◦ Rϑ − u).

In the chart (U, ζ), the action of Rθ is given by (ζ−1)∗Rθ(u, θ
′) = (u, θ′ + θ), so that

(ζ−1)∗Xθ = ∂θ. It is proved in [LL21a, §3.2] thatXθ is a smooth vector field on S. Note
also that Xθ(N) = Xθ(S) = 0 and that its norm is given by

√
g(Xθ, Xθ)(s, θ) = R(s)

(in the coordinates of U).
Now, remark that (Rθ)θ∈S1 acts as a (periodic) one-parameter unitary group on

L2(S) by f 7→ f ◦ Rθ. The Stone Theorem (see e.g. [RS80, Th.VIII-8, p. 266]) hence
implies that its infinitesimal generator is iA, where A is a selfadjoint operator on
L2(S) with domain D(A) ⊂ L2(S). Since iAf = Xθf for f ∈ C∞(S) (which is dense
in D(A)) according to (4.6), we have that A is the selfadjoint extension of Xθ/i.
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From now on, we slightly abuse the notation and still denote Xθ/i for its selfadjoint
extension A.

Gradient vector field and conjugated operator. — We finally introduce a function f :

S 7→ R, at least of class W 2,∞ to define the gradient flow. Throughout this section,
we assume that Xθf = 0, i.e., f is invariant by rotation and the same property holds
for q. In the coordinates of U , we shall thus simply write f = f(s). These regularity
assumptions can be written in the coordinate of U by

s 7−→ f(s) ∈W 2,∞(0, L), with
f′(0) = 0 (in Cases 1 and 2), and f′(L) = 0 (in Case 1).(4.7)

We may now define as in (2.4) the conjugated operator Pε as

Pε = −ε2∆g +
|∇gf|2g

4
+ ε

∆gf

2
− εq

= −ε2
( 1

R(s)
∂sR(s)∂s +

1

R(s)2
∂2
θ

)
+
|f′(s)|2

4
+
ε

2

1

R(s)
∂s(R(s)f′(s))− εq,(4.8)

where the second writing, in the coordinates of U , uses the invariance of f. Note that
the last term in this expression acts as a multiplication operator by a function in
L∞(S) with size ε. We shall often consider it as a lower order term, and keep the
shorter notation ∆gf in place of (1/R(s)) ∂s(R(s)f′(s)).

Since both g and f are invariant by the action of Rθ, we have

(4.9) [Xθ, Pε] = 0.

Moreover, Pε is selfadjoint in L2(S, dVolg) with domain H2(S) ∩ H1
0 (S) (= H2(S)

in Case 1), and has compact resolvent. Therefore, the operators Pε and Xθ share a
common basis of eigenfunctions (see e.g. [LL21a, §3.2] for a proof). If λ ∈ R is an
eigenvalue of Pε, then (in the coordinates of U) the associated eigenfunction can be
written as eikθv(s) with k ∈ Z, v ∈ H2

loc(IL) ∩ L2 ((0, L), R(s)ds) satisfying

(4.10) − ε2

R(s)
∂s (R(s)∂sv) + ε2 k2

R(s)2
v +

( |f′(s)|2
4

+ εqf

)
v = λv,

together with v(L) = 0 in Case 2 and v(0) = v(L) = 0 in Case 3.
Restoring the dependence of the eigenelements in the parameter ε, we call the nor-

malized eigenfunctions of Pε: ϕεk,n = eikθvεk,n(s) with eigenvalues λεk,n, where n ∈ N.
In particular, for all ε > 0, we can write L2(S) = ⊕⊥(k,n)∈Z×N span(ϕεk,n).

We further denote

L2
k = ker(Xθ − ik) =

{
ϕ ∈ L2(S) ; ϕ|U = eikθf(s), f ∈ L2 ((0, L), R(s)ds)

}
,

and H2
k = D(Pε)∩L2

k = H2(S)∩H1
0 (S)∩L2

k. The commutation property (4.9) implies
that for all ε > 0, PεH2

k ⊂ L2
k, so we can define the operator

(4.11) P (k)
ε = Pε|L2

k
, with domain H2

k ,

which is selfadjoint. This can be seen for instance directly on the simultaneous diago-
nalization which implies an isometry L2(S) ≈ `2(Z×N) where L2

k ≈ {(k, n) ; n ∈ N}
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as a closed subspace of `2(Z×N). The fact that Pε has compact resolvent implies that
this is also the case for P (k)

ε . With a slight abuse of notation, we shall still denote
by P (k)

ε the one-dimensional operator (ζ−1)∗P
(k)
ε ζ∗ defined on IL, namely

(4.12) P (k)
ε w = − ε2

R(s)
∂s(R(s)∂sw) +

( ε2k2

R(s)2
+
|f′(s)|2

4
+ εqf

)
w.

4.2. The conditions (GCC) and (FC) on surfaces of revolution. — In this section,
we characterize the conditions (GCC) (see Definition 2.10 if ∂M = ∅) and (FC) (see
Definition 1.4 if ∂M 6= ∅) in the above very particular geometry, and further assuming
that the observation region ω is rotationally invariant as well. In case ∂M 6= ∅,
we consider the two cases of internal and boundary observation, and describe the
associated minimal times TFC.

Proposition 4.2. — Let δ > 0 and recall that f is assumed to be θ-invariant.
(1) In Case 1, we consider the set ω = Bg(N, δ)∪Bg(S, δ); then (S,∇gf, ω) satisfies

(GCC) if and only if

f′(s) 6= 0 for all s ∈ [δ, L− δ] and TGCC(S,∇gf, ω) =

∣∣∣∣∫ L−δ

δ

ds

f′(s)

∣∣∣∣.
(2) In Case 2, we consider the set ω = Bg(N, δ); then (S,∇gf, ω) satisfies (FC) if

and only if

f′(s) 6= 0 for all s ∈ [δ, L] and TFC(S,∇gf, ω) =

∣∣∣∣∫ L

δ

ds/f′(s)

∣∣∣∣.
(3) In Case 3, (S,∇gf) satisfies (FC) if and only if

f′(s) 6= 0 for all s ∈ [0, L] and TFC(S,∇gf) =

∣∣∣∣∫ L

0

ds

f′(s)

∣∣∣∣.
Note that in Case 2, the situations f′ > 0 and f′ < 0 play two different roles (see the

proof below). Indeed, in case f′ > 0, all trajectories of −f′ enter the controlled region ω,
whereas, in case f′ < 0, all trajectories of −f′ flow out of the domain S through ∂S

(without passing into ω). However, the definition of (FC) in Definition 1.4 does not
make a distinction between these two situations.

Proof. — We only prove the second item; the other two items are proved similarly.
According to Definition 1.4, (4.5) and the θ-invariance of f, it suffices to check under
which conditions the solutions to ṡ(t) = −f′(s(t)) all enter ω = Bg(N, δ) (resp. all
exit S, that is satisfy s(T ) > L). If there is s0 ∈ [δ, L] such that f′(s0) = 0, then the
associated solution satisfies s(t) = s0 ∈ [δ, L] for all t ∈ R, and (S,∇gf, ω) does not
satisfy (FC).

If f′ > 0 on [δ, L], then s(t) is decreasing, and for any σ0, σ1 ∈ R, one has∫ s(σ1)

s(σ0)

ds

f′(s)
= σ0 − σ1.
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The longest trajectory that does not enter ω is such that s(0) = L and s(T ) = δ so
that T =

∫ L
δ
ds/f′(s). This proves

TFC(S,∇gf, ω) =

∫ L

δ

ds

f′(s)

in this case.
Finally, if f′ < 0 on [δ, L], then s(t) is increasing, and for any σ0, σ1 ∈ R, one has∫ s(σ1)

s(σ0)

ds

f′(s)
= σ0 − σ1.

The longest trajectory that does not enter ω is such that s(0) = δ and s(T ) = L so
that −T =

∫ L
δ
ds/f′(s). This proves

TFC(S,∇gf, ω) = −
∫ L

δ

ds

f′(s)

in this case, and hence the proposition. �

4.3. Existence of eigenfunctions. — One may consider different asymptotic regimes
in the parameters ε → 0+ and k → +∞. Note that the case k bounded would
correspond to the one-dimensional situation treated in the companion paper [LL21b].
Here, we shall consider the limit k → +∞ and make the following choice of the
parameter ε:

(4.13) ε = εk = ck−1

considered as a semiclassical parameter, where c > 0 is a fixed parameter (i.e., which
does not depend on k) that will be chosen but fixed. All constants that appear below
might depend on c. The analysis of the asymptotic of the constant involved as c→ 0

(low level of rotation) or c → ∞ (high level of rotation) would be interesting but
would require much more work.

In view of (4.12), the choice (4.13) naturally leads to consider

(4.14) s 7−→ Vc(s) :=
c2

R(s)2
+
|f′(s)|2

4
,

as the effective potential of the operator P (k)
εk in the semiclassical limit ε = εk =

ck−1 → 0+. In particular, the operator P (k)
ε is now a semiclassical operator with

small parameter εk and (4.12) can be rewritten

P (k)
εk
w = − ε2

k

R(s)
∂s(R(s)∂sw) + (Vc(s) + εkqf)w.(4.15)

In the present section, we recall the existence of eigenfunctions (Analogue of
Lemma 3.2 above) associated to any value of the effective potential Vc. More pre-
cisely, in the chosen regime (4.13), for any s0 ∈ IL (recall that IL is defined in (4.2)),
we construct a sequence ψk such that Pεkψk = (Vc(s0) + r(k))ψk, with r(k) → 0 as
k → +∞. As in Section 3.1, the precision r(k) might depend on whether V ′c (s0) 6= 0

or V ′c (s0) = 0 but we will only state the worst estimate, which is sufficient for our
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needs. We shall later on prove localization properties of the ψk’s assuming further
that Vc(s0) = minIL Vc (which is a global assumption). We recall the choice (4.13)
and the definition (4.14).

Lemma 4.3 (Existence of eigenfunctions). — For all s0 ∈ IL, there is k0 > 0 such
that for all k ∈ N, k > k0, there exists ψk ∈ H2(S) ∩ L2

k in case 1 (resp. ψk ∈
H2(S) ∩H1

0 (S) ∩ L2
k in Cases 2–3), and µk ∈ R such that

µk = Vc(s0) + O(1/k2/3) =
c2

R(s0)2
+
|f′(s0)|2

4
+ O(1/k2/3),

Pεkψk = µkψk, ‖ψk‖L2(S) = 1, ψk(s, θ) = eikθϕk(s),

with Pε defined in (4.8) and εk in (4.13).

The proof is very similar to Lemma 3.2. Indeed, the study of the operator Pεk in L2
k

reduces to the 1D problem for the operator P (k)
ε defined in (4.11) and (4.15). The

proof consists first in constructing quasimodes exactly as in the proof of Lemma 3.2.
Deducing existence of an exact eigenfunction from a quasimode requires the use of
the right selfadjoint extension P (k)

εk . This issue is however treated in detail in [LL21a,
Lem. 3.6]. Note that s0 ∈ IL implies that it cannot be a pole so that R(s0)−1 is finite.

4.4. Geometric assumptions and the Agmon distance. — The next step is to study
the behavior of the eigenfunction ψk constructed in Lemma 4.3. This will require some
global assumptions on the effective potential Vc. Recall that Vc is defined in (4.14),
is continuous on IL, and tends to +∞ near to the poles. Indeed, in Cases 1 and 2 we
have for instance

Vc(s) ∼
s→0+

c2

R(s)2
∼

s→0+

c2

s2
−→
s→0+

+∞,

as a consequence of (4.4) and (4.7) (and similarly when s → L− in Case 1). As a
consequence, Vc admits a minimum on the interval IL, which we denote by

Vmin = min
s∈IL

Vc(s) ∈ R∗+.

In the following, we make Assumption (1.17) on the set where Vc reaches its global
minimum.

Assumption 4.4. — The set V −1
c (Vmin) = {smin} ⊂ IL consists in a single point.

Note that this is assumption is generic. Here it is not strictly needed to prove
the main results, but simplifies the presentation and statements slightly. We again
introduce the relevant Agmon distance at the minimal energy level Vmin, defined in
the coordinates of U by the eikonal equation(

(dcA)′(s)
)2 − (Vc(s)− Vc(smin)) = 0, dcA(smin) = 0, sgn((dcA)′(s)) = sgn(s− smin),

or, more explicitly, for s ∈ IL, by (1.18). In view of the W 2,∞ regularity of f on S and
the definition of Vc in (4.14), the function dcA is of class C2 away from smin, 0 and L,
and is locally Lipschitz on IL. Note that this includes Lipschitz regularity up to the
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boundary s = L in Case 2 and to both boundaries s = 0, L in Case 3. We also
consider dcA as a θ-invariant function on the surface S.

Lemma 4.5 (Properties of dcA). — Under Assumption 4.4, we have dcA∈C2(ILr{smin})
together with

dcA(s) = −c log(s) + O (1) , as s −→ 0+, in Cases 1 and 2,(4.16)
dcA(s) = −c log(L− s) + O (1) , as s −→ L−, in Case 1.(4.17)

Proof. — We only consider the asymptotics as s→ 0+, that is, prove (4.16). The proof
of (4.17) follows the same. Remark that according to (4.4), we have 1/R(y) → +∞
as y → 0+ with

R(s) = s+ O(s3), when s −→ 0+.

As a consequence, since f ∈W 2,∞(IL), we have

Vc(s) =
c2

s2
+ O (1) , when s −→ 0+.

With (1.18), we obtain

dcA(s) =

∣∣∣∣∫ s

smin

c

y
(1 + O(y))dy

∣∣∣∣ = −c log(s) + O(1) as s −→ 0+. �

4.5. Upper bounds for eigenfunctions: Agmon estimates. — As far as upper bounds
on ψk are concerned, we have the following Agmon type estimate.

Proposition 4.6. — Under Assumption 4.4, assume that µk = Vc(smin) + r(k) with
r(k)→ 0 and ψk ∈ H2(S) ∩ L2

k(S) solves

Pεkψk = µkψk, on S, ψk|∂S = 0, ‖ψk‖L2(S) = 1,

with Pε defined in (4.8) and εk in (4.13). Then for all 0 < δ < 1, there exist C = C(δ),
k0 = k0(δ) > 0 such that, for all k ∈ N, k > k0, the following integral is well defined
with the estimate ∫

S

e2(1−δ)dcA(m)/εk |ψk|2(m)dVolg(m) 6 Ce2δ/εk .

Also, if ∂S 6= ∅ (that is, in Cases 2 and 3), for all 0 < δ < 1, there exist C = C(δ),
k0 = k0(δ) > 0 such that, for all k ∈ N, k > k0,

‖∂sψk(L, ·)‖2H1(S1) 6 Ce
−2(1−δ)dcA(L)/εk ,

‖∂sψk(0, ·)‖2H1(S1) 6 Ce
−2(1−δ)dcA(0)/εk ,

(4.18)

where the last estimate (at s = 0) holds true in Case 3 only.

Note that given the asymptotic expansion of dcA in Lemma 4.5, this estimate implies
that ψk vanishes strongly near the poles of S. The proof is made with classical Agmon
type identity with some care with respect to the degeneracy at the poles. It is very
similar to the one performed in [LL21a, Th. 3.9] and we omit it. Note that, as opposed
to [LL21a, Th. 3.9], we do not assume here that the minimum be non-degenerate, and
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only deduce an estimate with loss (δ > 0), which is sufficient for our needs. In the non-
degenerate case, one can take δ = 0 in this estimate and replace the right hand-side
by a polynomial bound of the type ε−Mk , see [LL21a, Th. 3.9].

The proof of the boundary estimate also requires a bootstrap argument to estimate
higher Hs norms and the use of a trace estimate, see [Hel88, Prop. 3.3.1 & 3.3.4].

We obtain the following two direct Corollaries.

Corollary 4.7. — Under the assumptions of Proposition 4.6, for all 0 < δ < 1,
there exist C = C(δ), k0 = k0(δ) > 0 such that, for all k ∈ N, k > k0, and for all
rotationally invariant set ω, we have∫

ω

|ψk|2(m)dVolg(m) 6 Ce−(2/εk)((1−δ)dcA(ω)−δ), with dcA(ω) = inf
s∈ω

dcA(s).

Proof. — This is a direct consequence of the following estimate:

e2(1−δ)dcA(ω)/εk

∫
ω

|ψk|2(m)dVolg(m) 6
∫
ω

e2(1−δ)dcA(m)/εk |ψk|2(m)dVolg(m)

6
∫
S

e2(1−δ)dcA(m)/εk |ψk|2(m)dVolg(m)

6 Ce2δ/εk ,

where we have used Proposition 4.6 in the last inequality. �

Corollary 4.8 (most of the norm is close to the minimum). — Under the assumptions
of Proposition 4.6, for any ρ > 0, there exists k0 ∈ N so that

‖ψk‖2L2(C(smin−ρ,smin+ρ))
> 1/2, for all k ∈ N, k > k0.

Proof. — Applying Corollary 4.7 with ω = SrC(smin−ρ,smin+ρ) ensures that for any
δ > 0, there is k0 ∈ N such that for all k > k0, we have∫

ω

|ψk|2(m)dVolg(m) 6 C(δ)e−(2/εk)((1−δ)dcA(ω)−δ), with dcA(ω) = inf
s∈ω

dcA(s).

From Assumption 4.4, we have dcA(s) > 0 for all s ∈ IL r {smin}. That ω is closed
and does not contain smin implies that dcA(ω) > 0. Then we fix δ > 0 small enough
so that (1 − δ)dcA(ω) − δ > 0. There is k0 ∈ N such that we have ‖ψk‖2L2(ω) → 0 for
k > k0, which implies the result. �

4.6. Lower bounds for eigenfunctions: Allibert estimates. — In Corollary 4.7, we
proved that the family of eigenfunctions ψk decays on ω at least like e−dcA(ω)/εk . The
purpose of this section is to prove the converse, i.e., that the ψk’s decay at most like
e−d

c
A(ω)/εk up to δ loss. This comes from the particular one-dimensional underlying

context. We follow in this section the method of Allibert [All98]. More precisely, we
prove the following estimates.

Proposition 4.9. — Under Assumption 4.4, assume further that

(4.19) µk = Vc(smin) + r(k) with r(k) −→ 0,
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and ψk ∈ H2(S) ∩ L2
k(S) solves

Pεkψk = µkψk, on S, ψk|∂S = 0, ‖ψk‖L2(S) = 1, ψk(s, θ) = eikθϕk(s),

with Pε defined in (4.8) and εk in (4.13).
Then, for any η, δ > 0, there exist k0, C > 0 so that

‖ψk‖L2(CB(s,η))
> Ce−(1/εk)(dcA(s)+δ), for all k > k0 and s ∈ IL s.t. dist(s,P) > η.

Note that η is a safety distance to the set of poles P defined in Section 4.1. The
proof of Proposition 4.9 relies on two lemmas, which we give in the next section.

4.6.1. Two preliminary lemmas. — In this section, we assume that the assumptions
of Proposition 4.9 are satisfied. In particular, the eigenfunctions under consideration
are of the form ψk(s, θ) = eikθϕk(s). We define the following “semiclassical energy
densities” of the eigenfunctions ψk, for s ∈ IL by

Ek(s) := ε2
k|∂sψk|2(s) + (Vc(s)− µk + 1)|ψk|2(s)(4.20)

= ε2
k|ϕ′k|2(s) + (Vc(s)− µk + 1)|ϕk|2(s),

E+
k (s) := ε2

k|∂sψk|2(s) + (Vc(s)− µk)|ψk|2(s)(4.21)
= ε2

k|ϕ′k|2(s) + (Vc(s)− µk)|ϕk|2(s).

Note that according to elliptic regularity, we have ϕk ∈ H2
loc(IL) and, due to Sobolev

embeddings, ϕ′k,Ek,E
+
k ∈ C0(IL) and in particular Ek,E

+
k are defined everywhere

on IL. For s, t ∈ IL, we define Is,t to be the interval between the real numbers s
and t, that is, either [s, t] or [t, s]. We also set

(4.22) Eα = {s ∈ IL ; |s− p| > α, for all p ∈ P, and |s− smin| > α}.

Recall that P is the set of poles defined in Section 4.1 (and is aimed at covering all
Cases 1–3 at the same time) and smin is the point at which Vc reaches its minimum.

Lemma 4.10. — Assume the assumptions of Proposition 4.9 and recall that E+
k is

defined in (4.21). Then, for any α, δ > 0, there exists k0 > 0 so that for all s, t ∈ IL
such that Is,t ⊂ Eα, we have

E+
k (t) 6 e(2/εk)(|dcA(s)−dcA(t)|+δ)E+

k (s), for all k > k0.

Lemma 4.10 provides with a Grönwall type estimate on the energy E+
k , with a

precise description of the constant, under the condition that we remain finitely away
from smin. It is an analogue of [All98, Lem. 12] in our setting (with an additional
uniform dependence).

Note that |dcA(s)− dcA(t)| = dcA(s, t) is the Agmon distance between s and t at the
lowest energy level.

Proof of Lemma 4.10. — On the interval z ∈ Is,t ⊂ Eα, we differentiate E+
k , yielding

(E+
k )′(z) = 2ε2

k Re(ϕk
′ϕ′′k) + V ′c (z)ϕ2

k + 2(Vc(z)− µk) Re(ϕkϕk
′).
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We recall the choice of εk in (4.13) from the definition of Pεk in (4.8), and the definition
of P (k)

εk in (4.10)-(4.15) that we have

µkϕk = Pεkϕk = −ε2
kϕ
′′
k − ε2

k

R′

R
ϕ′k + Vcϕk + εkqfϕk.

Replacing ε2
kϕ
′′
k in the above identity yields

(E+
k )′(z) = 2 (Vc(z)− µk + εkqf)) Re(ϕkϕk

′)− 2ε2
k

R′

R
|ϕ′k|2 + V ′c (z)|ϕk|2

+ 2(Vc(z)− µk) Re(ϕkϕk
′)

=
(
4(Vc(z)− µk) + 2εkqf

)
Re(ϕkϕk

′)− 2ε2
k

R′

R
|ϕ′k|2 + V ′c (z)|ϕk|2.(4.23)

First, using the continuity of Vc on IL and the compactness of Eα in IL, we see
that Vc reaches its minimum on Eα. This, together with the fact that smin /∈ Eα,
implies that C−2

α 6 Vc(s)−Vc(smin) 6 C2
α uniformly for s ∈ Eα. Recalling (4.19), this

yields the existence of k0(α) such that for k > k0(α), we have Vc − µk > 1/2Cα > 0

on Eα.
We now estimate each of the terms in (4.23). We first have

|4(Vc − µk) Re(ϕkϕk
′)| 6 4ε−1

k

√
Vc − µk (εk|ϕ′k|)

(√
Vc − µk|ϕk|

)
6 2ε−1

k

√
Vc − µk

[
ε2
k|ϕ′k|2 + (Vc − µk)|ϕk|2

]
= 2ε−1

k

√
Vc − µk E+

k .

Moreover, according to (4.19), there exists a constant Cα > 0 such that we have√
Vc − µk 6

√
Vc − Vc(smin) + Cα|r(k)| uniformly for s ∈ Eα. Together with the

above inequality, this implies

|4(Vc − µk) Re(ϕkϕk
′)| 6 ε−1

k (2
√
Vc − Vc(smin) + Cα|r(k)|)E+

k , on Eα.

Second, we have∣∣V ′c |ϕk|2∣∣ =
|V ′c |

Vc − µk
(Vc − µk)|ϕk|2 6 2Cα ‖V ′c‖L∞(Eα) E

+
k , on Eα.

Third, we have
|εkqf Re(ϕkϕk

′)| 6 CαE+
k , on Eα.

Finally, since R′/R is bounded on Eα, we have∣∣∣ε2
k

R′

R
|ϕ′k|2

∣∣∣ 6 Cαε2
k|ϕ′k|2 6 CαE+

k on Eα.

Combining the last four estimates in (4.23) yields for another constant Cα > 0 and
for all k > k0(α)∣∣(E+

k )′(z)
∣∣ 6 2ε−1

k

[√
Vc(z)− Vc(smin) + Cα|r(k)|+ Cαεk

]
E+
k (z), for all z ∈ Eα.

Applying the Grönwall Lemma on the interval Is,t contained in Eα yields

E+
k (s) 6 e

(2/εk)
(∣∣∣∫ st √Vc(z)−Vc(smin)dz

∣∣∣+Cα|r(k)|+Cαεk
)
E+
k (t),

which is the sought result. �
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The next lemma is aimed at giving a rough Grönwall type estimate for the en-
ergy Ek, without precise constants. The interest of this less precise result is that it
remains true close to the minimum smin. This allows to compensate the fact that
Lemma 4.10 is not uniform when s is close to smin. Similarly as Eα in (4.22), we
define

Fα = {s ∈ IL ; |s− p| > α, for all p ∈ P}.

Lemma 4.11. — Assume the assumptions of Proposition 4.9 and recall that Ek is
defined in (4.20). For any α > 0, there exist Cα, Dα > 0 so that for all s, t ∈ Fα, we
have

Ek(s) 6 Cαe
(2/εk)Dα|s−t|Ek(t), for all k > k0.

Lemma 4.11 is an analogue of [All98, Lem. 11] in our setting. Recall that P is the
set of poles defined in Section 4.1.

Proof. — The proof is quite close to that of Lemma 4.10. We only use the fact that
there exists Cα so that C−1

α 6 Vc − µk + 1 6 Cα on Fα if k > k0(α). This gives a
constant Dα > 0 such that

D−1
α

(
ε2
k|ϕ′k|2 + |ϕk|2

)
6 Ek 6 Dα

(
ε2
k|ϕ′k|2 + |ϕk|2

)
on Fα.

The same computation as in (4.23) gives

E′k = (E+
k )′ + 2 Re(ϕkϕk

′)

= (4(Vc − µk) + rk + 1) Re(ϕkϕk
′)− 2ε2

k

R′

R
|ϕ′k|2 + V ′c (z)|ϕk|2,

with supFα rk → 0 as k → +∞. As a consequence, for k > k0(α), we have constants
C ′α, C

′′
α such that for all z ∈ Fα

|(Ek)′(z)| 6 ε−1
k C ′α

(
ε2
k|ϕ′k|2 + |ϕk|2

)
6 ε−1

k C ′′αEk(z),

which allows to conclude as in the proof of Lemma 4.10 above by Grönwall estimates.
�

4.6.2. Proof of Proposition 4.9 from Lemmas 4.10 and 4.11. — The sketch of the proof
of Proposition 4.9 is as follows:

(1) the total mass of ϕk is dominated by its mass near the minimum smin via
Corollary 4.8;

(2) the mass near smin is dominated by the energy at smin − ρ via Lemma 4.11
(with a small loss if ρ is small);

(3) the energy at smin−ρ is dominated by the energy near s via Lemma 4.10 (with
a geometric constant e(2/εk)dcA(s));

(4) the energy near s is dominated by the L2 norm of ϕk (or ψk) near s via elliptic
regularity.

Proof of Proposition 4.9. — Without loss of generality, we can assume s < smin − η.
Indeed, the case s > smin + η is treated similarly, and the case s ∈ [smin− η, smin + η]

is a direct consequence of Corollary 4.8 applied for ρ = η/2.
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Now, since smin ∈ IL, notice that we have necessarily d := dist(smin,P) > 0, and
we may also assume that δ < d/4. Lemma 4.11 can be applied with α = d/4 and
produces some constants C = Cα, D = Dα. Let us now choose

ρ = ρδ = min(δ/(4D), d/4, η/2).

Application of Lemma 4.11 gives for any u ∈ (smin−ρ, smin+ρ) (so that dist(u,P) > η)

Ek(smin − ρ) > C−1e−(4/εk)DρEk(u) > C−1e−δ/εkEk(u).

Integrating in u ∈ (smin − ρ, smin + ρ) gives

(4.24) Ek(smin − ρ) >
C

2ρ
e−δ/εk

∫ smin+ρ

smin−ρ
Ek(u) du > C1e

−δ/εk ,

where we have used Ek(u) > 1
2 |ϕk|

2(u) (for k large enough) and Corollary 4.8.
Taking y ∈ [s, s+η/2], we still have y 6 smin−ρ from the definition of ρ. Choosing

α = ρ/2 6 η, we can check that [y, smin−ρ] ⊂ Eα, so that Lemma 4.10 applies on Eα
and gives

E+
k (y) > e−(2/εk)(|dcA(y)−dcA(smin−ρ)|+δ)E+

k (smin − ρ)

> e−(2/εk)(dcA(y)+δ)E+
k (smin − ρ),

(4.25)

where we have noticed

|dcA(y)− dcA(smin − ρ)| = dcA(y)− dcA(smin − ρ) 6 dcA(y)− dcA(smin) = dcA(y).

Since smin is a strict minimum, there are constants k0(ρ, δ) = k0(δ, η) > 0 and
C(ρ, η) = C(δ, η) > 0 such that for k > k0(δ),

Vc(smin − ρ)− µk = Vc(smin − ρ)− Vc(smin) + r(k) > C(δ, η)−1.

This implies

Ek(smin − δ) = E+
k + |ϕk|2 6 E+

k +C(δ, η)(Vc − µk)|ϕk|2 6
(
1 +C(δ, η)

)
E+
k (smin − δ),

where all functions are taken at the point (smin−δ). Combining this estimate together
with (4.25) and (4.24) yields

Ek(y) > E+
k (y) > Ce−(2/εk)(dcA(y)+δ)E+

k (smin − ρ) > Ce−(2/εk)(dcA(y)+δ)Ek(smin − ρ)

> Ce−(2/εk)(dcA(y)+2δ) > Ce−(2/εk)(dcA(s)+2δ),

where C is a new constant depending only on δ and η. Note that in the last inequality,
we have used that dcA(s) > dcA(y). Integrating for y ∈ [s, s+ η/2], we get

(4.26)
∫

[s,s+η/2]

Ek(y)dy > Ce−(2/εk)(dcA(s)+2δ).

J.É.P. — M., 2021, tome 8



482 C. Laurent & M. Léautaud

Now, turning to the global manifold and recalling that ψk(s, θ) = eikθϕk(s), (4.5) and
(4.13), we have∫

C[s,s+η/2]

Ek(y)R(y)dy = ε2
k

∫
C[s,s+η/2]

|∇gψk|2dVolg

+

∫
C[s,s+η/2]

( |∇gf|2
4
− µk + 1

)
|ψk|2dVolg

6 C ‖ψk‖2H1(C[s,s+η/2])
.(4.27)

Finally, an interpolation estimates together with Pεkψk = µkψk and the definition
of Pεk in (4.8) gives

‖ψk‖2H1(C[s,s+η/2])
6 Cη

(
‖ψk‖2L2(C[s,s+η/2])

+ ‖ψk‖L2(C[s−η,s+η])
‖∆gψk‖L2(C[s−η,s+η])

)
6 Cηε

−2
k ‖ψk‖

2
L2(C[s−η,s+η])

.(4.28)

Now combining (4.26)–(4.27)–(4.28) gives

‖ψk‖2L2(C[s−η,s+η])
> Cε2

ke
−(2/εk)(dcA(s)+2δ), k > k0(δ, η).

Finally noticing that ε2
k > e−δ/εk for k > k0(δ) ends the proof of Proposition 4.9 up

to replacing δ by δ/3. �

4.7. Minimal time for uniform controllability in the limit ε→ 0+

The main purpose of this section is the proof Theorem 1.8 and its corollaries.

4.7.1. Proof of Theorem 1.8. — Recall that we consider the following situation:
– S is a surface of revolution as described in Section 4.1, c > 0 is a fixed constant.

Moreover, Assumption (1.17) is fulfilled.
– For k ∈ N, ε = εk = ck−1 and ψk is the set of solutions of Pεkψk = µkψk defined

in Lemma 4.3 associated to s0 = smin is the minimum of Vc.
– the function

(4.29) vk(t, x) = e−(µk/εk)tψk(x)

is the solution to (2.9), namely (εk∂t + Pεk)vk = 0, vk|∂S = 0, and vk|t=0 = ψk.
Here, ψk denotes the eigenfunction constructed in Section 4.3 above (in particular
‖ψk‖L2(S) = 1) and studied in Sections 4.5-4.6.
We now want to test Inequality (2.10) on vk, and thus estimate both sides of this
inequality. This is achieved in Lemmas 4.12 and 4.13. Theorem 1.8 is then a direct
consequence of these two lemmas. We recall that Vc is defined in (1.16) and W c

in (1.20).

Lemma 4.12. — For any δ > 0, there exist C, k0 > 0 such that for all k > k0 and all
0 6 T0 6 δ−1, we have∥∥e−f/2εvk(T0)

∥∥
L2(S)

> Ce−(Vc(smin)T0+W c
m+δ)/εk , W c

m = min
IL

W c,

with vk defined in (4.29) and W c(s) = dcA(s) + f(s)/2.
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Proof. — Note first that the functionW c = dcA+f/2 is continuous on IL and converges
to +∞ close to the poles p ∈ P, according to the asymptotics of dcA in Lemma 4.5.
Hence, it reaches its minimum in (at least) one point that we denote s1 ∈ IL, that
is W c(s1) = W c

m = minILW
c. We take 0 < η < dist(s1,P) small enough so that

|f(s)− f(s1)| 6 δ for |s− s1| 6 η. We have for k > k0 large enough∥∥e−f/2εvk(T0)
∥∥
L2(S)

= e−(µk/εk)T0
∥∥e−f/2εψk∥∥L2(S)

> e−(µk/εk)T0
∥∥e−f/2εψk∥∥L2(C(s1−η,s1+η))

> e−(µk/εk)T0e−(f(s1)+δ)/2εk
∥∥ψk∥∥L2(C(s1−η,s1+η))

> Ce−(µk/εk)T0e−(f(s1)+δ)/2εke−(1/εk)(dcA(s1)+δ),

where we have used Proposition 4.9 for the last estimate. Since µk → Vc(smin), we have
µkT0 6 Vc(smin)T0 + δ for k large enough, which, together with the above estimate,
concludes the proof (up to changing 3δ into δ). �

Lemma 4.13. — For any ω ⊂ S and δ > 0, there exist C, k0 > 0 such that for all
k > k0, and all 0 6 T0 6 δ−1, we have∫ T0

0

∥∥e−f/2εvk(t, ·)
∥∥2

L2(ω)
dt 6 Ce−2(W c

ω−δ)/εk , W c
ω = min

ω
W c,∫ T0

0

∥∥e−f/2ε∂svk(t)|s=L
∥∥2

H1(S1)
dt 6 Ce−2(W c(L)−δ)/εk , in Cases 2 and 3,∫ T0

0

∥∥e−f/2ε∂svk(t)|s=0

∥∥2

H1(S1)
dt 6 Ce−2(W c(L)−δ)/εk , in Case 3,

with vk defined in (4.29).

Proof. — Since we need an upper bound, we can assume without loss of generality
that ω is invariant by rotation. Also, W c

ω is finite except in the trivial case ω ⊂ P. Let
δ > 0.

We first estimate the contribution close to the poles in case P 6= ∅. There, the
function ψk (hence vk) is supposed to be very small since dcA is large. More precisely,
using the asymptotics of dcA close to P given by Lemma 4.5, there exists η̃ > 0 so that

(4.30) dcA(s)

2
>W c

ω +
‖f‖L∞

2
+ 1, for all s ∈ Nη̃ = {s ∈ IL ; dist(s,P) < η̃}.

We start with the estimate

(4.31)
∫ T0

0

∥∥e−f/2εvk∥∥2

L2(ω∩CNη̃
)
dt 6 e‖f‖L∞/ε ‖ψk‖2L2(CNη̃

)

∫ T0

0

e−2(µk/εk)tdt.

We have∫ T0

0

e−2(µk/εk)tdt =
εk

2µk

∫ T0(2µk/εk)

0

e−sds 6 C
εk

2µk
6 1, for k large.
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Corollary 4.7 applied to the set CNη̃ and the constant δ = 1/2, together with (4.30)
implies

‖ψk‖L2(CNη̃
) 6 Ce

−(1/εk)(W c
ω+‖f‖L∞/2).

With (4.31), this gives∫ T0

0

∥∥e−f/2εvk∥∥2

L2(ω∩CNη̃
)
dt 6 Ce‖f‖L∞/εe−(2/εk)(W c

ω+‖f‖L∞/2) = Ce−(2/εk)W c
ω ,

which is the expected bound for this part.
Let us now treat the contribution of the norm away from the poles (which is the

whole IL in Case 3). Since f is uniformly continuous on [0, L] and dcA is uniformly
continuous on the compact set Nc

η̃ := IL rNη̃, there exists η > 0 so that

(4.32) s, s′ ∈ Nc
η̃ and |s− s′| 6 η =⇒ |f(s)− f(s′)| 6 δ and |dcA(s)− dcA(s′)| 6 δ.

We now select a finite sequence si ∈ Nc
η̃, i = 1, . . . , N so that {|s− si| 6 η} is a finite

covering of Nc
η̃. This property gives the estimate∫ T0

0

∥∥e−f/2εvk∥∥2

L2(ω∩CNc
η̃

)
dt 6

∫ T0

0

e−2(µk/εk)tdt
∑
i∈J

∥∥e−f/2εψk∥∥2

L2(C(si−η,si+η))
,

where J = {i = 1, . . . , N ; (si − η, si + η) ∩ ω 6= ∅}. Using |f(s) − f(si)| 6 δ and
|dcA(s)−dcA(si)| 6 δ for s ∈ (si− η, si + η) and then Corollary 4.7 with some 0 < δ′ 6
δ/(1 + dcA(si)) so that (1− δ′)dcA(si)− δ′ > dcA(si)− δ, we obtain∥∥e−f/2εψk∥∥L2(C(si−η,si+η))

6 e−(f(si)+δ)/2ε ‖ψk‖L2(C(si−η,si+η))

6 Ce−(f(si)+δ)/2εe−(1/εk)((1−δ′)dcA(si)−δ′)eδ/ε

6 Ce−(W c(si)−4δ)/εk .

We finally obtain∫ T0

0

∥∥e−f/2εvk∥∥2

L2(ω∩CNc
η̃

)
dt 6 Ce8δ/εk max

i∈J
e−2W c(si)/εk .

We remark from (4.32) that mini∈JW
c(si) >W c

ω− 2δ. This finishes the proof since δ
is arbitrary and k can be chosen large enough.

Finally, the proof of the boundary estimates simply consists in replacing the use
of Corollary 4.7 by that of the inequality (4.18). �

We may now conclude the proof of Theorem 1.8 from Lemmas 4.12 and 4.13

Proof of Theorem 1.8. — Using Lemma 2.9, if uniform observability holds for T0, then,
we have the inequality∥∥e−f/2εv(T0)

∥∥2

L2(S)
6 C2

0

∫ T0

0

∥∥e−f/2εv∥∥2

L2(ω)
dt,

for any solution v of (2.9). In particular, this inequality holds true for the sequence vk
described above. So, combining Lemmas 4.12 and 4.13, we obtain

e−(Vc(smin)T0+W c
m+δ)/εk 6 C0e

−(W c
ω−δ)/εk , k > k0(δ), for all k > k0.
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This implies Vc(smin)T0 > W c
ω −W c

m − 2δ when letting k → +∞, which gives the
expected result since δ is arbitrary. The proof of the boundary observability esti-
mate (1.22) follows the same. We also notice that all the previous results also apply
in the case with the alternative Definition 1.19 of the Agmon distance which is also
Lipschitz with the same properties that we used. �

4.7.2. Proof of Corollaries of Theorem 1.8. — Corollaries 1.9, 1.10 and 1.11, stated
in the introduction, are significant examples of application of Theorem 1.8. In this
section, we prove these three results.

Proof of Corollary 1.9. — We first consider the case S diffeomorphic to S2, i.e., Case 1.
The case S diffeomorphic to D, i.e., Case 2, is discussed at the end of the proof. We de-
fine fδ(s) =

∫ s
0
χδ(t)dt where χδ ∈ C∞c ((0, L); [0, 1]), χδ(s) = 1 in a neighborhood of

[δ, L − δ]. Such a function fδ is constant near 0 and L, and hence can be extended
by continuity as a C∞ function on S (see e.g. [Bes78, Prop. 4.6]). We notice that
f ′δ(s) = 1 for s ∈ [δ, L− δ], so the statements about TGCC are direct consequences of
Proposition 4.2.

Notice now that we have

Vc(s) :=
c2

R(s)2
+
|χδ(s)|2

4
.

Let us call smin ∈ (0, L) the unique point such that R(smin) = maxR, that is
1/R(smin)2 = min 1/R2.

Claim. — For all c > 0, there is δ0 > 0 such that for all δ ∈ (0, δ0), we have
Vc(smin) = minVc and V −1

c (Vc(smin)) = {smin}.

To prove the claim, we let δ0 > 0 be such that

smin ∈ [δ0, L− δ0], and c2

R2(s)
>

c2

R(smin)2
+

1

4
for s /∈ [δ0, L− δ0]

(note that δ0 thus depends on c). This is possible since R(s) → 0 as s → 0+ and
s→ L−. Hence, recalling the definitions of χδ and Vc, for δ < δ0 we have

Vc(smin) =
c2

R(smin)2
+

1

4
, Vc(s) >

c2

R(smin)2
+

1

4
for all s ∈ [δ0, L− δ0] r {smin},

together with

Vc(s) >
c2

R2(s)
>

c2

R(smin)2
+

1

4
for s /∈ [δ0, L− δ0].

As a consequence, Vc reaches its minimum at smin only, which proves the claim.
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Now Assumption 4.4 is satisfied and smin does not depend on δ. We compute the
Agmon distance (1.18)

dcA(s) =

∣∣∣∣∫ s

smin

√
Vc(y)− Vc(smin) dy

∣∣∣∣
=

∣∣∣∣∫ s

smin

√
c2

R(y)2
+
|χδ(y)|2

4
− c2

R(smin)2
− 1

4
dy

∣∣∣∣.
Notice that

0 >
|χδ(y)|2

4
− 1

4
> −1

4
uniformly with respect to δ so that the asymptotic expansion of Lemma 4.5 is valid
uniformly in δ: there are C, γ > 0 such that for all δ ∈ (0, δ0),

|dcA(s) + c log(s)| 6 C for s ∈ (0, γ],

|dcA(s) + c log(L− s)| 6 C, for s ∈ [L− γ, L).

Now we recall the definition of W c = dcA + fδ/2, notice that 0 6 f′δ 6 1 so that
0 6 fδ(s) 6 L for s ∈ IL. As a consequence, using that dcA > 0 and dcA(smin) = 0, we
have for δ ∈ (0, γ],

W c
m = min

IL
W c = min

IL
(dcA + fδ/2) 6

L

2
+ min

IL
dcA 6

L

2
,

W c
ω = min

ω
W c > min

ω
dcA > −c log(δ)− C for ω = Bg(N, δ) ∪Bg(S, δ).

The bound (1.21) of Theorem 1.8 then yields( c2

R(smin)2
+

1

4

)
Tunif(ω) > −c log(δ)− C − L

2
,

and hence concludes the proof in the case S diffeomorphic to S2, i.e., Case 1.
In the case S diffeomorphic to D, i.e., Case 2, we instead define fδ(s) =

∫ s
0
χδ(t)dt

where χδ ∈ C∞c ((0, L]; [0, 1]), χδ(s) = 1 in a neighborhood of [δ, L]. Then, the remain-
der of the proof is the same except that the minimum can be achieved at s = L, and
all sets of the form [δ0, L−δ0] have to be replaced by [δ0, L] (i.e., only a neighborhood
of zero is avoided, and not a neighborhood of L). �

Proof of Corollary 1.10. — For the sake of simplicity, we may identify

S1
L = [−L/2, L/2] and Iω = (−α, α) for α ∈ (0, L/2).

We first choose χδ ∈ C∞(S1
L) even in this identification, and smin = ±L/2 /∈ (−α, α)

such that

χδ =
1

δ
on
[
− 1

2

(
α+ L/2

)
, 1

2

(
α+ L/2

)]
, χδ(smin) = 1,

χ′δ(s) = 0 if and only if s ∈
[
− 1

2

(
α+ L/2

)
, 1

2

(
α+ L/2

)]
or s = smin.

Note that χδ = 1/δ in a neighborhood of (−α, α), and that for δ < 1, χδ reaches at
smin = ±L/2 a unique global minimum and in particular χδ > 1 on S1

L. We then set

V δ(s) := χδ +M, M := max
S1
L

|f′|2/4,
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so that V δ(s) > |f′(s)|2/4 on S1
L, and

Rδ(s) :=
(
V δ(s)− |f′(s)|2/4

)−1/2
, Rδ ∈ C∞(S1

L;R+
∗ ),

where we have used that f ∈ C∞(S1
L). Notice that with these definitions, we have

(where V1 denotes Vc with c = 1)

V1(s) =
1

Rδ(s)2
+
|f′(s)|2

4
= V δ(s).

Notice then that V δ admits a unique global minimum at smin = ±L/2.
On the one hand, we have

(χδ(s) +M)−1/2 6 Rδ(s) 6 χ
−1/2
δ (s).

On the other hand, since χδ is even and with the appropriate definition (1.19), we have
for s ∈ [0, L/2],

dcA(s) = −
∫ s

L/2

√
V δ(y)− V δ(L/2)dy = −

∫ s

L/2

√
χδ(y)− 1dy.

As a consequence, we have (recall ω = (−α, α)× S1)

W c
m = min

[0,L]
W c = min

[0,L]
(dcA + f/2) 6 (dcA + f/2) (L/2) =

f(L/2)

2
,

W c
ω > min

ω
dcA + min

ω
f/2 = dcA(α) + min

ω
f/2,

where

dcA(α) =

∫ L/2

α

√
χδ(y)− 1dy >

∫ 1
2 (α+L/2)

α

√
χδ(y)− 1 dy =

∫ 1
2 (α+L/2)

α

√
(1/δ)− 1 dy

>
1

2
((L/2)− α)(δ−1/2 − 1)

for δ < 1. Applying Theorem 1.8 concludes the proof of the corollary. �

We next prove Corollary 1.11, stated in the introduction. The proof is close to that
of Corollary 1.10.

Proof of Corollary 1.11. — We first take χ ∈ C∞(R+; [0, 1]) such that χ = 1 on
[0, L/4] and suppχ ⊂ [0, L/2). Next, with

M := max
[0,L]
|f′|2/4,

we set

V δ(s) :=
χ(s)

(s+ δ)γ
+ (1− χ(s)) (s− L/2)

2
+M, for s ∈ [0, L/2],

V δ(s) := V δ(L− s) for s ∈ [L/2, L].

This function is symmetric about L/2, smooth on [0, L], and satisfies V δ(s) >

|f′(s)|2/4 on [0, L]. Hence, defining Rδ as

Rδ(s) :=
(
V δ(s)− |f′(s)|2/4

)−1/2
,
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and using that f ∈ C∞([0, L]), we deduce that Rδ ∈ C∞([0, L];R+
∗ ). Notice that with

these definitions, we have (where V1 denotes Vc with c = 1)

V1(s) =
1

Rδ(s)2
+
|f′(s)|2

4
= V δ(s).

Notice then that V δ admits a unique global minimum at smin = L/2.
We have on the one hand that for all s ∈ [0, L/4] and δ ∈ (0, δ0],

(s+ δ)γ/2
1√

1 +M(s+ δ)γ
=
(
V δ(s)

)−1/2
6 Rδ(s) 6

(
V δ(s)−M

)−1/2
= (s+ δ)γ/2,

which proves the Item 4 (on account to the symmetry V δ(s) := V δ(L− s)).
On the other hand, recalling that smin = L/2, we have for s ∈ [0, L/2]

V1(smin) = V δ(L/2) = M,

dcA(s) =

∣∣∣∣∫ s

L/2

√
V δ(y)− V δ(smin) dy

∣∣∣∣
=

∣∣∣∣∫ s

L/2

√
χ(s)

(s+ δ)γ
+ (1− χ(s)) (s− L/2)

2
dy

∣∣∣∣.
As a consequence, we have

W c
m = min

[0,L]
W c = min

[0,L]
(dcA + f/2) 6 (dcA + f/2) (L/2) =

f(L/2)

2
,

W c
{0} = W c(0) > dcA(0) +

f(0)

2
,

where

dcA(0) =

∫ L/2

0

√
χ(s)

(s+ δ)γ
+ (1− χ(s)) (s− L/2)

2
dy >

∫ L/4

0

√
1

(s+ δ)γ
dy

=
δ1−γ/2

γ/2− 1
− (δ + L/4)1−γ/2

γ/2− 1
=

δ1−γ/2

γ/2− 1
+ O (1) , for γ > 2.

By symmetry of V δ about L/2, we also have dcA(L) = dcA(0). Applying Theorem 1.8
concludes the proof of the corollary. �

5. Uniform time of observability for positive solutions

The proofs of Theorem 1.3 and Proposition 1.12 rely on fine estimates on the
semiclassical heat kernel, which we borrow from [LY86]. The latter are first presented
in Section 5.1. Then, in Section 5.2, we deduce L1 observability statements and finally
conclude the proofs of Theorem 1.3 and Proposition 1.12 in Section 5.3. Throughout
this section, we assume ∂M = ∅.
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5.1. Estimates on the semiclassical heat kernel. — The main tool we use to esti-
mate the heat kernel in the semiclassical limit is the following theorem taken from
Li-Yau [LY86] (see also [Sim83], for a similar result on Rn).

Theorem 5.1 (Theorem 6.1 of [LY86]). — Let M be a compact manifold without bound-
ary. Suppose Vε = V + εq with V, q ∈ C2(M). For any ε > 0, we consider Hε, the
fundamental solution of

∂tw −∆gw +
1

ε2
Vε(x)w = 0, on (0,+∞)×M.

Then, we have

(5.1) lim
ε→0

ε logHε(x, y, εt) = −ρ(x, y, t),

where

(5.2) ρ(x, y, t)

= inf

{∫ t

0

1

4
|γ̇(s)|2g + V

(
γ(s)

)
ds ; γ ∈W 1,∞([0, t];M), γ(0) = x, γ(t) = y

}
.

Moreover, the limit in (5.1) is uniform on any compact set of M2 × (0,+∞).

We recall that Hε(x, y, t) is defined to be the unique solution to

(5.3)


(
∂t −∆g + 1

ε2Vε(x)
)
Hε(x, y, t) = 0, for (t, x) ∈ R+

∗ ×M,

Hε(x, y, t)|t=0 = δx=y, for x ∈M,

where y ∈ M is fixed, and the differential operator −∆g + (1/ε2)Vε(x) acts in
the x-variable. We also recall that Hε(x, y, t) is (well-defined and) continuous in
M2 × (0,+∞) as soon as Vε ∈ L∞(M), see e.g. [Sim82, Th.B.7.1 (a′′′)], so that point-
wise estimates like (5.1) make sense.

The statement of Theorem 5.1 is not strictly speaking a consequence of [LY86,
Th. 6.1] for the following two reasons:

– the potential Vε is assumed independent of ε in [LY86];
– the uniformity of the limit on any compact subset is not explicitly written

in [LY86].
However, let us explain why the proof of [LY86, Th. 6.1] actually contains these two
points. The limit (5.1) is proved in two steps, a lower bound and an upper bound.
The lower bound

lim
ε→0

ε logHε(x, y, εt) > −ρ(x, y, t)

is obtained as a consequence of the explicit estimate ([LY86, Th. 2.1])

ε logHε(x, y, εt1) 6 ε logHε(x, y, εt) + ε2A1/ε(t− t1) + ρα,R(x, y, t− t1),

for all 0 < t1 < t, α > 1 and where the constant Aλ (λ = ε−1 in our context) only
depends on

‖∆gVε‖L∞(M) , ‖∇gVε‖L∞(M) and α.
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In particular, the limit limε→0 εA1/ε = 0 holds uniformly. The proof finally proceeds
by taking the limit R → +∞, and then α → 1+ (in which case ρVεα,R(x, y, t − t1)) →
ρVε(x, y, t − t1), uniformly on compact sets; here ρVε denotes the function ρ defined
by (5.2) with V replaced by Vε). Taking finally the limit ε→ 0+, and then t1 → 0+,
and noticing that

lim
t1→0+

lim
ε→0+

ε logHε(x, y, εt1) > 0

concludes the proof of the lower bound. This last argument relies only on a uniform
upper bound on ‖Vε‖L∞(M) together with a comparison argument, namely Inequa-
lity [LY86, (6.3)]. It can be checked that the convergence is uniform on any com-
pact set since it involves the asymptotics on the diagonal of kernels of heat equa-
tions on large balls and without potential, which are known to be uniform on com-
pact sets, see for instance [Var67, Th. 4.6]. It only remains to notice that the limit
limt1→0+ limε→0+ ρVε(x, y, t− t1) = ρ(x, y, t) is uniform on compact sets.

The upper bound
lim
ε→0

ε logHε(x, y, εt) 6 −ρ(x, y, t)

follows from [LY86, Th. 3.3]. As for the lower bound, this result also furnishes an
explicit and uniform bound involving another constant Aλ enjoying the same type of
convergence properties as for the lower bound.

Note that we have chosen to use the estimate of the semiclassical limit of the kernel
of [LY86] but it is likely that we could have obtained the observability inequality
starting directly from Harnack type inequalities like [LY86, Th. 2.1], as we did in
[LL21a].

Here, we are mostly interested in the case V (x) = 1
4 |∇gf(x)|2g. In this situation, we

can reformulate the result in terms of the transport equation with vanishing viscos-
ity (1.6).

We next define Kε(x, y, t), the fundamental solution of (1.6) on M2 × (0,+∞) by
the unique solution to

(5.4)
{

(∂t −∇gf · ∇g − q − ε∆g)Kε(x, y, t) = 0, for (t, x) ∈ R+
∗ ×M,

Kε(x, y, t)|t=0 = δx=y, for x ∈M,

where y ∈ M is fixed, and the differential operator −∇gf · ∇g − q − ε∆g acts in the
x-variable. Recall that for u0 ∈ L1(M), the function

u(t, x) =

∫
M

Kε(x, y, t)u0(y)dVolg(y)

is the unique solution of (1.6) on (0,+∞)×M issued from u|t=0 = u0 (This uses the
choice of volume form dVolg in the embedding L1(M) ↪→ D′(M)).

Corollary 5.2. — Let M be a compact manifold without boundary. Suppose X=∇gf
where f is a C3 function defined on M. For any ε > 0, we consider Kε, the fundamental
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solution of (1.6) on (0,+∞)×M. Then, we have

lim
ε→0

ε logKε(x, y, t) = −d∇gf(x, y, t),

with

(5.5) d∇gf(x, y, t) := ρ(x, y, t) +
f(x)− f(y)

2
,

where ρ(x, y, t) is defined by (5.2) with V (x) = |∇gf|2g/4. Moreover, the limit is uni-
form on any compact set of M2 × (0,+∞).

In particular, for any δ > 0 and any compact subset I b (0,+∞), there exists
ε0 > 0 such that

(5.6) e−(d∇gf(x,y,t)+δ)/ε 6 Kε(x, y, t) 6 e
−(d∇gf(x,y,t)−δ)/ε

for any (x, y, t) ∈M2 × I and 0 < ε 6 ε0.

Note that the definition of d∇gf in (5.5) is not the same as that given in (1.24) in
the introduction. Equivalence between these two definitions is proved in Lemma A.2.

Note that although the kernel Hε(x, y, t) is symmetric (with respect to the Rie-
mannian volume measure dVolg) since −∆g + 1

ε2Vε is, this is no longer the case for
the kernel Kε(x, y, t) (since the operator in (1.6) is not symmetric in L2(M, dVolg)).
Similarly, ρ(x, y, t) is symmetric whereas d∇gf(x, y, t) is not.

Proof. — Setting uy(t, x) = Kε(x, y, t) and wy(t, x) = ef(x)/2εuy(t/ε, x), we have from
Equation (5.4) and Lemma 2.9 that wy(t, x) solves (2.12). Moreover, we have

wy(0, x) = ef(x)/2εuy(0, x) = ef(x)/2εδx=y = ef(y)/2εδx=y.

This implies that wy(t, x) = ef(y)/2εHε(x, y, t) where Hε(x, y, t) is defined in (5.3)
with Vε = |∇gf|2g/4 + ε (∆gf/2− q). Finally, we have proved that

Hε(x, y, εt) = ef(x)/2εe−f(y)/2εKε(x, y, t),

and hence

lim
ε→0

ε logKε(x, y, t) =
f(y)− f(x)

2
+ lim
ε→0

ε logHε(x, y, εt) =
f(y)− f(x)

2
− ρ(x, y, t),

after having applied (5.1). �

5.2. L1 observability estimates for positive solutions. — We first prove interme-
diate observability statements in L1. The following elementary abstract lemma shows
that concerning positive solutions, observability in a (possibly weighted) L1 norm is
equivalent to the “observability of the kernel”.

Proposition 5.3. — Let M be a compact Borel space (on which we denote by dx a
distinguished measure) and T > 0. Take K = K(x, y, t) ∈ C0(M ×M × (0, T ]) be a
nonnegative kernel. Assume further that

(t, y) 7−→ ‖K(·, y, t)‖L1(M) =

∫
M

K(x, y, t)dx
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is uniformly bounded for (t, y) ∈ (0, T ]×M. Define for t ∈ (0, T ] the operator

S(t) : Meas(M) −→ C0(M), [S(t)µ] (x) =

∫
M

K(x, y, t)dµ(y) = 〈µ,K(x, ·, t)〉,

where Meas(M) denotes the space of Radon measures on M. Let w1 ∈ L∞([0, T ]×ω)

and w2 ∈ L∞(M) be two nonnegative weight functions.
Then, for all T, s, C0 > 0, the following statements are equivalent
(1) Observability of positive measures:

(5.7) ‖w2 [S(s)µ]‖L1(M) 6 C0 ‖w1[S(·)µ]‖L1((0,T ]×ω)

for any µ ∈ Meas+(M) nonnegative Radon measure.
(2) Observability of positive L1 functions:

‖w2 [S(s)u0]‖L1(M) 6 C0 ‖w1 [S(·)u0]‖L1([0,T ]×ω)

for any u0 ∈ L1(M, dx) with nonnegative value.
(3) Observability of Dirac distributions:

‖w2 [S(s)δy]‖L1(M) 6 C0 ‖w1 [S(·)δy]‖L1([0,T ]×ω)

for any y ∈M.
(4) Observability of the kernel:

Is(y) 6 C0OT (y), for all y ∈M,

where

OT (y) =

∫ T

0

∫
ω

w1(t, y)K(x, y, t)dxdt, and Is(y) =

∫
M

w2(x)K(x, y, s)dx.

Note first that under the assumption of the theorem, both terms in (5.7) are well-
defined. Indeed, the Tonelli theorem (all functions/measures are nonnegative) implies

‖w1S(·)µ‖L1([0,T ]×ω) =

∫ T

0

∫
ω

w1(t, x)[S(t)µ](x)dxdt

=

∫ T

0

∫
ω

w1(t, x)

∫
M

K(x, y, t)dµ(y)dxdt

=

∫ T

0

∫
M

(∫
ω

w1(t, x)K(x, y, t)dx

)
dµ(y)dt

6 T ‖w1‖L∞([0,T ]×M) ‖µ‖TV sup
t∈[0,T ]

sup
y∈M

∫
ω

K(x, y, t)dx < +∞,

by assumption. Here ‖µ‖TV denotes the total variation of the measure µ. Note also
that u(t) = [S(t)(µ)] is a continuous nonnegative function for any nonnegative mea-
sure µ and t > 0. Remark that OT (y) is essentially the observation of solutions starting
from δy while Is(y) is the weighted norm of this solution at time s.
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Proof. — Remark first that

OT (y) =

∫ T

0

∫
ω

w1(t, y)K(x, y, t)dxdt =

∫ T

0

∫
ω

w1(t, y)〈δy,K(x, ·, t)〉dxdt

= ‖w1 [S(·)δy]‖L1([0,T ]×ω)

Is(y) =

∫
M

w2(x)K(x, y, s)dx =

∫
M

w2(x)〈δy,K(x, ·, s)〉dx = ‖w2 [S(s)δy]‖L1(M) ,

so that Item (3) ⇔ Item (4). Moreover, applying the Fubini Theorem, we get

‖w1[S(·)µ]‖L1([0,T ]×ω) =

∫ T

0

∫
x∈ω

∫
y∈M

w1(t, y)K(x, y, t)dµ(y) dx dt = 〈µ,OT 〉

‖w2 [S(s)µ]‖L1(M) =

∫
y∈M

∫
x∈M

w1(t, x)K(x, y, t)dµ(y) dx dt = 〈µ, Is〉.

Therefore, Item (1) is equivalent to 〈µ,C0OT − Is〉 > 0 for any µ ∈ Meas+(M) and
Item (2) to

∫
M
u0(y)(C0OT − Is)(y)dy > 0 for any u0 ∈ L1

+(M, dx). That Item (4) ⇔
Item (1) ⇔ Item (2) follows from the general fact that if f ∈ C0(M), one has

f > 0 on M ⇐⇒ 〈µ, f〉 > 0 for all µ ∈ Meas+(M)

⇐⇒
∫
M

u0(y)f(y)dy > 0 for all u0 ∈ L1
+(M, dx). �

We now give the L1 observability estimate for positive solutions to (1.6).

Proposition 5.4. — Assume that T > TGCC(M,∇gf, ω). Then, for any δ, s > 0, there
exists ε0 > 0 so that we have

(5.8) ‖u(s)‖L1(M) 6 e
δ/ε ‖u‖L1([0,T ]×ω) , for all ε ∈ (0, ε0),

for any u0 ∈ L1(M) with non-negative values and u solution of (1.6).

Remark that we only use the case s = T below. It is however remarkable that the
stronger result for s > 0 small holds as well. This is linked to the L1 setting here.
Note also that in L1, we have a “converse inequality”, which we state for the sake of
the comparison. Proposition 5.4 is proved afterward.

Lemma 5.5. — Assume ∂M = ∅. For all T > 0, there is CT > 0 such that for all
u0 ∈ L1(M;R+) and u the associated solution of (1.6), we have

(5.9) ‖u(t)‖L1(M) 6 CT ‖u(T )‖L1(M) , for all t ∈ [0, T ] and ε > 0.

In particular, this implies that one cannot hope to replace the loss eδ/ε by a
gain e−δ/ε in (5.8).

Proof of Lemma 5.5. — Assume first that u0 ∈W 2,1(M) with u0 > 0 a.e. on M. Then,
notice that u(t, x) > 0 for a.e. (t, x) ∈ (0, T )×M. Integrating (1.6) on M, we obtain
after an integration by parts (using that ∂M = ∅)

d

dt

∫
M

u−
∫
M

(divgX − q)u = 0.
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Since u > 0, this implies
d

dt
‖u(t, ·)‖L1 > γ ‖u(t, ·)‖L1 for all t > 0,

with γ = infM(divgX − q). The Grönwall inequality yields (5.9). The conclusion for
a general u0 ∈ L1 follows from a density argument. �

We now turn to the proof of the L1 observability estimate of Proposition 5.4, which
will use the following lemma.

Lemma 5.6. — Assume
(
M,∇gf, ω, (δ′, T )

)
satisfies (GCC) (see Definition 2.10) for

some δ′ > 0.Then, for all δ > 0 there is Cδ > 0 such that for all y ∈ M there
is an open set Uy ⊂ ω × (δ′, T ) with |Uy| > Cδ and for all (x, t) ∈ Uy, we have
d∇gf(x, y, t) 6 δ.

Proof of Lemma 5.6. — The assumption (GCC) implies that for any y0 ∈M, there is
ty0 ∈ (δ′, T ) and xy0 = φ−ty0 (y0) ∈ ω where (φt)t∈R is the flow of ∇gf. The trajectory
γ(s) = φs(xy0) satisfies γ̇(s) = ∇gf(s) with γ(0) = xy0 and γ(ty0) = y0 so that
Proposition A.4 implies d∇gf(xy0

, y0, ty0
) = 0. In particular, we obtain that for any

y0 ∈M, there is ty0
∈ (δ′, T ) and xy0

∈ ω such that d∇gf(xy0
, y0, ty0

) = 0.
By uniform continuity of d∇gf (on the compact set M2 × [δ′/2, T + δ′]) together

with the fact that ω × (δ′, T ) is open, there exists νy0 > 0 so that

Bg(xy0
, νy0

)× [ty0
− νy0

, ty0
+ νy0

] ⊂ ω × (δ′, T ),

and for any y ∈ Bg(y0, νy0
), x ∈ Bg(xy0

, νy0
)) and t ∈ [ty0

− νy0
, ty0

+ νy0
], we have

d∇gf(x, y, t) 6 δ. By compactness, we can cover M by M =
⋃
i∈I Bg(yi, νyi) where I

is finite. Then, for any y ∈M, there is i ∈ I such that y ∈ Bg(yi, νyi), and the set

Uy := Bg(xyi , νyi)× [tyi − νyi , tyi + νyi ]

satisfies the sought properties. �

As a consequence of this lemma together with Corollary 5.2 and Proposition 5.3,
we may now deduce a proof of the L1 observability estimate of Proposition 5.4.

Proof of Proposition 5.4. — Without any loss of generality, we can assume 0 < δ < s.
According to Proposition 5.3, it is enough to study the “observability of the kernel”.
Using Corollary 5.2, for any δ>0, there exists ε0 so that (5.6) holds for all (x, y)∈M2,
t ∈ [δ, δ−1], 0 < ε 6 ε0. Proposition 5.3 leads to compare

OT (y) :=

∫ T

0

∫
x∈ω

Kε(x, y, t) dx dt with Is(y) :=

∫
x∈M

Kε(x, y, s)dx.

From (5.6), the fact that Kε(x, y, t) > 0 for (x, y, t) ∈ M2 × (0,∞), and s > δ, we
deduce

OT (y) >
∫ T

δ′

∫
x∈ω

e−(d∇gf(x,y,t)+δ)/ε and Is(y) 6
∫
x∈M

e−(d∇gf(x,y,s)−δ)/ε,

J.É.P. — M., 2021, tome 8



On uniform observability of gradient flows in the vanishing viscosity limit 495

where δ′ > 0 is chosen sufficiently small so that
(
M,∇gf, ω, (δ′, T )

)
still satisfies

(GCC), which is possible since T > TGCC(M,∇gf, ω). Using Lemma 5.6 (where Uy
and Cδ are defined), we now have

(5.10) OT (y) >
∫

(x,t)∈Uy
e−(d∇gf(x,y,t)+δ)/εdtdx >

∫
(x,t)∈Uy

e−2δ/εdtdx > Cδe
−2δ/ε.

Also, for any s > δ, using that d∇gf > 0 (see Proposition A.4), we have

Is(y) 6 Volg(M)eδ/ε.

When combined with (5.10), we obtain OT (y) > Ce−3δ/εIs(y). By Proposition 5.3,
this gives (5.8) which concludes the proof of the proposition (up to changing 4δ

into δ). �

5.3. From L1 to L2 observability estimates for positive solutions. — In this sec-
tion, we conclude the proofs of Proposition 1.12 and Theorem 1.3. We first prove the
negative result of Proposition 1.12 (uniform observability of positive solutions does
not hold for T < TGCC(M,∇gf, ω), with an exponential lower bound of the cost).

Proof of Proposition 1.12. — Let us check the first part of the proposition (geometric
statement). Since (M,∇gf, ω, T ) does not satisfy (GCC), there is y0 ∈ M, so that
for all t ∈ [0, T ], φ−t(y0) /∈ ω. In particular, for any (t, x) ∈ [0, T ] × ω, we have
φt(x) 6= y0, which implies d∇gf(x, y0, t) > 0 by Proposition A.4. By compactness of
[0, T ]× ω, infx∈ω,t∈[0,T ] d∇gf(x, y0, t) > 0. Therefore, d([0,T ],ω) > 0 as expected.

For the second part, for any δ > 0, select y0 ∈M so that

inf
(t,x)∈[0,T ]×ω

d∇gf(x, y0, t) 6 d([0,T ],ω) + δ/8.

By uniform continuity of d∇gf(x, y0, t) defined on [0, 2T ×ω, we can also find η>0

so that inf(t,x)∈[0,T+η]×ω d∇gf(x, y0, t) > d([0,T ],ω) − δ/4 and d∇gf(x, y0, η) 6 δ/4

for x ∈ B(y0, η). We take as initial datum u0(x) = Kε(x, y0, η), yielding u(t, x) =

Kε(x, y0, t+ η) (see the definition of Kε in (5.4)) as the associated solution of (1.6).
We have u0 ∈ L2(M) together with a lower bound coming from (5.6) with a sufficiently
small δ (replaced by δ/4)

‖u0‖L2(M) > ‖u0‖L2(B(y0,η)) > C(η)e−δ/2ε.

Concerning the observation term, we deduce from the upper bound in (5.6) that for
ε small enough,∫ T

0

∫
ω

|u(t, x)|2dxdt =

∫ T

0

∫
ω

Kε(x, y0, t+ η)2dxdt

6 Volg(ω)T sup
x∈ω,t∈[η,T+η]

e−2(d∇gf(x,y0,t)−δ/4)/ε

6 Ce−2(d([0,T ],ω)−δ/2)/ε.
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Applying the observability inequality (1.23) to u thus implies that

C+
0 (T, ε)2e−2(d([0,T ],ω)−δ/4)/ε > C,

uniformly in ε ∈ (0, ε0], which concludes the proof of the proposition. �

To conclude the proof of Theorem 1.3, we need the following dissipation result
taken from Guerrero-Lebeau [GL07]. In that reference, it is written on an open subset
Ω ⊂ Rn with the flat metric; however, it can be checked that the result also applies to
the case of a Riemannian manifold (M, g) without boundary and with an additional
potential q.

Proposition 5.7 (Proposition 3 of [GL07], m = 1). — Assume that ∂M = ∅ and that
(M, X, ω, T ) satisfies (GCC). Then, there exist C,C0 > 0 such that

(5.11) ‖u(T )‖2L2(M) 6 C

(∫ T

0

∫
ω

|u|2 dt dx+ e−C0/ε ‖u(0)‖2L2(M)

)
for all ε ∈ (0, 1] and any (not necessarily positive) solution u to (1.3) (and a for-
tiori for all solutions u to (2.6)). The same statement holds true if ∂M 6= ∅ and
(M, X, ω, T ) satisfies (FC).

We shall also need the following lemma in the proof of Theorem 1.3.

Lemma 5.8. — For any δ′ > δ > 0, there exists ε0 > 0 so that

(5.12) ‖u(δ′)‖L2(M) 6 C ‖u(δ′)‖L∞(M) 6 Ce
δ/ε ‖u(δ)‖L1(M)

for any solution u to (2.6) and 0 < ε 6 ε0.

Proof. — Since the manifold is compact, we only need to prove the L∞ bound which
follows from the bound ‖Kε(·, ·, δ′ − δ)‖L∞(M×M) 6 Ceδ/ε on the kernel. This esti-
mate follows from Corollary 5.2 (e.g. (5.6) together with the fact that d∇gf > 0, see
Proposition A.4). �

Proof of Theorem 1.3. — Inequality (1.25) of Proposition 1.12 directly yields

T+
unif(ω) > TGCC(M,∇gf, ω).

Note that it was mostly proved in Guerrero-Lebeau [GL07, Th. 1] since one can check
that the counterexample they build is a nonnegative solution.

Now, we prove T+
unif(ω) 6 TGCC(M,∇gf, ω). For any δ > 0 (we will later need

2δ < C0 where C0 is the constant in (5.11)), and for T > TGCC(M,∇gf, ω) + 2δ, we
prove the observability inequality for positive solution

(5.13) ‖u(T )‖2L2(M) 6 C
∫ T

0

∫
ω

|u|2 dt dx.

The combination of (5.11) on the time interval (2δ, T ) together with (5.12) on the
time interval (δ, 2δ) implies

(5.14) ‖u(T )‖2L2(M) 6 C

(∫ T

2δ

∫
ω

u2 dt dx+ e−C0−δ/ε ‖u(δ)‖2L1(M)

)
.
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Now, applying (5.8) with λ > 0 such that λT = δ, we obtain

(5.15) ‖u(δ)‖L1(M) 6 e
δ/ε

∫ T

0

∫
ω

u dt dx.

Combining (5.14), (5.15) together with the Hölder inequality, we deduce

‖u(T )‖L2(M) 6
(
C + Ce−(C0−2δ)/ε

) ∫ T

0

∫
ω

u2 dt dx.

Choosing δ ∈ (0, C0/2) implies (5.13) uniformly for ε ∈ (0, ε0(δ)], and hence concludes
the proof of the theorem. �

5.4. From observability of positive solutions to a controllability statement

This section is devoted to the proof of the controllability result of Corollary 2.4
from the observability of positive solutions. It relies on the following lemma. The
result and its proof follow [LB20, Th. 4.1].

Lemma 5.9. — Let V be a closed convex set of L2(M) with 0 ∈ V and Ṽ ⊂ V so that
Ṽ ⊂ V− v for any v ∈ V. Assume moreover that there exists CV > 0 so that

(5.16) CV(T, ε)2

∫ T

0

∫
ω

|u(t)|2ds(x)dt > ‖u(T )‖2L2(M),

for all u0 ∈ V and u solution of (1.3).

Then, for any y0 ∈ L2(M) and 0 < ε 6 ε0, there exists a control

h ∈ L2([0, T ], L2(M))

with
‖h‖L2([0,T ],L2(M)) 6 CV(T, ε) ‖y0‖L2(M) ,

so that the solution of (2.1) satisfies (y(T ), u0)L2(M) > 0 for any u0 ∈ Ṽ.

For the proof of Corollary 2.4, we apply this lemma to the sets Ṽ = V = L2(M;R+).
Notice that Lemma 5.9 also contains one implication (namely Observability ⇒ Con-
trollability) in Corollary 2.3 when applied to Ṽ = V = L2(M;R).

Proof. — For any α > 0, we consider the functional Jα defined for any u0 ∈ V by

Jα(u0) =
1

2

∫ T

0

∫
ω

|u(t, x)|2 dt dx+
α

2
‖u0‖2L2(M) + (u(T ), y0)L2(M) ,

where u is the solution of (1.3). The functional Jα is continuous, convex and coer-
cive. Therefore, Jα admits a minimum u0,α ∈ V (see e.g. [ET74, Chap. II, Prop. 1.2]).
The minimality condition gives (see e.g. [ET74, Chap. II, Proposition 2.1]) for any
p0 ∈ L2(M) that can be written p0 = v0 − u0,α, with v0 ∈ V,

(5.17)
∫ T

0

∫
ω

p(t, x)uα(t, x) dt dx+ α (p0, u0,α)L2(M) + (p(T ), y0)L2(M) > 0,

where p (resp. uα) denotes the solution of (1.3) with p(0) = p0 (resp. u(0) = u0,α).
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Now, let yα be the solution of (2.1) with control function hα(t, x) = uα(T − t, x)

and initial datum yα(0) = y0. The duality equation (2.2) gives for any p0 ∈ L2(M)

initial datum for p solution of (1.3)∫ T

0

∫
ω

p(t, x)uα(t, x) dt dx = (p0, yα(T ))L2(M) − (p(T ), y0)L2(M) .

Combined with (5.17), this implies

(5.18) (p0, yα(T ))L2(M) + α (p0, u0,α)L2(M) > 0,

for every p0∈V−u0,α. This also holds for any p0∈ Ṽ since Ṽ⊂V−u0,α by assumption.
To obtain an estimate of the control, we apply (5.17) to p0 = 0 − u0,α. After an

application of the Cauchy-Schwarz inequality, we have∫ T

0

∫
ω

|uα(t, x)|2 dt dx+ α ‖u0,α‖2L2(M) 6 ‖uα(T )‖L2(M) ‖y0‖L2(M) .

The observability inequality (5.16) applies to u0,α ∈ V, so that∫ T

0

∫
ω

|uα(t, x)|2 dt dx+ α ‖u0,α‖2L2(M)

6 CV(T, ε)

(∫ T

0

∫
ω

|uα(t, x)|2 dt dx
)1/2

‖y0‖L2(M) .

We obtain successively∫ T

0

∫
ω

|uα(t, x)|2 dt dx 6 CV(T, ε)2 ‖y0‖2L2(M) ,(5.19)

α ‖u0,α‖2L2(M) 6 CV(T, ε)2 ‖y0‖2L2(M) .(5.20)

We obtain that 1ωuα is bounded in L2([0, T ]×M) uniformly in α > 0. Take a sequence
αn → 0 so that 1ωuαn ⇀ 1ωu in L2([0, T ] ×M). The associated solutions yαn with
control 1ωuαn(T − t, x) is therefore bounded in L∞([0, T ], L2(M)) and, again up to
a subsequence, converges weakly-∗ to a solution y of (2.1) with control h(t, x) =

1ωu(T − t, x) and initial datum y0. Moreover, up to a subsequence, we can impose
yαn(T ) ⇀ y(T ) in L2(M). Passing to the limit in (5.18) using (5.20), we finally obtain

(p0, y(T ))L2(M) > 0

for any p0 ∈ Ṽ. We finally get the expected estimate on h(t, x) = u(T − t, x) passing
to the limit in (5.19). �

We may now conclude the proof of Corollary 2.4 from Lemma 5.9.

Proof of Corollary 2.4. — We apply Lemma 5.9, with Ṽ = V = L2(M;R+). Note that
the Lemma applies because for any v ∈ L2(M;R+), L2(M;R+) ⊂ L2(M;R+) − v.
Indeed, any u ∈ L2(M;R+) can be written u = (u + v) − v ∈ L2(M;R+) − v since
u + v > 0. This gives a control h with the expected uniform bound and so that
(y(T ), u0)L2(M) > 0 for any u0 ∈ L2(M;R+). This implies y(T ) > 0. �

J.É.P. — M., 2021, tome 8



On uniform observability of gradient flows in the vanishing viscosity limit 499

Appendix. About the distances

In this appendix, (M, g) is a compact Riemannian manifold without boundary.

A.1. A general lemma. — We start with a general lemma.

Lemma A.1. — Let V ∈ W 1,∞(M) with nonnegative value. Then, for all x, y ∈ M2,
we have

1

2
inf
γ,t

{∫ t

0

|γ̇(s)|2g + V(γ(s))ds ; t > 0, γ ∈ Ut(x, y)

}
= inf

γ,t

{∫ t

0

|γ̇(s)|g
√
V(γ(s))ds ; t > 0, γ ∈ Ut(x, y)

}
= inf

γ

{∫ 1

0

|γ̇(s)|g
√
V(γ(s))ds ; γ ∈ U1(x, y)

}
,

where Ut(x, y) =
{
γ ∈W 1,∞([0, t];M) ; γ(0) = x, γ(t) = y

}
for t > 0.

This lemma is particularly useful for V = (V − E)+ in which case the (pseudo-)
distance defined is the Agmon distance at energy level E.

Proof. — We denote by d1, d2, d3 respectively the three (pseudo-)distances defined in
the statement of the lemma. Then, we notice that the last two quantities are invariant
by reparametrization, so that d2 = d3 after a change of variable in the integral. Then,
the inequality ab 6 1

2 (a2 + b2) directly yields d2 6 d1. Let us now prove the converse
inequality, namely d3 > d1. For ε > 0 there exist δ > 0 and a path γ : [0, 1] → M

such that ∫ 1

0

|γ̇(s)|g
√
V(γ(s)) + δ ds 6 d3 + ε.

We can further assume |γ̇(s)|g > 0 with the same estimate (indeed, defining a new
parametrization ζ by γ(t) = ζ(φ(t)) with φ(t) =

∫ t
0
|γ̇(s)|gds even yields a Lipschitz

reparametrization with constant positive speed, see e.g. [ABB20, Proof of Lem. 3.16]).
Using an approximation argument, we can further assume that γ is smooth up to
replacing ε by 2ε. We now define the following reparametrization γ̃(s) = γ(ϕ(s)),
where ϕ solves

ϕ̇(s) =

√
V(γ(ϕ(s))) + δ

|γ̇(ϕ(s))|g
>

√
δ

max[0,1] |γ̇|g
> 0, ϕ(0) = 0,

so that | ˙̃γ(s)|g =
√
V(γ̃(s)) + δ for any s ∈ [0, ϕ−1(1)]. In particular,

| ˙̃γ(s)|g
√

V(γ̃(s)) + δ =
1

2

(
| ˙̃γ(s)|2g + V (γ̃(s)) + δ

)
and

1

2

∫ ϕ−1(1)

0

(
| ˙̃γ(s)|2g + V(γ̃(s)) + δ

)
ds =

∫ ϕ−1(1)

0

| ˙̃γ(s)|g
√

V(γ̃(s)) + δds

=

∫ 1

0

|γ̇(s)|g
√
V(γ(s)) + δds 6 d3 + 2ε,

which gives d1 6 d3 + 2ε, and concludes the proof of the lemma. �
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A.2. Equivalence between the two definitions of d∇gf. — In this section, we prove
equivalence between the two definitions of d∇gf, respectively given in (1.24) in the
introduction and in (5.5). We further give an equivalent quantity in terms of the
Riemannian distance and the flow φt of ∇gf. The function f is assumed to be C3

throughout the section.
We recall that ρ is defined in (5.2) with V = |∇gf|2g/4, that is to say

(A.1) ρ(x, y, t) :=
1

4
inf

{∫ t

0

|γ̇(s)|2g + |∇gf(γ(s))|2gds ; γ ∈ Ut(x, y)

}
,

with Ut(x, y) =
{
γ ∈W 1,∞([0, t];M) ; γ(0) = x, γ(t) = y

}
. Note that it is proved

in [LY86, App.] that ρ is continuous on M2 × (0,+∞) and, for all t > 0 fixed, Lip-
schitz continuous as a function of (x, y) ∈ M2. These quantities are related to the
Agmon distance but in finite time, see Section A.3 below. Note that the quantity ρ is
symmetric, ρ(x, y, t) = ρ(y, x, t), and remains unchanged under the change of f by −f.
This is not the case for d∇gf.

Lemma A.2. — The function d∇gf defined as

(A.2) d∇gf(x, y, t) := ρ(x, y, t) +
f(x)− f(y)

2

is continuous on M2 × (0,+∞) and, for all t > 0 fixed, Lipschitz continuous as a
function of (x, y) ∈M2. Moreover, we have

d∇gf(x, y, t) =
1

4
inf

{∫ t

0

|γ̇(s) +∇gf(γ(s))|2g ds ; γ ∈ Ut(x, y)

}
,(A.3)

=
1

4
inf

{∫ t

0

|γ̇(s)−∇gf(γ(s))|2g ds ; γ ∈ Ut(x, y)

}
,(A.4)

=
1

4
inf

{∫ t

0

|γ̇(s)|2gs ds ; γ ∈W 1,∞([0, t];M),(A.5)

γ(0) = x, γ(t) = φ−t(y)

}
,

where Ut(x, y) =
{
γ ∈W 1,∞([0, t];M) ; γ(0) = x, γ(t) = y

}
, and gs is the time vary-

ing metric defined by |Y |gs = |Dφs(Y )|g.
In particular, for any T > 0, there exists some constant CT > 0 so that

C−1
T d(x, φ−t(y)) 6 d∇gf(x, y, t) 6 CT d(x, φ−t(y)), for all t ∈ [0, T ],

where d denotes the Riemannian distance (associated to g).

Proof. — The continuity property directly follows from that of ρ proved in [LY86,
App.]. To prove (A.3), we remark that for any path γ so that γ(0) = y, γ(t) = x,
we have

f(x)− f(y) =

∫ t

0

d

ds
(f ◦ γ)(t)dt =

∫ t

0

∇gf(γ(t)) · γ̇(t)dt.
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In particular, from the definition of d∇gf in (A.2) and ρ in (A.1), we can rewrite
d∇gf(x, y, t) as

d∇gf(x, y, t) =
1

4
inf

{∫ t

0

|γ̇(s)|2 + |∇gf(γ(s))|2 + 2∇gf(γ(s)) · γ̇(s)ds ; γ ∈ Ut(x, y)

}
=

1

4
inf

{∫ t

0

|γ̇(s) +∇gf(γ(s))|2 ds ; γ ∈ Ut(x, y)

}
.

The statement (A.4) is obtained thanks to the change of path γ̃(s) = γ(t− s).
Now, we compute d∇gf(x, φt(y), t) according to formula (A.4). To this aim, let

γ ∈W 1,∞([0, t];M) so that γ(0) = x, γ(t) = φt(y). Let γ̃(s) = φ−s(γ(s)) so that

γ̇(s) = ∇gf(γ(s)) +Dφs( ˙̃γ(s)).

In particular,
|γ̇(s)−∇gf(γ(s))|2g =

∣∣Dφs( ˙̃γ(s))
∣∣2
g

=
∣∣ ˙̃γ(s)

∣∣2
gs
.

It gives (A.5) since any path γ ∈ W 1,∞([0, t];M) so that γ(0) = x, γ(t) = y can be
written γ(s) = φs(γ̃(s)) with γ̃(0) = x, γ̃(t) = φ−t(y), and conversely. �

A.3. Further links between the different distances. — In this section, we relate
the above quantities ρ(x, y, t), d∇gf(x, y, t) with the Agmon distance to the bottom
energy (see 1.12 for V = |∇gf(x)|2g/4 and E0 = minM V = 0), that is to say

(A.6) dA(x, y) =
1

2
inf

{∫ 1

0

|∇gf(γ(s))|g|γ̇(s)|g ds ; γ ∈ U1(x, y)

}
,

with U1(x, y) =
{
γ ∈W 1,∞([0, 1];M) ; γ(0) = x, γ(1) = y

}
and the associated quan-

tity (compare with the definition of d∇gf in terms of ρ in (A.2))

(A.7) W (x, y) := dA(x, y) +
f(x)− f(y)

2
.

The results of this section are not explicitly used in the proofs of the main part of the
paper; however we believe these links are interesting and enlightening. Indeed, they
relate the quantity dA(x, y) appearing in all general bounds of Section 3 together
with the quantities ρ(x, y, t), d∇gf(x, y, t) appearing in results of Section 5 concerning
positive solutions.

Lemma A.3. — For all (x, y) ∈M2, we have

dA(x, y) = inf
t>0

ρ(x, y, t),(A.8)

W (x, y) = inf
t>0

d∇gf(x, y, t).(A.9)

Moreover, if ∇gf(y) = 0, then we have dA(x, y) = lim
t→+∞

ρ(x, y, t).

Proof. — Equality in (A.8) is a consequence of Lemma A.1 applied to V = |∇gf|2g.
Then, (A.9) is a direct consequence of the expression of W and d∇gf in terms of dA
and ρ in (A.7), (A.2), together with (A.8).
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Finally, if ∇gf(y) = 0, then the function t 7→ ρ(x, y, t) is non-increasing. Indeed,
taking t1 6 t2, from a path γ1 : [0, t1]→M such that γ1(0) = x and γ1(t1) = y, we can
construct the path γ2 : [0, t2] → M by γ2(s) = γ1(s) for s ∈ [0, t1] and γ2(s) = y for
s ∈ [t1, t2]. This yields a path inW 1,∞([0, t2];M) if γ1 ∈W 1,∞([0, t1];M), and thus the
set of admissible paths on [0, t2] is larger than the set of admissible paths on [0, t1].
Since the contribution

∫ t2
t1
|γ̇2(s)|2 + |∇gγ2(s)|2gds = 0 we deduce that ρ(x, y, t2) 6

ρ(x, y, t1). This proves that the inf is actually a lim
t→+∞

in this case. �

Note that related properties are proved in the appendix of [HS85]. For instance,
[HS85, Lem.A2.2] with our notations can be loosely stated as follows: If W (x, y) = 0,
then every minimizing geodesic of dA is a generalized integral curve of ∇gf.

Finally, we state a last result that explains that d∇gf(x, y, t) measures how far x
is the final state of a path of the vector field at time t and starting at y. Part of this
result is contained in the last statement of Lemma A.2; we here give a different proof,
which, we believe, is interesting in itself.

Proposition A.4. — With d∇gf(x, y, t) defined in (5.5), we have for all (x, y, t) ∈
M2 × (0,+∞),

(1) d∇gf(x, y, t) > 0;
(2) d∇gf(x, y, t) = 0 if and only if there exists a trajectory of γ̇(s) = ∇gf(γ(s)) with

γ(0) = x, γ(t) = y, that is if and only if y = φt(x).
In particular, (M,∇gf, ω, T ) satisfies (GCC) if and only if for any x ∈M, there exist
y ∈ ω and t ∈ (0, T ) so that d∇gf(x, y, t) = 0.

Recall that the flow (φt)t∈R is defined in (2.14) and the Geometric Control Condi-
tion (GCC) is defined in Definition 2.10.

Proof. — Statement 1 follows from the definition of d∇gf in (A.4). Let us now consider
Statement (2). Assume first that there exists a trajectory of γ̇(s) = ∇gf(γ(s)) with
γ(0) = x and γ(t) = y. Then, by definition of the infimum in (A.4), this yields
d∇gf(x, y, t) 6 0 and hence d∇gf(x, y, t) = 0. Conversely, assume d∇gf(x, y, t) = 0.
Take a minimizing sequence in (A.4), that is to say that γn ∈ W 1,∞([0, t];M) such
that γn(0) = x, γn(t) = y and γ̇n −∇gf(γn) = Rn (bounded continuous with values
in the tangent bundle of M) with

(A.10)
∫ t

0

|Rn(s)|2g ds −→ 0.

Since∇gf is bounded onM, the sequence
∫ t

0
|γ̇n(s)|2gds is then uniformly bounded in R.

As a consequence, the sequence of paths (γn)n∈N is equicontinuous. From Ascoli’s
theorem, we may extract a subsequence (which we do not relabel) (γn)n∈N which
converges strongly for the topology C0([0, t];M) to a limit γ ∈ C0([0, t];M). The latter
thus has the same and endpoints γ(0) = x and γ(t) = y. It is solution of γ̇ = ∇gf(γ) in
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the distributional sense according to (A.10). Bootstrapping in the differential equation
implies γ ∈W 1,∞([0, 1];M) and γ is a strong solution to γ̇ = ∇gf(γ). This concludes
the proof of Statement 2.

According to Lemma 2.11 Item (4), that (M, X, ω, T ) satisfies (GCC) is equivalent
to the fact that for any x ∈ M, there exist t ∈ (0, T ) such that y := φt(x) ∈ ω. As a
consequence of Item (2), this is equivalent to having d∇gf(x, y, t) = 0. �

Note that an analogue statement for the function W in (A.9) is proved in [HS85,
Lem.A2.2], and could also be deduced from Proposition A.4.
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