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ON AN EXISTENCE THEORY FOR A FLUID-BEAM
PROBLEM ENCOMPASSING POSSIBLE CONTACTS

BY JEAN-JEROME Casanova, CELINE GRANDMONT

& Marriiev HiLLairer

ABsTrRACT . — In this paper we consider a coupled system of pdes modeling the interaction
between a two-dimensional incompressible viscous fluid and a one-dimensional elastic beam
located on the upper part of the fluid domain boundary. We design a functional framework to
define weak solutions in case of contact between the elastic beam and the bottom of the fluid
cavity. We then prove that such solutions exist globally in time regardless a possible contact
by approximating the beam equation by a damped beam and letting this additional viscosity
vanish.

Reésumit (Existence de solution autorisant d’éventuels contacts pour un probléme d’interaction
fluide-structure)

Dans cet article, nous considérons un systéme couplé d’équations aux dérivées partielles
modélisant 'interaction entre un fluide visqueux incompressible bi-dimensionnel et une poutre
élastique mono-dimensionnelle située sur le bord supérieur du domaine fluide. Apreés avoir
construit un cadre fonctionnel de solutions faibles autorisant les configurations ou la poutre est
en contact avec le fond de la cavité fluide, I’existence de solutions faibles, globale en temps, est
démontrée, que des contacts se produisent ou non. La preuve repose sur l’analyse asymptotique
d’un systéme couplé parabolique-parabolique pour lequel un terme de viscosité est ajouté a la
structure, et dont on sait qu’il n’autorise pas les contacts. La limite de viscosité évanescente
est alors solution de la formulation faible introduite et autorisant le contact.
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1. INTRODUCTION

In this paper we consider a fluid-structure system coupling a 2D homogeneous
viscous incompressible fluid with a 1D elastic structure. When the elastic structure
is at rest, the fluid domain is of rectangular type and the structure is located on the

MATHEMATICAL SUBJECT CLASSIFICATION (2020). 76D05, 35D30, 35Q35, 74F10, 76D03.
Keyworps. — Incompressible Navier—Stokes equations, fluid-structure interactions, weak solutions,
contact issue.
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934 J.-J. Casanova, C. Granpmont & M. Hivrarer

upper part of the fluid domain boundary. The fluid is described by the Navier—Stokes
equations set in an unknown domain depending on the structure displacement that
is assumed to be only transverse and that satisfies a beam equation. Since the fluid
is viscous it sticks to the boundaries so that the fluid and the structure velocities are
equal at the interface. Finally, the fluid applies a surface force on the structure. Such
coupled nonlinear models can be viewed as toy models to describe the blood flow
through large arteries.

The existence of a solution to the Cauchy problem associated with this kind of
systems has been intensively studied in the last years. In [3, 11, 12] existence and
uniqueness of a strong solution locally in time is proved in case additional viscosity is
added to the structure equation (so that the structure displacement satisfies a damped
Euler—Bernoulli equation). When no viscosity is added and in case the dynamics of the
structure displacement is governed by a membrane equation, existence and uniqueness
of a local strong solution is obtained in [8]. The beam case with no additional viscosity
is investigated in [2], where existence of strong solution locally in time (or for small
data) is proved but with a gap between the regularity of the initial conditions and
the propagated regularity of the structure displacement. Existence of weak solutions
is obtained in [4] for 3D-2D coupling where the structure behaviour is described by a
viscous plate equation and in [6, 14] in the non-viscous case. Let us also mention weak
existence results on fluid—shell models [10, 15]. Note that these results are obtained as
long as the structure does not touch the bottom of the fluid cavity (or, in case of shells,
as long as there is no self contact). More recently, in 7], the authors establish existence
of a global-in-time strong solution in the 2D-1D case when the structure is governed
by a damped Euler-Bernoulli equation. This global-in-time result is a consequence
of a no contact one: it is proved therein that, for any 7" > 0, the structure does not
touch the bottom of the cavity. The proof of this latter result relies strongly on the
additional viscosity in the beam equation and on the control of the curvature of the
structure.

The question we address here is: can we prove existence of a global weak solution
regardless of a possible contact (for an undamped beam)? We aim to take advantage
of the existence of global strong solution for a viscous structure and let the additional
viscosity tend to zero. Our scheme is inspired by the one developed in [16] where the
global existence of a weak solution is derived for a 2D fluid—solid coupled problem.
However, in [16] the solids are viewed as inclusions whose viscosities are infinite. The
fluid—solid problem is then approximated by a completely fluid problem with different
viscosities in the inclusions and in the fluid. The viscosity of the inclusions is then sent
to infinity. In contrast, in our case the parabolic-hyperbolic fluid—structure system
is approximated by a parabolic—parabolic one by adding viscosity to the structure.
We prove that, up to the extraction of a subsequence, the sequence of solutions of
the damped system converges towards a weak solution (in a sense to be defined) of
the undamped system. The main difficulties are to define functional and variational
frameworks compatible with a possible contact and to prove the strong compactness
of the velocities, also in case of a possible contact. Indeed the proof developed for

JIEP. — M., 2021, tome 8



ON AN EXISTENCE THEORY FOR A FLUID-BEAM PROBLEM ENCOMPASSING POSSIBLE CONTACTS ()%5

instance in [6], where the vanishing viscosity limit is also studied, strongly relies on
the fact that the elastic structure does not touch the bottom of the fluid cavity.

1.1. Tue rLuD-sTRUCTURE MODEL. — We introduce now the damped coupled fluid—
structure system. We refer to this system as (FS),, where the subscript 7 is used to
track the dependency with respect to the “viscosity” of the structure. The configura-
tion “at rest” of the fluid-structure system is assumed to be of the form (0, L) x (0,1)
where the elastic structure occupies the part of the boundary (0,L) x {1}. The de-
formed fluid set is denoted by .7}, (4). It depends on the structure vertical deformation
h, =1+ n,, where 7, denotes the elastic vertical displacement. Thus, the deformed
fluid configuration reads:
(1.1) Fn, ) = {(2,y) ER?|0<a<L,0<y<h(t2)}
The deformed elastic configuration is denoted by

oy = {(z,y) € R?* |2z € (0,L),y= hy(t,x)}.
The fluid velocity u. and the fluid pressure p., satisfy the 2-D incompressible Navier—
Stokes equations in the fluid domain:

(1.2) pf(Osty + (uy - V)uy) —divo(u,,py) =0 in Fp,_ ),
' divu, =0 in ), (),

where o(u.,p) denotes the fluid stress tensor given by the Newton law:
o(uy,py) = p(Vuy, + (vu"/)T) — pyla.
In the previous equations py > 0 and p > 0 are respectively the fluid density and

viscosity. The structure displacement 7, satisfies a damped Euler-Bernoulli beam
equation:

(1.3) Psattn'y - 6azx7]’y - ’Yaxzatn'y + 048377’7 = ¢(u'yap'yv 7]'*/) on (07 L)'

The constant p; > 0 denotes the structure density and «, 3,y are non negative pa-
rameters. Through this paper we assume that o > 0. This restriction guarantees
sufficient regularity of the structure deformation in the compactness argument. The
reader shall note for instance that we need H!'*% N W% regularity in space for the
deformation in Lemma 13.

The source term ¢ in the right-hand side of the beam equation arises from the
action—reaction principle between the fluid and the structure. It represents the force
applied by the fluid on the structure. It can be defined by the variational identity

L
(1.4) /0 ¢(u7,py,ny)-w(m,hv(t,x))egdx:/F U(UWpV)nA,~<p|phw(t)egdljh7(t),

hy (£)
for any regular test function ¢ and where n, denotes the unit exterior normal to the
deformed interface:

RV ENCRBE 1)

Since the fluid is viscous the following kinematic condition holds true at the interface

(1.5) Uy (t, 2, hy(t, ) = Oy (t,z)es on (0,L) x (0,T).

J.E.P. — M., 2021, tome 8



936 J.-J. Casanova, C. Granpmont & M. Hivrarer

We complement the fluid and structure boundary conditions with
u, =0on (0,L) x {0},
1.6
(16) 1y and u. are L-periodic with respect to x.

Note that the kinematic condition (1.5) together with the incompressibility constraint
of the fluid velocity imply that, by taking into account the boundary conditions (1.6),

(1.7) /OL Oy (t, ) dz = 0.

This condition states that the volume of the fluid cavity is preserved. It implies that
the pressure p. is uniquely determined in contrast with classical fluid-solid interaction
problems. Finally the fluid-structure system is completed with the following initial

conditions
8) 1v(0) =713 and 9;n,(0) =} in (0, L),
' u,(0) = u(,)Y in ﬁhg with hg =1+ 7}2.
Remark 1. — As already noted in [4], due to the incompressibility constraint and the

only transverse displacement of the beam
((Vu,y)T . n7)2 =0, on T'y_ (1)
It implies that the force applied by the fluid on the beam can be defined as follows

L
/ (b(uwpw 777) - p(x, hv(t>x)>62 de = / (Vuv _p“/12>n"/ TP, ) €2 drhw(t)'
0

Py (o)

For the same reason, a Korn equality also holds true

[ Ve e E=z [ vl
Fhoy () Fhoy(t)

The fluid-structure system (1.2)—(1.8) is denoted by (FS), and (FS)q corresponds
to the system with v = 0 for which we are going to prove the existence of a global weak
solution. The case where v > 0 is the one considered in [7]. It is proved therein that
the structure does not touch the bottom of the fluid cavity, namely ming,¢ (1 +
ny(t,x)) > 0, for all ¢, implying the existence of a unique global strong solution. In
the case v = 0, it is proved in [6, 14] that a weak solution exists as long as the
structure does not touch the bottom of the fluid cavity. In this paper, we investigate
the vanishing viscosity limit (i.e., v — 0) and prove the convergence, up to the
extraction of a subsequence, of the sequence of strong solutions (w.,7,) solutions
of (FS), defined on any time interval (0,7) towards (u,n) a weak solution (to be
properly defined later on) of (FS)y. Note that at the limit we loose the no contact
property and have only: minge(o,z) (1 + n(t,2)) > 0, for all £. One key issue is thus to
define an appropriate framework in case of contact. Moreover, and as it is standard for
this kind of fluid—structure coupled problem, another important difficulty comes from
the obtention of strong compactness of the approximate velocities. Such a property is
mandatory in order to pass to the limit in the convective terms.

JIEP. — M., 2021, tome 8
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To conclude this introductory part, we point out that we do not address here
the uniqueness of solutions. One reason is the lack of contact dynamics that should
be added in case of contact. In particular, for our definition of weak solutions, the
structure velocity in contact points is not defined, moreover, the associated test-
functions are required to have support far from the contact points (see Remark 22).
Hence, it is likely that our definition of weak solution below allows various rebounds
of the elastic structure in case of contact (and consequently various solutions), one (or
several) of these solutions coming from the construction process we consider herein.
This issue is now well-identified in the fluid-solid framework [17].

The rest of the paper splits into two sections. In the next section, we introduce and
analyze a functional setting, we give the definition of weak solutions and state the
main result. The last section is devoted to the proof of the existence result following
standard steps: construction of a sequence of approximate solutions, derivation of
compactness properties, passage to the limit. In the appendix, detailed proof of a
technical lemma is given.

2. PROBLEM SETTING

In this section we first recall the energy estimates satisfied by any regular enough
solution of the coupled problem. We then construct functional spaces and introduce
a notion of weak solution relying on these energy estimates and that are compatible
with a contact. Finally, we provide the rigorous statement of our main result and
some technical lemma necessary to the following analysis.

2.1. Exercy estivates. — Let 4 > 0 and assume that (u,7,) is a classical solution
to (FS),. Let then multiply the first equation of Navier-Stokes system (1.2) by the
fluid velocity u, and integrate over .7, (4). Let also multiply the beam equation (1.3)
with the structure velocity 9,7, and integrate over (0, L). By adding these two contri-
butions, after integration by parts in space—and by taking into account the coupling
conditions (definition (1.4) of ¢ and the kinematic condition (1.5)), the boundary con-
ditions (1.6) together with the incompressibility constraint and Remark 1—we obtain

1d L
e (e [ lwarae s [Clom o)
2 dt F0o o
L L
+ﬁ/ |al.m(t,m)|2dm+a/ |amm(t,x)|2dx>
0 0

L
—|—fy/ |8m777(t,x)\2d3:—|—u/ IV, (t, )2 dz = 0.
0 Z

h~ (1)
Note that we have used here that the set ﬁ"hv(t) moves with the velocity field u.,
thanks to the equality of velocities at the interface (1.5), that implies

1d

/ (Oruy(t, ) + (uy(t,x) - V)uy(t, z)) - uy(t,z)de = - — lu, (t,z)|* dz.
Fha(t) 2dt Fhoy(t)

J.E.P. — M., 2021, tome 8



938 J.-J. Casanova, C. Granpmont & M. Hivrarer

For ¢ > 0, integrating (2.1) over (0,¢) leads to

1 L
(2.2) 2<pf/ |u7(t,w)|2dw+ps/ |0, (¢, )| dx
0

Fhy(t)

L L
+ 5 |8zn7(t7m)\2dm+a/ |8mnw(t,x)2dx>

+’y// |8tx77,ysx|2d:vds+,u// (s,2)]* d ds
Fhay(s)
1
103 |u2|2dw+ps/ |n;|2dx+ﬁ/ |3xn2|2dz+a/ Otz ).
P 0 0 0

h

As a consequence, we observe that, if (u3,7},79) are such that the right-hand side
of (2.2) is uniformly bounded with respect to the viscosity parameter v > 0, we have
in particular

7 is uniformly bounded in L*°(0, T} Hﬁ2(0, L) nWh=(0,T; Lg((), L)),

where the subscript f denotes spaces of periodic functions with respect to z. Thus
the associated interface displacements (7,),>0 are uniformly bounded at least in
¢°([0,T]; 6, (0, L)) thanks to the compact embedding

(2.3) L(0,T; HZ(0, L)) NWh*(0,T; L3 (0, L)) — *17*(10,T];6,"***/*(0, L)),

that holds for 3/4 < s < 1. Then, there exists M > 0 depending on the initial data
and independent of  such that

(2.4) 0<1+n,(t,x) <M, V(t,z)e0,T]x[0,L], Vy=0

Finally, to define our functional setting, we rely below on the assumption that the
initial data (u®,n',n%) associated to (FS)y do satisfy the assumption that the right-
hand side of (2.2) is finite (for v = 0). So that we have at-hand an upper bound M > 0
for the structure deformation h = 1 + n for any physically reasonable solution. The
above computations show also that, up to a good choice of regularized initial data
the same functional framework can be used to describe the solutions to the damped
system (FS), (for v > 0).

2.2, Fu~crioNar spaces. — We design now a functional framework compatible with
possible contact between the structure and the bottom of the fluid cavity. The param-
eter M > 0 is fixed in the whole construction.

Given a non-negative function h € ‘Kﬁl (0, L) such that 0 < h < M we recall that
we denote:

Fn={(z,y) ER*|0<x < L,0<y<h(x)}

In case h vanishes two crucial difficulties appear. First, the set %, does not re-
main connected (see Figure 1, the domain below the graph splits into a connected
component between the red dots and a connected component outside the red dots).
In particular, if A is the deformation of a structure associated with a solution (u,p,n)

JIEP. — M., 2021, tome 8
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to (FS)p, we may expect that the condition (1.7) must be satisfied on each time-
dependent connected component of the subset {x € (0,L) | h(z) > 0} and not only
globally on (0, L). Secondly, the boundaries of .%;, contain at least one “cusp” so that
it does not satisfy the cone property (see [1]). As a consequence, one must be careful
in order to define a trace operator on H(.%}).

Ficure 1. Example of a set with two “cusps”.

To overcome the second difficulty, we adapt the construction done in the context of
fluid—solid problems in [16]. Namely, we extend the fluid velocity fields—by taking into
account their trace on the structure—on a time-independent domain whose regularity
does not suffer from possible contacts.

First, let us make precise some specific notations for the various domains used
in the analysis. We introduce a virtual container Q = (0,L) x (—=1,2M). This set
contains a part of the substrate ((z,y) € (0, L) x (=1,0)), the fluid film ((x,y) € %)
and a virtual medium containing an extension of the structure (what remains of ).
Correspondingly, we also introduce three kinds of subsets of 2. Given a continuous
positive function h we define first a subgraph domain (containing the substrate and
the fluid film)

T ={(z,y) eR*|0<a < L, -1 <y<h(z)},
then the epigraph domain (corresponding to the virtual elastic medium)
I ={(z,y) ER?*|0<x <L, h(z) <y < 2M}.

Finally, for the analysis, we need also more general sets. Given a,b : (0, L) — R such
that a < b, we also define the set

Q= {(z,y) eR*|0 <z < L, a(z) <y < bx)}.

We emphasize that there is some overlap between these notations. In particular,
0, Fy,, F,, S, can be seen as particular cases of sets of the form b,

For the study of non cylindrical time-dependent problems, we also need notations
for space-time domains. We use the convention that notations for time-independent
domains extend to the time-dependent case by adding a hat. More precisely,

J.E.P.— M., 2021, tome 8



940 J.-J. Casanova, C. Granpmont & M. Hivrarer

we denote Q = (0,7T) x € and
Fn= U {}x Fu, Z, = U {t} xF;,

h(t)
t€(0,T) t€(0,T)

Fh= U {t}xFw. Qb= U {#x Qz((tt))’
te(0,T) te(0,T)

where h,a,b: (0,T) x (0,L) — R are such that h(¢t,z) > 0 and a(t, z) < b(t, z) for all
(t,z) € (0,T) x (0, L). We will also denote by n;, the vector

= )

With these notations for the different sets, we introduce functional spaces to which
our weak solutions will belong. The definition of these spaces is based on the following
construction. Let us first introduce an extension operator:

Derinirion 2. — Assume that h € (0, L) with 0 < h < M. Let v € Lg(?h) and
de L?(O, L), we define the extension operator by

d62, in ,S”h,
V=14, in %,
0, in Q0.
Remark 3. — By construction, this extension operator defines a vector field v €

L?(Q) In the previous definition the used symbol ¥ involves only v while the con-
struction depends also on d. In what follows, this choice is justified as we consider
functions v and d satisfying the relation v|,—; = dez, where v|,_; denotes the func-
tion  — v(z, h(z)) on (0, L).

More precisely, when there is no contact this extension operator enjoys the following
properties:

Levva 4. — Assume that h € Wﬁl’oo(O,L) with 0 < h(x) < M for x € [0,L] and let
s € (0,1).
1) If s >1/2 and v € H; (%) is divergence free with v,—o = 0, and v|,—;, = des
i ly ly
with d € H{(0,L), we have that

v e H(Q), divo =0 in Q, v-e; =0 in .

(2) If 0 < s < 1/2 and v € H{(F}) is divergence free with v - ey =0 ony = 0,
and vj,—p, -y, = (0,d)T - ny, on (0,L) with d € H;(0,L), we have that:

v e H(Q), divo =0 in Q, v-e; =0 in S

(3) In both cases 0 < s < 1/2 and s > 1/2 the extension operator is a bounded
linear mapping of its arguments whose norm can be bounded with respect to M only:

9] = () < C(M)(”dHH;(O}L) + vl s (z))-

JIEP. — M., 2021, tome 8
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Proof. We note that in both cases v is by construction piecewisely divergence free
and belongs to H® (in the sets .7, %, QY ). Consequently, in case (2) the extension
is straightforwardly in H*(2). Only the continuity of normal traces is required to
yield a global divergence free vector field. In Case (1) we require continuity of the full
trace to obtain an H*() vector field. O

Remark 5

(i) In the case min,¢po,z) h(2) > 0, we may extend vector fields defined on %, with
a similar bar-operator. Then, similar results for this extension operator hold true.

(ii) In Lemma 4 and in what follows, in order to avoid to denote the trace by the
classical symbol 7, which is reserved here to the added viscosity on the structure, we
denote by v|,—j the trace of v defined as v|,—p,(v) = v(z, h(x)). We note that when
h(z) > 0 for all z € [0, L], the associated linear trace operator is well-defined from
H}(Fn) into Hul/2(07 L). In the case where h(z) > 0 for all « € [0, L] it is well-defined

from H} (%, ) into Hﬁl/2 (0,L). Tt is easy to verify that

(2.5) 191g=ll 1720 1 < Cly2= 0,0y 57

Consequently, for a I/Vﬁl’oo(O7 L)-function h satisfying 0 < h(xz) < M, for « € [0, L]
and for s € (0,1), we set

(26) K°hl={ve H;(Q)|divo=0inQ,v=0inQ%,, v-e; =0in %},
2.7)  X°*[h] = {(w,d) € K°[h] x (H{*(0,L) N L 5(0, L)) | w2)(0,L)x{m} = d},

L3,(0,L) = {d € L3(0,L) | f,"d =0}.

When s = 0 we denote K[h] = K°[h] and X[h] = X°[h].

Under the assumptions of Lemma 4 we have that © € K*[h] and (v,d) € X®[h] in
both cases s € (0,1/2) and s € (1/2,1). We emphasize that, for any v € K[h], the
divergence free condition implies that the trace on (0,L) x {M} of v = v - n has a
sense in H[l/z (0, L). Similarly v|,—j, - 4 also makes sense in Htfl/2 (0, L). Following
the construction of the extension operator above, one expects this trace to represent
the structure velocity.

Correspondingly, we introduce smooth variants of these functional spaces ¢ [h]
and Z[h] defined by

(28) A ={we?XQ)|divw=0inQ w=0in7(Q,),
w-e; =0in ¥ ()},
(2.9)  Z'[h] = {(w,d) € Z[h] x €(0,L) | wajo,L)yx{m} = d}-

Here, we used“in ¥(&)” as a shortcut for the statement “in a neighbourhood of the
open set 0. Notations with calligraphic fonts will be involved in the definition of
weak solutions as spaces for test-functions.

J.E.P.— M., 2021, tome 8



942 J.-J. Casanova, C. Granpmont & M. Hivrarer

Before defining the weak solutions, we now verify that the previous coupled spaces
encode the fluid—structure nature of the problem and behave correctly (from an ana-
lytical standpoint). Once again, h stands for a non-negative W1-function satisfying
0 < h < M. The space X[h] is endowed with the scalar product

(2.10) (), (w0, d)) xpy = py /Q w-wtp, / nd,

and we endow the spaces X*[h] with a Hilbert structure associated with the norms
l(w, d)l| x+n) = lwllz: (o) + 1 22 0,1)-

For s = 0 this Hilbert-norm does not correspond to the scalar product as defined in
(2.10) but the topologies are equivalent since p; and p, are both positive.

In order to prove the fluid—structure property, we show in the following lemma
that, in the “virtual medium”; the velocity-fields in X[h] coincide with a structure
velocity.

Levva 6. — Let v € K[h]. There exists d € L (0, L) such that v = deg in .

Proof. — By definition we have v = (0,v2) " in .#,. Moreover, the divergence condi-
tion divw = 0yvg = 0 in 7, implies that va(x,y) = ve(x) in 7. Since v € Lg(Q)
and 0 < h(x) < M,Vz € [0, L], we have v € L3(0, L). O

Given a divergence free w € Lg () it is classical that we can construct a stream
function ¥ € Hnl(Q) such that w = V+W¥. We show in the following lemma some
additional properties satisfied by the stream function of an extended-field in K[h]:

LEvMvA 7. Let (w,d) € X[h] and set I = {xz € [0,L] | h(x) > 0}. There exists
U e Hﬁ1 () such that w = VXU which furthermore satisfies

~ U(z,y) = b(x) in S with b € H{(0,L) N Hy(I) and d = 9,b;

~ U =01inQ°%,;

W =0in I x (—1,2M).

Proof. — We note that ¥ is defined up to an additive constant. However, in Q°; we
have w = 0, so that we fix this constant by choosing ¥ = 0 in Q°;. Then, due to
the previous lemma W wiany = des and the identity w = des holds in .#},. Thus
9,9 = d in &, and ¥(z,y) = b(x) in ./, where b € Hy (0, L) satisfies 0,0 = d.
Remark that the L-periodicity of b is ensured by fOL d(s)ds = 0.

Concerning the last point of the lemma, we emphasize that, since ¥ € H & (),
its trace is well-defined on vertical lines x = cst. Consequently, the value of ¥ on
I°x(—1,2M) is well-defined, whatever the topological properties of I¢ are. Now, given
a € I¢ (assuming I is non-empty), we have h(a) = 0 (by definition of 7¢). The identity
U(z,y) = b(x) in A, with b € H} (0, L), implies that ¥ € €}(-#3,). In particular, ¥ is
equal to a constant b(a) on {a} x (—1,2M). Moreover, the function ¥ is equal to 0
on QY. Finally, applying by a trace argument that ¥ € H'/?({a} x (—1,2M)) and
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using for example the following definition of the H'/?-norm

H/2({a}x(—1,2M)) {a}x(—1,2M) ’
U |V (a,z) — V(a,y)]|

+ / 2
{a}x(=1,2M) J{a}x(=1,2M) |z -y

)

we get that the trace of ¥ cannot “jump” in y = 0. Therefore, we have b(a) = 0 and
U =0on {a} x (—1,2M). O

Reproducing the arguments of the proof with first-order derivatives, we note that,
in case (w,d) € X[h]N(K'[h] x H}(0, L)), the stream function ¥-—that we construct
in the above lemma—satisfies moreover:

—be HZ(I)

- VUe H?(Q) with V¥ =0 on I¢ x (=1,2M).

We conclude this preliminary analysis of the space X[h] by showing that we have
density of smooth vector fields in X [h]. This is made precise in the following lemma:

Lemva 8. — The embedding X[h] N (€7°(2) x 6.°(0, L)) C X[h] is dense.

Proof. The difficulty of this proof is to deal with the case where h has zeros. The
main idea is to work with the stream function of the extended vector field. If we
had h(z) > 0, for all x € [0, L], a contraction in y and a standard truncation and
regularization argument on the stream function can be used. In the case where h has
zeros, one first cuts off the zeros of h and then takes advantage of the better regularity
of W on the structure. A detailed proof is given in the appendix. O

Correspondingly to the previous remark, we also have density of
X[h] 0 (6= (€) x 67°(0, L))
in X[h] N (K'[h] x H}(0, L)) endowed with the K'[h] x H}(0, L) topology.
2.3. WEAK SOLUTIONS AND MAIN RESULT. — In this section we introduce first our weak
formulation of (FS),.
We assume that the initial conditions (u®, 1%, n') satisfy
(2.11) 7° € H(0,L) with min (1+17°) >0,
z€[0,L]
(2.12) (u’n') € L{(Fpo) x L{ (0, L),
(2.13)  divu’ =0 in Fpo,
(2.14) u®-n®=0o0n (0,L) x {0} and u°(-, ho(-)) - n° = (0,7*(-))T - n® on (0, L).

We can then define M > 0 by (2.4) and construct the associated 2. We have the
following definition for a weak solution to (F'S),:

Derinition 9. — Let (u®, 7%, nt) satisfying (2.11)—(2.13) and v > 0. We say that a
pair (u.,n,) is a weak solution to (FS), if it satisfies the following items:

(i) (wy,ny) € L>(0,T; Li(Q)) X (L>=(0,T; HE (0, L))nWh(0,T; LF(0, L))) with
(T, (t),0imy(t)) € X[hy(t)] for ae. t € (0,T), Vu, € LZ(ﬁ,;),
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(ii) the kinematic condition
uy(t,z,14+n,(t,x)) = Oy (t,x)es  on (0,T) x (0,L),

(iii) For any (w,,d,) € (5) x 6°([0,T] x [0, Z]) such that (w,(t),d,(t)) €
Z'[hy(t)] for all t € [0,T] we have for a.e. t € (0,T)

t
(2.15) Pf/ uy (1) w4 () — py / / Uy - pwy + (Uy - V)wy - uy
Fhoy () 0 ST, (s

L t L t
oo [Comwd - [ [amod,ruf [ Vuive,
0 0 0 0 Z

hay (s)

t L t L t L
+ ﬁ/ / 590777816% + Oé/ / aan’yawwd'y + ’7/ / aa:tn'yawd'y
0 JO 0 JO 0 JO
0

L
= Pf/ u” - w,(0) JrIDS/ T}ldv(o),
gho 0

where u., = u’\/'jh-\,.

The regularity statements in the first item of the definition comes from the energy
estimate (2.2) while the weak formulation (2.15) is obtained classically by multiplying
the fluid equation (1.2) with w., and the beam equation (1.3) with d-, and performing
formal integration by parts. As usual for this type of fluid—structure problem, the
test functions depend on the solution and thus on the parameter v, adding further
nonlinearity to the system.

We recall that, from [4], [6], there exists a weak solution for v > 0 as long as the
beam does not touch the bottom of the fluid cavity. If v > 0 again and the initial
data are smooth enough, it is also proved in [7] that there exists a unique global in
time strong solution such that mingcpo, 1] hy (t,z) > 0 for all ¢ > 0. The main result of
this paper is stated in the following theorem

Turorem 10. Let pf >0, ps >0, u>0, 820 and o > 0. Suppose that T > 0
and that the initial conditions (u®,n°,n") satisfy (2.11)—(2.14).

Then (FS)o has a weak solution (uw,n) on (0,T). This solution satisfies furthermore
for a.e. t € (0,T)

1 L
216) 5(or [ lutoPiztp. [ onopa
Agh(t) 0

L L t
e / Bun(t, )2 dz + o / |amn<t,x>|2dx) o / Vs, z)[? de ds
0 0 0 JTFn(s)

1 L L L
<5 (Pf / [u[* dz + ps / In'|” dz + B/ |0, Az + a/ [T dw)-
2 F1o 0 0 0
Before detailing the proof of this result, we shall comment on the choice of test

functions and the relations with a strong formulation of (F'S),, in particular in the
case where contacts occur. Since we focus on the construction of weak solutions,
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we stick here to a short description of formal arguments. Before contact (i.e., as long
as mingeo,z) o (t,7) > @ for some @ > 0), we claim that our definition coincides
with the definition of [4] and that the solutions constructed in [7] for smooth data
match our definition also. In particular in this case we can choose test functions such
that (w-(t),d,(t)) € X*[h,(t)]. Before contact, we recover (1.2)-(1.3) from the weak
formulation using a classical argument. First, we may take as test functions the vector
fields w,, € €° (ﬁ) with d = 0 and we recover (1.2) with a zero mean pressure p by
adapting an argument of de Rham. Assuming that (u., p4) is sufficiently smooth—to
be able to define o(u.,p)n, on I', —we can also recover the beam equation (1.3)
with the following construction that enables to extend structure test functions in the
fluid domain

Derivition 11, Let A > 0 and ¢ € €°°(R) such that 1}; o) < ¢ < 1j1/2,00)- Given
de ngo(o, L), we define

ZA(d)(z,y) = V- (b(2)C(y/N) V¥ (z,y) € Q,
where b € Hy (0, L) N L 4(0, L) satisfies 9,0 = d.

We note that the above construction is well-defined since d is chosen to be mean
free. We do not include the dependence on ¢ in the name of our operator since it
will be a given fixed function throughout the paper. The present lifting operator is a
variant of the one introduced in [4]. It enjoys the following straightforward properties:

Levva 120 — Let A >0 and h € Wul’oo(O,L) satisfying A < h(z) < M,Yz €0, L].

(1) Zx is a linear continuous mapping from H;(0,L) N LF(0, L) into K*[h] for
arbitrary s € [0,1].

(2) Zx maps €°(0,L) N L§,0(07L) into H'[h).

Consequently, before contact, for any arbitrary structure test function

dy € €5°(0,L) N L (0, L)
we may consider B
w, = Ad,] € 6°(),

so that (w,,d,) is an admissible test function in our weak formulation. Classical
integration by parts argument then enables to recover the structure equation (1.3)
multiplied by d,. We note that, in this way, we recover (1.3) up to a constant (indeed
the test function d, is mean free), but this constant mode corresponds to the choice of
the constant normalizing the pressure in order to match the global volume preserving
constraint (1.7).

When contact occurs, we recover a similar set of equations, assuming, once again,
that the solution is sufficiently regular. Let us consider for instance a simplified con-
figuration such that, on some time interval (Tp, T} ) there exist ¢! -functions (a;, , a;) :
(Ty, T1) — R? (k € N) such that

{(t.x) € (To, T1) x (0,L) | hy(t,2) >0} = U U {t} x (a5 (1), a (¢))-

keNte(To,Th)

J.E.P.— M., 2021, tome 8



946 J.-J. Casanova, C. Granpmont & M. Hivrarer

In that case, we can reproduce similar arguments developed in the no contact case to
recover the Navier—Stokes equations and the structure equations in each connected
component of the fluid domain. More precisely, we introduce

T = {(t,z,y) € (To,Ty) x (0,L) x (0, M) | aj, (t) <z < aj (t), 0 <y < hy(t,z)},
Ty = {(t,z) € (To,T1) x (0,L) | ai (t) < z < af ()}.

First, by using that u, is divergence free on % we obtain

aif (1)
/ aﬂh =0.
aj (t)

Second, by taking as a fluid test function a velocity field w, with compact support
in @, we construct a pressure py , on g“\k so that (1.2) holds true. We recall that, at
this point, py , is defined up to a constant. The global pressure p, is then constructed
by concatenating all the (py)r to yield a pressure on %W (that is defined up to
a number of constants related to the number of parameters k). Third, we consider
a mean free structure test function d., € €>° (fk) Since d, has compact support in
the open set where h, > 0, h, is bounded from below by some aj > 0 on fk So,
instead of choosing the mean free anti-derivative b, of the structure test function d,
in the definition of %, , we choose the one that vanishes outside the support of d.. In
that way, we construct a test function w., such that (w-,d,) is adapted to our weak
formulation. So, we obtain (1.3) on fk up to a constant which is afterward fixed by a
suitable choice of the pressure on é‘\k Note that the structure equation is recovered on
each component fk and not on the whole interval (0, L) and that the pressure is again
uniquely defined but that there are more constants to fix than in the no contact case.
To end up this remark, we emphasize that when mingepo ) hy(t,2) > 0,Vt € [0,T],
the test functions can be chosen in X [h(t)]. Moreover if min,epo 1) b~ (t,2) > 0 the
elastic test functions can be chosen independent of the solution and thus independent
of the regularization parameter 7 (see [4]). It is not the case when a contact occurs
since, as we saw in the previous construction, we require d, = 0 in a neighbourhood
of the contact points.

We end this part by giving a road map of our proof of Theorem 10. To obtain
a solution of the variational problem for v = 0 we consider the approximate fluid—
structure system (F'S), with a viscosity v > 0. From [8, Th.1] this fluid-structure
system (F'S),, completed with regularized initial conditions (ug,ng,n}y), admits a
unique strong solution (w.,p,,7,) such that mingcp,z) by (¢, 2) > 0. It ensures that
the existence time interval does not depend on . Moreover, this solution satisfies
the energy equality (2.2), and thus one can extract converging subsequences. We may
then consider one cluster point of this sequence and show that this is a weak solution
to (F'S)g. One key point here is that strong compactness of the approximate velocity
fields is needed to pass to the limit in the convective nonlinear terms. The classical
Aubin—Lions lemma does not apply directly because of the time-dependency of fluid
domains and of the divergence free constraint. Many different strategies may be used
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to handle this difficulty [5, 6, 10, 13]. Here we follow the line of [16] where the existence
of weak solutions for a fluid—solid problem beyond contact is proved. We first obtain
compactness of a projection of the fluid and structure velocities. Roughly speaking the
idea is to obtain compactness on fixed domains independent of time and of . So, we
define an interface satisfying 0 < h < h.,,, which is regular enough and “close” to h.
for all v small enough and we prove compactness of the projections of the velocity
fields on the coupled space associated to h. We recover the compactness of the velocity
fields by proving some continuity properties of the projection operators with respect
to h. In particular we prove that X*®[h] is a good approximation space of X*[h] in H*®
for some s > 0 whenever h is close to h. This part of the proof is purely related to the
definition of the spaces X[h]. Consequently we detail the arguments as preliminaries
in the next subsection. We emphasize again that, since one may loose the no contact
property at the limit, this study on the compactness of approximate velocity fields
requires specific constructions. Once compactness is obtained, we pass finally to the
limit in the weak formulation. Again, as contact may occur in the limit problem,
we cannot follow [4] to construct a dense family of test functions independent of v to
pass to the limit.

2.4. ON THE h-DEPENDENCIES OF THE sPAcES X ®[h]. — In this section, we analyze the
continuity properties of the sets X *[h] with respect to the parameter h. To start with,
we remark that, given h € ‘KﬁO(O, L) satisfying 0 < h < M the space X*[h] is a closed
subspace of

X*®:=Hj(Q) x H*(0,L).

We can then construct the projector P*[h] : X* — X*[h]. We analyze in this section
the continuity properties of these projectors with respect to the function h. Our main
result is the following lemma:

Lemma 13. — Fiz & such that 0 < k < 1/2. Let h and h belong to HuH""(O,L) N
W,">°(0,L) with 0 < h < h < M and set

(2.17) Hh||H;+"(O,L) + ”hHWul“”(O,L) + ||EHH;+~(O7L) + HEHW;"N(O’L) <A
Let s € [0,k/2) and (w,n) € X*°[h] enjoying the further property
1 —
(2.18) w5 € Hi(F,).
Then, the following estimate holds true:
(2.19) 1B (8] (w0, 7) — (a0, )+ < Callh ~ Al = o.0)) o0l gy

where Cy(x) — 0.
z—0

Proof. — The idea is to construct (v,b) € X?[h] such that

(2.20) (v, d) — (wﬂ?)“H;(Q)ngS(mL) < Ca(llh— hHWnI’OQ(O,L)) ||"UHH;(&7;)'
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The inequality (2.19) then follows from the minimality property of the projection.
The proof is divided in five steps. The two first ones are devoted to the construction
of (v,d). The latter ones concern the derivation of (2.20).

Step 1. Geometrical preliminaries. Before going to the construction of a candidate
(v,d) we define and analyze a change of variables x that maps .%#, on .%, . For
(z,y) € £, we set
h(z)+1
h(z)+1
Clearly, x realizes a one-to-one mapping between %,  and .%, . Thanks to the regu-
larity assumptions on h and h, we remark that m € Wﬁl’oo(O7 L)yn HﬁH”(O, L)—since
both spaces are algebras—and that x € W;OO(Q)

For the definition of v, we shall transform w into a vector field wX satisfying wX -

x(x,y) = (z,m(x)(y+1)—1), where m(z) =

e; = 0 on .%,. To preserve simultaneously that wX is divergence free, one multiplies,
in a standard way, the vector field by the cofactor of Vy. So, we now analyze the
multiplier properties of Cof(Vx)T. First, we have

0
Cof(Vx)T = m(x) )eLO"Q nH(Q).
007 = (L st 1) ) € EE@ 0 E5 (@)
Then, straightforward computations yield
(2.21) [m = w0,y < Callh =kl 1)
so that,
(2.22) |Cof(Vx)T — H2HL§Q(Q) <Callh— QHW;,OO(&L),

with C4 a constant depending only on the upper A defined by (2.17). Finally we
prove H?-estimates. To this end, we interpolate between L? and H"*. Estimate (2.22)
implies

|Cof (VX)) — HQHL%(Q) < Callh— QHW;‘”(O’L)'
Then, we remark that

”m - lHHnl*N(o_’L) < CA7
and that, for any given f, a and b regular functions defined on (0, L), there holds
1/2
(2.23) 1 lag @ny < lla =Bl o, 1F g 0.9
for 0 < o < 1. Consequently, we obtain also
T
|Cof(Vx)" — ]12||Hg(9) <Cyallm— 1||Hnl+ﬁ-,(07L).
Using interpolation between the L? and the H" estimates finally leads to

(2.24) |Cof (Vx)T — < Cy|lh— b))

HZHH;(Q) W, (0,L)

for 0 <o <&k.
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Step 2. Construction of (v, d). Let consider (w,7n) € X°®[h] enjoying the further
property

(2.25) w5 € Hy(Fy).

As mentioned previously, to define (v,d) we first construct an intermediate vector

field wX obtained by the change of variables x from w. However we note that x does
not map €2 into 2 so that we must at first extend w for y > 2M. Namely, we set

. w(z,y), if (z,y) € Q,
w(z,y) =9 . _
n(z)ey, ify>2M.
This extension preserves the divergence free constraint. We next define
wX = Cof (V) Tw o .

The Cof(Vx)T factor ensures that wX is also divergence free. Next we define (v, d)
as

(2.26) v:{

X _ X in O2M
wX —wy, ez, in 05T,

_ d=7'7—w§l —o-
0, in Q% Y

The first step is to verify that (v,d) € X*[h], Vs < k/2. First, by taking into account
assumption (2.25), since w coincides with w in .%, ", we have that w € Hﬁl (#, ). Thus
since the change of variables x maps .%,” onto .%,, the above analysis of the regularity
of x and of Cof(Vx)" implies that wX € H{(7, ), Vs < k (see [9, Prop.B.1] ).
Moreover, by the change of variables, the boundary y = 0 is mapped to y = m — 1
which is lower than h and strictly greater that —1. Hence, the trace of wox ony =0
is well-defined and belongs to Hﬁ1 / 2(O, L). But by definition we have

X o ~ ~
'LUQ |y:0 = _awm w1 © le:() + w9 © X\y:O7

where d,m € Hﬁ“(O,L). Classical multiplier arguments thus imply that w%“ly:() €
HZ*(0, L) for any s < /2 and that

(2.27) 5y oll 20,09 < Calll = Bl =0 2y 10l
where C4(z) = 0. Furthermore, we have by construction that
rT—r
wX = 7;]62 in 5@.

Consequently, thanks to the regularity of 77 and the one obtained on w) ly=0> We deduce
that v € H*(.#,) C H*(%,). Finally (v,d) € H*(Q) x H?(0, L), for s < x/2. Let
us now check the divergence free constraint and the fluid—structure velocity matching.
We have by construction that

divwX =0 in €.
Thus v satisfies

dive =0 in Q2M and dive = 0 in Q7.
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Since, by construction(v-esz)|,—o = 0, we obtain divv = 0 in Q. Moreover, divwX = 0
on €9, with wX =0 on y = —1. By integrating this divergence constraint we obtain

L
X
w =0.
2 y:O
/O |

As a consequence, since 1) € LfﬁO(O, L), we obtain d € Lg’O(O, L).
We now check the remaining compatibility conditions of X*[h]. For y > h, we have
v = (1) — wy,_y)€2 so that v satisfies

the condition

'u-ele, on&@, U2|y:M:d-

This ends the proof that (v,d) € X*[h].

Step 3. Splitting of || (w, ) — (v, d)|| x=. Let first remark that

N —wy g€, in QM
v—wX =

: X
N—d=wy, _,-
i 00 ly=0
—wX, in Q7

Consequently we have

l(w, i) — (v, d)lxe < [l(w, ) — (W, d)]x- + [[w — vlly )

<
< [lw — wX| a0 + w3 ,—ollmze0,1)

+ ||w%<|y:062”H§'(QgM) + ||wX||H§(le)~
Recalling (2.23) we obtain the bound
ng\y:oeﬂ\Hg(QgM) < V2M ||w§<|y:oe2||Hg(0,L) < V2M ||w;<|y:OHH§S(O,L)'

Moreover, as w = 0 in Q% , we remark that an estimate on ||wX — w|| g+ () implies
an estimate on [[wX||grs(qo ). Finally (2.19) is implied by the following estimate

(2.28)  Jlw = wXlmy ) + lwg—olluze0.0) < Calll =Py ) w1z,
Thus we have to prove that w — wX = w — Cof (V) "w oy and w%<|y:0 —0zm wy 0

X|y=0 + W2 © X|y=0 can be estimated with respect to the difference h — h. This is the
aim of the two next steps respectively.

Step 4. Estimating w — wX. — We estimate the difference w — wX by considering
successively each of the subdomains of Q: .7, Q, Z),, Q° ;.

FEstimates in %,. — In %, there holds w = ne,. By replacing in the definition, we
have also wX = 7e; in ¥}, and since h > h we infer w — wX =0 in .7,.
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Fstimates in Qg . The identity wX = nes still holds in QZ C , which leads to

h(z)
wiey) — w o) = wle) - wlehe) = [ 0wl
y
We obtain then
L prh(z) h(zx) 2
|[wX — w32 n :/ / / Oyw(z,z)dz| dydz
{D o ny 1y

L rh(z) h(z)
</ / Hh—EHLgC(o,L)/ |0, w(z, 2)|* dz dy dx
0 Jn h(z)

() h(z

2 2
< b — ﬁ”LgC(o,L) ||Vw||L§(g;)~

Moreover,

HwX - w”H;/Q(Qg) < HwX”H;/Q(Qz) + le|H§/2(Qﬁ) < ||wXHH;/2(Qg) + ||wHHé(§;)

We have wX = fes = w),—j,. Hence, recalling the trace continuity estimate (2.5),
we obtain
X
¥ g2 0 1y < Ca 0l 3 5
We conclude that

lwX — w||H§/2(Q’i) < Ca ”w”Hi(g{)’

and by interpolation with the previous L2-estimate, the following estimate in H* holds
true

(2:29) [w* — wlgrs ) < Callh = Al 11/;1112’?"’(0@) [0l (2,7
FEstimates in #;,. — Consider the following splitting:
(2.30) wX —w = Cof (V)" (wox —w) + (Cof (Vx) " — Iy)w.

Thanks to [9, Prop. B.1] we obtain, for s < s’ < x (see (2.24) for the estimate of the
H#'-norm of the cofactor matrix):

[(Cof(VX) T = Ta)wll s 7,) < Ca HCOA(TX)T =)l g1 o 10y

< Callh =Bl 1ol -
Here we use the continuity of the multiplication H* (%, ) x H'(Z, ) — H*(Z).
The continuity constant of this mapping may depend on h. But, by a standard change
of variables argument, we see that it depends increasingly on ||h ||Wu1,00(0, 1y only. This
constant thus depends on A only. We now take care of the first term of the right-hand
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side of (2.30). Let first note that we can bound the L?-norm of w o x — w as follows:

[ it - wep Py

L rh(z)
- / / (e, m(z) (g + 1) — 1) — w(e, y)? dy da

L ph(e)] pme)(y+1)—1 2
S// / Oyw(z, z)dz

dy dx
h(x) m(z)(y+1)—1
/ / )(y+1)/ |6yw(:1c7z)|2 dzdydx
y

(M +1) [m = 1|2z 0,2) Ikl 0,0y [ Ve0l[75

(7))
The previous estimate leads to
1/2
lwox — w3,y < VT + DM i = 112 1) 0l 7

1/2
< Ot b= Bl ) 10l by )

Finally, since ||Cof(Vx)T||L§o(5;LL) < Cy, we deduce

1/2
(231)  ICof(Vx) (wox —w)lzg(z) < Callh =l ) 10l )

Next we remark that w o xy — w is bounded in Hﬁ (F), )- Indeed w € H%(ﬁ;) and
thus w € Hi(ﬂz) It implies also that wox € Hﬁ (&) since x belongs to Wﬁl’m(Q)

and maps .7, in .%, . Consequently, we have
lwox —wllayz,) < lwoxlay s, + [wlaiz) < Callwlgyz)-

Next, thanks to the fact that ||C0f(Vx)T||HF(%) < Cy (see (2.24)), we have, since
0<s<k

ICot (Vx) T (w o X — )| r;(7,)

<Ca ||COf(VX)THHg'(Q) ||w|\H;(y;)
(2.32) _ L

Ca ||w||H;(9‘;)-
By interpolating (2.31) and (2.32), we obtain

HCOf(VX)T(w = w)”Hg(ﬁJQ) < Ca(l[h - hHWul’w(O,L)) Hw”H;(gz;y
To summarize the estimates in .%;, we have proved that

(2.33) [JwX — 'wHHg(fJ@) < Ca(llh - ﬁ”WulW(o,L)) ||'w||H§(gzh*)-

FEstimatesin Q°,. — The function w is equal to zero and we have to estimate only wX.
As previously we obtain a first bound in L? involving OA(”h_ﬁHWﬁL‘”(O,L))) and then
we prove that wX is bounded in some H® and we conclude using interpolation. For
the L2-norm we have

lwX|[zz(00 ) < H(COva)T||L§°(Q‘11) lwoxlzz0 )
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and

w0 x[aqe0 ) = / / Xz, )| dy da
// z,y) L da
m(z)
m(z)—1
1+M/ / /8wxzdz
m(z)—1
1+M// /|5‘wxz|2dzdyd:17

(1+M
< ” 1||L°° 0,L) ”w”Hl(y )

dy dx

Hence, using the estimates above with (2.21)—(2.22), we conclude
lwXlzz0,) < Callh =Rl o,1) 10y (7 )-
Moreover, for any 0 < o < k, we have
¥ g 0 ) < €1 ICOIVX) g 0 Xlaryan
S Callwlgy s,
and using interpolation up to choose o € (s, k)
lwX a0,y < Calllh = Bllw<o,0)) 10l a7,
To summarize we have proved that
(2.34) I — w00 ,) < Callll = hlly o o,0)) 1wl ey 2,7
Finally, combining (2.29)—(2.33)—(2.34), we obtain the expected estimate
(2.35) Jw — 'wXHHg(Q) < Ca(llh - ﬁ”wulv“(o,L)) ||wHH§(yhf)-

Step 5. Estimating wé“yzo. — First, we recall that

w3 y—o = —Oem(-Jwi(-,m(-) — 1) + wa (-, m(-) = 1).

953

This term is first estimated in L2, then in H?° for 0 < o < /2, and the final estimate

is obtained by interpolation. First, let us estimate the L?-norm

L
| = Bum(ywr (m() = Dlagor) < 10eml3 o,z / fwi (2, m(x) — D de

L m(z)—1
<Ca [ m@ - [ Bl dyds
0 0

< Cylm-— 1||L;;C(0,L) ||w||H§(gh*)
< Callh = hllLge o,z HU’HH;(?;)'

A similar estimate can be computed for ||ws (-, m(:) — 1)||L2 (0, SO that, we obtain

||w2 ly= 0||L2(0 I < Cy Hh h”wl 22 (0,L) ||w||H1(J )

J.E.P. — M., 2021, tome 8



954 J.-J. Casanova, C. Granpmont & M. Hivrarer

For 0 < 0 < k/2 we obtain, similarly to (2.27)
Hw%‘lyonH?g(O’L) < Ca(llh - QHW;*“’(O,L)) ”wHHé(?{)‘
Using interpolation we finally obtain (up to choose s < o < k/2) that
||w%(|y=0||H§S(O,L) < Calllh = EHW;"X’(O,L)) ||w\|H;(y;)v

which concludes the proof of (2.28) and the proof of the lemma is completed. ]

3. Proor or Tueorem 10

This section is devoted to the proof of existence of weak solutions of (FS)q. So,
we fix T > 0 and initial data (u% n° n') satisfying (2.11)—(2.14). We recall that the
strategy is to approximate this problem by a sequence of viscous problems (FS),,
~v > 0, for which existence results are available. The proof is divided into three steps.
First, we analyze the Cauchy theory of (FS)., when v > 0 and prove that the sequence
of solutions converges, up to a subsequence, when v — 0. We show in particular
that possible weak limits are candidates to be weak solutions up to obtaining strong
compactness of approximate velocities in L?. As explained in the introduction, this
strong compactness property is the cornerstone of the analysis. Our proof builds
on the projection/approximation argument provided by [16] in the fluid-solid case.
In our fluid—elastic setting, it requires to build a uniform bound by below h of the
sequence of approximate structure deformations (in order to construct a fluid domain
independent of v on which the Navier—-Stokes equations are satisfied by the sequence
of approximate solutions to be able to apply Aubin-Lions Lemma for projections of
the velocities). The second step of the proof is devoted to the construction of h and the
analysis of its properties. We then complete the proof of the L?-strong compactness.
This last step relies in particular on the continuity result obtained in subsection 2.4.

3.1. Step 1. CONSTRUCTION OF A CANDIDATE WEAK-SOLUTION. — Let us recall the strong
existence result on (0,7) stated in [7, Th. 1]. Given v > 0 and initial data (ug, 7]27 77}7)
satisfying
(3.1) (n9,n}) € H{(0,L) x H}(0,L),
(3.2) ul € H;(ﬁhg), div ug =01in Fpo,
(3.3) ug(:mO) =0, and ug(x,hg(x)) = ni(;v)eg, Ve [0, L],
L
(3.4) zrer[%?L} hg(x) > 0 and /0 n}/(m) dx =0,

the system (FS), admits a unique strong solution defined on (0,7"). This solution
satisfies moreover mingepo 1) hy (t, 2) > 0 for all ¢ € [0, T7].

In order to apply this result we now explain the construction of a sequence of
regular initial data (u9,n9,7]),>0 approximating (u? 7% n'). First we construct
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1y € H}(0,L) by a standard convolution of 7° with a regularizing kernel. Since 7"
satisfies (2.11), this sequence is uniformly bounded in H7(0, L) and satisfies

773 — 770’ in H]jz(OvL)a
In9 — TIOH%;)([O,L]) < 7||ﬂ0||H§(o,L) < COy.

Since ming¢jo, 7] hO(z) > 0, there exists A > 0 verifying mingeo, ) h9{ (£) > A >0 for v
small enough. We next construct 7, € H,(0,L) N L3 4(0, L). Since n* satisfies (2.12),
this second sequence enjoys the following properties:

77% — 7717 in L?(OaL)a
||71$||L§’0(0,L) < ||771\|L§(0,L) <C.

We now build the approximate initial velocity fields ug. A key difficulty here is to
match the continuity of velocity field at the structure interface together with pre-
serving the divergence free condition, taking into account that the approximation is
defined on an approximate domain depending on 7. To handle this difficulty, we first
define the extension of 7' to the whole domain using the operator % as defined in
Definition 11. Next we consider u9 — %, (n') which is in K[h°] and satisfies moreover
w0 — Z\(n') = 0 in .0 UQ%,. Then we introduce the vertical contraction operator
denoted by

v— v, (z,y) = (ov1(z,0y),v2(x,0y)) Vo >0.

We emphasize that this contraction operator preserves the divergence free constraint.
By choosing o., = 14+2C7/\ (with the constant C' above), we have (u0—%) (1')o, =0
in Spo U Q%,, and (ud — Z\(n')),, converges to ud — %x(n') in Lf(ﬂ) when v — 0.
Moreover, (u® — % (n')),., belongs to L§ (Fho), is divergence free and satisfies (u® —
Zr(n'))e, -m =0 on I'po and (0, L) x {0}. Thus we approximate thanks to standard
arguments (by truncation and regularization of the stream function for instance) this
function by a divergence free function (u® — %5 (n')), in H ;(fhg) vanishing in a
neighbourhood of I'yo and (0, L) x {0}. We may then set

ul = (er«%’,\(ﬁ}y)) 7

0
hy

Straightforward computations show that u? satisfies (3.2)(3.3). Moreover, remarking
that the operator #, is continuous from Lio(O, L) into Lf(ﬂ) we have as vy goes to
Z€ero

uig — u, in LﬁQ(Q)7
[uf | L2#9) < C(||771||L§(0,L) + w2 (20)) <C,

where C' does not depend on 7.
We now apply the result on existence of a strong solution for the viscous problem
(FS)4>0. For fixed v > 0 the unique solution (u., 1) is global in time so that it exists
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on any time interval (0,7"). The first step is to verify that %, as defined by

8mve2, in th,
— .
Uy = § Uy, n SFp_,
; 0
0, in QY ,

together with 7, is a pair of weak solution to (FS), in the sense of Definition 9. First,
we note that (u.,7n,) satisfies estimate (2.2) so that we can define a constant M
involved in the definition of our weak solution framework. By construction we have
that

1y € L2°(0,T5 HF (0, L)) NWH*°(0,T; L 40, L)).
Moreover,

Uy € L¥(0, TS LF(Q), Viy g =1g Vuy € L(F,),

and Lemma 4, implies that

(T (t),ny)(t) € X[hy(t)] forae. t e (0,T).
Thus the regularity statement (i) of Definition 9 is satisfied. Moreover the solution sat-
isfies the kinematic condition u~ (¢, z, 1+ (¢, x)) = 0in, (¢, x)es is satisfied on (0, L)
which implies that d;n, € L?(0, T Hﬁl/2(0, L)) as the trace of Uy - Remember here

hoy

that min,epo,z) hy(t,2) > 0 for all ¢ € [0,T] so that %, is a Lipschitz domain and
consequently ﬁ“’ly:hw is well defined. Thus the second item (ii) of Definition 9 holds
true. Then, we note that, thanks to the regularity of solutions constructed in [7, Th. 1],
the system (1.2)—(1.3) is satisfied pointwise so that we can multiply the system with
test functions (w-,d,) for which the requirements in item (iii) of Definition 9 are
satisfied and obtain (2.15) after integration by parts.

Moreover, we note that the solution (u-,7,) satisfies the energy estimate (2.2) with
a right hand side that converges to

1 L L L
(pf/ |u0\2dw—|—p5/ |n1\2dx+5/ |8xn0|2dx+a/ |8M770|2dx>.
2 F.0 0 0 0

h

when v — 0. Consequently, the sequence (@, 7,),>0 satisfies the following bounds:
(3.5) ., is uniformly bounded in v in L*(0, T} L?(ﬁhw(t))),

(3.6) HVEWHLZ(?A,L—W) is uniformly bounded in 7,

(3.7)  my is uniformly bounded in v in L*(0,T; H7 (0, L)) N W (0,T; L{(0, L)).

Furthermore, the structure velocity 0y, is bounded uniformly with respect to ~ is
1/2 —
L2(0,T; Hn/ (0, L)) as the trace Uy, -
Finally the sequence (u,)+>o satisfies additional uniform estimates that are sum-
marized in the following lemma:

Levvia 14. — The sequence () >0 is bounded in LY(Q) and in L*(0,T; H;(Q)) for
arbitrary s < 1/2.
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Proof. — The bound in L*(0,T; H;()) comes again from Lemma 4. We next take
care of the L4(§) uniform bound. To prove it, it is sufficient to obtain independent
uniform bounds for the restrictions of u., to yh and to 9 for the L*-norm.

In th we already know that u., = 0;1,e2, where
dyny is bounded in L(0,T; H,'*(0, L)) N L*>(0,T; L}(0, L)).
By interpolation, we obtain that J;n,—and consequently resp.w,—is uniformly
bounded in L*(0, T} L?(O, L)), resp. L*(S,).
We would like to apply a similar interpolation argument on the domain f,; using
the uniform bounds on the restrictions of u., and its gradient in ﬂ}; . To track the

dependencies with respect to h to be able to ensure that the interpolation argument
leads to uniform bounds, we use a change of variables. We denote by

Uy (t,z,2) =y (t, z, (hy(t,2) + 1)z — 1) Y (t,z,2) € (0,T) x Q.
Since 0 < h, < M, straightforward computations show that, for a.e. t € (0,7") we
have
1 ()l 27, ) < (e (Ol g0,y + 1) 11T (8) 22 08
and
it (82

19, (1) 20

However, the following interpolation inequality holds true

1% (1) 205, -
(L 1 ()l 0,21V 3

NN

h (f))

- ~ 1/2 ~
[ 83008y < Cla (O} 57 |7 (O o
and thus

_ 1/2 ~ 1/2
I Ol ) < CO I Olhwpe o) O ITEO] gy

5 (£)

Applying (3.5) and (3.6) together with the bound for h, in L*(0,T}; Wul’oo(O,L))
coming from (3.7), and thus uniform in -y, we obtain the desired bound on %@, which
is uniformly bounded in L4(§};). O

We now prove the existence of cluster points of the sequence (@, ny),>0. First,
thanks to (3.7), and to the compact embedding (2.3)
1y — n uniformly in €°([0, T7; %ﬁl (0, L)),
1y — 1 weakly— in W (0,T; L (0, L)).

Next, using the energy estimates (2.2) and Lemma 14, we may construct a diver-
gence free function w € L*°(0, T} L?(Q)) N L*(€), such that, up to a subsequence, the
following convergences hold:

U, — w, weakly-x in L™ (0, T; L3()),

u, — u, weakly in LY(Q).
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We now verify that any cluster point (@,n) of the sequence (w-,7,)y>0 enjoys the
properties of Definition 9, which defines the weak solutions of the limit coupled system
(FS)p. For simplicity, we do not relabel the sequence converging to (u,n). We first
note that, for fixed v > 0, we have

L
/ 8,5777 =0.
0

This property is conserved in the weak limit so that 0;n is mean free globally in time.
Next, we verify that (w(t),dn) € X[h(t)] for a.e. t € (0,T). The divergence free
condition is verified at the limit. Moreover, we note that, the property ., = 0 on 6291
is preserved in the weak limit. Furthermore, since n, uniformly converges towards 7,
we easily obtain u = 8,57762, in Yh, by testing the weak ik convergence of w, and 0y es,
which are equal in Yh , against functions ¢ € €2° (Yh)

Consequently, (w(t ), 9¢n) € X[h(t)]. We now prove that @ has better regularity in
;@\h— as stated in the following lemma. In what follows, we set p, =1z , p; =1 7

and p~ = ]19;_'

Levmwa 15. We have Vu € L2(<§h) and the sequence p V., converges to p~Vu
weakly in LQ(Q).

Remark 16. — In the previous statement, we use the convention that if & C Q and
f € L?(0) then 14f € L?(Q) is the extension by 0 of this L?(&)-function.

Proof. — We remind that Vu, € L2(<;‘\h_W ) so that p V., corresponds to the exten-
sion by 0 of this vector field. Because of (3.6), p7 V., is uniformly bounded in L*(Q).
Thus p; Va, converges weakly to some z in L?(0,T; L;(Q)) Thanks to the uniform
convergence of h, to h, we may then compute z by testing the weak convergence of
py V., against functions ¢ € %‘X’(Yh) and ¢ € CK"O(? ) respectively. This implies

that z7. =0 and 2 5o = (V“)La , which ends the proof. O
Remark 17. — The previous lemma gives the H' space regularity of u, Fi (for a.e.
h(t
€ (0,7)). Since .7,y a Lipschitz domain, it enables us to define an [ /2 trace of @
on Gyg(t

This concludes the proof that (@, n) satisfies item (i) of Definition 9. We also prove
at first that the weak cluster point satisfies the expected energy estimate. Indeed, for
any arbitrary small € > 0, thanks to the strong convergence of 1, to 7, we have that
hy > h — ¢ for 7y sufficiently small. We may apply then classical weak limit arguments
to pass to the limit in the energy estimate satisfied by the (u.,7,). Consequently for
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almost every t we have

1 2 r 2

G lu(t,z)|*dx +ps [ |On(t, =)|" d=
- 0

h(t)—e

L L t
5 [l st [Conara) v [ [ vutse)Piads
0 0 0o JF

h(s)—e

1 L
< lim inf {2 <pf / luy (¢, ) > dz + ps / 0, (¢, )| da
7 0

—0
v ‘/h(t)—s

L L
+5/ |8wn7(t,x)|2dx+a/ |8mnv(t,x)|2dx>
0 0

t
+M/ / |Vuv(s7:c)|2da:ds]
0 JF

h(s)—e

1 L L L
< lim ~( p / IUOIdeers/ \771|2dx+5/ \8xn0|2dx+a/ Iamnozdw)
70 2( ! Fo o 0 K 0 7

h_y

1 L L L
= (Pf/ Iu°\2dw+p5/ |n1\2dm+5/ Iaxnol2dx+a/ I8m?7°|2dw>~
2 F.0 0 0 0

h
Since € is arbitrary, we obtain the expected energy inequality.
We now show that any limit (@, n) also satisfies items (ii) and (iii) of Definition 9
of weak solutions under the further assumption that the following lemma holds true:

Lemva 18. — Up to the extraction of a subsequence that we do not relabel, we have
(pyTy, Omy) = (0, Opn) strongly in L*(Q) x L*((0,T) x (0, L)).
%l

So, fix (w,d) € €>(Q) x €>(0,L) such that (w(t),d(t)) € Z'h(t)] for all t €
(0,T). Due to the uniform convergence of h. and the special structure of %2 [h(t)]
for which we require that w = 0 in the neighbourhood of 9%, and w - e; = 0 in
the neighbourhood of .%,(t), there exists 79 > 0 such that, for all 0 < v < ~o,
(w(t),d(t)) € X[hy(t)] for all t € (0,T). Hence, (w,d) is a test function for any -y
small enough and for a.e. t € (0,T), (@, ny) satisfies

t
68) s [ o w)=ps [ [ o0t (o, Vg7,
L t oL t
+ps/ Oy (t)d(t) — ps/ / amvathru/ / pyVuy : Vw
0 0 Jo 0o Ja
t L t oL
+/ / 55’x7773xd+0z3m7773md+7/ atacn’yaxd
o Jo 0o Jo

L
=pf/ﬂpvﬂg-W(0)+ps/o 15,d(0).

Let us recall that, thanks to Lemma 18, p,u. strongly converges in Lz(ﬁ). The
convergence of p,Vu, is proved in Lemma 15 and we can pass to the limit all the
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terms of (3.8). The pair (@, n) satisfies, for a.e. t € (0,T),
t L
pr [ sty w(®) - ps [ [ g0+ (g Vyw-pa+p. [ omv)
Q 0 Ja 0

t L t t L
_py / / endrd + 1 / / pu: Vw + / / B0u10ad + 6Dy d
0 0 0 Q 0 0
L
:pf/ﬂpﬁo-w(OHps/ n'd(0),
0

which is a rewriting of the variational formulation (2.15). Thus the item (iii) of Def-
inition 9 is satisfied. The last point to verify is the kinematic condition at the fluid—
structure interface. We know that

wy(t,x, hy(t, ) = Oy (L, z)es.

From Lemma 18 the right hand side converges strongly in L*(0,T; LF(0, L)) towards

O¢n. Tt converges also weakly in L2(0,T; Hﬁl/2 (0, L)). The left hand side is the trace
of the function (z,z) — wu,(t,z, (1 + h,(t,2))z + hy(t,x)) on z = 0. Thanks to
the previous convergences this function converges strongly in L? (ﬁ(l)) and weakly in
L?(0,T; Hﬂl(Q(l))) towards w(t, z, (1 + h(t,z))z + h(t,z)). Hence by continuity of the
trace we obtain

u(t,z, h(t,z)) = Omn(t, x)es,

so that item (ii) of Definition 9, which completes the proof of Theorem 10.

It thus remains to prove Lemma 18. As is usual for fluid-structure problems, the
sequence of domains is unknown and depends on time and here on the viscosity
parameter, so that standard Aubin—Lions lemma cannot be applied directly to obtain
compactness of the velocities. One key point is to build a piecewise in time, regular
enough in space, interface, dealing with possible contact, close to the sequence of
interfaces but always lower. The construction of this artificial interface is the aim of
the next subsection. We then conclude the proof in the final subsection. Thanks to
the variational formulation and to this well chosen interface “from below” we obtain
bounds on the time derivative of an L? projection of the velocities, for which we
are able to apply an adapted version of the Aubin—Lions lemma. It implies that the
sequence of velocities is nearly compact. Next the key idea is to use that the velocities
can be approximated, in H® for some s > 0, by velocities associated to the interface
“from below” so that we can “fill” the gap. This relies on the continuity properties of
the H?®-projector operator obtained in Lemma 13.

3.2. Step 2. CONSTRUCTION OF AN INTERFACE FROM BELOW. — Before the construction
of the interface from below, we analyze a simple method to approximate a given
stationary deformation from below. Namely, given h € HuZ(O, L) satisfying h > 0 and
@ > 0, we denote

hu = [h’ - :u]+7
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where the subscript + denotes here the positive part of functions. The properties of
this approximation process are summarized in the following lemma:

Levva 19. — Let h € HF(0,L) with h > 0 and p > 0. Then h, € €)(0,L) and,
given k € (0,1/2), there exists a constant C' independent of u and h for which:

(3.9) HQMHH;*”(O,L) + ”ﬁu”Wnl"’c(O,L) <C ||hHH§(o,L)a

(3.10) Iy, = Bllyieory <u+ s W)
i {z€[0,L]|h(z)<p}

Proof. — Let > 0and h € H(0, L) non-negative. The first statement h,, € €}(0, L)
is standard. We prove the two inequalities (3.9), (3.10) successively.

Step 1: proof of inequality (3.9). Since he €} (0, L), the subset {z € (0, L) | h(z)>pu}
is open. We may then construct at most denumerable sets {c;, 1€ ., } and {d;, i€ ¥, }
such that {x€(0,L) | h(z)>pu} :Uieﬂu (¢i,d;). The successive derivatives of [h — p]+
then read

h—ply =W Lpsp, (b= =hNpsp+ Y 6,k (ci) = 0a, 1 (di),
=

To show that h, € HﬁH'”(O,L) and have a bound on its norm, we now prove that
[h—u)"s € HF=(0, L),
Using the H2-regularity of h we obtain that

h'1psy € LF(0, L) € H7H(0, L).
Moreover, for any test function ¢ € 2(0, L), we have:
(6 )| = |p(ci)| < llelle0,L) < C”SD”H;‘”(O,L)a
where C' > 0 stands for the constant associated with the Sobolev embedding
H,~"(0,L) C (0, L).

Hence 8., € H*~1(0, L), with a norm independent of ¢;. To show that [h — u]”; €
Hﬁ‘fl((), L) it then remains to prove that the sums

D Geh(e), Y dah (di),

€I, €I,

do converge normally in the Banach space Htf_l((), L).
Let ¢ € .#,, since h(c;) = h(d;) = p, there exists b; € (¢;,d;) such that h'(b;) = 0.
This implies

1 (co)| < [bs — il 2 [ hll a2 (esany < Idi — eil 2 1 B] 2 (e )
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and thus
D W @)ei g0,y <C D Ndi = il " [l ar2(ev
€Sy €Sy,
1/2 , N 1/2
3.11
(3.11) co(Tla—el) (3 )
i€, i€Fy

<crL'? 12/l 72 0,1)-

Consequently, we have

Z 6e;h (ci) € Hé‘fl(O,L) and
ies,

Z 651. hl (CZ)

€7,

< CLY? ||hHH§(0,L)~
H;'(0,L)

The argument is similar for 3 ;. , d4,h'(d;). This completes the proof of esti-
mate (3.9).

Step 2: proof of estimate (3.10). — Since h € H(0, L), thanks to the continuous em-
bedding of Hﬁ1 (0,L) in Lge(0, L), we deduce that [h—pul+ € Wul’oo(O, L). Furthermore,
it is clear that, for any x € [0, L],

= ply(z) = h@) < p, (b= pll(2) =W (2) = =D (2)lhgu(2).
This implies that (3.10) is satisfied. O

The next lemma ensures that the right-hand side of estimate (3.10) goes to zero
when p goes to zero:

Levvia 20. — Let h € ‘Knl (0, L) with h = 0. The following limit holds

sup |h(z)] — 0.
{w€l0.L]h(z)<p} Heo
Proof. — Since h € € (0, L) we have that {z € [0, L] | h(z) < p} is a compact subset
of [0, L] and that there exists x,, € [0, L] such that:
sup |7/ (2)] = |1 ()]
{ze[0, L] (z)<p}

Note that, by construction, we have h(z,) < p.

Using the compactness of [0, L] we have z,, = T € [0, L] as p goes to zero (up to
a subsequence). Using the continuity of h and passing to the limit in the inequality
h(zx,) < v we obtain h(Z) = 0. Moreover, using that h(z) > 0 we deduce that T is a

local minimum of & and thus that A'(Z) = 0. Finally the continuity of h’ ensures that
W (z)| — |h' ()] = 0. O
pn—0

We recall that we consider a sequence (h),>o that converges to h strongly in
the sense of €°([0,T]; 6, (0, L)) with h € L>(0,T; HZ (0, L)) nWh>(0,T; L (0, L)).

We now are in a position to build a family of approximating interfaces “from below”
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of any h. for v small enough. Namely, given § > 0 we construct a piecewise-constant
(in time) function hgs such that there exists 79 > 0 for which

(312) ||ﬁ§||Loo(07T;Wu1v°°(07L)) < O,
(3.13) hs < hy, Yy <,
(3.14) fs = P\l oo (0, mw 3 0,0y <O V¥ <0,

with C' depending only on initial data.

So, let us fix 6 > 0 and introduce parameters € > 0, N € N to be made precise later
on. We construct our piecewise approximation as follows. We consider the subdivision
of the time interval [0, 7] = Uy Ik With Iy = [kAL, (k + 1)At), At =T/(N +1)
and we fix ¢, € I such that ||h(tk)||H§(0,L) < Hh||Lm(O’T;an(07L)). On each time
interval I, we then define
(3.15) hs(t,x) = [h — 2e]4(tg, ), t€IL.

Estimate (3.12) follows directly from Lemma 19 and estimate (3.7). Now, up to a
good choice for the parameters e and N, hs satisfies the two properties (3.13) and
(3.14) for v small enough. First, let us prove that hs < h, for all v sufficiently small
and N sufficiently large (depending on €). We recall that by interpolation, we have
h € ‘50’9([07T];<€u1(0,L)) for € (0,1/4) (see embedding (2.3)). Consequently, for
any k < N, we have

1Rt 2) = h(te, 2)l|Lg=(0,2) < CAtY, Vtel.

Similarly, since h., converges to h in €°([0, T]; €} (0, L)) we can find 4 > 0 such that,
for v < 70,
[lh(t,z) — hﬂ,(t,x)HWul,oo(o,L) <e, Vte(0,7).
Assuming that N is chosen such that (with the above constant C')
T \6
cat’ = ()
N+1) =°
we have, for any kK < N,
hy(t,x) > h(t,x) —e > h(tg, x) — 2¢, Y (t,x) € I, x (0,L), Vv < 7.

Taking the positive part in the previous inequality (recall that i~ >0) we obtain (3.13).

We now estimate the difference between hs and h, for v < 9. Given £k < N we
have, for all v < 7o,

| hs — h’yHLOC(Ik;Wul’OC(O,L))

< ”ﬁé - h”Loo([k;Wﬁlvoc(o,L)) + ”h - h’Y||L°°(Ik;Wﬁ1’°°(07L))7

ITh = 2] (t) — h(ti)llwp 0,0y + 17() = Bl oo (1w 0,9) + &5
11— 2] () = Bt e ) + 2

Applying Lemma 19, this entails

[[h = 2€]4(tk) = h(te)llyyree o,y < 26 + sup |02 h(tg, ).
# {z€[0,L],h(ty,x) <2}

~
<
<
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Finally we obtain

|25 — h'yHLoo((o,T);Wnl’w(o,L)) Sde + sup |0z h(tk, )|
{z€[0,L],h(tr,x)<2e}

Consequently, applying Lemma 20 and choosing € > 0 sufficiently small with the
corresponding N € N and -y > 0 we obtain that the interface hs satisfies (3.14).

3.3. StEP 3. L2?-COMPACTNESS OF THE VELOCITIES. In this section we study the
L?-convergence of the pair (pyU~, Oyny) stated in Lemma 18. We know that, up to
a subsequence that we do not relabel, p,u, — pu weakly in L?*(0,T; Lf(ﬂ)), and
Oy — Oy in L?(0,T; L?(O,L)). To prove the strong convergence of the sequence
(py~, O¢my) to (puw,O¢n) it remains to show that the following convergence holds
true:

T T L T T L
616) oy [ [ oo [ [0l o [ il [ 0w
o Ja o Jo 70 o Ja o Jo

We recall that we endow X := L?(Q) x L3(0, L) with the scalar product:

L
(B, 1), (@, d)) xo =pf/ﬂamps/o od.

In particular, with these notations, the right hand side of (3.16) also reads:

T
/O (o, D), (8, D)) xo.

By restriction, this bilinear form enables to consider any element of X° as an element
of (X*)" via the formula

(317) <(5v 77)7 (ﬁv d)>(XS)’,XS = ((ﬁa 77)’ (ﬁv d))XO V((ﬁv 77)7 (E’ d)) € XO x X*.

In what follows we use this identification without mentioning it.
To obtain (3.16), we show actually that, up to extract again a denumerable times
subsequences, we can prove that the error terms

T T pL T T pL
Err, := Pf/ / \pwﬁw\2+ps/ / |0y > — (Pf/ / Ipﬂl2+ps/ / |3m|2>
0 Q 0 0 0 Q 0 0

satisfy limsup,_,q [Err,| < € for any arbitrary small €. We shall compute e with
respect to the parameter 0 > 0 fixing the interface from below hs satisfying (3.13)—
(3.14) as in the previous subsection. So let us fix such a ¢ > 0. We recall that the
related interface h; is constant on a family of intervals (Ij)o<k<ny covering [0, 7.
Below, we denote hg; the value of hs; on Ix. We then split the time integral and
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introduce the projector P*[h; ;] for a given s < 1/2. This yields:

N
Bre, = /1 (0 Dy11 )+ (T D)) x0 — (98, Dy, (8, Bym)) xo
—07 Ik

N
-y / (05T Bu), (T, Bythy) — B[l ) (o, Byt )) o

+ / (B s 1) (T Dty ), (T Do) 0

- / (0%, Byn), (@, Byy) — B[l ) (3, D)) o

Iy,

— [ s 00, (om0

Iy,

Then, since P*[hs;](w,,0m,y) € X°[hs,] C X[hsy] and thanks the identification
(3.17), we write

(P* [ﬁé,k](ﬁm Oy )5 (P W5 Opmy)) x0 = (P* [ﬁé,k](ﬁ'y, 0 ), P[ﬁé,k](l”yﬂ'ya Any)) x0
= <I[D|:h57k}] (pWE’W 81577’)')7 P® [ﬁg,k](ﬁva atn'y»(XS)’,Xs .
Proceeding similarly with the limit term, we obtain the following splitting
Err, = Z Errapp + Errf%Y — Err;PP,
where, for arbitrary k <

, we denote

X0

~

N
Erripzf —/ (pwuwatn"/ (W, Oeny) _Ps[ﬁé,k](ﬁwatnv))
k

/ (pw, 0m), (@, Oim) — P*[hy ) (w, 8”7)>X0

Iy
Errconv h6 k) (P Uy, Op1y ), P [h(;,k}(ﬁq,, atnﬂ/»(XS)’,X*

- <P[ﬁ5,k](Pﬁ, o), P*hs ] (@, Om)) (x5 x5

For the two first type of terms we use the fact that the projection on X *[hs k)
has good approximation properties. So, to estimate the error terms Err L, we use
Lemma 13 for k = 1/4. Indeed, from the bound (3.6) and Lemma (14), we know that
(W, O0¢ny) satisfies, for a.e. t € Iy, (w,(t), 0y (t)) € X°[hy], for s < 1/2, with u, €
Hﬁ1 (ﬁ};) Moreover, we remark that both interfaces h~ and hs belong to HﬁH'“(O7 Ln
Wul’oo(O, L) and that, thanks to the definition of hg, there exists A > 0 independent
of v and §, such that

||h7||L°o(0,T;H§+*‘(0,L)) + Hh’Y”LOO(O,T;Wul’”(O,L))

+ ||ﬁ6||Loo(o,T;H;+”(o,L)) + ”ﬁtS”LOC(O,T;W;"X’(O,L)) <A
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Finally by construction hs and h, are close in Wﬁl’oo(O,L) and (3.14) is satisfied.
Hence, Lemma 13 implies, for s < 1/8

1B [ 1) (s (£, ), Oimy (8, ) = (@4 (E, -), By (8, ) [ x0
< PR 1) (@ (8, ), Bimy (£, 2)) = (W5 (E, ), Bimy (£, ) [l
S Ca(0) Vay (t, ) 27,

with lim,_,o0 C4(z) = 0. Using Cauchy—Schwartz inequality, we deduce from the pre-
Vious estimate that

Z\Errapp
Z/j I[P [s 1) (s (£, ), Oimy (L)) = (@4 (2, ), By (8, ) || xo | (@, iy )| 0

(t))

T
< CalD@ O )llorixn) [ 1V 125, 0

Then we use the uniform estimates (3.5), (3.6) to obtain that there exists a constant Cy
(depending only on initial data and T) such that, for v < 7o,

(3.18) Z [Err?P| < C1Ca(0).

Similarly we have

(3.19) Z [Erry”P| < C1Ca(9).

To complete the proof, the followmg term remains to be estimated

N
lim sup Z [Errs?RY].

v—0

At first, we prove that, for a fixed k¥ < N and up to a subsequence, Plhs ](p W, 0¢1,)
converges strongly to P[hs | (p@, yn) in L?(I; (X*[hs4])"). Note that, since we have:

(P, Omy) — (P, Opm) in L (I X°[hs 1)) — w

the only difficulty relies on showing that the sequence P[h; ,|(p, Osn) is relatively
compact in L?(I; (X *[hs.1])")- To do so we apply an adapted version of Aubin-Lions
lemma that can be found in [5, §4.3] that reads

Lemma 21. — Let us consider three Hilbert spaces M;, i = 1,2,3 and two operators
T:My— My and S : My — Mo satisfying

— T and S are two linear compact operators,

— Su =0 implies Tu = 0.
If (uy,) is bounded in L*(0,T; My) and (8;Suy,) is bounded in L*(0,T; Ms), then Tu,
is a compact set of L*(0,T; My).
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We are going to use this version of Aubin-Lions lemma with the triplet
(X°, (X (ks 1)) (X Rs 1))

and with S = iy o P[h; ], T' = is o P[hs ;], where i; denotes the injection of X[h; ;]
into (X* [hs ])- The mappings i, are indeed injective functions since Lemma 8 implies
that the continuous embedding X*[hs ;] C X [hs ;] is dense, for £ > 0 and these densi-
ties imply that X [h;,] is continuously embedded in (X*[hs,])’, for £ > 0. Moreover,
thanks to Rellich-Kondrachov theorem the embeddings X* [hs k] C X[hs ] are com-
pact. The dual of a compact operator being compact, X [ﬁé’ &) is compactly embedded
in (X* [hsk)) for £ > 0. Consequently iy o P[h; ;] and i o Plhs ;] are compact linear
operators. Moreover i1 o P[hs ,](w,b) = 0 implies P[h; ,](w,b) = 0 so that the second
point is clearly satisfied.

Next applying (3.5), we have that (@, 9;7,) is uniformly bounded in L?(0,T; X°)
(with respect to 7). Thus the sequence (p,@.,dn,) is bounded in v in L?(I); X?).
We must now obtain a uniform bound for 8;P[hs 1.](py U, 3yny) in LP (Ii; (X' [hs 1])).-
Precisely, we look for an estimate of the type

- [ Pl o). 00w

Iy,

<C / (o (), () [3es g, A
k

for any (w,d) € L*(I}; X'[hs]). To obtain such an estimate we use the variational
formulation (2.15) satisfied by (@, d;7,). We consider (w,d) € €°(Ix; X [hs])-
This is an admissible test function since hs < h, and since, in the case where
v > 0 for which ming,ejo, 7] hy(t,2) > 0, Vt € [0,T], we can consider test functions
in C>([0,T7]; X' [hy(t)]). We obtain

/ (P[ﬁa,k](P'yi'yv N1y ), O (w, b))Xo = *Pf/ Pyl - Opw — ps Ou1, O¢b

Ik Ik Ik,

:pf// (uW-V)w-uw—u// Vu, : Vw
I J Fh, ) I J Fh, 1)
L L L
_5/ / 8wn731b+a/ / amnvﬁmb—i—w/ / Byai Db.
I, JO I, JO I, JO

The nonlinear convection term is estimated using the L-regularity of u, stated in
Lemma 14,

‘Pf/ /(Pvﬂv V)w - pyay
I, Jo

<o / 18 (1) 240 [ V0(0) | 20
k

< pf ||ﬁvHi4(Q) IVwll 21,2 (@)

The other terms are estimated directly and we obtain

/ (Bllts o) (o Ber), Bu(w, ) o

’ S COl(w, D)l L2(1;x1 (hy )
k

where C depends only on the initial data. The previous inequality implies that
OyPlhs 1) (py T, yny) is bounded in ~ in L?(Ih; (X'[hs,])"). It then follows from
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the adapted version of Aubin-Lions lemma that P[hs ,](p,2y,0;n,) is compact in
L?(I); (X*[hs .])’). Moreover, since there holds:

(W, Opmy) — (W, O4m) in L*(I);; X*) — w, for s < 1/2,

we also have that P*[h; . ](@-, 9;n) converges weakly to P*[hs .| (w, d;n) in L? (I1; X*®).
Combining a strong and a weak convergence result leads to

(3.20) lim Errf?%Y =0 VEk < N.
¥—0 ’

Finally, combining (3.18)—(3.20), we conclude that

limsup |Err, | < C1C4(9)
~¥—0
for arbitrary § > 0. We conclude the proof by remarking that C4(6) — 0 when
0 — 0. For completeness, we remark that in the computations of bounds for Err, we
only extract subsequences when we apply the Aubin-Lions lemma. Since we perform
extraction a finite number of times for any value of the parameter § that we can
choose in a denumerable sets (i.e., a sequence converging to 0), our proof induces
indeed denumerable extractions of subsequences.

Remark 22. — In the final weak formulation we consider fluid test functions that
vanishes in the neighbourhood of the bottom of the fluid cavity and that are only
transverse in the neighbourhood of the interface. Note that we could have also con-
sidered fluid test functions that vanish in the neighbourhood of any contact point or,
at least, at the contact point. It imposes in particular the structure test functions to
be zero near each contact point so that they depend implicitly on the solution.

AprpENDIX. PROOF OF LLEMMA 8

This appendix is devoted to a density lemma in the space X [h]. We first recall the
statement of the lemma to be proved and proceed to the proof.

Lemma 23, — Let h € 6)(0,L) satisfy 0 < h(z) < M, Yz € [0, L]. The embedding

X[h N (E>(Q) x €°(0,L)) C X[h] is dense.

Proof. — First notice that the main difficulty here comes from the potential contact

i.e., the points where h is equal to zero. If there is no contact we may construct

explicitly a smooth approximating sequence of any pair in X[h] by adapting the

arguments of [4], see also the construction of approximate initial data in Section 3.1.
When h vanishes, we propose an alternative proof: in this case we obtain that

(X[R)NE>(Q2) x 42 (0, L))+ = {(0,0)}. So, let (u,7) € X[h] and assume it satisfies:

L J—
(A1) pf/Qu-’w—O—ps/ nd =0, V(w,d)e X[h]NE>) x 60, L).

0

Using Lemma 7 there exists ¥ € Hﬁ1 () and b € Hul(O, L) such that uw = V¥ with
U =b(x)in S and ¥ =0in Q°, UI¢ x (—1,2M), where I = {z € [0, L] | h(z) > 0}.
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To complete the proof, we obtain that w vanishes in I x (—1,2M). Since I is an open
subset of (0, L) we may construct an at most denumerable .# such that

I = |_| (ai7b¢),
€S
where the (a;, b;) are the connected components of I. It is now sufficient to prove that,
for arbitrary ¢ € .# there holds w = 0 in ; = (a;,b;) x (=1, M). This is obtained by
a suitable choice of functions (w,d) in (A.1).
Let fix i € .# and £ > 0 small enough. Consider x. € €°((a;, b;)) such that

Xe =1on [a; +¢,b; —¢], supp(xe) C [a; +¢/2,b; — /2],
1 1
||X/5HL<>C(R) < - HX’EIHLOO(]R) < pox
Existence of such a truncation function is classical. We now introduce
w, = VL(XE\I/), de = 0x(xeh).

It is straightforward that (we,d.) € L*((a;,b;) x (=1, M)) x L3((as,b;)) and has
support in (a; +¢€,b; — ). On the other hand, there exists 6. > 0 such that h(z) > J.
on (a; +£/2,b; —€/2). Setting h. = max(h, d.) we have then that h. € ‘@0(0, L) does
not vanish and (w,,d.) € X[he]. Consequently, we may reproduce the arguments in
the case of a non vanishing deformation to approximate (we,d.) by a sequence of
pairs in X [he] N (€>(Q) x %¢°(0,L)). Moreover, we emphasize that, by construction,
this sequence has support in (a; +¢£/2,b; —e/2) x (—1,2M) also so that it is actually
a sequence of X[h] N (€>°(R2) x €;°(0, L)) that approximates (w.,d.) in X |[h] also.
Consequently the identity (A.1) holds true for (w.,d.) also and we have

b

/ u- VL(XE\IO + / | ﬁaw(Xaw =0.
Q; a;

But, recalling that V¥ = u and 9,b = 1) we may expand the differential operators
to yield that:

b; b; b;
0= / w V(e U) 4 / 0z — / ful?xe + / 1P xe + / w V() U+ / A
Q; a; Q; a; Q; a;

i i i 7 i

Since x. depends on the z-variable only and x. vanishes on {a;,a; +&,b; — €,b;}, we
have, by integrating by parts:

a;+e 2M\112 b; 2M\112
T e T 2
Q,; a; —1 2 bi—E —1 2

Similarly we prove the following equality:

b; a;+e 2 b; 2
i T bh(x o ob(x
(A3) —/ nb(fﬂ)x’s=/ (2) x'5’+/ (2) X2
a a b;—e

i i K
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Since ¥ =0 on {a;} x (—1,2M) a standard Poincaré inequalities entails that:

a;+e 2M lI/2 2 a;+e 2M 2 a;+e
[ RETE A Ry
a; -1 2 4 a; -1 4 a;

a;+e b(m)Q 62 a;+e 9 62 a;+e
< = Ozb =— 912,
LT a@r=T [

i

We have a similar identity for integrals involving (b; — ¢, b;) by using that ¥ = 0 on
{b;} x {—1,2M}. Using finally that L>°-estimate on x” in (A.2)—(A.3) we conclude

b;—e 2M b;—e
O N T
a;+e —1 a;+e
1 aj+e p2M ) a;+e ) b, 2M ) b; )
<y e [ [ e [ )
a; —1 a; b;—e J—1 b;—e

Since (u,7) are both L2-functions, the right-hand side of this identity vanishes when
e — 0. So, letting € — 0 we obtain (u,n) = (0,0) in ;. This ends the proof. O
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