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ON AN EXISTENCE THEORY FOR A FLUID-BEAM

PROBLEM ENCOMPASSING POSSIBLE CONTACTS

by Jean-Jérôme Casanova, Céline Grandmont
& Matthieu Hillairet

Abstract . — In this paper we consider a coupled system of pdes modeling the interaction
between a two-dimensional incompressible viscous fluid and a one-dimensional elastic beam
located on the upper part of the fluid domain boundary. We design a functional framework to
define weak solutions in case of contact between the elastic beam and the bottom of the fluid
cavity. We then prove that such solutions exist globally in time regardless a possible contact
by approximating the beam equation by a damped beam and letting this additional viscosity
vanish.
Résumé (Existence de solution autorisant d’éventuels contacts pour un problème d’interaction
fluide-structure)

Dans cet article, nous considérons un système couplé d’équations aux dérivées partielles
modélisant l’interaction entre un fluide visqueux incompressible bi-dimensionnel et une poutre
élastique mono-dimensionnelle située sur le bord supérieur du domaine fluide. Après avoir
construit un cadre fonctionnel de solutions faibles autorisant les configurations où la poutre est
en contact avec le fond de la cavité fluide, l’existence de solutions faibles, globale en temps, est
démontrée, que des contacts se produisent ou non. La preuve repose sur l’analyse asymptotique
d’un système couplé parabolique-parabolique pour lequel un terme de viscosité est ajouté à la
structure, et dont on sait qu’il n’autorise pas les contacts. La limite de viscosité évanescente
est alors solution de la formulation faible introduite et autorisant le contact.
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1. Introduction

In this paper we consider a fluid–structure system coupling a 2D homogeneous
viscous incompressible fluid with a 1D elastic structure. When the elastic structure
is at rest, the fluid domain is of rectangular type and the structure is located on the
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934 J.-J. Casanova, C. Grandmont & M. Hillairet

upper part of the fluid domain boundary. The fluid is described by the Navier–Stokes
equations set in an unknown domain depending on the structure displacement that
is assumed to be only transverse and that satisfies a beam equation. Since the fluid
is viscous it sticks to the boundaries so that the fluid and the structure velocities are
equal at the interface. Finally, the fluid applies a surface force on the structure. Such
coupled nonlinear models can be viewed as toy models to describe the blood flow
through large arteries.

The existence of a solution to the Cauchy problem associated with this kind of
systems has been intensively studied in the last years. In [3, 11, 12] existence and
uniqueness of a strong solution locally in time is proved in case additional viscosity is
added to the structure equation (so that the structure displacement satisfies a damped
Euler–Bernoulli equation). When no viscosity is added and in case the dynamics of the
structure displacement is governed by a membrane equation, existence and uniqueness
of a local strong solution is obtained in [8]. The beam case with no additional viscosity
is investigated in [2], where existence of strong solution locally in time (or for small
data) is proved but with a gap between the regularity of the initial conditions and
the propagated regularity of the structure displacement. Existence of weak solutions
is obtained in [4] for 3D-2D coupling where the structure behaviour is described by a
viscous plate equation and in [6, 14] in the non-viscous case. Let us also mention weak
existence results on fluid–shell models [10, 15]. Note that these results are obtained as
long as the structure does not touch the bottom of the fluid cavity (or, in case of shells,
as long as there is no self contact). More recently, in [7], the authors establish existence
of a global-in-time strong solution in the 2D-1D case when the structure is governed
by a damped Euler–Bernoulli equation. This global-in-time result is a consequence
of a no contact one: it is proved therein that, for any T > 0, the structure does not
touch the bottom of the cavity. The proof of this latter result relies strongly on the
additional viscosity in the beam equation and on the control of the curvature of the
structure.

The question we address here is: can we prove existence of a global weak solution
regardless of a possible contact (for an undamped beam)? We aim to take advantage
of the existence of global strong solution for a viscous structure and let the additional
viscosity tend to zero. Our scheme is inspired by the one developed in [16] where the
global existence of a weak solution is derived for a 2D fluid–solid coupled problem.
However, in [16] the solids are viewed as inclusions whose viscosities are infinite. The
fluid–solid problem is then approximated by a completely fluid problem with different
viscosities in the inclusions and in the fluid. The viscosity of the inclusions is then sent
to infinity. In contrast, in our case the parabolic–hyperbolic fluid–structure system
is approximated by a parabolic–parabolic one by adding viscosity to the structure.
We prove that, up to the extraction of a subsequence, the sequence of solutions of
the damped system converges towards a weak solution (in a sense to be defined) of
the undamped system. The main difficulties are to define functional and variational
frameworks compatible with a possible contact and to prove the strong compactness
of the velocities, also in case of a possible contact. Indeed the proof developed for
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instance in [6], where the vanishing viscosity limit is also studied, strongly relies on
the fact that the elastic structure does not touch the bottom of the fluid cavity.

1.1. The fluid-structure model. — We introduce now the damped coupled fluid–
structure system. We refer to this system as (FS)γ , where the subscript γ is used to
track the dependency with respect to the “viscosity” of the structure. The configura-
tion “at rest” of the fluid–structure system is assumed to be of the form (0, L)× (0, 1)

where the elastic structure occupies the part of the boundary (0, L) × {1}. The de-
formed fluid set is denoted by Fhγ(t). It depends on the structure vertical deformation
hγ = 1 + ηγ , where ηγ denotes the elastic vertical displacement. Thus, the deformed
fluid configuration reads:
(1.1) Fhγ(t) = {(x, y) ∈ R2 | 0 < x < L, 0 < y < hγ(t, x)}.

The deformed elastic configuration is denoted by

Γhγ(t) = {(x, y) ∈ R2 | x ∈ (0, L), y = hγ(t, x)}.

The fluid velocity uγ and the fluid pressure pγ satisfy the 2-D incompressible Navier–
Stokes equations in the fluid domain:

(1.2)
ρf (∂tuγ + (uγ · ∇)uγ)− div σ(uγ , pγ) = 0 in Fhγ(t),

divuγ = 0 in Fhγ(t),

where σ(uγ , pγ) denotes the fluid stress tensor given by the Newton law:

σ(uγ , pγ) = µ(∇uγ + (∇uγ)T )− pγI2.

In the previous equations ρf > 0 and µ > 0 are respectively the fluid density and
viscosity. The structure displacement ηγ satisfies a damped Euler–Bernoulli beam
equation:
(1.3) ρs∂ttηγ − β∂xxηγ − γ∂xx∂tηγ + α∂4

xηγ = φ(uγ , pγ , ηγ) on (0, L).

The constant ρs > 0 denotes the structure density and α, β, γ are non negative pa-
rameters. Through this paper we assume that α > 0. This restriction guarantees
sufficient regularity of the structure deformation in the compactness argument. The
reader shall note for instance that we need H1+κ ∩W 1,∞ regularity in space for the
deformation in Lemma 13.

The source term φ in the right-hand side of the beam equation arises from the
action–reaction principle between the fluid and the structure. It represents the force
applied by the fluid on the structure. It can be defined by the variational identity

(1.4)
∫ L

0

φ(uγ , pγ , ηγ) ·ϕ(x, hγ(t, x))e2 dx =

∫
Γhγ (t)

σ(uγ , pγ)nγ ·ϕ|Γhγ (t)
e2 dΓhγ(t),

for any regular test function ϕ and where nγ denotes the unit exterior normal to the
deformed interface:

nγ =
1√

1 + (∂xηγ)2

(
−∂xηγ

1

)
.

Since the fluid is viscous the following kinematic condition holds true at the interface

(1.5) uγ(t, x, hγ(t, x)) = ∂tηγ(t, x)e2 on (0, L)× (0, T ).

J.É.P. — M., 2021, tome 8
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We complement the fluid and structure boundary conditions with

(1.6)
uγ = 0 on (0, L)× {0},
ηγ and uγ are L-periodic with respect to x.

Note that the kinematic condition (1.5) together with the incompressibility constraint
of the fluid velocity imply that, by taking into account the boundary conditions (1.6),

(1.7)
∫ L

0

∂tηγ(t, x) dx = 0.

This condition states that the volume of the fluid cavity is preserved. It implies that
the pressure pγ is uniquely determined in contrast with classical fluid–solid interaction
problems. Finally the fluid–structure system is completed with the following initial
conditions

(1.8)
ηγ(0) = η0

γ and ∂tηγ(0) = η1
γ in (0, L),

uγ(0) = u0
γ in Fh0

γ
with h0

γ = 1 + η0
γ .

Remark 1. — As already noted in [4], due to the incompressibility constraint and the
only transverse displacement of the beam(

(∇uγ)T · nγ
)

2
= 0, on Γhγ(t).

It implies that the force applied by the fluid on the beam can be defined as follows∫ L

0

φ(uγ , pγ , ηγ) · ϕ(x, hγ(t, x))e2 dx =

∫
Γhγ (t)

(∇uγ − pγI2)nγ · ϕ|Γhγ (t)
e2 dΓhγ(t).

For the same reason, a Korn equality also holds true∫
Fhγ (t)

|∇uγ + (∇uγ)T |2 = 2

∫
Fhγ (t)

|∇uγ |2.

The fluid–structure system (1.2)–(1.8) is denoted by (FS)γ and (FS)0 corresponds
to the system with γ = 0 for which we are going to prove the existence of a global weak
solution. The case where γ > 0 is the one considered in [7]. It is proved therein that
the structure does not touch the bottom of the fluid cavity, namely minx∈(0,L)(1 +

ηγ(t, x)) > 0, for all t, implying the existence of a unique global strong solution. In
the case γ = 0, it is proved in [6, 14] that a weak solution exists as long as the
structure does not touch the bottom of the fluid cavity. In this paper, we investigate
the vanishing viscosity limit (i.e., γ → 0) and prove the convergence, up to the
extraction of a subsequence, of the sequence of strong solutions (uγ , ηγ) solutions
of (FS)γ defined on any time interval (0, T ) towards (u, η) a weak solution (to be
properly defined later on) of (FS)0. Note that at the limit we loose the no contact
property and have only: minx∈(0,L)(1 + η(t, x)) > 0, for all t. One key issue is thus to
define an appropriate framework in case of contact. Moreover, and as it is standard for
this kind of fluid–structure coupled problem, another important difficulty comes from
the obtention of strong compactness of the approximate velocities. Such a property is
mandatory in order to pass to the limit in the convective terms.
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To conclude this introductory part, we point out that we do not address here
the uniqueness of solutions. One reason is the lack of contact dynamics that should
be added in case of contact. In particular, for our definition of weak solutions, the
structure velocity in contact points is not defined, moreover, the associated test-
functions are required to have support far from the contact points (see Remark 22).
Hence, it is likely that our definition of weak solution below allows various rebounds
of the elastic structure in case of contact (and consequently various solutions), one (or
several) of these solutions coming from the construction process we consider herein.
This issue is now well-identified in the fluid–solid framework [17].

The rest of the paper splits into two sections. In the next section, we introduce and
analyze a functional setting, we give the definition of weak solutions and state the
main result. The last section is devoted to the proof of the existence result following
standard steps: construction of a sequence of approximate solutions, derivation of
compactness properties, passage to the limit. In the appendix, detailed proof of a
technical lemma is given.

2. Problem setting

In this section we first recall the energy estimates satisfied by any regular enough
solution of the coupled problem. We then construct functional spaces and introduce
a notion of weak solution relying on these energy estimates and that are compatible
with a contact. Finally, we provide the rigorous statement of our main result and
some technical lemma necessary to the following analysis.

2.1. Energy estimates. — Let γ > 0 and assume that (uγ , ηγ) is a classical solution
to (FS)γ . Let then multiply the first equation of Navier–Stokes system (1.2) by the
fluid velocity uγ and integrate over Fhγ(t). Let also multiply the beam equation (1.3)
with the structure velocity ∂tηγ and integrate over (0, L). By adding these two contri-
butions, after integration by parts in space—and by taking into account the coupling
conditions (definition (1.4) of φ and the kinematic condition (1.5)), the boundary con-
ditions (1.6) together with the incompressibility constraint and Remark 1—we obtain

(2.1) 1

2

d

dt

(
ρf

∫
Fhγ (t)

|uγ(t,x)|2 dx + ρs

∫ L

0

|∂tηγ(t, x)|2 dx

+ β

∫ L

0

|∂xηγ(t, x)|2 dx+ α

∫ L

0

|∂xxηγ(t, x)|2 dx

)
+ γ

∫ L

0

|∂txηγ(t, x)|2 dx+ µ

∫
Fhγ (t)

|∇uγ(t,x)|2 dx = 0.

Note that we have used here that the set Fhγ(t) moves with the velocity field uγ
thanks to the equality of velocities at the interface (1.5), that implies∫

Fhγ (t)

(∂tuγ(t,x) + (uγ(t,x) · ∇)uγ(t,x)) · uγ(t,x) dx =
1

2

d

dt

∫
Fhγ (t)

|uγ(t,x)|2 dx.

J.É.P. — M., 2021, tome 8



938 J.-J. Casanova, C. Grandmont & M. Hillairet

For t > 0, integrating (2.1) over (0, t) leads to

(2.2) 1

2

(
ρf

∫
Fhγ (t)

|uγ(t,x)|2 dx + ρs

∫ L

0

|∂tηγ(t, x)|2 dx

+ β

∫ L

0

|∂xηγ(t, x)|2 dx+ α

∫ L

0

|∂xxηγ(t, x)|2 dx

)
+ γ

∫ t

0

∫ L

0

|∂txηγ(s, x)|2 dxds+ µ

∫ t

0

∫
Fhγ (s)

|∇uγ(s,x)|2 dx ds

=
1

2

(
ρf

∫
Fh0γ

|u0
γ |2 dx + ρs

∫ L

0

|η1
γ |2 dx+ β

∫ L

0

|∂xη0
γ |2 dx+ α

∫ L

0

|∂xxη0
γ |2 dx

)
.

As a consequence, we observe that, if (u0
γ , η

1
γ , η

0
γ) are such that the right-hand side

of (2.2) is uniformly bounded with respect to the viscosity parameter γ > 0, we have
in particular

ηγ is uniformly bounded in L∞(0, T ;H2
] (0, L)) ∩W 1,∞(0, T ;L2

] (0, L)),

where the subscript ] denotes spaces of periodic functions with respect to x. Thus
the associated interface displacements (ηγ)γ>0 are uniformly bounded at least in
C 0([0, T ]; C 1

] (0, L)) thanks to the compact embedding

(2.3) L∞(0, T ;H2
] (0, L)) ∩W 1,∞(0, T ;L2

] (0, L)) ↪−→ C 0,1−s([0, T ]; C
1,2s−3/2
] (0, L)),

that holds for 3/4 < s < 1. Then, there exists M > 0 depending on the initial data
and independent of γ such that

(2.4) 0 6 1 + ηγ(t, x) 6M, ∀ (t, x) ∈ [0, T ]× [0, L], ∀ γ > 0.

Finally, to define our functional setting, we rely below on the assumption that the
initial data (u0, η1, η0) associated to (FS)0 do satisfy the assumption that the right-
hand side of (2.2) is finite (for γ = 0). So that we have at-hand an upper boundM > 0

for the structure deformation h = 1 + η for any physically reasonable solution. The
above computations show also that, up to a good choice of regularized initial data
the same functional framework can be used to describe the solutions to the damped
system (FS)γ (for γ > 0).

2.2. Functional spaces. — We design now a functional framework compatible with
possible contact between the structure and the bottom of the fluid cavity. The param-
eter M > 0 is fixed in the whole construction.

Given a non-negative function h ∈ C 1
] (0, L) such that 0 6 h 6 M we recall that

we denote:
Fh = {(x, y) ∈ R2 | 0 < x < L, 0 < y < h(x)}.

In case h vanishes two crucial difficulties appear. First, the set Fh does not re-
main connected (see Figure 1, the domain below the graph splits into a connected
component between the red dots and a connected component outside the red dots).
In particular, if h is the deformation of a structure associated with a solution (u, p, η)

J.É.P. — M., 2021, tome 8



On an existence theory for a fluid-beam problem encompassing possible contacts 939

to (FS)0, we may expect that the condition (1.7) must be satisfied on each time-
dependent connected component of the subset {x ∈ (0, L) | h(x) > 0} and not only
globally on (0, L). Secondly, the boundaries of Fh contain at least one “cusp” so that
it does not satisfy the cone property (see [1]). As a consequence, one must be careful
in order to define a trace operator on H1(Fh).

0 L
• •

h(x)

Figure 1. Example of a set with two “cusps”.

To overcome the second difficulty, we adapt the construction done in the context of
fluid–solid problems in [16]. Namely, we extend the fluid velocity fields—by taking into
account their trace on the structure—on a time–independent domain whose regularity
does not suffer from possible contacts.

First, let us make precise some specific notations for the various domains used
in the analysis. We introduce a virtual container Ω = (0, L) × (−1, 2M). This set
contains a part of the substrate ((x, y) ∈ (0, L)× (−1, 0)), the fluid film ((x, y) ∈ Fh)
and a virtual medium containing an extension of the structure (what remains of Ω).
Correspondingly, we also introduce three kinds of subsets of Ω. Given a continuous
positive function h we define first a subgraph domain (containing the substrate and
the fluid film)

F−h = {(x, y) ∈ R2 | 0 < x < L, −1 < y < h(x)},

then the epigraph domain (corresponding to the virtual elastic medium)

Sh = {(x, y) ∈ R2 | 0 < x < L, h(x) < y < 2M}.

Finally, for the analysis, we need also more general sets. Given a, b : (0, L)→ R such
that a 6 b, we also define the set

Ωba = {(x, y) ∈ R2 | 0 < x < L, a(x) < y < b(x)}.

We emphasize that there is some overlap between these notations. In particular,
Ω,Fh,F

−
h ,Sh can be seen as particular cases of sets of the form Ωba.

For the study of non cylindrical time-dependent problems, we also need notations
for space-time domains. We use the convention that notations for time-independent
domains extend to the time-dependent case by adding a hat. More precisely,

J.É.P. — M., 2021, tome 8
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we denote Ω̂ = (0, T )× Ω and

F̂h =
⋃

t∈(0,T )

{t} ×Fh(t), F̂−h =
⋃

t∈(0,T )

{t} ×F−h(t),

Ŝh =
⋃

t∈(0,T )

{t} ×Sh(t), Ω̂ba =
⋃

t∈(0,T )

{t} × Ω
b(t)
a(t),

where h, a, b : (0, T )× (0, L)→ R are such that h(t, x) > 0 and a(t, x) 6 b(t, x) for all
(t, x) ∈ (0, T )× (0, L). We will also denote by nh the vector

nh =
1√

1 + (∂xh)2

(
−∂xh

1

)
.

With these notations for the different sets, we introduce functional spaces to which
our weak solutions will belong. The definition of these spaces is based on the following
construction. Let us first introduce an extension operator:

Definition 2. — Assume that h ∈ C 0
] (0, L) with 0 6 h 6 M . Let v ∈ L2

] (Fh) and
d ∈ L2

] (0, L), we define the extension operator by

v =


de2, in Sh,

v, in Fh,

0, in Ω0
−1.

Remark 3. — By construction, this extension operator defines a vector field v ∈
L2
] (Ω). In the previous definition the used symbol v involves only v while the con-

struction depends also on d. In what follows, this choice is justified as we consider
functions v and d satisfying the relation v|y=h = de2, where v|y=h denotes the func-
tion x 7→ v(x, h(x)) on (0, L).

More precisely, when there is no contact this extension operator enjoys the following
properties:

Lemma 4. — Assume that h ∈ W 1,∞
] (0, L) with 0 < h(x) 6 M for x ∈ [0, L] and let

s ∈ (0, 1).
(1) If s > 1/2 and v ∈Hs

](Fh) is divergence free with v|y=0 = 0, and v|y=h = de2

with d ∈ Hs
] (0, L), we have that

v ∈Hs(Ω), div v = 0 in Ω, v · e1 = 0 in Sh.

(2) If 0 6 s < 1/2 and v ∈ Hs
](Fh) is divergence free with v · e2 = 0 on y = 0,

and v|y=h · nh = (0, d)T · nh on (0, L) with d ∈ Hs
] (0, L), we have that:

v ∈Hs(Ω), div v = 0 in Ω, v · e1 = 0 in Sh.

(3) In both cases 0 6 s < 1/2 and s > 1/2 the extension operator is a bounded
linear mapping of its arguments whose norm can be bounded with respect to M only:

‖v‖Hs(Ω) 6 C(M)
(
‖d‖Hs] (0,L) + ‖v‖Hs(Fh)

)
.

J.É.P. — M., 2021, tome 8



On an existence theory for a fluid-beam problem encompassing possible contacts 941

Proof. — We note that in both cases v is by construction piecewisely divergence free
and belongs to Hs (in the sets Sh, Fh, Ω0

−1). Consequently, in case (2) the extension
is straightforwardly in Hs(Ω). Only the continuity of normal traces is required to
yield a global divergence free vector field. In Case (1) we require continuity of the full
trace to obtain an Hs(Ω) vector field. �

Remark 5
(i) In the case minx∈[0,L] h(x) > 0, we may extend vector fields defined on F−h with

a similar bar-operator. Then, similar results for this extension operator hold true.
(ii) In Lemma 4 and in what follows, in order to avoid to denote the trace by the

classical symbol γ, which is reserved here to the added viscosity on the structure, we
denote by v|y=h the trace of v defined as v|y=h(x) = v(x, h(x)). We note that when
h(x) > 0 for all x ∈ [0, L], the associated linear trace operator is well-defined from
H1
] (Fh) into H1/2

] (0, L). In the case where h(x) > 0 for all x ∈ [0, L] it is well-defined
from H1

] (F−h ) into H1/2
] (0, L). It is easy to verify that

(2.5) ‖v|y=h‖H1/2
] (0,L)

6 C(‖h‖W 1,∞
] (0,L))‖v‖H1

] (F−h ).

Consequently, for a W 1,∞
] (0, L)-function h satisfying 0 6 h(x) 6 M , for x ∈ [0, L]

and for s ∈ (0, 1), we set

Ks[h] = {v ∈Hs
](Ω) | div v = 0 in Ω, v = 0 in Ω0

−1, v · e1 = 0 in Sh},(2.6)
Xs[h] = {(w, d) ∈ Ks[h]× (H2s

] (0, L) ∩ L2
],0(0, L)) | w2|(0,L)×{M} = d},(2.7)

where
L2
],0(0, L) =

{
d ∈ L2

] (0, L) |
∫ L

0
d = 0

}
.

When s = 0 we denote K[h] = K0[h] and X[h] = X0[h].
Under the assumptions of Lemma 4 we have that v ∈ Ks[h] and (v, d) ∈ Xs[h] in

both cases s ∈ (0, 1/2) and s ∈ (1/2, 1). We emphasize that, for any v ∈ K[h], the
divergence free condition implies that the trace on (0, L)× {M} of v2 = v · n has a
sense in H−1/2

] (0, L). Similarly v|y=h ·nh also makes sense in H−1/2
] (0, L). Following

the construction of the extension operator above, one expects this trace to represent
the structure velocity.

Correspondingly, we introduce smooth variants of these functional spaces K [h]

and X [h] defined by

K [h] =
{
w ∈ C∞] (Ω) | divw = 0 in Ω, w = 0 in V (Ω0

−1),(2.8)
w · e1 = 0 in V (Sh)

}
,

X [h] = {(w, d) ∈ K [h]× C∞] (0, L) | w2|(0,L)×{M} = d}.(2.9)

Here, we used“in V (O)” as a shortcut for the statement “in a neighbourhood of the
open set O”. Notations with calligraphic fonts will be involved in the definition of
weak solutions as spaces for test-functions.

J.É.P. — M., 2021, tome 8



942 J.-J. Casanova, C. Grandmont & M. Hillairet

Before defining the weak solutions, we now verify that the previous coupled spaces
encode the fluid–structure nature of the problem and behave correctly (from an ana-
lytical standpoint). Once again, h stands for a non-negative W 1,∞-function satisfying
0 6 h 6M . The space X[h] is endowed with the scalar product

(2.10) 〈(u, η̇), (w, d)〉X[h] := ρf

∫
Ω

u ·w + ρs

∫ L

0

η̇d,

and we endow the spaces Xs[h] with a Hilbert structure associated with the norms

‖(w, d)‖Xs[h] = ‖w‖Hs(Ω) + ‖d‖H2s(0,L).

For s = 0 this Hilbert-norm does not correspond to the scalar product as defined in
(2.10) but the topologies are equivalent since ρf and ρs are both positive.

In order to prove the fluid–structure property, we show in the following lemma
that, in the “virtual medium”, the velocity-fields in X[h] coincide with a structure
velocity.

Lemma 6. — Let v ∈ K[h]. There exists d ∈ L2
] (0, L) such that v = de2 in Sh.

Proof. — By definition we have v = (0, v2)> in Sh. Moreover, the divergence condi-
tion div v = ∂yv2 = 0 in Sh, implies that v2(x, y) = v2(x) in Sh. Since v ∈ L2

] (Ω)

and 0 6 h(x) 6M, ∀x ∈ [0, L], we have v2 ∈ L2
] (0, L). �

Given a divergence free w ∈ L2
] (Ω) it is classical that we can construct a stream

function Ψ ∈ H1
] (Ω) such that w = ∇⊥Ψ. We show in the following lemma some

additional properties satisfied by the stream function of an extended-field in K[h]:

Lemma 7. — Let (w, d) ∈ X[h] and set I = {x ∈ [0, L] | h(x) > 0}. There exists
Ψ ∈ H1

] (Ω) such that w = ∇⊥Ψ which furthermore satisfies
– Ψ(x, y) = b(x) in Sh with b ∈ H1

] (0, L) ∩H1
0 (I) and d = ∂xb;

– Ψ = 0 in Ω0
−1;

– Ψ = 0 in Ic × (−1, 2M).

Proof. — We note that Ψ is defined up to an additive constant. However, in Ω0
−1 we

have w = 0, so that we fix this constant by choosing Ψ = 0 in Ω0
−1. Then, due to

the previous lemma w|(0,L)×{M} = de2 and the identity w = de2 holds in Sh. Thus
∂xΨ = d in Sh and Ψ(x, y) = b(x) in Sh, where b ∈ H1

] (0, L) satisfies ∂xb = d.
Remark that the L-periodicity of b is ensured by

∫ L
0
d(s) ds = 0.

Concerning the last point of the lemma, we emphasize that, since Ψ ∈ H1
] (Ω),

its trace is well-defined on vertical lines x = cst. Consequently, the value of Ψ on
Ic×(−1, 2M) is well-defined, whatever the topological properties of Ic are. Now, given
a ∈ Ic (assuming Ic is non-empty), we have h(a) = 0 (by definition of Ic). The identity
Ψ(x, y) = b(x) in Sh, with b ∈ H1

] (0, L), implies that Ψ ∈ C 0
] (Sh). In particular, Ψ is

equal to a constant b(a) on {a} × (−1, 2M). Moreover, the function Ψ is equal to 0

on Ω0
−1. Finally, applying by a trace argument that Ψ ∈ H1/2({a} × (−1, 2M)) and
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using for example the following definition of the H1/2-norm

‖Ψ‖2H1/2({a}×(−1,2M)) =

∫
{a}×(−1,2M)

Ψ2

+

∫
{a}×(−1,2M)

∫
{a}×(−1,2M)

|Ψ(a, x)−Ψ(a, y)|2

|x− y|2
,

we get that the trace of Ψ cannot “jump” in y = 0. Therefore, we have b(a) = 0 and
Ψ = 0 on {a} × (−1, 2M). �

Reproducing the arguments of the proof with first-order derivatives, we note that,
in case (w, d) ∈ X[h]∩ (K1[h]×H1

] (0, L)), the stream function Ψ—that we construct
in the above lemma—satisfies moreover:

– b ∈ H2
0 (I)

– Ψ ∈ H2
] (Ω) with ∇Ψ = 0 on Ic × (−1, 2M).

We conclude this preliminary analysis of the space X[h] by showing that we have
density of smooth vector fields in X[h]. This is made precise in the following lemma:

Lemma 8. — The embedding X[h] ∩ (C∞] (Ω)× C∞] (0, L)) ⊂ X[h] is dense.

Proof. — The difficulty of this proof is to deal with the case where h has zeros. The
main idea is to work with the stream function of the extended vector field. If we
had h(x) > 0, for all x ∈ [0, L], a contraction in y and a standard truncation and
regularization argument on the stream function can be used. In the case where h has
zeros, one first cuts off the zeros of h and then takes advantage of the better regularity
of Ψ on the structure. A detailed proof is given in the appendix. �

Correspondingly to the previous remark, we also have density of
X[h] ∩ (C∞] (Ω)× C∞] (0, L))

in X[h] ∩ (K1[h]×H1
] (0, L)) endowed with the K1[h]×H1

] (0, L) topology.

2.3. Weak solutions and main result. — In this section we introduce first our weak
formulation of (FS)γ .

We assume that the initial conditions (u0, η0, η1) satisfy
η0 ∈ H2

] (0, L) with min
x∈[0,L]

(1 + η0) > 0,(2.11)

(u0, η1) ∈ L2
] (Fh0)× L2

],0(0, L),(2.12)
divu0 = 0 in Fh0 ,(2.13)

u0 · n0 = 0 on (0, L)× {0} and u0(·, h0(·)) · n0 = (0, η1(·))T · n0 on (0, L).(2.14)

We can then define M > 0 by (2.4) and construct the associated Ω. We have the
following definition for a weak solution to (FS)γ :

Definition 9. — Let (u0, η0, η1) satisfying (2.11)–(2.13) and γ > 0. We say that a
pair (uγ , ηγ) is a weak solution to (FS)γ if it satisfies the following items:

(i) (uγ , ηγ) ∈ L∞(0, T ;L2
] (Ω))×

(
L∞(0, T ;H2

],0(0, L))∩W 1,∞(0, T ;L2
] (0, L))

)
with

(uγ(t), ∂tηγ(t)) ∈ X[hγ(t)] for a.e. t ∈ (0, T ), ∇uγ ∈ L2(F̂−hγ ),
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(ii) the kinematic condition

uγ(t, x, 1 + ηγ(t, x)) = ∂tηγ(t, x)e2 on (0, T )× (0, L),

(iii) For any (wγ , dγ) ∈ C∞]

(
Ω̂
)
× C∞] ([0, T ] × [0, L]) such that (wγ(t), dγ(t)) ∈

X [hγ(t)] for all t ∈ [0, T ] we have for a.e. t ∈ (0, T )

(2.15) ρf

∫
Fhγ (t)

uγ(t) ·wγ(t)− ρf
∫ t

0

∫
Fhγ (s)

uγ · ∂twγ + (uγ · ∇)wγ · uγ

+ ρs

∫ L

0

∂tηγ(t)dγ(t)− ρs
∫ t

0

∫ L

0

∂tηγ∂tdγ + µ

∫ t

0

∫
Fhγ (s)

∇uγ : ∇wγ

+ β

∫ t

0

∫ L

0

∂xηγ∂xdγ + α

∫ t

0

∫ L

0

∂xxηγ∂xxdγ + γ

∫ t

0

∫ L

0

∂xtηγ∂xdγ

= ρf

∫
Fh0

u0 ·wγ(0) + ρs

∫ L

0

η1dγ(0),

where uγ = uγ |F̂hγ
.

The regularity statements in the first item of the definition comes from the energy
estimate (2.2) while the weak formulation (2.15) is obtained classically by multiplying
the fluid equation (1.2) with wγ and the beam equation (1.3) with dγ and performing
formal integration by parts. As usual for this type of fluid–structure problem, the
test functions depend on the solution and thus on the parameter γ, adding further
nonlinearity to the system.

We recall that, from [4], [6], there exists a weak solution for γ > 0 as long as the
beam does not touch the bottom of the fluid cavity. If γ > 0 again and the initial
data are smooth enough, it is also proved in [7] that there exists a unique global in
time strong solution such that minx∈[0,L] hγ(t, x) > 0 for all t > 0. The main result of
this paper is stated in the following theorem

Theorem 10. — Let ρf > 0, ρs > 0, µ > 0, β > 0 and α > 0. Suppose that T > 0

and that the initial conditions (u0, η0, η1) satisfy (2.11)–(2.14).
Then (FS)0 has a weak solution (u, η) on (0, T ). This solution satisfies furthermore

for a.e. t ∈ (0, T )

(2.16) 1

2

(
ρf

∫
Fh(t)

|u(t,x)|2 dx + ρs

∫ L

0

|∂tη(t, x)|2 dx

+ β

∫ L

0

|∂xη(t, x)|2 dx+ α

∫ L

0

|∂xxη(t, x)|2 dx

)
+ µ

∫ t

0

∫
Fh(s)

|∇u(s,x)|2 dx ds

6
1

2

(
ρf

∫
Fh0

|u0|2 dx + ρs

∫ L

0

|η1|2 dx+ β

∫ L

0

|∂xη0|2 dx+ α

∫ L

0

|∂xxη0|2 dx

)
.

Before detailing the proof of this result, we shall comment on the choice of test
functions and the relations with a strong formulation of (FS)γ , in particular in the
case where contacts occur. Since we focus on the construction of weak solutions,
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we stick here to a short description of formal arguments. Before contact (i.e., as long
as minx∈[0,L] hγ(t, x) > α for some α > 0), we claim that our definition coincides
with the definition of [4] and that the solutions constructed in [7] for smooth data
match our definition also. In particular in this case we can choose test functions such
that (wγ(t), dγ(t)) ∈ X1[hγ(t)]. Before contact, we recover (1.2)–(1.3) from the weak
formulation using a classical argument. First, we may take as test functions the vector
fields wγ ∈ C∞c (Ω̂) with d = 0 and we recover (1.2) with a zero mean pressure p by
adapting an argument of de Rham. Assuming that (uγ , pγ) is sufficiently smooth—to
be able to define σ(uγ , pγ)nγ on Γhγ—we can also recover the beam equation (1.3)
with the following construction that enables to extend structure test functions in the
fluid domain

Definition 11. — Let λ > 0 and ζ ∈ C∞(R) such that 1[1,∞) 6 ζ 6 1[1/2,∞). Given
d ∈ L2

],0(0, L), we define

Rλ(d)(x, y) = ∇⊥(b(x)ζ(y/λ)) ∀ (x, y) ∈ Ω,

where b ∈ H1
] (0, L) ∩ L2

],0(0, L) satisfies ∂xb = d.

We note that the above construction is well-defined since d is chosen to be mean
free. We do not include the dependence on ζ in the name of our operator since it
will be a given fixed function throughout the paper. The present lifting operator is a
variant of the one introduced in [4]. It enjoys the following straightforward properties:

Lemma 12. — Let λ > 0 and h ∈W 1,∞
] (0, L) satisfying λ 6 h(x) 6M,∀x ∈ [0, L].

(1) Rλ is a linear continuous mapping from Hs
] (0, L) ∩ L2

] (0, L) into Ks[h] for
arbitrary s ∈ [0, 1].

(2) Rλ maps C∞] (0, L) ∩ L2
],0(0, L) into K [h].

Consequently, before contact, for any arbitrary structure test function

dγ ∈ C∞] (0, L) ∩ L2
],0(0, L)

we may consider
wγ := Rλ[dγ ] ∈ C∞] (Ω̂),

so that (wγ , dγ) is an admissible test function in our weak formulation. Classical
integration by parts argument then enables to recover the structure equation (1.3)
multiplied by dγ . We note that, in this way, we recover (1.3) up to a constant (indeed
the test function dγ is mean free), but this constant mode corresponds to the choice of
the constant normalizing the pressure in order to match the global volume preserving
constraint (1.7).

When contact occurs, we recover a similar set of equations, assuming, once again,
that the solution is sufficiently regular. Let us consider for instance a simplified con-
figuration such that, on some time interval (T0, T1) there exist C 1-functions (a−k , a

+
k ) :

(T0, T1)→ R2 (k ∈ N) such that

{(t, x) ∈ (T0, T1)× (0, L) | hγ(t, x) > 0} =
⋃
k∈N

⋃
t∈(T0,T1)

{t} × (a−k (t), a+
k (t)).
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In that case, we can reproduce similar arguments developed in the no contact case to
recover the Navier–Stokes equations and the structure equations in each connected
component of the fluid domain. More precisely, we introduce

F̂k := {(t, x, y) ∈ (T0, T1)× (0, L)× (0,M) | a−k (t) < x < a+
k (t), 0 < y < hγ(t, x)},

Γ̂k := {(t, x) ∈ (T0, T1)× (0, L) | a−k (t) < x < a+
k (t)}.

First, by using that uγ is divergence free on F̂k we obtain∫ a+k (t)

a−k (t)

∂tηγ = 0.

Second, by taking as a fluid test function a velocity field wγ with compact support
in F̂k, we construct a pressure pk,γ on F̂k so that (1.2) holds true. We recall that, at
this point, pk,γ is defined up to a constant. The global pressure pγ is then constructed
by concatenating all the (pk,γ)k to yield a pressure on F̂hγ (that is defined up to
a number of constants related to the number of parameters k). Third, we consider
a mean free structure test function dγ ∈ C∞c (Γ̂k). Since dγ has compact support in
the open set where hγ > 0, hγ is bounded from below by some αk > 0 on Γ̂k. So,
instead of choosing the mean free anti-derivative bγ of the structure test function dγ
in the definition of Rαk , we choose the one that vanishes outside the support of dγ . In
that way, we construct a test function wγ such that (wγ , dγ) is adapted to our weak
formulation. So, we obtain (1.3) on Γ̂k up to a constant which is afterward fixed by a
suitable choice of the pressure on F̂k. Note that the structure equation is recovered on
each component Γ̂k and not on the whole interval (0, L) and that the pressure is again
uniquely defined but that there are more constants to fix than in the no contact case.
To end up this remark, we emphasize that when minx∈[0,L] hγ(t, x) > 0,∀ t ∈ [0, T ],
the test functions can be chosen in X[hγ(t)]. Moreover if minx∈[0,L] hγ(t, x) > 0 the
elastic test functions can be chosen independent of the solution and thus independent
of the regularization parameter γ (see [4]). It is not the case when a contact occurs
since, as we saw in the previous construction, we require dγ = 0 in a neighbourhood
of the contact points.

We end this part by giving a road map of our proof of Theorem 10. To obtain
a solution of the variational problem for γ = 0 we consider the approximate fluid–
structure system (FS)γ with a viscosity γ > 0. From [8, Th. 1] this fluid–structure
system (FS)γ , completed with regularized initial conditions (u0

γ , η
0
γ , η

1
γ), admits a

unique strong solution (uγ , pγ , ηγ) such that minx∈[0,L] hγ(t, x) > 0. It ensures that
the existence time interval does not depend on γ. Moreover, this solution satisfies
the energy equality (2.2), and thus one can extract converging subsequences. We may
then consider one cluster point of this sequence and show that this is a weak solution
to (FS)0. One key point here is that strong compactness of the approximate velocity
fields is needed to pass to the limit in the convective nonlinear terms. The classical
Aubin–Lions lemma does not apply directly because of the time-dependency of fluid
domains and of the divergence free constraint. Many different strategies may be used
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to handle this difficulty [5, 6, 10, 13]. Here we follow the line of [16] where the existence
of weak solutions for a fluid–solid problem beyond contact is proved. We first obtain
compactness of a projection of the fluid and structure velocities. Roughly speaking the
idea is to obtain compactness on fixed domains independent of time and of γ. So, we
define an interface satisfying 0 6 h 6 hγ , which is regular enough and “close” to hγ
for all γ small enough and we prove compactness of the projections of the velocity
fields on the coupled space associated to h. We recover the compactness of the velocity
fields by proving some continuity properties of the projection operators with respect
to h. In particular we prove that Xs[h] is a good approximation space of Xs[h] in Hs

for some s > 0 whenever h is close to h. This part of the proof is purely related to the
definition of the spaces X[h]. Consequently we detail the arguments as preliminaries
in the next subsection. We emphasize again that, since one may loose the no contact
property at the limit, this study on the compactness of approximate velocity fields
requires specific constructions. Once compactness is obtained, we pass finally to the
limit in the weak formulation. Again, as contact may occur in the limit problem,
we cannot follow [4] to construct a dense family of test functions independent of γ to
pass to the limit.

2.4. On the h-dependencies of the spaces Xs[h]. — In this section, we analyze the
continuity properties of the sets Xs[h] with respect to the parameter h. To start with,
we remark that, given h ∈ C 0

] (0, L) satisfying 0 6 h 6M the space Xs[h] is a closed
subspace of

Xs := Hs
](Ω)×H2s

] (0, L).

We can then construct the projector Ps[h] : Xs → Xs[h]. We analyze in this section
the continuity properties of these projectors with respect to the function h. Our main
result is the following lemma:

Lemma 13. — Fix κ such that 0 < κ < 1/2. Let h and h belong to H1+κ
] (0, L) ∩

W 1,∞
] (0, L) with 0 6 h 6 h 6M and set

(2.17) ‖h‖H1+κ
] (0,L) + ‖h‖W 1,∞

] (0,L) + ‖h‖H1+κ
] (0,L) + ‖h‖W 1,∞

] (0,L) 6 A.

Let s ∈ [0, κ/2) and (w, η̇) ∈ Xs[h] enjoying the further property

w|F−h
∈H1

] (F
−
h ).(2.18)

Then, the following estimate holds true:

(2.19) ‖Ps[h](w, η̇)− (w, η̇)‖Xs 6 CA(‖h− h‖W 1,∞
] (0,L)) ‖w‖H1

](F
−
h ),

where CA(x) →
x→0

0.

Proof. — The idea is to construct (v, b) ∈ Xs[h] such that

(2.20) ‖(v, d)− (w, η̇)‖Hs
](Ω)×H2s

] (0,L) 6 CA(‖h− h‖W 1,∞
] (0,L)) ‖w‖H1

](F
−
h ).
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The inequality (2.19) then follows from the minimality property of the projection.
The proof is divided in five steps. The two first ones are devoted to the construction
of (v, d). The latter ones concern the derivation of (2.20).

Step 1. Geometrical preliminaries. — Before going to the construction of a candidate
(v, d) we define and analyze a change of variables χ that maps F−h on F−h . For
(x, y) ∈ Ω, we set

χ(x, y) = (x,m(x)(y + 1)− 1) , where m(x) =
h(x) + 1

h(x) + 1
.

Clearly, χ realizes a one-to-one mapping between F−h and F−h . Thanks to the regu-
larity assumptions on h and h, we remark that m ∈W 1,∞

] (0, L) ∩H1+κ
] (0, L)—since

both spaces are algebras—and that χ ∈W 1,∞
] (Ω).

For the definition of v, we shall transform w into a vector field wχ satisfying wχ ·
e1 = 0 on Sh. To preserve simultaneously that wχ is divergence free, one multiplies,
in a standard way, the vector field by the cofactor of ∇χ. So, we now analyze the
multiplier properties of Cof(∇χ)>. First, we have

Cof(∇χ)> =

(
m(x) 0

−∂xm(x)(y + 1) 1

)
∈ L∞] (Ω) ∩Hκ

] (Ω).

Then, straightforward computations yield

(2.21) ‖m− 1‖W 1,∞
] (0,L) 6 CA‖h− h‖W 1,∞

] (0,L),

so that,

(2.22) ‖Cof(∇χ)> − I2‖L∞] (Ω) 6 CA ‖h− h‖W 1,∞
] (0,L),

with CA a constant depending only on the upper A defined by (2.17). Finally we
prove Hσ-estimates. To this end, we interpolate between L2 and Hκ. Estimate (2.22)
implies

‖Cof(∇χ)T − I2‖L2
](Ω) 6 CA ‖h− h‖W 1,∞

] (0,L).

Then, we remark that
‖m− 1‖H1+κ

] (0,L) 6 CA,

and that, for any given f , a and b regular functions defined on (0, L), there holds

(2.23) ‖f‖Hσ] (Ωba) 6 ‖a− b‖
1/2
L∞] (0,L) ‖f‖Hσ] (0,L),

for 0 6 σ 6 1. Consequently, we obtain also∥∥Cof(∇χ)> − I2
∥∥
Hκ
] (Ω)
6 CA ‖m− 1‖H1+κ

] (0,L).

Using interpolation between the L2 and the Hκ estimates finally leads to

(2.24)
∥∥Cof(∇χ)> − I2

∥∥
Hσ
] (Ω)
6 CA ‖h− h‖(κ−σ)/κ

W 1,∞
] (0,L)

,

for 0 6 σ 6 κ.
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Step 2. Construction of (v, d). — Let consider (w, η̇) ∈ Xs[h] enjoying the further
property

w|F−h
∈H1

] (F
−
h ).(2.25)

As mentioned previously, to define (v, d) we first construct an intermediate vector
field wχ obtained by the change of variables χ from w. However we note that χ does
not map Ω into Ω so that we must at first extend w for y > 2M . Namely, we set

w̃(x, y) =

{
w(x, y), if (x, y) ∈ Ω,

η̇(x)e2, if y > 2M.

This extension preserves the divergence free constraint. We next define

wχ = Cof(∇χ)>w̃ ◦ χ.

The Cof(∇χ)> factor ensures that wχ is also divergence free. Next we define (v, d)

as

(2.26) v =

{
wχ − wχ2 |y=0e2, in Ω2M

0 ,

0, in Ω0
−1,

d = η̇ − wχ2 |y=0.

The first step is to verify that (v, d) ∈ Xs[h], ∀ s < κ/2. First, by taking into account
assumption (2.25), since w̃ coincides with w in F−h , we have that w̃ ∈ H1

] (F−h ). Thus
since the change of variables χmaps F−h onto F−h , the above analysis of the regularity
of χ and of Cof(∇χ)> implies that wχ ∈ Hs

](F
−
h ), ∀ s < κ (see [9, Prop. B.1] ).

Moreover, by the change of variables, the boundary y = 0 is mapped to y = m − 1

which is lower than h and strictly greater that −1. Hence, the trace of w̃ ◦χ on y = 0

is well-defined and belongs to H1/2
] (0, L). But by definition we have

wχ2 |y=0 = −∂xm w̃1 ◦ χ|y=0 + w̃2 ◦ χ|y=0,

where ∂xm ∈ Hκ
] (0, L). Classical multiplier arguments thus imply that wχ2 |y=0 ∈

H2s
] (0, L) for any s < κ/2 and that

(2.27) ‖wχ2 |y=0‖H2s
] (0,L) 6 CA(‖h− h‖W 1,∞

] (0,L))‖w‖H1(F−h ),

where CA(x) →
x→0

0. Furthermore, we have by construction that

wχ = η̇e2 in Sh.

Consequently, thanks to the regularity of η̇ and the one obtained on wχ2 |y=0, we deduce
that v ∈ H2s(Sh) ⊂ Hs(Sh). Finally (v, d) ∈ Hs(Ω) ×H2s(0, L), for s < κ/2. Let
us now check the divergence free constraint and the fluid–structure velocity matching.
We have by construction that

divwχ = 0 in Ω.

Thus v satisfies
divv = 0 in Ω2M

0 and divv = 0 in Ω−1
0 .
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Since, by construction(v ·e2)|y=0 = 0, we obtain divv = 0 in Ω. Moreover, divwχ = 0

on C 0
−1 with wχ = 0 on y = −1. By integrating this divergence constraint we obtain

the condition ∫ L

0

wχ2 |y=0 = 0.

As a consequence, since η̇ ∈ L2
],0(0, L), we obtain d ∈ L2

],0(0, L).
We now check the remaining compatibility conditions of Xs[h]. For y > h, we have

v = (η̇ − wχ2 |y=0)e2 so that v satisfies

v · e1 = 0, on Sh , v2|y=M = d.

This ends the proof that (v, d) ∈ Xs[h].

Step 3. Splitting of ‖(w, η̇)− (v, d)‖Xs . — Let first remark that

v −wχ =

{
−wχ2 |y=0e2, in Ω2M

0 ,

−wχ, in Ω0
−1,

η̇ − d = wχ2 |y=0.

Consequently we have

‖(w, η̇)− (v, d)‖Xs 6 ‖(w, η̇)− (wχ, d)‖Xs + ‖wχ − v‖Hs
](Ω)

6 ‖w −wχ‖Hs
](Ω) + ‖wχ2 |y=0‖H2s

] (0,L)

+ ‖wχ2 |y=0e2‖Hs
](Ω

2M
0 ) + ‖wχ‖Hs

](Ω
0
−1).

Recalling (2.23) we obtain the bound

‖wχ2 |y=0e2‖Hs
](Ω

2M
0 ) 6

√
2M ‖wχ2 |y=0e2‖Hs

](0,L) 6
√

2M ‖wχ2 |y=0‖H2s
] (0,L).

Moreover, as w = 0 in Ω0
−1, we remark that an estimate on ‖wχ −w‖Hs(Ω) implies

an estimate on ‖wχ‖Hs(Ω0
−1). Finally (2.19) is implied by the following estimate

(2.28) ‖w −wχ‖Hs
](Ω) + ‖wχ2 |y=0‖H2s

] (0,L) 6 CA(‖h− h‖W 1,∞
] (0,L)) ‖w‖H1

](F
−
h ).

Thus we have to prove that w−wχ = w−Cof(∇χ)>w ◦χ and wχ2 |y=0 = −∂xm w1 ◦
χ|y=0 + w2 ◦ χ|y=0 can be estimated with respect to the difference h− h. This is the
aim of the two next steps respectively.

Step 4. Estimating w − wχ. — We estimate the difference w − wχ by considering
successively each of the subdomains of Ω: Sh, Ωhh, Fh, Ω0

−1.

Estimates in Sh. — In Sh, there holds w = η̇e2. By replacing in the definition, we
have also wχ = η̇e2 in Sh and since h > h we infer w −wχ = 0 in Sh.
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Estimates in Ωhh. — The identity wχ = η̇e2 still holds in Ωhh ⊂ Sh which leads to

w(x, y)−wχ(x, y) = w(x, y)−w(x, h(x)) =

∫ h(x)

y

∂yw(x, z) dz.

We obtain then

‖wχ −w‖2L2
](Ω

h
h) =

∫ L

0

∫ h(x)

h(x)

∣∣∣∣∫ h(x)

y

∂yw(x, z)dz

∣∣∣∣2 dy dx

6
∫ L

0

∫ h(x)

h(x)

‖h− h‖L∞] (0,L)

∫ h(x)

h(x)

|∂yw(x, z)|2 dz dy dx

6 ‖h− h‖2L∞] (0,L) ‖∇w‖
2
L2
](F

−
h )
.

Moreover,

‖wχ −w‖
H

1/2
] (Ωhh)

6 ‖wχ‖
H

1/2
] (Ωhh)

+ ‖w‖
H

1/2
] (Ωhh)

6 ‖wχ‖
H

1/2
] (Ωhh)

+ ‖w‖H1
](F

−
h ).

We have wχ = η̇e2 = w|y=h. Hence, recalling the trace continuity estimate (2.5),
we obtain

‖wχ‖
H

1/2
] (0,L)

6 CA ‖w‖H1
] (F−h ).

We conclude that

‖wχ −w‖
H

1/2
] (Ωhh)

6 CA ‖w‖H1
](F

−
h ),

and by interpolation with the previous L2-estimate, the following estimate inHs holds
true

(2.29) ‖wχ −w‖Hs
](Ω

h
h) 6 CA ‖h− h‖1−2s

W 1,∞
] (0,L)

‖w‖H1
](F

−
h ).

Estimates in Fh. — Consider the following splitting:

(2.30) wχ −w = Cof(∇χ)>(w ◦ χ−w) + (Cof(∇χ)> − I2)w.

Thanks to [9, Prop. B.1] we obtain, for s < s′ 6 κ (see (2.24) for the estimate of the
Hs′ -norm of the cofactor matrix):

‖(Cof(∇χ)> − I2)w‖Hs
](Fh) 6 CA ‖(Cof(∇χ)> − I2)‖Hs′

] (Ω) ‖w‖H1
](F

−
h )

6 CA ‖h− h‖(κ−s
′)/κ

W 1,∞
] (0,L)

‖w‖H1
](F

−
h ).

Here we use the continuity of the multiplication Hs′(F−h ) × H1(F−h ) → Hs(F−h ).
The continuity constant of this mapping may depend on h. But, by a standard change
of variables argument, we see that it depends increasingly on ‖h‖W 1,∞

] (0,L) only. This
constant thus depends on A only. We now take care of the first term of the right-hand
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side of (2.30). Let first note that we can bound the L2-norm of w ◦ χ−w as follows:∫ L

0

∫ h(x)

0

|w(χ(x, y))−w(x, y)|2 dy dx

=

∫ L

0

∫ h(x)

0

|w(x,m(x)(y + 1)− 1)−w(x, y)|2 dy dx

6
∫ L

0

∫ h(x)

0

∣∣∣∣∫ m(x)(y+1)−1

y

∂yw(x, z)dz

∣∣∣∣2 dy dx

6
∫ L

0

∫ h(x)

0

(m(x)− 1)(y + 1)

∫ m(x)(y+1)−1

y

|∂yw(x, z)|2 dz dy dx

6 (M + 1) ‖m− 1‖L∞] (0,L) ‖h‖L∞] (0,L) ‖∇w‖2L2
](F

−
h )
.

The previous estimate leads to

‖w ◦ χ−w‖L2
](Fh) 6

√
(M + 1)M ‖m− 1‖1/2L∞] (0,L) ‖w‖H1

](F
−
h )

6 CM ‖h− h‖1/2W 1,∞
] (0,L)

‖w‖H1
](F

−
h ).

Finally, since ‖Cof(∇χ)>‖L∞] (Fh) 6 CA, we deduce

(2.31) ‖Cof(∇χ)>(w ◦ χ−w)‖L2
](Fh) 6 CA ‖h− h‖

1/2

W 1,∞
] (0,L)

‖w‖H1
](F

−
h ).

Next we remark that w ◦ χ −w is bounded in H1
] (F

−
h ). Indeed w ∈ H1

] (F
−
h ) and

thus w ∈H1
] (F

−
h ). It implies also that w ◦χ ∈H1

] (Fh) since χ belongs to W 1,∞
] (Ω)

and maps F−h in F−h . Consequently, we have

‖w ◦ χ−w‖H1
](Fh) 6 ‖w ◦ χ‖H1

](Fh) + ‖w‖H1
](Fh) 6 CA ‖w‖H1

](F
−
h ).

Next, thanks to the fact that ‖Cof(∇χ)>‖Hκ
] (Fh) 6 CA (see (2.24)), we have, since

0 6 s < κ

(2.32)
‖Cof(∇χ)>(w ◦ χ−w)‖Hs

](Fh) 6 CA ‖Cof(∇χ)>‖Hκ
] (Ω) ‖w‖H1

](F
−
h )

6 CA ‖w‖H1
](F

−
h ).

By interpolating (2.31) and (2.32), we obtain

‖Cof(∇χ)>(w ◦ χ−w)‖Hs
](Fh) 6 CA(‖h− h‖W 1,∞

] (0,L)) ‖w‖H1
](F

−
h ).

To summarize the estimates in Fh we have proved that

(2.33) ‖wχ −w‖Hs
](Fh) 6 CA(‖h− h‖W 1,∞

] (0,L)) ‖w‖H1
](F

−
h ).

Estimates in Ω0
−1. — The functionw is equal to zero and we have to estimate onlywχ.

As previously we obtain a first bound in L2 involving CA(‖h−h‖W 1,∞
] (0,L))) and then

we prove that wχ is bounded in some Hs and we conclude using interpolation. For
the L2-norm we have

‖wχ‖L2
](Ω

0
−1) 6 ‖(Cof∇χ)>‖L∞] (Ω0

−1) ‖w ◦ χ‖L2
](Ω

0
−1),
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and

‖w ◦ χ‖2L2
](Ω

0
−1) =

∫ L

0

∫ 0

−1

|w(χ(x, y))|2 dy dx

=

∫ L

0

∫ m(x)−1

0

|w(x, y)|2 dy

m(x)
dx

6 (1 +M)

∫ L

0

∫ m(x)−1

0

∣∣∣∣∫ y

0

∂yw(x, z)dz

∣∣∣∣2 dy dx

6 (1 +M)

∫ L

0

∫ m(x)−1

0

y

∫ y

0

|∂zw(x, z)|2 dz dy dx

6
(1 +M)

2
‖m− 1‖2L∞] (0,L) ‖w‖

2
H1
](F

−
h )
.

Hence, using the estimates above with (2.21)–(2.22), we conclude

‖wχ‖L2
](Ω

0
−1) 6 CA ‖h− h‖W 1,∞

] (0,L) ‖w‖H1
](F

−
h ).

Moreover, for any 0 6 σ < κ, we have
‖wχ‖Hσ

] (Ω0
−1) 6 C1

∥∥(Cof∇χ)>
∥∥
Hκ
] (Ω0
−1)
‖w ◦ χ‖H1

](Ω
0
−1)

6 CA ‖w‖H1
](F

−
h ),

and using interpolation up to choose σ ∈ (s, κ)

‖wχ‖Hs
](Ω

0
−1) 6 CA(‖h− h‖W 1,∞

] (0,L)) ‖w‖H1
](F

−
h ).

To summarize we have proved that

(2.34) ‖w −wχ‖Hs
](Ω

0
−1) 6 CA(‖h− h‖W 1,∞

] (0,L)) ‖w‖H1
](F

−
h ).

Finally, combining (2.29)–(2.33)–(2.34), we obtain the expected estimate

(2.35) ‖w −wχ‖Hs
](Ω) 6 CA(‖h− h‖W 1,∞

] (0,L)) ‖w‖H1
](F

−
h ).

Step 5. Estimating wχ2 |y=0. — First, we recall that

wχ2 |y=0 = −∂xm(·)w1(·,m(·)− 1) + w2(·,m(·)− 1).

This term is first estimated in L2, then in H2σ for 0 < σ < κ/2, and the final estimate
is obtained by interpolation. First, let us estimate the L2-norm

‖ − ∂xm(·)w1(·,m(·)− 1)‖2L2(0,L) 6 ‖∂xm‖
2
L∞] (0,L)

∫ L

0

|w1(x,m(x)− 1)|2 dx

6 CA

∫ L

0

(m(x)− 1)

∫ m(x)−1

0

|∂yw1(x, y)|2 dy dx

6 CA ‖m− 1‖L∞] (0,L) ‖w‖H1
](F

−
h )

6 CA ‖h− h‖L∞] (0,L) ‖w‖H1
](F

−
h ).

A similar estimate can be computed for ‖w2(·,m(·)− 1)‖L2
](0,L) so that, we obtain∥∥wχ2 |y=0

∥∥
L2
](0,L)

6 CA ‖h− h‖W 1,∞
] (0,L) ‖w‖H1

](F
−
h ).
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For 0 < σ < κ/2 we obtain, similarly to (2.27)∥∥wχ2 |y=0

∥∥
H2σ
] (0,L)

6 CA(‖h− h‖W 1,∞
] (0,L)) ‖w‖H1

](F
−
h ).

Using interpolation we finally obtain (up to choose s 6 σ < κ/2) that∥∥wχ2 |y=0

∥∥
H2s
] (0,L)

6 CA(‖h− h‖W 1,∞
] (0,L)) ‖w‖H1

](F
−
h ),

which concludes the proof of (2.28) and the proof of the lemma is completed. �

3. Proof of Theorem 10

This section is devoted to the proof of existence of weak solutions of (FS)0. So,
we fix T > 0 and initial data (u0, η0, η1) satisfying (2.11)–(2.14). We recall that the
strategy is to approximate this problem by a sequence of viscous problems (FS)γ ,
γ > 0, for which existence results are available. The proof is divided into three steps.
First, we analyze the Cauchy theory of (FS)γ when γ > 0 and prove that the sequence
of solutions converges, up to a subsequence, when γ → 0. We show in particular
that possible weak limits are candidates to be weak solutions up to obtaining strong
compactness of approximate velocities in L2. As explained in the introduction, this
strong compactness property is the cornerstone of the analysis. Our proof builds
on the projection/approximation argument provided by [16] in the fluid–solid case.
In our fluid–elastic setting, it requires to build a uniform bound by below h of the
sequence of approximate structure deformations (in order to construct a fluid domain
independent of γ on which the Navier–Stokes equations are satisfied by the sequence
of approximate solutions to be able to apply Aubin–Lions Lemma for projections of
the velocities). The second step of the proof is devoted to the construction of h and the
analysis of its properties. We then complete the proof of the L2-strong compactness.
This last step relies in particular on the continuity result obtained in subsection 2.4.

3.1. Step 1. Construction of a candidate weak-solution. — Let us recall the strong
existence result on (0, T ) stated in [7, Th. 1]. Given γ > 0 and initial data (u0

γ , η
0
γ , η

1
γ)

satisfying

(η0
γ , η

1
γ) ∈ H3

] (0, L)×H1
] (0, L),(3.1)

u0
γ ∈H1

] (Fh0
γ
), divu0

γ = 0 in Fh0 ,(3.2)

u0
γ(x, 0) = 0, and u0

γ(x, h0
γ(x)) = η1

γ(x)e2, ∀x ∈ [0, L],(3.3)

min
x∈[0,L]

h0
γ(x) > 0 and

∫ L

0

η1
γ(x) dx = 0,(3.4)

the system (FS)γ admits a unique strong solution defined on (0, T ). This solution
satisfies moreover minx∈[0,L] hγ(t, x) > 0 for all t ∈ [0, T ].

In order to apply this result we now explain the construction of a sequence of
regular initial data (u0

γ , η
0
γ , η

1
γ)γ>0 approximating (u0, η0, η1). First we construct
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η0
γ ∈ H3

] (0, L) by a standard convolution of η0 with a regularizing kernel. Since η0

satisfies (2.11), this sequence is uniformly bounded in H2
] (0, L) and satisfies

η0
γ −→ η0, in H2

] (0, L),

‖η0
γ − η0‖C 0

] ([0,L]) 6 γ‖η0‖H2
] (0,L) 6 Cγ.

Since minx∈[0,L] h
0(x) > 0, there exists λ > 0 verifying minx∈[0,L] h

0
γ(x) > λ > 0 for γ

small enough. We next construct η1
γ ∈ H1

] (0, L) ∩ L2
],0(0, L). Since η1 satisfies (2.12),

this second sequence enjoys the following properties:

η1
γ −→ η1, in L2

] (0, L),

‖η1
γ‖L2

],0(0,L) 6 ‖η1‖L2
](0,L) 6 C.

We now build the approximate initial velocity fields u0
γ . A key difficulty here is to

match the continuity of velocity field at the structure interface together with pre-
serving the divergence free condition, taking into account that the approximation is
defined on an approximate domain depending on γ. To handle this difficulty, we first
define the extension of η1 to the whole domain using the operator Rλ as defined in
Definition 11. Next we consider u0−Rλ(η1) which is in K[h0] and satisfies moreover
u0 −Rλ(η1) = 0 in Sh0 ∪ Ω0

−1. Then we introduce the vertical contraction operator
denoted by

v 7−→ vσ(x, y) = (σv1(x, σy), v2(x, σy)) ∀σ > 0.

We emphasize that this contraction operator preserves the divergence free constraint.
By choosing σγ =1+2Cγ/λ (with the constant C above), we have (u0−Rλ(η1))σγ = 0

in Sh0
γ
∪Ω0
−1, and (u0 −Rλ(η1))σγ converges to u0 −Rλ(η1) in L2

] (Ω) when γ → 0.
Moreover, (u0−Rλ(η1))σγ belongs to L2

] (Fh0
γ
), is divergence free and satisfies (u0−

Rλ(η1))σγ ·n = 0 on Γh0
γ
and (0, L)× {0}. Thus we approximate thanks to standard

arguments (by truncation and regularization of the stream function for instance) this
function by a divergence free function (u0 − Rλ(η1))γ in H1

] (Fh0
γ
) vanishing in a

neighbourhood of Γh0
γ
and (0, L)× {0}. We may then set

u0
γ =

(
(u0 −Rλ(η1))γ + Rλ(η1

γ)
)
|Fh0γ

.

Straightforward computations show that u0
γ satisfies (3.2)–(3.3). Moreover, remarking

that the operator Rλ is continuous from L2
],0(0, L) into L2

] (Ω) we have as γ goes to
zero

u0
γ −→ u0, in L2

] (Ω),

‖u0
γ‖L2(F0

h) 6 C
(
‖η1‖L2

](0,L) + ‖u0‖L2(F0
h)

)
6 C,

where C does not depend on γ.
We now apply the result on existence of a strong solution for the viscous problem

(FS)γ>0. For fixed γ > 0 the unique solution (uγ , ηγ) is global in time so that it exists
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on any time interval (0, T ). The first step is to verify that uγ as defined by

uγ =


∂tηγe2, in Shγ ,
uγ , in Fhγ ,
0, in Ω0

−1,

together with ηγ is a pair of weak solution to (FS)γ in the sense of Definition 9. First,
we note that (uγ , ηγ) satisfies estimate (2.2) so that we can define a constant M
involved in the definition of our weak solution framework. By construction we have
that

ηγ ∈ L∞(0, T ;H2
] (0, L)) ∩W 1,∞(0, T ;L2

],0(0, L)).

Moreover,

uγ ∈ L∞(0, T ;L2
] (Ω)), ∇uγ |F̂hγ

= 1F̂hγ
∇uγ ∈ L2(F̂−hγ ),

and Lemma 4, implies that

(uγ(t), ηγ)(t) ∈ X[hγ(t)] for a.e. t ∈ (0, T ).

Thus the regularity statement (i) of Definition 9 is satisfied. Moreover the solution sat-
isfies the kinematic condition uγ(t, x, 1 + ηγ(t, x)) = ∂tηγ(t, x)e2 is satisfied on (0, L)

which implies that ∂tηγ ∈ L2(0, T ;H
1/2
] (0, L)) as the trace of uγ |

F̂hγ

. Remember here

that minx∈[0,L] hγ(t, x) > 0 for all t ∈ [0, T ] so that Fhγ is a Lipschitz domain and
consequently uγ |y=hγ

is well defined. Thus the second item (ii) of Definition 9 holds
true. Then, we note that, thanks to the regularity of solutions constructed in [7, Th. 1],
the system (1.2)–(1.3) is satisfied pointwise so that we can multiply the system with
test functions (wγ , dγ) for which the requirements in item (iii) of Definition 9 are
satisfied and obtain (2.15) after integration by parts.

Moreover, we note that the solution (uγ , ηγ) satisfies the energy estimate (2.2) with
a right hand side that converges to

1

2

(
ρf

∫
Fh0

|u0|2 dx + ρs

∫ L

0

|η1|2 dx+ β

∫ L

0

|∂xη0|2 dx+ α

∫ L

0

|∂xxη0|2 dx

)
.

when γ → 0. Consequently, the sequence (uγ , ηγ)γ>0 satisfies the following bounds:

uγ is uniformly bounded in γ in L∞(0, T ;L2
] (Fhγ(t))),(3.5)

‖∇uγ‖L2(F̂−hγ ) is uniformly bounded in γ,(3.6)

ηγ is uniformly bounded in γ in L∞(0, T ;H2
] (0, L)) ∩W 1,∞(0, T ;L2

] (0, L)).(3.7)

Furthermore, the structure velocity ∂tηγ is bounded uniformly with respect to γ is
L2(0, T ;H

1/2
] (0, L)) as the trace uγ |y=hγ

.
Finally the sequence (uγ)γ>0 satisfies additional uniform estimates that are sum-

marized in the following lemma:

Lemma 14. — The sequence (uγ)γ>0 is bounded in L4(Ω̂) and in L2(0, T ;Hs
](Ω)) for

arbitrary s < 1/2.
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Proof. — The bound in L2(0, T ;Hs
](Ω)) comes again from Lemma 4. We next take

care of the L4(Ω̂) uniform bound. To prove it, it is sufficient to obtain independent
uniform bounds for the restrictions of uγ to Ŝhγ and to F̂−hγ for the L4-norm.

In Ŝhγ we already know that uγ = ∂tηγe2, where

∂tηγ is bounded in L2(0, T ;H
1/2
] (0, L)) ∩ L∞(0, T ;L2

] (0, L)).

By interpolation, we obtain that ∂tηγ—and consequently resp. uγ—is uniformly
bounded in L4(0, T ;L4

] (0, L)), resp. L4(Ŝhγ ).
We would like to apply a similar interpolation argument on the domain F−hγ using

the uniform bounds on the restrictions of uγ and its gradient in F−hγ . To track the
dependencies with respect to hγ to be able to ensure that the interpolation argument
leads to uniform bounds, we use a change of variables. We denote by

ũγ(t, x, z) = uγ(t, x, (hγ(t, x) + 1)z − 1) ∀ (t, x, z) ∈ (0, T )× Ω1
0.

Since 0 6 hγ 6 M , straightforward computations show that, for a.e. t ∈ (0, T ) we
have

‖uγ(t)‖L4
](Fhγ (t))

6 (‖hγ(t)‖L∞] (0,L) + 1)1/4‖ũγ(t)‖L4
](Ω

1
0),

and

‖ũγ(t)‖L2
](Ω

1
0) 6 ‖uγ(t)‖L2

](Fhγ (t))
,

‖∇ũγ(t)‖L2
](Ω

1
0) 6 (1 + ‖hγ(t)‖W 1,∞

] (0,L))‖∇uγ‖L2
](F

−
hγ (t)

).

However, the following interpolation inequality holds true

‖ũγ(t)‖L4
](Ω

1
0) 6 C‖ũγ(t)‖1/2

L2
](Ω

1
0)
‖∇ũγ(t)‖1/2

L2
](Ω

1
0)
,

and thus

‖uγ(t)‖L4
](F

−
hγ (t)

) 6 C(1 + ‖hγ(t)‖W 1,∞
] (0,L))‖uγ(t)‖1/2

L2
](F

−
hγ (t)

)
‖∇ũγ(t)‖1/2

L2
](Ω

1
0)
.

Applying (3.5) and (3.6) together with the bound for hγ in L∞(0, T ;W 1,∞
] (0, L))

coming from (3.7), and thus uniform in γ, we obtain the desired bound on uγ which
is uniformly bounded in L4(F−hγ ). �

We now prove the existence of cluster points of the sequence (uγ , ηγ)γ>0. First,
thanks to (3.7), and to the compact embedding (2.3)

ηγ → η uniformly in C 0([0, T ]; C 1
] (0, L)),

ηγ ⇀ η weakly-? in W 1,∞(0, T ;L2
] (0, L)).

Next, using the energy estimates (2.2) and Lemma 14, we may construct a diver-
gence free function u ∈ L∞(0, T ;L2

] (Ω))∩L4(Ω̂), such that, up to a subsequence, the
following convergences hold:

uγ ⇀ u, weakly-? in L∞(0, T ;L2
] (Ω)),

uγ ⇀ u, weakly in L4(Ω̂).
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We now verify that any cluster point (u, η) of the sequence (uγ , ηγ)γ>0 enjoys the
properties of Definition 9, which defines the weak solutions of the limit coupled system
(FS)0. For simplicity, we do not relabel the sequence converging to (u, η). We first
note that, for fixed γ > 0, we have ∫ L

0

∂tηγ = 0.

This property is conserved in the weak limit so that ∂tη is mean free globally in time.
Next, we verify that (u(t), ∂tη) ∈ X[h(t)] for a.e. t ∈ (0, T ). The divergence free
condition is verified at the limit. Moreover, we note that, the property uγ = 0 on Ω̂0

−1

is preserved in the weak limit. Furthermore, since ηγ uniformly converges towards η,
we easily obtain u = ∂tηe2, in Ŝh, by testing the weak convergence of uγ and ∂tηγe2,
which are equal in Ŝhγ , against functions ϕ ∈ C∞c (Ŝh).

Consequently, (u(t), ∂tη) ∈ X[h(t)]. We now prove that u has better regularity in
F̂−h as stated in the following lemma. In what follows, we set ργ = 1Fγ

, ρ−γ = 1F−hγ

and ρ− = 1F−h
.

Lemma 15. — We have ∇u ∈ L2(F̂h) and the sequence ρ−γ ∇uγ converges to ρ−∇u
weakly in L2(Ω̂).

Remark 16. — In the previous statement, we use the convention that if O ⊂ Ω̂ and
f ∈ L2(O) then 1Of ∈ L2(Ω̂) is the extension by 0 of this L2(O)-function.

Proof. — We remind that ∇uγ ∈ L2(F̂−hγ ) so that ρ−γ ∇uγ corresponds to the exten-
sion by 0 of this vector field. Because of (3.6), ρ−γ ∇uγ is uniformly bounded in L2(Ω̂).
Thus ρ−γ ∇uγ converges weakly to some z in L2(0, T ;L2

] (Ω)). Thanks to the uniform
convergence of hγ to h, we may then compute z by testing the weak convergence of
ρ−γ ∇uγ against functions ϕ ∈ C∞c (Ŝh) and ϕ ∈ C∞c (F̂−h ) respectively. This implies
that z|Ŝh

= 0 and z|F̂−h
= (∇u)|F̂−h

, which ends the proof. �

Remark 17. — The previous lemma gives the H1 space regularity of u|F−
h(t)

(for a.e.
t ∈ (0, T )). Since F−h(t) a Lipschitz domain, it enables us to define an H1/2 trace of u
on ∂F−h(t).

This concludes the proof that (u, η) satisfies item (i) of Definition 9. We also prove
at first that the weak cluster point satisfies the expected energy estimate. Indeed, for
any arbitrary small ε > 0, thanks to the strong convergence of ηγ to η, we have that
hγ > h− ε for γ sufficiently small. We may apply then classical weak limit arguments
to pass to the limit in the energy estimate satisfied by the (uγ , ηγ). Consequently for
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almost every t we have

1

2

(
ρf

∫
F−
h(t)−ε

|u(t,x)|2 dx + ρs

∫ L

0

|∂tη(t, x)|2 dx

+ β

∫ L

0

|∂xη(t, x)|2 dx+ α

∫ L

0

|∂xxη(t, x)|2 dx

)
+ µ

∫ t

0

∫
F−
h(s)−ε

|∇u(s,x)|2 dx ds

6 lim inf
γ→0

[
1

2

(
ρf

∫
F−
h(t)−ε

|uγ(t,x)|2 dx + ρs

∫ L

0

|∂tηγ(t, x)|2 dx

+ β

∫ L

0

|∂xηγ(t, x)|2 dx+ α

∫ L

0

|∂xxηγ(t, x)|2 dx

)
+ µ

∫ t

0

∫
F−
h(s)−ε

|∇uγ(s,x)|2 dx ds

]

6 lim
γ→0

1

2

(
ρf

∫
Fh0γ

|u0
γ |2 dx + ρs

∫ L

0

|η1
γ |2 dx+ β

∫ L

0

|∂xη0
γ |2 dx+ α

∫ L

0

|∂xxη0
γ |2 dx

)

=
1

2

(
ρf

∫
Fh0

|u0|2 dx + ρs

∫ L

0

|η1|2 dx+ β

∫ L

0

|∂xη0|2 dx+ α

∫ L

0

|∂xxη0|2 dx

)
.

Since ε is arbitrary, we obtain the expected energy inequality.
We now show that any limit (u, η) also satisfies items (ii) and (iii) of Definition 9

of weak solutions under the further assumption that the following lemma holds true:

Lemma 18. — Up to the extraction of a subsequence that we do not relabel, we have
(ργuγ , ∂tηγ) →

γ→0
(ρu, ∂tη) strongly in L2(Ω̂)× L2((0, T )× (0, L)).

So, fix (w, d) ∈ C∞(Ω̂) × C∞(0, L) such that (w(t), d(t)) ∈ X [h(t)] for all t ∈
(0, T ). Due to the uniform convergence of hγ and the special structure of X [h(t)]

for which we require that w = 0 in the neighbourhood of Ω0
−1 and w · e1 = 0 in

the neighbourhood of Sh(t), there exists γ0 > 0 such that, for all 0 < γ < γ0,
(w(t), d(t)) ∈ X[hγ(t)] for all t ∈ (0, T ). Hence, (w, d) is a test function for any γ
small enough and for a.e. t ∈ (0, T ), (uγ , ηγ) satisfies

(3.8) ρf

∫
Ω

ργuγ(t) ·w(t)− ρf
∫ t

0

∫
Ω

ργuγ · ∂tw + (ργuγ · ∇)w · ργuγ

+ ρs

∫ L

0

∂tηγ(t)d(t)− ρs
∫ t

0

∫ L

0

∂tηγ∂td+ µ

∫ t

0

∫
Ω

ργ∇uγ : ∇w

+

∫ t

0

∫ L

0

β∂xηγ∂xd+ α∂xxηγ∂xxd+ γ

∫ t

0

∫ L

0

∂txηγ∂xd

= ρf

∫
Ω

ργu
0
γ ·w(0) + ρs

∫ L

0

η1
γd(0).

Let us recall that, thanks to Lemma 18, ργuγ strongly converges in L2(Ω̂). The
convergence of ργ∇uγ is proved in Lemma 15 and we can pass to the limit all the
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terms of (3.8). The pair (u, η) satisfies, for a.e. t ∈ (0, T ),

ρf

∫
Ω

ρu(t) ·w(t)− ρf
∫ t

0

∫
Ω

ρu · ∂tw + (ρu · ∇)w · ρu + ρs

∫ L

0

∂tη(t)d(t)

− ρs
∫ t

0

∫ L

0

∂tη∂td+ µ

∫ t

0

∫
Ω

ρu : ∇w +

∫ t

0

∫ L

0

β∂xη∂xd+ α∂xxη∂xxd

= ρf

∫
Ω

ρu0 ·w(0) + ρs

∫ L

0

η1d(0),

which is a rewriting of the variational formulation (2.15). Thus the item (iii) of Def-
inition 9 is satisfied. The last point to verify is the kinematic condition at the fluid–
structure interface. We know that

uγ(t, x, hγ(t, x)) = ∂tηγ(t, x)e2.

From Lemma 18 the right hand side converges strongly in L2(0, T ;L2
] (0, L)) towards

∂tη. It converges also weakly in L2(0, T ;H
1/2
] (0, L)). The left hand side is the trace

of the function (x, z) 7→ uγ(t, x, (1 + hγ(t, x))z + hγ(t, x)) on z = 0. Thanks to
the previous convergences this function converges strongly in L2(Ω̂1

0) and weakly in
L2(0, T ;H1

] (Ω1
0)) towards u(t, x, (1 + h(t, x))z + h(t, x)). Hence by continuity of the

trace we obtain
u(t, x, h(t, x)) = ∂tη(t, x)e2,

so that item (ii) of Definition 9, which completes the proof of Theorem 10.
It thus remains to prove Lemma 18. As is usual for fluid–structure problems, the

sequence of domains is unknown and depends on time and here on the viscosity
parameter, so that standard Aubin–Lions lemma cannot be applied directly to obtain
compactness of the velocities. One key point is to build a piecewise in time, regular
enough in space, interface, dealing with possible contact, close to the sequence of
interfaces but always lower. The construction of this artificial interface is the aim of
the next subsection. We then conclude the proof in the final subsection. Thanks to
the variational formulation and to this well chosen interface “from below” we obtain
bounds on the time derivative of an L2 projection of the velocities, for which we
are able to apply an adapted version of the Aubin–Lions lemma. It implies that the
sequence of velocities is nearly compact. Next the key idea is to use that the velocities
can be approximated, in Hs for some s > 0, by velocities associated to the interface
“from below” so that we can “fill” the gap. This relies on the continuity properties of
the Hs-projector operator obtained in Lemma 13.

3.2. Step 2. Construction of an interface from below. — Before the construction
of the interface from below, we analyze a simple method to approximate a given
stationary deformation from below. Namely, given h ∈ H2

] (0, L) satisfying h > 0 and
µ > 0, we denote

hµ := [h− µ]+,
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where the subscript + denotes here the positive part of functions. The properties of
this approximation process are summarized in the following lemma:

Lemma 19. — Let h ∈ H2
] (0, L) with h > 0 and µ > 0. Then hµ ∈ C 0

] (0, L) and,
given κ ∈ (0, 1/2), there exists a constant C independent of µ and h for which:

‖hµ‖H1+κ
] (0,L) + ‖hµ‖W 1,∞

] (0,L) 6 C ‖h‖H2
] (0,L),(3.9)

‖hµ − h‖W 1,∞
] (0,L) 6 µ+ sup

{x∈[0,L]|h(x)6µ}
|h′(x)|.(3.10)

Proof. — Let µ > 0 and h ∈ H2
] (0, L) non-negative. The first statement hµ ∈ C 0

] (0, L)

is standard. We prove the two inequalities (3.9), (3.10) successively.

Step 1: proof of inequality (3.9). — Since h∈C 0
] (0, L), the subset {x∈(0, L) | h(x)>µ}

is open. We may then construct at most denumerable sets {ci, i∈Iµ} and {di, i∈Iµ}
such that {x∈(0, L) | h(x)>µ}=

⋃
i∈Iµ

(ci, di). The successive derivatives of [h−µ]+
then read

[h− µ]′+ = h′1h>µ, [h− µ]′′+ = h′′1h>µ +
∑
i∈Iµ

δcih
′(ci)− δdih′(di),

To show that hµ ∈ H1+κ
] (0, L) and have a bound on its norm, we now prove that

[h− µ]′′+ ∈ Hκ−1
] (0, L).

Using the H2-regularity of h we obtain that

h′′1h>µ ∈ L2
] (0, L) ⊂ Hκ−1

] (0, L).

Moreover, for any test function ϕ ∈ D(0, L), we have:

|〈δci , ϕ〉| = |ϕ(ci)| 6 ‖ϕ‖C](0,L) 6 C ‖ϕ‖H1−κ
] (0,L),

where C > 0 stands for the constant associated with the Sobolev embedding

H1−κ
] (0, L) ⊂ C 0

] (0, L).

Hence δci ∈ Hκ−1(0, L), with a norm independent of ci. To show that [h − µ]′′+ ∈
Hκ−1
] (0, L) it then remains to prove that the sums∑

i∈Iµ

δcih
′(ci),

∑
i∈Iµ

δdih
′(di),

do converge normally in the Banach space Hκ−1
] (0, L).

Let i ∈ Iµ, since h(ci) = h(di) = µ, there exists bi ∈ (ci, di) such that h′(bi) = 0.
This implies

|h′(ci)| 6 |bi − ci|1/2 ‖h‖H2(ci,di) 6 |di − ci|
1/2 ‖h‖H2(ci,di),
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and thus

(3.11)

∑
i∈Iµ

‖h′(ci)δci‖Hκ−1
] (0,L) 6 C

∑
i∈Iµ

|di − ci|1/2 ‖h‖H2(ci,di)

6 C

(∑
i∈Iµ

|di − ci|
)1/2( N∑

i∈Iµ

‖h‖2H2(ci,di)

)1/2

6 CL1/2 ‖h‖H2
] (0,L).

Consequently, we have∑
i∈Iµ

δcih
′(ci) ∈ Hκ−1

] (0, L) and
∥∥∥∥∑
i∈Iµ

δcih
′(ci)

∥∥∥∥
Hκ−1
] (0,L)

6 CL1/2 ‖h‖H2
] (0,L).

The argument is similar for
∑
i∈Iµ

δdih
′(di). This completes the proof of esti-

mate (3.9).

Step 2: proof of estimate (3.10). — Since h ∈ H2
] (0, L), thanks to the continuous em-

bedding of H1
] (0, L) in L∞] (0, L), we deduce that [h−µ]+ ∈W 1,∞

] (0, L). Furthermore,
it is clear that, for any x ∈ [0, L],

|[h− µ]+(x)− h(x)| 6 µ, [h− µ]′+(x)− h′(x) = −h′(x)1h6µ(x).

This implies that (3.10) is satisfied. �

The next lemma ensures that the right-hand side of estimate (3.10) goes to zero
when µ goes to zero:

Lemma 20. — Let h ∈ C 1
] (0, L) with h > 0. The following limit holds

sup
{x∈[0,L]|h(x)6µ}

|h′(x)| −→
µ→0

0.

Proof. — Since h ∈ C 1
] (0, L) we have that {x ∈ [0, L] | h(x) 6 µ} is a compact subset

of [0, L] and that there exists xµ ∈ [0, L] such that:

sup
{x∈[0,L]|h(x)6µ}

|h′(x)| = |h′(xµ)|.

Note that, by construction, we have h(xµ) 6 µ.
Using the compactness of [0, L] we have xµ → x ∈ [0, L] as µ goes to zero (up to

a subsequence). Using the continuity of h and passing to the limit in the inequality
h(xµ) 6 µ we obtain h(x) = 0. Moreover, using that h(x) > 0 we deduce that x is a
local minimum of h and thus that h′(x) = 0. Finally the continuity of h′ ensures that
|h′(xµ)| →

µ→0
|h′(x)| = 0. �

We recall that we consider a sequence (hγ)γ>0 that converges to h strongly in
the sense of C 0([0, T ]; C 1

] (0, L)) with h ∈ L∞(0, T ;H2
] (0, L)) ∩W 1,∞(0, T ;L2

] (0, L)).
We now are in a position to build a family of approximating interfaces “from below”
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of any hγ for γ small enough. Namely, given δ > 0 we construct a piecewise-constant
(in time) function hδ such that there exists γ0 > 0 for which

‖hδ‖L∞(0,T ;W 1,∞
] (0,L)) 6 C,(3.12)

hδ 6 hγ , ∀ γ 6 γ0,(3.13)
‖hδ − hγ‖L∞(0,T ;W 1,∞

] (0,L)) 6 δ, ∀ γ 6 γ0,(3.14)

with C depending only on initial data.
So, let us fix δ > 0 and introduce parameters ε > 0, N ∈ N to be made precise later

on. We construct our piecewise approximation as follows. We consider the subdivision
of the time interval [0, T ] =

⋃
06k6N Ik with Ik = [k∆t, (k + 1)∆t), ∆t = T/(N + 1)

and we fix tk ∈ Ik such that ‖h(tk)‖H2
] (0,L) 6 ‖h‖L∞(0,T ;H2

] (0,L)). On each time
interval Ik we then define

(3.15) hδ(t, x) = [h− 2ε]+(tk, x), t ∈ Ik.

Estimate (3.12) follows directly from Lemma 19 and estimate (3.7). Now, up to a
good choice for the parameters ε and N , hδ satisfies the two properties (3.13) and
(3.14) for γ small enough. First, let us prove that hδ 6 hγ for all γ sufficiently small
and N sufficiently large (depending on ε). We recall that by interpolation, we have
h ∈ C 0,θ([0, T ]; C 1

] (0, L)) for θ ∈ (0, 1/4) (see embedding (2.3)). Consequently, for
any k 6 N , we have

‖h(t, x)− h(tk, x)‖L∞] (0,L) 6 C∆tθ, ∀ t ∈ Ik.

Similarly, since hγ converges to h in C 0([0, T ]; C 1
] (0, L)) we can find γ0 > 0 such that,

for γ 6 γ0,
‖h(t, x)− hγ(t, x)‖W 1,∞

] (0,L) 6 ε, ∀ t ∈ (0, T ).

Assuming that N is chosen such that (with the above constant C)

C∆tθ = C
( T

N + 1

)θ
< ε,

we have, for any k 6 N ,

hγ(t, x) > h(t, x)− ε > h(tk, x)− 2ε, ∀ (t, x) ∈ Ik × (0, L), ∀ γ 6 γ0.

Taking the positive part in the previous inequality (recall that hγ>0) we obtain (3.13).
We now estimate the difference between hδ and hγ for γ 6 γ0. Given k 6 N we

have, for all γ 6 γ0,

‖hδ − hγ‖L∞(Ik;W 1,∞
] (0,L))

6 ‖hδ − h‖L∞(Ik;W 1,∞
] (0,L)) + ‖h− hγ‖L∞(Ik;W 1,∞

] (0,L)),

6 ‖[h− 2ε]+(tk)− h(tk)‖W 1,∞
] (0,L) + ‖h(tk)− h‖L∞(Ik;W 1,∞

] (0,L)) + ε,

6 ‖[h− 2ε]+(tk)− h(tk)‖W 1,∞
] (0,L) + 2ε.

Applying Lemma 19, this entails

‖[h− 2ε]+(tk)− h(tk)‖W 1,∞
] (0,L) 6 2ε+ sup

{x∈[0,L],h(tk,x)62ε}
|∂xh(tk, x)|.
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Finally we obtain

‖hδ − hγ‖L∞((0,T );W 1,∞
] (0,L)) 6 4ε+ sup

{x∈[0,L],h(tk,x)62ε}
|∂xh(tk, x)|.

Consequently, applying Lemma 20 and choosing ε > 0 sufficiently small with the
corresponding N ∈ N and γ0 > 0 we obtain that the interface hδ satisfies (3.14).

3.3. Step 3. L2-compactness of the velocities. — In this section we study the
L2-convergence of the pair (ργuγ , ∂tηγ) stated in Lemma 18. We know that, up to
a subsequence that we do not relabel, ργuγ ⇀ ρu weakly in L2(0, T ;L2

] (Ω)), and
∂tηγ ⇀ ∂tη in L2(0, T ;L2

] (0, L)). To prove the strong convergence of the sequence
(ργuγ , ∂tηγ) to (ρu, ∂tη) it remains to show that the following convergence holds
true:

(3.16) ρf
∫ T

0

∫
Ω

|ργuγ |2 +ρs

∫ T

0

∫ L

0

|∂tηγ |2 −→
γ→0

ρf

∫ T

0

∫
Ω

|ρu|2 +ρs

∫ T

0

∫ L

0

|∂tη|2.

We recall that we endow X0 := L2(Ω)× L2
] (0, L) with the scalar product:

((v, η̇), (w, d))X0 = ρf

∫
Ω

v ·w + ρs

∫ L

0

η̇d.

In particular, with these notations, the right hand side of (3.16) also reads:∫ T

0

((ργu, ∂tηγ), (u, ∂tηγ))X0 .

By restriction, this bilinear form enables to consider any element of X0 as an element
of (Xs)′ via the formula

(3.17) 〈(v, η̇), (w, d)〉(Xs)′,Xs = ((v, η̇), (w, d))X0 ∀ ((v, η̇), (w, d)) ∈ X0 ×Xs.

In what follows we use this identification without mentioning it.
To obtain (3.16), we show actually that, up to extract again a denumerable times

subsequences, we can prove that the error terms

Errγ := ρf

∫ T

0

∫
Ω

|ργuγ |2 + ρs

∫ T

0

∫ L

0

|∂tηγ |2 −
(
ρf

∫ T

0

∫
Ω

|ρu|2 + ρs

∫ T

0

∫ L

0

|∂tη|2
)

satisfy lim supγ→0 |Errγ | 6 ε̃ for any arbitrary small ε̃. We shall compute ε with
respect to the parameter δ > 0 fixing the interface from below hδ satisfying (3.13)–
(3.14) as in the previous subsection. So let us fix such a δ > 0. We recall that the
related interface hδ is constant on a family of intervals (Ik)06k6N covering [0, T ].
Below, we denote hδ,k the value of hδ on Ik. We then split the time integral and
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introduce the projector Ps[hδ,k] for a given s < 1/2. This yields:

Errγ =

N∑
k=0

∫
Ik

((ργuγ , ∂tηγ), (uγ , ∂tηγ))X0 − ((ρu, ∂tη), (u, ∂tη))X0

=

N∑
k=0

∫
Ik

((ργuγ , ∂tηγ), (uγ , ∂tηγ)− Ps[hδ,k](uγ , ∂tηγ))X0

+

∫
Ik

(Ps[hδ,k](uγ , ∂tηγ), (ργuγ , ∂tηγ))X0

−
∫
Ik

((ρu, ∂tη), (u, ∂tη)− Ps[hδ,k](u, ∂tη))X0

−
∫
Ik

(Ps[hδ,k](u, ∂tη), (ρu, ∂tη))X0 .

Then, since Ps[hδ,k](uγ , ∂tηγ) ∈ Xs[hδ,k] ⊂ X[hδ,k] and thanks the identification
(3.17), we write

(Ps[hδ,k](uγ , ∂tηγ), (ργuγ , ∂tηγ))X0 =(Ps[hδ,k](uγ , ∂tηγ),P[hδ,k](ργuγ , ∂tηγ))X0

=〈P[hδ,k](ργuγ , ∂tηγ),Ps[hδ,k](uγ , ∂tηγ)〉(Xs)′,Xs .

Proceeding similarly with the limit term, we obtain the following splitting

Errγ =

N∑
k=0

Errapp
γ,k + Errconv

γ,k − Errapp
k ,

where, for arbitrary k 6 N , we denote

Errapp
γ,k =

∫
Ik

(
(ργuγ , ∂tηγ), (uγ , ∂tηγ)− Ps[hδ,k](uγ , ∂tηγ)

)
X0

Errapp
k =

∫
Ik

(
(ρu, ∂tη), (u, ∂tη)− Ps[hδ,k](u, ∂tη)

)
X0

Errconv
γ,k =

∫
Ik

〈P[hδ,k](ργuγ , ∂tηγ),Ps[hδ,k](uγ , ∂tηγ)〉(Xs)′,Xs

− 〈P[hδ,k](ρu, ∂tη),Ps[hδ,k](u, ∂tη)〉(Xs)′,Xs .

For the two first type of terms we use the fact that the projection on Xs[hδ,k]

has good approximation properties. So, to estimate the error terms Errapp
γ,k , we use

Lemma 13 for κ = 1/4. Indeed, from the bound (3.6) and Lemma (14), we know that
(uγ , ∂tηγ) satisfies, for a.e. t ∈ Ik, (uγ(t), ∂tηγ(t)) ∈ Xs[hγ ], for s < 1/2, with uγ ∈
H1
] (F−hγ ). Moreover, we remark that both interfaces hγ and hδ belong to H1+κ

] (0, L)∩
W 1,∞
] (0, L) and that, thanks to the definition of hδ, there exists A > 0 independent

of γ and δ, such that

‖hγ‖L∞(0,T ;H1+κ
] (0,L)) + ‖hγ‖L∞(0,T ;W 1,∞

] (0,L))

+ ‖hδ‖L∞(0,T ;H1+κ
] (0,L)) + ‖hδ‖L∞(0,T ;W 1,∞

] (0,L)) 6 A.
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Finally by construction hδ and hγ are close in W 1,∞
] (0, L) and (3.14) is satisfied.

Hence, Lemma 13 implies, for s < 1/8

‖Ps[hδ,k](uγ(t, ·), ∂tηγ(t, ·))− (uγ(t, ·), ∂tηγ(t, ·))‖X0

6 ‖Ps[hδ,k](uγ(t, ·), ∂tηγ(t, ·))− (uγ(t, ·), ∂tηγ(t, ·))‖Xs
6 CA(δ) ‖∇uγ(t, ·)‖L2

](F
−
hγ (t)

),

with limx→0 CA(x) = 0. Using Cauchy–Schwartz inequality, we deduce from the pre-
vious estimate that
N∑
k=0

|Errapp
γ,k |

6
N∑
k=0

∫
Ik

‖Ps[hδ,k](uγ(t, ·), ∂tηγ(t, ·))− (uγ(t, ·), ∂tηγ(t, ·))‖X0‖(uγ , ∂tηγ)‖X0

6 CA(δ)‖(uγ , ∂tηγ)‖L∞(0,T ;X0)

∫ T

0

‖∇uγ‖L2(Fhγ (t)).

Then we use the uniform estimates (3.5), (3.6) to obtain that there exists a constant C1

(depending only on initial data and T ) such that, for γ 6 γ0,

(3.18)
N∑
k=0

|Errapp
γ,k | 6 C1CA(δ).

Similarly we have

(3.19)
N∑
k=0

|Errapp
k | 6 C1CA(δ).

To complete the proof, the following term remains to be estimated

lim sup
γ→0

N∑
k=0

|Errconv
γ,k |.

At first, we prove that, for a fixed k 6 N and up to a subsequence, P[hδ,k](ργuγ , ∂tηγ)

converges strongly to P[hδ,k](ρu, ∂tη) in L2(Ik; (Xs[hδ,k])′). Note that, since we have:

(ργuγ , ∂tηγ) ⇀ (ρu, ∂tη) in L2(Ik;Xs[hδ,k])− w,

the only difficulty relies on showing that the sequence P[hδ,k](ρu, ∂tη) is relatively
compact in L2(Ik; (Xs[hδ,k])′). To do so we apply an adapted version of Aubin–Lions
lemma that can be found in [5, §4.3] that reads

Lemma 21. — Let us consider three Hilbert spaces Mi, i = 1, 2, 3 and two operators
T : M0 7→M1 and S : M0 7→M2 satisfying

– T and S are two linear compact operators,
– Su = 0 implies Tu = 0.

If (un) is bounded in L2(0, T ;M0) and (∂tSun) is bounded in L2(0, T ;M2), then Tun
is a compact set of L2(0, T ;M1).
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We are going to use this version of Aubin–Lions lemma with the triplet

(X0, (Xs[hδ,k])′, (X1[hδ,k])′)

and with S = i1 ◦ P[hδ,k], T = is ◦ P[hδ,k], where i` denotes the injection of X[hδ,k]

into (X`[hδ,k])′. The mappings i` are indeed injective functions since Lemma 8 implies
that the continuous embedding X`[hδ,k] ⊂ X[hδ,k] is dense, for ` > 0 and these densi-
ties imply that X[hδ,k] is continuously embedded in (X`[hδ,k])′, for ` > 0. Moreover,
thanks to Rellich–Kondrachov theorem the embeddings X`[hδ,k] ⊂ X[hδ,k] are com-
pact. The dual of a compact operator being compact, X[hδ,k] is compactly embedded
in (X`[hδ,k])′ for ` > 0. Consequently i1 ◦ P[hδ,k] and is ◦ P[hδ,k] are compact linear
operators. Moreover i1 ◦P[hδ,k](w, b) = 0 implies P[hδ,k](w, b) = 0 so that the second
point is clearly satisfied.

Next applying (3.5), we have that (uγ , ∂tηγ) is uniformly bounded in L2(0, T ;X0)

(with respect to γ). Thus the sequence (ργuγ , ∂tηγ) is bounded in γ in L2(Ik;X0).
We must now obtain a uniform bound for ∂tP[hδ,k](ργuγ , ∂tηγ) in Lp(Ik; (X1[hδ,k])′).
Precisely, we look for an estimate of the type∣∣∣∣−∫

Ik

(
P[hδ,k](ργuγ , ∂tηγ), ∂t(w, b)

)
X0

∣∣∣∣ 6 C ∫
Ik

‖(w(t), d(t))‖2X1[hδ,k] dt,

for any (w, d) ∈ L2(Ik;X1[hδ,k]). To obtain such an estimate we use the variational
formulation (2.15) satisfied by (uγ , ∂tηγ). We consider (w, d) ∈ C∞c (Ik;X1[hδ,k]).
This is an admissible test function since hδ 6 hγ and since, in the case where
γ > 0 for which minx∈[0,L] hγ(t, x) > 0, ∀ t ∈ [0, T ], we can consider test functions
in C∞([0, T ];X1[hγ(t)]). We obtain∫
Ik

(
P[hδ,k](ργuγ , ∂tηγ), ∂t(w, b)

)
X0 = −ρf

∫
Ik

ργuγ · ∂tw − ρs
∫
Ik

∂tηγ∂tb

= ρf

∫
Ik

∫
Fhγ (t)

(uγ · ∇)w · uγ − µ
∫
Ik

∫
Fhγ (t)

∇uγ : ∇w

− β
∫
Ik

∫ L

0

∂xηγ∂xb+ α

∫
Ik

∫ L

0

∂xxηγ∂xxb+ γ

∫
Ik

∫ L

0

∂txηγ∂xb.

The nonlinear convection term is estimated using the L4-regularity of uγ stated in
Lemma 14,∣∣∣∣ρf ∫

Ik

∫
Ω

(ργuγ · ∇)w · ργuγ
∣∣∣∣ 6 ρf ∫

Ik

‖uγ(t)‖2L4(Ω) ‖∇w(t)‖L2(Ω) dt

6 ρf ‖uγ‖2L4(Ω̂)
‖∇w‖L2(Ik;L2(Ω)).

The other terms are estimated directly and we obtain∣∣∣∣∫
Ik

(
P[hδ,k](ργuγ , ∂tηγ), ∂t(w, b)

)
X0

∣∣∣∣ 6 C ‖(w, b)‖L2(Ik;X1[hδ,k]),

where C depends only on the initial data. The previous inequality implies that
∂tP[hδ,k](ργuγ , ∂tηγ) is bounded in γ in L2(Ik; (X1[hδ,k])′). It then follows from
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the adapted version of Aubin–Lions lemma that P[hδ,k](ργuγ , ∂tηγ) is compact in
L2(Ik; (Xs[hδ,k])′). Moreover, since there holds:

(uγ , ∂tηγ) ⇀ (u, ∂tη) in L2(Ik;Xs)− w, for s < 1/2,

we also have that Ps[hδ,k](uγ , ∂tηγ) converges weakly to Ps[hδ,k](u, ∂tη) in L2(Ik;Xs).
Combining a strong and a weak convergence result leads to

(3.20) lim
γ→0

Errconv
γ,k = 0 ∀ k 6 N.

Finally, combining (3.18)–(3.20), we conclude that

lim sup
γ→0

|Errγ | 6 C1CA(δ)

for arbitrary δ > 0. We conclude the proof by remarking that CA(δ) → 0 when
δ → 0. For completeness, we remark that in the computations of bounds for Errγ we
only extract subsequences when we apply the Aubin–Lions lemma. Since we perform
extraction a finite number of times for any value of the parameter δ that we can
choose in a denumerable sets (i.e., a sequence converging to 0), our proof induces
indeed denumerable extractions of subsequences.

Remark 22. — In the final weak formulation we consider fluid test functions that
vanishes in the neighbourhood of the bottom of the fluid cavity and that are only
transverse in the neighbourhood of the interface. Note that we could have also con-
sidered fluid test functions that vanish in the neighbourhood of any contact point or,
at least, at the contact point. It imposes in particular the structure test functions to
be zero near each contact point so that they depend implicitly on the solution.

Appendix. Proof of Lemma 8

This appendix is devoted to a density lemma in the space X[h]. We first recall the
statement of the lemma to be proved and proceed to the proof.

Lemma 23. — Let h ∈ C 0
] (0, L) satisfy 0 6 h(x) 6 M , ∀x ∈ [0, L]. The embedding

X[h] ∩ (C∞(Ω)× C∞] (0, L)) ⊂ X[h] is dense.

Proof. — First notice that the main difficulty here comes from the potential contact
i.e., the points where h is equal to zero. If there is no contact we may construct
explicitly a smooth approximating sequence of any pair in X[h] by adapting the
arguments of [4], see also the construction of approximate initial data in Section 3.1.

When h vanishes, we propose an alternative proof: in this case we obtain that
(X[h]∩C∞(Ω)×C∞] (0, L))⊥ = {(0, 0)}. So, let (u, η̇) ∈ X[h] and assume it satisfies:

(A.1) ρf

∫
Ω

u ·w + ρs

∫ L

0

η̇d = 0, ∀ (w, d) ∈ X[h] ∩ C∞(Ω)× C∞] (0, L).

Using Lemma 7 there exists Ψ ∈ H1
] (Ω) and b ∈ H1

] (0, L) such that u = ∇⊥Ψ with
Ψ = b(x) in Sh and Ψ = 0 in Ω0

−1 ∪ Ic× (−1, 2M), where I = {x ∈ [0, L] | h(x) > 0}.
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To complete the proof, we obtain that u vanishes in I × (−1, 2M). Since I is an open
subset of (0, L) we may construct an at most denumerable I such that

I =
⊔
i∈I

(ai, bi),

where the (ai, bi) are the connected components of I. It is now sufficient to prove that,
for arbitrary i ∈ I there holds u = 0 in Ωi = (ai, bi)× (−1,M). This is obtained by
a suitable choice of functions (w, d) in (A.1).

Let fix i ∈ I and ε > 0 small enough. Consider χε ∈ C∞c ((ai, bi)) such that

χε = 1 on [ai + ε, bi − ε], supp(χε) ⊂ [ai + ε/2, bi − ε/2],

‖χ′ε‖L∞(R) <
1

ε
‖χ′′ε‖L∞(R) <

1

ε2
.

Existence of such a truncation function is classical. We now introduce

wε = ∇⊥(χεΨ), dε = ∂x(χεb).

It is straightforward that (wε, dε) ∈ L2((ai, bi) × (−1,M)) × L2
0((ai, bi)) and has

support in (ai + ε, bi− ε). On the other hand, there exists δε > 0 such that h(x) > δε
on (ai + ε/2, bi − ε/2). Setting hε = max(h, δε) we have then that hε ∈ C 0

] (0, L) does
not vanish and (wε, dε) ∈ X[hε]. Consequently, we may reproduce the arguments in
the case of a non vanishing deformation to approximate (wε, dε) by a sequence of
pairs in X[hε]∩ (C∞(Ω)×C∞] (0, L)). Moreover, we emphasize that, by construction,
this sequence has support in (ai + ε/2, bi− ε/2)× (−1, 2M) also so that it is actually
a sequence of X[h] ∩ (C∞(Ω)× C∞] (0, L)) that approximates (wε, dε) in X[h] also.

Consequently the identity (A.1) holds true for (wε, dε) also and we have∫
Ωi

u · ∇⊥(χεΨ) +

∫ bi

ai

η̇∂x(χεb) = 0.

But, recalling that ∇⊥Ψ = u and ∂xb = η̇ we may expand the differential operators
to yield that:

0 =

∫
Ωi

u·∇⊥(χεΨ)+

∫ bi

ai

η̇zε =

∫
Ωi

|u|2χε+

∫ bi

ai

|η̇|2χε+

∫
Ωi

u·∇⊥(χε)Ψ+

∫ bi

ai

η̇bχ′ε.

Since χε depends on the x-variable only and χ′ε vanishes on {ai, ai + ε, bi − ε, bi}, we
have, by integrating by parts:

(A.2) −
∫

Ωi

u · ∇⊥(χε)Ψ =

∫ ai+ε

ai

∫ 2M

−1

Ψ2

2
χ′′ε +

∫ bi

bi−ε

∫ 2M

−1

Ψ2

2
χ′′ε .

Similarly we prove the following equality:

(A.3) −
∫ bi

ai

η̇ b(x)χ′ε =

∫ ai+ε

ai

b(x)2

2
χ′′ε +

∫ bi

bi−ε

b(x)2

2
χ′′ε .
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Since Ψ = 0 on {ai} × (−1, 2M) a standard Poincaré inequalities entails that:∫ ai+ε

ai

∫ 2M

−1

Ψ2

2
6
ε2

4

∫ ai+ε

ai

∫ 2M

−1

|∇Ψ|2 =
ε2

4

∫ ai+ε

ai

|u|2,∫ ai+ε

ai

b(x)2

2
6
ε2

4

∫ ai+ε

ai

|∂xb(x)|2 =
ε2

4

∫ ai+ε

ai

|η̇|2.

We have a similar identity for integrals involving (bi − ε, bi) by using that Ψ = 0 on
{bi} × {−1, 2M}. Using finally that L∞-estimate on χ′′ε in (A.2)–(A.3) we conclude

(A.4)
∫ bi−ε

ai+ε

∫ 2M

−1

|u|2 +

∫ bi−ε

ai+ε

|η̇|2

6
1

4

(∫ ai+ε

ai

∫ 2M

−1

|u|2 +

∫ ai+ε

ai

|η̇|2 +

∫ bi

bi−ε

∫ 2M

−1

|u|2 +

∫ bi

bi−ε
|η̇|2
)
.

Since (u, η̇) are both L2-functions, the right-hand side of this identity vanishes when
ε→ 0. So, letting ε→ 0 we obtain (u, η̇) = (0, 0) in Ωi. This ends the proof. �
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