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THE NEIGHBORHOOD OF A SINGULAR LEAF

by Camille Laurent-Gengoux & Leonid Ryvkin

In memory of Kirill Mackenzie.

Abstract . — An important result for regular foliations is their formal semi-local triviality near
simply connected leaves. We extend this result to singular foliations for all 2-connected leaves
and a wide class of 1-connected leaves by proving a semi-local Levi-Malcev theorem for the
semi-simple part of their holonomy Lie algebroid.

Résumé (Le voisinage d’une feuille singulière) . — Un résultat important concernant les
feuilletages réguliers est leur trivialité semi-locale formelle au voisinage des feuilles simplement
connexes. Nous étendons ce résultat aux feuilletages singuliers pour toute feuille 2-connexe et
pour une classe importante de feuilles 1-connexes en démontrant un théorème de Levi-Malcev
semi-local pour la partie semi-simple de leur algébroïde de Lie d’holonomie.

Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1037
1. Holonomy and connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1039
2. The formal neighborhood of a simply connected (singular) leaf. . . . . . . . . . . . . . .1048
3. Local and semi-local structure of a singular foliation. . . . . . . . . . . . . . . . . . . . . . . . . .1059
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1063

Introduction

Although much less studied than the well-understood regular foliations, singular
foliations appear more frequently in differential geometry: orbits of Lie groups actions,
symplectic leaves of a Poisson structure, vector fields tangent to an affine variety or
annihilating given functions are all instances where the dimension of the leaves may
not be constant. All these instances fall into the following category:
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1038 C. Laurent-Gengoux & L. Ryvkin

Definition. — A singular foliation on a manifold M is a sub-sheaf F of the sheaf of
C∞-modules X(M) of vector fields, which is (i) stable under Lie bracket and (ii) locally
finitely generated.(1)

This definition permits to partition M into submanifolds called leaves ([Her63]).
There is an open subset of M where F is a regular foliation. In particular, at least
formally, in a neighborhood of any such a leaf L, the foliation F is entirely described
by a group morphism from the fundamental group π1(L) to the group of formal
diffeomorphisms of a transversal. In particular, regular foliations are (formally) trivial
near simply-connected leaves [Ree52].

For singular leaves, there have been recent advances in understanding the semi-local
structure. Androulidakis and Zambon [AZ13, AZ14] have shown that the holonomy
groupoid of F (defined previously by Androulidakis and Skandalis [AS09]) acts on the
normal bundle of the leaf. When the singular foliation is linearizable, this describes
the whole semi-local structure. In this article, we mainly focus on the case where L is
simply-connected. To our great surprise, we were able to prove that, despite having
possibly extremely rich transverse structures, singular foliations remain (formally)
trivial near simply-connected locally closed leaves, when the transverse singular foli-
ation is made of vector fields vanishing at order at least 2 (Theorems 3.8 and 3.11).
When the transverse linear part is not trivial but L is 2-connected, we still have a
Levi-Malcev type theorem decomposing F as a semi-direct product of a semi-simple
linearizable Lie groupoid action on some transverse singular foliation, at least on a
formal level. The same conclusion holds for simply-connected leaves provided a Levi-
Malcev decomposition exists for the linear holonomy Lie algebroid (Theorems 2.8
and 2.22).

The paper is organized as follows: In Section 1, we review the notion of holonomy
Lie algebroid AL of a leaf L. Using the Artin-Rees theorem, we show that the sub-
algebroid of AL coming from vector fields in F that vanish at least quadratically
along L form a nilpotent Lie algebra bundle. This allows us to describe the semi-
simple quotient AS

L of AL as a quotient of the linear part Alin
L of AL. Using the

method of Euler-like vector fields developed in [BLM19], we show that singular folia-
tions that contain a transverse Euler vector field admit homogeneous generators (see
Theorem 1.32). In Section 2, we state our most central result (Theorem 2.8) and give
a geometric reformulation of it (Theorem 2.22).

Section 3 applies these results to leaves of dimension 0, recovering some results of
Cerveau [Cer79] and deriving consequences for the NMRLA class of [LGLS20]. Finally,
for arbitrary locally closed leaves, we show formal semi-local triviality of transversally
quadratic leaves (Theorem 3.8) and linearly trivial leaves (Theorem 3.11), a phenom-
enon that is a distinctive feature of singular foliations, with no analogue in the Lie
algebroid or Poisson manifold categories (Remark 3.9).

(1)In most of this paper, we will deal with locally real analytic singular foliations F (i.e., M is
covered by coordinate neighborhoods in which F admits real analytic generators—the change of
coordinates does not need to be real analytic), see [LGLS20].
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1. Holonomy and connections

1.1. The linear holonomy Lie algebroid of a leaf. — Let F ⊂ X(M) be a singular
foliation on a manifold M . The singular foliation F induces a “singular distribution”
defined for every p ∈M by:

TpF := {X(p) | X ∈ F} .

A fundamental Lemma about singular foliations, originating from Cerveau [Cer79],
then proved in this context by Dazord [Daz85], and rediscovered by Androulidakis
and Skandalis [AS09], says that singular foliations satisfy a local splitting property,
in the following sense:

Lemma 1.1 ([Cer79, Daz85, AS09]). — Let F ⊂ X(M) be a singular foliation on a
manifold M of dimension n. Every point p ∈M admits a neighborhood U on which F

is isomorphic to the direct product of the following two singular foliations:
(1) all vector fields on an open ball of dimension d, where d = dim(TpF ), and
(2) a singular foliation T on an open ball of dimension n−d made of vector fields

that vanish at the origin, and called transverse singular foliation.
The germ of the transverse singular foliation does not depend on any choice: any two
local isomorphisms as above lead to transverse singular foliations which are locally
isomorphic in a neighborhood of the origin.

This splitting lemma is crucial for proving the following results:
(1) By [Her63], M has a unique decomposition into submanifolds called leaves

which are the maximal integral subsets for F . Moreover, the tangent space of the leaf
through p ∈M is TpF .

(2) Any two points p1, p2 on the the same leaf admit neighborhoods U1, U2 on
which the singular foliations F |U1 and F |U2 are isomorphic ([Daz85]). In particular,
their germs of transverse singular foliations are isomorphic. It makes sense, therefore,
to speak of the transverse singular foliation of a given leaf.

In this subsection, we will define several Lie algebroids describing the behaviour
of F near a chosen leaf L.

Definition 1.2 ([AS09, AZ13]). — Let F be a singular foliation and L a locally closed
leaf. Let IL ⊂ C∞(M) be the ideal of functions vanishing along L. The holonomy Lie
algebroid AL → L is defined implicitly by the equality Γ(AL) = F/ILF .

J.É.P. — M., 2021, tome 8



1040 C. Laurent-Gengoux & L. Ryvkin

To verify that this yields a well-defined Lie algebroid, one shows that F/ILF is
a Lie Rinehart-algebra and a projective C∞(L)-module ([AZ13]). It is therefore a
Lie algebroid. By construction, this Lie algebroid is transitive. It is therefore locally
trivial. We denote by gL = ker(ρ : AL → TL) its isotropy bundle of Lie algebras.
At a given point p ∈ L, gp is by construction the Androulidakis-Skandalis isotropy
Lie algebra (see [AS09]) of F at p.

The holonomy Lie algebroid AL acts on the normal bundle ν = TM |L/TL of L
in M , see [AZ13]. Algebraically, this action can be seen as follows: The space Γ(ν)

is isomorphic to X(M)/XL(M), where XL(M) ⊂ X(M) are the vector fields tangent
to L, i.e., the vector fields X satisfying X(IL) ⊂ IL. Now, F ⊂ XL(M) acts on this
quotient and ILF acts trivially. The induced action of F/ILF on X(M)/XL(M) is
a Lie algebroid action of AL on the normal vector bundle ν.

This action is equivalently given by a homomorphism of transitive Lie algebroids
AL → CDO(ν), where CDO(ν) is the Lie algebroid of covariant differential operators
of ν → L introduced by Mackenzie ([Mac87]). Recall that this Lie algebroid fits into
the exact sequence

0 −→ gl(ν) −→ CDO(ν) −→ TL −→ 0

and that its sections can be interpreted as fiberwise linear vector fields on ν.

Example 1.3. — For L a regular leaf, AL = TL and the TL-action on the normal
bundle is the Bott-connection.

Definition 1.4. — We call linear holonomy Lie algebroid of L the image Lie algebroid
of AL → CDO(ν). We denote this Lie algebroid by Alin

L .

Example 1.5. — Let the leaf L = {p} be a point. Then AL = F/IpF = gp is a Lie
algebra and ν = TpM . The linear holonomy Lie algebroid is the Lie subalgebra of
gl(TpM) obtained by linearizing all the vector fields in F :

F
lin(X)

//

��

gl(TpM)

gp

55

The dotted arrow is well-defined, as vector fields in IpF vanish quadratically at p.
Its image is the Lie algebra considered in [Cer79].

By definition of Alin
L , there is a surjective Lie algebroid morphism AL → Alin

L . Let
us understand its kernel, which is a locally trivial bundle of Lie algebras by transitivity
of AL. Since all vector fields in F are tangent to the leaf L, derivation with respect
to X ∈ F preserves the filtration:

C∞(M) ⊃ IL ⊃ I2L ⊃ · · ·

This implies that for all i, j > 0:

[F ∩ IiLX(M),F ∩ IjLX(M)] ⊂ F ∩ Ii+j−1L X(M).

J.É.P. — M., 2021, tome 8
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This induces a natural filtration on Γ(AL) by

Γ(AL)i :=
F ∩ IiLX(M)

ILF ∩ IiLX(M)
.

In words, Γ(AL)i is “the space of sections in AL that can be represented by a vec-
tor field in F that vanishes at order i along L”. This filtration obviously satisfies
[Γ(AL)i,Γ(AL)j ] ⊂ Γ(AL)i+j−1 and [Γ(AL)i,Γ(AL)] ⊂ Γ(AL)i. By construction, we
have:

Lemma 1.6. — There exists a vector bundle filtration of AL:

AL = A0
L ⊃ A1

L ⊃ A2
L ⊃ · · ·

such that Γ(AiL) = Γ(AL)i. Moreover, for every i > 0, AiL is a Lie algebra bundle,
A1
L = gL and A2

L = ker(AL → Alin
L ). In particular Alin

L = AL/A
2
L.

Remark 1.7. — In general, the above filtration does not need to terminate, i.e.,⋂
i>0A

i
L might not be the zero vector bundle. For instance, consider the foliation on R

defined by the vector field e−1/x2

∂/∂x. Then {0} is a leaf for which Ai{0} = A{0} = R
for all i ∈ N, hence

⋂
iA

i
{0} = R. We will see, in the next subsection, that this

pathology cannot happen for locally real analytic singular foliations.

1.2. Nilpotence and the semi-simple holonomy. — For a locally real analytic sin-
gular foliation F , upon restriction to a neighborhood U of a point p ∈ M , we may
assume that F |U has real analytic generators (Xi)

r
i=1 in some local coordinates, and

consider the module F ra over real analytic functions it generates, and define the real
analytic holonomy Lie algebroid of the leaf through p (in U) by F ra/I F ra (where I

are real analytic functions vanishing on L∩U—which is easily seen to be a real analytic
subvariety).

Lemma 1.8. — In the above setting, the (smooth) holonomy Lie algebroid and the real
analytic holonomy Lie algebroid are isomorphic (as filtered Lie algebras). In equation:
Γ(AL|U∩L) = F ra/I F ra.

Proof. — We have to show that the natural filtered Lie algebra morphism

F ra/I F ra −→ F/ILF

induced by the inclusion is an isomorphism. This is a direct consequence of the state-
ment that smooth functions form a faithfully flat module over real analytic functions
([Mal67, Cor.VI.1.12]). �

1.2.1. The Artin-Rees Lemma and nilpotence. — In this section, we show that for lo-
cally real analytic foliations, the kernel of the linearization homomorphism AL→Alin

L

is a bundle of nilpotent Lie algebras. The proof is based on the following statement
of commutative algebra:

J.É.P. — M., 2021, tome 8



1042 C. Laurent-Gengoux & L. Ryvkin

Theorem 1.9 (Artin-Rees [AM69]). — Let X be a finitely generated module over a
Noetherian ring C , I be an ideal of C and F ⊂ X a submodule. Then there is a
positive integer c such that

(1) I nX ∩F = I n−c((I cX ) ∩F ) for all n > c.

The classical formulation of the Artin-Rees lemma is more general, but we stated
the form which is most directly applicable to our situation. In fact, we need the
following immediate consequence of (1), applied with n = c+ 1:

(2) I c+1X ∩F ⊂ I F .

For O,I ,F ,X as in Theorem 1.9, we call Artin-Rees bound of F in X at I the
smallest integer that satisfies Condition (1).

Theorem 1.10. — Let F be a locally real analytic singular foliation and L a leaf.
Then Ac+1

L = 0 where c is the Artin-Rees bound of F in X(M) at IL. In particular,
the Lie algebra bundle A2

L is nilpotent.

Proof. — Let p ∈ L. Upon restriction to a neighborhood U of p ∈ M , we may
assume that F |U has real analytic generators (Xi)

r
i=1 in some local coordinates.

By Lemma 1.8, we may use the real analytic holonomy Lie algebroid. According to
Artin-Rees Theorem 1.9 applied in the following context:

– C is the algebra of real analytic functions on U (which is Noetherian by [Mal67,
Th. III.3.8]),

– I is the ideal of real analytic functions on U vanishing along L,
– X is the C -module of real analytic vector fields on U ,
– F ra ⊂X is the sub-module generated be the vector fields (Xi)

r
i=1,

there exists c ∈ N that satisfies (1) and therefore (2). Geometrically, (2) applied with
n = c + 1 implies that a vector field in F ra that vanishes at order c + 1 along L
belongs to I F ra. In terms of the filtration in Lemma 1.6, it means that Ac+1

L = 0.
In particular A2

L is a bundle of nilpotent Lie algebras of depth less than or equal to
c+ 1. �

The following example (inspired by Grabowska and Grabowski [GG20]) illustrates
that the Artin-Rees bound can be arbitrarily large in our situation, i.e., that the
filtration on AL may have arbitrarily many non-zero terms.

Example 1.11. — OnM = Rn, let us give to the coordinates (x1, . . . , xn) the weights
(1, . . . , n). Real analytic functions onM then become a filtered algebra. Real analytic
vector fields that preserve this filtration form a module F stable under Lie bracket
and generated by the finite family{

xi11 . . . x
in
n ∂/∂xk | k ∈ [1 : n], i1 . . . , ik ∈ [0 : n] and i1 + 2i2 + · · ·+ nin > k

}
.

Since all vector fields in F vanish at the origin 0, L = {0} is a leaf. The vector field
xn1∂/∂xn is an element in F ∩ InLX(M), but does not belong to ILF . This implies

J.É.P. — M., 2021, tome 8
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that the Artin-Rees bound c is greater than or equal to n. Since IiLX(M) ⊂ F for
i > n, we have In+1

L ∩ X(M) ⊂ F = IL (InL ∩ X(M)), so that c = n.

The Artin-Rees bound also bounds the possible degrees of generators of a singular
foliation which is preserved by some Euler vector field, as stated below.

Proposition 1.12. — Let F be a real analytic singular foliation in a neighborhood
of 0 in Rn made of vector fields that vanish at 0. If F is preserved by the Euler vector
field E =

∑n
i=1 xi∂/∂xi, then:

(1) Every homogeneous component of a vector field in F belongs to F .
(2) F admits homogeneous generators whose degrees are less than or equal to the

Artin-Rees bound of F at 0.

Notice that we will extend Proposition 1.12 to neighborhood of leaves (see Theo-
rem 1.32 below). To prove Proposition 1.12, we start with a lemma:

Lemma 1.13. — For k > 1, the operator

P k : X(Rn) −→ X(Rn)

X 7−→ ([E , X]− (k−1) ·X)

restricts to an invertible isomorphism of F ∩ Ik+1X(Rn), where I = I{0} is the ideal
of functions vanishing at 0.

Proof. — The operator P k restricts to an endomorphism of F ∩ Ik+1X(Rn), since
the identity map and the Lie bracket with E preserve both F and Ik+1X(Rn). Fur-
thermore, the restriction P k|Ik+1X(Rn) of P k to Ik+1X(Rn) is injective as the kernel
of P k is given by homogeneous vector fields of degree k, a space in trivial intersection
with Ik+1X(Rn). Hence, the restriction P k|F∩Ik+1X(Rn) is also injective.

We claim that an explicit inverse to P k|Ik+1X(Rn) is given by

(3)
Qk : Ik+1X(Rn) −→ Ik+1X(Rn)

Z =

n∑
i=1

zi(x)
∂

∂xi
7−→ Qk(Z) =

∫ 1

t=0

(
1

tk+1

n∑
i=1

zi(tx)
∂

∂xi

)
dt.

The convergence of the integral is guaranteed by the fact that all functions t 7→ zi(tx)

vanish at order k + 1 at 0. A simple integration by part gives P k ◦Qk = idIk+1X(Rn).
It is also clear that each one of the functions

∫ 1

t=0
(1/tk+1)zi(tx)dt belongs to Ik+1,

so that the image of Qk is indeed in Ik+1X(Rn).
To conclude the proof, we need to show that Qk preserves the subspace

F ∩ Ik+1X(Rn).

First, let us interpret Equation (3) as:

(4) Qk(Z) =

∫ 1

t=0

1

tk
µt∗(Z)dt,

J.É.P. — M., 2021, tome 8



1044 C. Laurent-Gengoux & L. Ryvkin

where µt is the homothety x 7→ x/t. Since µt is the the flow at time −ln(t) of E ,
it preserves F by Proposition 1.6 in [AS09]. In particular, if Z ∈ F , then µt∗(X) ∈ F

for all t ∈ ]0, 1]. Now, since F admits real analytic generators, F is closed with respect
to the Fréchet topology (see [Tou68, Th. 2]—the result is attributed to Malgrange).
In particular, F is stable under the integration (4), so that if Z ∈ F ∩ Ik+1X(Rn),
then Qk(Z) ∈ F . This proves the lemma. �

Proof of Proposition 1.12. — Let us decompose X ∈ F ∩ IkX(Rn) as X = X(k) + R,
with X(k) homogeneous of degree k, and R ∈ Ik+1X(Rn). As X(k) is in the kernel
of P k, we have

P k(R) = P k(X) ∈ F ∩ Ik+1X(Rn).

By Lemma 1.13, this implies that R ∈ F ∩ Ik+1X(Rn), so that X(k) = X − R ∈ F .
This proves that the lowest component of an element in F is in F . The first item of
the proposition follows by an immediate finite induction.

For (e1, . . . , eb) a local trivialization of AkL/A
k+1
L , let us choose (X1, . . . , Xb)

a b-tuple of elements in F that represent it. The b-tuple (X
(k)
1 , . . . , X

(k)
b ) of their

homogeneous components of degree k is again made of element of F by the first item,
and still represents (e1, . . . , eb). Applying this procedure for all k = 0, . . . , r, we obtain
a basis of g = AL = A0

L which are all represented by homogeneous vector fields in F

of degree less than or equal to the Artin-Rees bound. In view of [AS09, Prop. 1.5 (a)],
these vector fields are generators of F . This proves the second item. �

Remark 1.14. — In the case g0 = glin0 , Proposition 1.12 reduces to [Cer79, Th. 8.1]—
a result extended to a neighborhood of a leaf by Marco Zambon [Zam19].

1.2.2. The Levi exact sequence and the semi-simple holonomy Lie algebroid. — For a Lie
algebra g, the Levi-Malcev decomposition theorem goes as follows:

(i) g has a unique maximal solvable ideal rad(g),
(ii) the quotient g/rad(g) is a semi-simple Lie algebra gS , and
(iii) there is a section gS ↪→ g which is a Lie algebra homomorphism.
The Levi-Malcev theorem does not easily generalize to transitive Lie algebroid.

Remark 1.17 gives a counter-example to step (iii), but steps (i) and (ii) admit gener-
alizations that we now describe. For A→ L a transitive Lie algebroid with anchor ρ
the isotropy Lie algebra bundle g := ker(ρ) is locally trivial ([Mac87, Th. 8.2.1]), so
that the fiberwise radical, i.e., the disjoint union

∐
l∈L rad(gl) is indeed a Lie algebra

bundle over L. We denote it by rad(A). Since A is, near every point m ∈ L, a direct
product of TL → L with its isotropy Lie algebra at m (see, e.g. [Zun03, Th. 1.2]),
sections of rad(A) form an ideal of Γ(A). This proves the following proposition:

Proposition 1.15. — For every transitive Lie algebroid A over L, the quotient
A/rad(A) is a transitive Lie algebroid over L, with semi-simple isotropies, and

(5) rad(A) −→ A −→ A/rad(A)

is a short exact sequence of Lie algebroids.

J.É.P. — M., 2021, tome 8
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These general considerations lead to the following definition.

Definition 1.16. — Let L be a leaf of a singular foliation F . We call the quotient
AL/rad(gL) the semi-simple holonomy Lie algebroid of L and denote it by AS

L .

Remark 1.17. — It is not true in general that the short exact sequence (5) admits
a Lie algebroid section, even for holonomy Lie algebroid AL of a leaf of a singular
foliation. For instance, for A = TM ⊕ R equipped with the Lie algebroid structure
associated to a closed 2-form ω ∈ Ω2(M), the semi-simple holonomy Lie algebroid
A/rad(A) is the tangent Lie algebroid TM , but a Lie algebroid section TM ↪→ A

exists if and only if ω is exact.

Proposition 1.18. — Let L be a leaf of a locally real analytic singular foliation F .
There is a natural Lie algebroid morphism Alin

L
// AS
L that makes the following

diagram commutative:
AL //

$$

Alin
L

��

AS
L

Proof. — By Theorem 1.10, the kernel of AL → Alin
L is a bundle of nilpotent Lie alge-

bras. It is therefore contained in rad(AL), i.e., in the kernel of the natural projection
AL → AS

L . The result follows. �

1.3. Connection theory

1.3.1. Ehresmann or Levi F -connections and flatness. — According to Proposition
1.18, for every leaf L of a locally singular foliation F , we have the following sequence
of surjective morphisms of transitive Lie algebroids over L:

F AL −→ Alin
L −→ AsL −→ TL,

where the leftmost arrow is dashed, as it is not a morphism of Lie algebroids. The
main purpose of this article is to describe the behaviour of F in a neighborhood of L,
using the semi-simple holonomy Lie algebroid AS

L .
To start, we will consider as in [LGR19] neighborhoods U of L in M which are

small enough in the following sense: they have to admit a projection π : U → L such
that TxF +ker(Txπ) = TxM for all x ∈ U . These pairs (U, π) shall be called F -neigh-
borhoods and satisfy several important properties, in particular, by Proposition 2.21
in [LGR19]:

Lemma 1.19. — Every locally closed leaf L of a singular foliation F admits an
F -neighborhood (U, π).

As we are only interested in the behaviour of F near L, for the rest of the section we
assume thatM = U is an F -neighborhood equipped with some projection π : M → L.
The C∞(L)-modules of π-vertical (resp. π-projectable) vector fields will be denoted by

J.É.P. — M., 2021, tome 8



1046 C. Laurent-Gengoux & L. Ryvkin

Xv ⊂ Xproj ⊂ X(U). We also write F v and F proj for the π-vertical and π-projectable
vector fields in F .

Lemma 1.20. — The Lie algebra F proj of π-projectable vector fields in F form a Lie-
Rinehart algebra over C∞(L). Moreover, there is a sequence of surjective Lie-Rinehart
algebra morphisms:

(6) F proj −→ Γ(AL) −→ Γ(Alin
L ) −→ Γ(AsL) −→ X(L).

We introduce several types of connection adapted to this context:

Definition 1.21 ([And17, LGR19]). — Let L be a leaf of a foliation F on (M = U, π).
– An Ehresmann F -connection is a C∞(L)-linear section X(L) → F proj of the

surjection F proj → X(L) in (6).
– A Levi F -connection is a C∞(L)-linear section s : Γ(AS

L ) → F proj of the
surjection F proj → Γ(AS

L ) in (6).

Existence of an Ehresmann F -connection was already established in [And17,
LGR19]. We now extend this result:

Proposition 1.22. — Let L be a leaf of a foliation F on (M = U, π). Then, possibly
on a sub-F -neighborhood of L, Levi F -connections and Ehresmann F -connections
exist.

The proposition follows from the following lemma:

Lemma 1.23. — Let L be a leaf of a foliation F on (M = U, π). Then, possibly on
a sub-F -neighborhood of L the surjection F proj → Γ(AL) admits a C∞(L)-linear
section.

Proof. — When L is a point, AL is a Lie algebra, and such a section s exists. In par-
ticular, there exists for all p ∈ L a linear section sp : gp → F v

p . In view of the
splitting Lemma 1.1, every point p admits a neighborhood U in L which admits a
neighborhood V on M such that

AL|U ' TL|U ⊕ gp and F proj|V ' Γ(TL)⊕F v.

Under this identification, (id× sp) is a section on F proj|V → Γ(AL)|U .
Let (Ui)i∈I be an open cover of L, such that each Ui comes equipped with a C∞(Ui)-

linear section si of p : F proj|Vi → Γ(AL)|Ui for some open subset Vi ⊂ p−1(Ui).
Without any loss of generality, one can assume that the open cover (Ui)i∈I is locally
finite and comes with a partition of unit (χi)i∈I . Then:

V :=
⋃
x∈L

( ⋂
i∈I|x∈Ui

Vi

)
is an open neighborhood of L, and s :=

∑
i∈I χisi is a well-defined C∞(L)-linear

section of p : F proj|V → Γ(AL) �
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Proof of Proposition 1.22. — The composition of any linear section TL → AL (resp.
AS
L → AL) with a section as in Lemma 1.23 yields an Ehresmann F -connection

(resp. a Levi F -connection). This proves the statement. �

Definition 1.24. — An Ehresmann/Levi F -connection is called flat if it is bracket-
preserving (i.e., a morphism of Lie-Rinehart algebras).

Let us give the geometric interpretation of the existence of flat Ehresmann/Levi
connections:

Proposition 1.25. — Let L be a leaf of a singular foliation F .
– A flat Ehresmann F -connection exists if and only if near L there exists a regular

foliation included into F admitting L as a leaf.
– A flat Levi F -connection exists if and only if there exists a Lie algebroid action

of AS
L on π : M → L made of vector fields in F .

Remark 1.26. — Let L be a locally closed leaf. A flat Ehresmann connection induces
a flat section of the anchor map AS

L → TL. Also, if L is Ehresmann-flat, then its
normal bundle ν is a flat bundle. This gives clear obstructions to the existence of flat
Ehresmann connections. In contrast, flat Levi F -connection can be assured to exist
under relatively mild topological conditions, as we will see later.

1.3.2. Linear Ehresmann or Levi F -connections. — An additional desirable property
for a Ehresmann or Levi F -connection is (transverse) linearity. For this purpose,
we need to notion of fiberwise linearity. This is completed through the following
definition adapted from [BLM19]:

Definition 1.27. — Consider an F -neighborhood (U, π) of a locally closed leaf L.
A vector field E ∈ U which is:

(i) tangent to the fibers of π : U → L,
(ii) vanishes along L,
(iii) whose linearization is the Euler vector field on the normal bundle ν, and
(iv) that is complete

is said to be an Euler-like vector field on (U, π).

Upon rescaling the vector field and shrinking the tubular neighborhood (U, π) the
completeness condition (iv) can always be assumed for vector field satisfying (i)–(iii).
The following lemma is the adaptation of [BLM19] to the case where π is given and E

is assumed to be tangent to it.

Lemma 1.28. — Euler-like vector fields on an F -neighborhood (U, π) are in one-to-one
correspondence with vector bundle structures on the fiber bundle π : U → L.

Remark 1.29. — Every such a vector bundle is isomorphic to the normal bundle
ν = TM |L/TL of L in M .
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Definition 1.30. — Consider an F -neighborhood (U, π) of a locally closed leaf L.
We say that a Levi (resp. Ehresmann) F -connection s : Γ(AS

L ) ↪→ F proj
U (resp.

s : Γ(TL) ↪→ F proj
U ) is linear with respect to an Euler-like vector field E if there

exists a neighborhood of the zero section on which every vector field in the image of s
commutes with E .

Remark 1.31. — Upon identifying U with a vector bundle as in Lemma 1.28, vector
fields commuting with E are simply fiberwise linear vector fields.

We say that a vector field X is homogeneous of degree k with respect to E if
[E , X] = (k − 1)X. (Linear vector fields are then homogeneous of degree 1). Upon
choosing adapted coordinates (x, y) where E =

∑d
i=1 xi∂/∂xi, homogeneous vector

fields of degree k are vector fields of the form:∑
i

fi(x, y)
∂

∂xi
+
∑
j

gj(x, y)
∂

∂yj
,

where x 7→ fi(x, y) and x 7→ gj(x, y) are homogeneous polynomials of degree k and
k − 1 respectively for every value y.

Theorem 1.32. — Let F be a locally real analytic singular foliation with leaf L. If F

is preserved by an Euler-like vector field E along L, then near L:
(1) Any homogeneous component of a vector field in F is in F .
(2) The foliation F is generated by homogeneous vector fields (of degree less than

or equal than the Artin-Rees bound of the transverse foliation).
(3) There exists a C∞(L)-linear section s : Γ(Alin

L ) → F proj preserving the Lie
bracket.

Proof. — Fixing a tubular neighborhood adapted to E , the expressions for P k and Qk
from Lemma 1.13 still make sense, and satisfy the same relations on vector fields
tangent to L. Hence, we can proceed identically to Proposition 1.12. This proves the
first two items. A bracket-preserving isomorphism from Γ(Alin

L ) to linear vector fields
in F is obtained by mapping X ∈ Γ(Alin

L ) to the linear component of any of its inverse
images in F . �

For foliations as in Theorem 1.32, the existence of a flat section s : Γ(AsL)→ F proj

is therefore equivalent to the existence of a Lie algebroid section s : AS
L → Alin

L .

Corollary 1.33. — Let F be a locally real analytic singular foliation with leaf L. If F

is preserved by an Euler-like vector field E along L, then a flat Levi F -connection
exists if and only if a Lie algebroid section AS

L → Alin
L exists.

2. The formal neighborhood of a simply connected (singular) leaf

2.1. Lie algebroid cohomology of small degrees. — In order to prove our central
Theorem 2.8, we will need the following statements about Lie algebroid cohomology.
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The Whitehead lemmas I and II admit generalizations for Lie algebroids that we now
state, using several results of Kirill Mackenzie (in [Mac05]):

Lemma 2.1 (Whitehead Lemma I for Lie algebroids). — Let A→ L be a transitive Lie
algebroid with semi-simple isotropies gL = ker(ρ). If π1(L) = 0, then the Lie algebroid
cohomology group H1(A,E) is trivial for any flat finite-dimensional A-module E → L.

Proof. — Theorem 7.4.5 in Kirill Mackenzie [Mac05] asserts that there is a spectral
sequence whose first page is Ht(L,Hs

CE(gL, E)) converging to H•(A,E). The only
two terms contributing to H1(A,E) are H0(L,H1

CE(gL, E)) and H1(L,H0
CE(gL, E)).

The former space is trivial, due to Whitehead’s lemma for Lie algebras and the semi-
simplicity of gL. The second one is trivial, because L is simply connected. �

Lemma 2.2 (Whitehead Lemma II for Lie algebroids). — Let A → L be a transitive
Lie algebroid with semi-simple isotropies gL = ker(ρ). If π1(L) = π2(L) = 0, then
the Lie algebroid cohomology group H2(A,E) is trivial for any flat finite-dimensional
A-module E → L.

Proof. — Let us use again Mackenzie’s spectral sequence used the proof of Lemma 2.1.
Here, the components of the first page required to be trivial are H0(L,H2

CE(gL, E)),
H1(L,H1

CE(gL, E)), and H2(L,H0
CE(gL, E)). The former two are again trivial by the

Whitehead lemmas for Lie algebras. As L is simply connected the flat vector bundle
H0

CE(gL, E) = Γ(EgL) is in fact a trivial vector bundle, so that H2(L,H0
CE(gL, E)) =

H2(L) ⊗ H0
CE(gL, E). By the Hurewicz theorem, π1(L) = π2(L) = 0 implies that

H2(L) = 0. The third component is therefore zero and the result follows. �

We prove the following generalization of the Levi-Malcev theorem, which is also a
prototype for our central Theorem 2.8.

Proposition 2.3. — Let A be a transitive Lie algebroid over a 2-connected base L
(i.e., π1(L) = π2(L) = 0) and AS its semi-simple quotient. Then there exists a Lie
algebroid section s : AS → A of the projection π : A→ AS .

Proof. — The Lie algebra bundle rad(A) = ker(π), defined in Section 1.2.2 comes
with a terminating natural filtration by Lie algebra bundles

(7) r0 = rad(A) ⊃ r1 = [r0, r0] ⊃ r2 = [r1, r1] ⊃ · · · ⊃ rN = 0

such that the subquotients ri/ri+1 are Abelian. We construct s by induction. Let
s0 : AS → A be any linear section: Its curvature is valued in the radical r0 = rad(A).
Assume that there exists a section si : AS → A whose curvature ci is ri-valued, then:

(1) the quotient space ri/ri+1 is an AS -module for: (ξ, b) 7→ [si(ξ), b], with ξ ∈
Γ(AS ), b ∈ Γ(ri),

(2) the skew-symmetric bilinear map:

(ξ, ζ) 7−→ ci(ξ, ζ) mod ri+1

is a Lie algebroid 2-cocycle of AS , valued in ri/ri+1.
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By the second Whitehead lemma 2.2, this cocycle is a coboundary, so that there exists
σi : A→ ri such that:

ci(ξ, ζ) = [si(ξ), σi(ζ)] + [σi(ξ), si(ζ)]− σi([ξ, ζ]) mod ri+1.

This means that the curvature of si+1 = si+σi is ri+1-valued. Since the filtration (7)
terminates at degree N , sN is a Lie algebroid section. �

Remark 2.4. — Proposition 2.3 should not be confused from the Zung and the
Monnier-Zung’s Levi theorems for Lie algebroids [Zun03, MZ04], which is valid for
any Lie algebroid, not only transitive ones, but is a local result.

Let us state an immediate consequence of Proposition 2.3 and Theorem 1.10:

Corollary 2.5. — Let F be a singular foliation and L a locally closed leaf. If π1(L) =

π2(L) = 0, then there exists a Lie algebroid section AS
L → Alin

L . In case F is locally
real analytic, then there even exists a Lie algebroid section AS

L → AL.

The local analyticity assumption on F is probably not necessary: to suppress it,
we would need to extend Theorem 1.10 to all smooth singular foliations.

2.2. Formal singular foliations. — In this section, we define the formal counter-
parts of several notions that have been studied in this article.

For L be a submanifold of M , we denote by Ĉ the algebra of formal functions
along L, i.e., (by Borel’s theorem) the quotient of C∞(M) by the ideal of functions
vanishing with all their derivatives along L. We call formal vector fields along L

derivations of Ĉ .
We call formal singular foliation along L locally finitely generated Ĉ -submodules

of formal vector fields along L which are closed under Lie bracket. For every singular
foliation F , the tensor product F̂ := Ĉ ⊗C∞(M) F is a formal singular foliation
along L called the formal jet of F along L. We will only consider formal singular
foliations for which L is a leaf, i.e., such that the restriction to L is onto X(L).

As for the non-formal case, we call holonomy Lie algebroid of a formal singular
foliation F̂ along L the Lie algebroid whose space of sections is the quotient F̂/ÎLF̂ ,
with ÎL = Ĉ ⊗C∞(M) IL ⊂ Ĉ the ideal of formal functions vanishing along L. As in
Lemma 1.8, since formal functions are a faithfully flat module over real analytic
functions (cf. [Mal67, Th. III.4.9]), we have:

Lemma 2.6. — If a singular foliation F is locally real analytic, then for every leaf L,
the holonomy Lie algebroids of F and of its formal jet F̂ along L are isomorphic.
In equation: F/ILF ' F̂/ÎLF̂ .

The notions of Levi F -connections and Ehresmann F -connections have formal
equivalents for a formal singular foliation F̂ near a leaf L. First, let us choose a
tubular neighborhood π : U → L. A formal vector field X is said to be projectable if
it preserves π∗C∞(L) ⊂ Ĉ . Denote formal projectable vector fields in F̂ by F̂ proj.
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By construction, F̂ proj is a Lie-Rinehart algebra over C∞(L). There are natural Lie-
Rinehart algebra morphisms from F̂ proj to Γ(AS

L ) and X(L) respectively as in (6).
We call formal Levi F -connection (resp. formal Ehresmann F -connection) a C∞(L)-
linear section Γ(AS

L )→ F̂ proj (resp X(L)→ F̂ proj) of these natural surjections.

Remark 2.7. — For future use, notice that the time t-flow of a formal vector field X
tangent to L is a well-defined algebra isomorphism of Ĉ , as long as the time t-flow of
its restriction to L is defined. If X is π-projectable for some π : M → L, this formal
diffeomorphism maps π-fibers to π-fibers.

2.3. Existence of flat Levi F -connections. — The main goal of the section is to
prove the following theorem:

Theorem 2.8. — Let L be a locally closed leaf of the locally real analytic foliation F .
If π1(L) = 0, and there exists a Lie algebroid section z from the semi-simple holonomy
AS
L to the linear holonomy Alin

L , then there exist
– an F -neighborhood (U, π),
– a formal Levi F -connection s∞ : Γ(AS

L )→ F̂ proj,
– and a π-vertical formal Euler-like vector field E∞,

such that
– s∞ is linear with respect to E∞, i.e., [s∞(ξ),E∞] = 0 for all ξ ∈ Γ(AS

L ),
– s∞ is flat, i.e., [s∞(ξ), s∞(ζ)] = s∞([ξ, ζ]) for all ξ, ζ ∈ Γ(AS

L ).

Here is an immediate consequence of this theorem and Corollary 2.5.

Corollary 2.9. — Let L be a locally closed leaf of the locally real analytic foliation F .
If π1(L) = π2(L) = 0, then the conclusions of Theorem 2.8 hold.

Theorem 2.8 will be proved by induction. The initial case is given by Lemma 2.11.
Proposition 2.12 gives the induction step. Both result depend on the technical Lem-
ma 2.10.

We denote by Xv vertical vector fields for π : U → L so that, for every k ∈ N, IkLXv

stands for vertical vector fields vanishing at order k along L.

Lemma 2.10. — Let E be a π-vertical Euler-like vector field on (U, π). For every
π-vertical vector field X ∈ Xv and every k > 2:

(1) if X ∈ IkLXv, then (1/(k − 1))[E , X]−X ∈ Ik+1
L Xv;

(2) if the linearization of X along L is zero, and [E , X] ∈ IkLXv, then X ∈ IkLXv.

Proof. — It suffices to check both items in local adapted coordinates (x, y) where
y = (y1, . . . , yd) are local coordinates on L and x = (x1, . . . , xc) are local coordinates
on the fibers of π : (x, y) 7→ y such that E =

∑c
i=1 xi∂/∂xi. Since the ideal IL is

generated by x1, . . . , xc, the Taylor expansion implies that for every X ∈ IkLXv there
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exists functions fi;i1,...,ic(y) such that

X =

c∑
i=1

∑
i1+···+ic=k

fi;i1,...,ic(y)xi11 . . . x
ic
c

∂

∂xi
mod Ik+1

L Xv.

Since [E , Ik+1
L Xv] ⊂ Ik+1

L Xv, the first item follows from the easily checked identity:

(8)
[
E , xi11 . . . x

ic
c

∂

∂xi

]
= (k − 1)xi11 . . . x

ic
c

∂

∂xi
.

Let us prove the second item. By assumption, the linearization of X ∈ Xv along L
is zero, so that X ∈ I2LXv. The conclusion then follows from considering the Taylor
expansion of X, in view of Equation (8). �

A pair (s,E ) with s a Levi F -connection and E a π-vertical Euler-like vector field
are said to be flat and linear up to order k if:

– [s(ξ),E ] = 0 mod IkLX
v for all ξ ∈ Γ(AS

L ),
– [s(ξ), s(ζ)] = s([ξ, ζ]) mod IkLX

v for all ξ, ζ ∈ Γ(AS
L ).

Lemma 2.11. — For every Euler-like vector field E and every Levi F -connection s:
– [E , s(ξ)] = 0 mod I2Xv,
– If, in addition, s projects to a Lie algebroid morphism z : AS

L → Alin
L , then

[s(ξ), s(ζ)] = s([ξ, ζ]) mod I2LX
v for all ξ, ζ ∈ Γ(AS

L ).

Proof. — Since E is an Euler-like vector field, a neighborhood U of L can be covered
by local charts, equipped with coordinates (x1, . . . , xc, y1, . . . , yd), such that:

(1) L is locally given by x = 0, and π is locally given by (x, y) 7→ y,
(2) E coincides with the vector field

∑c
i=1 xi∂/∂xi.

The Taylor expansion of any π-projectable vector field X is given by

X =
d∑
i=0

fi(y)
∂

∂yi
+

c∑
i,j=1

aij(y)xi
∂

∂xj
+ I2LX

v.

A simple calculation gives [E , X] ∈ I2LXv, as
∑d
i=0 fi(y)∂/∂yj +

∑c
i,j=1 aij(y)xi∂/∂xj

commutes with E and I2LX
v is preserved by E by Lemma 2.10. Since s(ξ) is

π-projectable for all ξ ∈ Γ(AS
L ), the first assertion follows. The second assertion is a

consequence of the following facts:
(1) the assumption on s means that for all ξ, ζ ∈ Γ(AS

L ), the π-vertical vector field
[s(ξ), s(ζ)]− s([ξ, ζ]) is contained in the kernel of F proj → Γ(Alin

L ),
(2) the kernel of F proj → Γ(Alin

L ) is contained in I2LXv = Xv∩I2LXproj by definition
of Alin

L .
This completes the proof of the second argument. �

Proposition 2.12. — Let (sk,E k) be a Levi F -connection and an Euler-like vector
field respectively, which are flat and linear up to order k, with k > 2. Then there
exists (sk+1,E k+1), a Levi F -connection and an Euler-like vector field respectively,
such that
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– the pair (sk+1,E k+1) is flat and linear up to order k + 1,
– the vector fields E k and E k+1 coincide up to order k,
– the vector fields sk(ξ) and sk+1(ξ) coincide up to order k for all ξ ∈ Γ(AS

L ).

Proof. — By assumption, the pair (sk,E k) satisfies two conditions: “Linearity up to
order k” and “Flatness up to order k”, i.e., for all ξ, ζ ∈ Γ(AS

L )

[sk(ξ),E k] = 0 mod IkLX
v(Link)

[sk(ξ), sk(ζ)] = sk([ξ, ζ]) mod IkLX
v.(Flatk)

We will prove the proposition in three steps:

Step 1. — We construct a class that measures the failure of (Link) to hold at order
k + 1.

– The C∞(L) module IkLXv/(F ∩ IkLXv + Ik+1Xv) is projective, i.e., isomorphic to
the section space Γ(V k) of a vector bundle V k → L. Indeed, the quotient IkLXv/Ik+1

L Xv

is given by sections of some vector bundle over L: It is a direct consequence of the
splitting Lemma 1.1 that V k is a quotient of that bundle.

– A Lie algebroid action of AS
L on V k is defined by ∇ξ(σ) := [sk(ξ), σ], with

σ ∈ IkLXv. The action is well-defined, because [sk(ξ), ·] preserves Xv, IL and F , hence
it preserves the numerator and denominator of IkLXv/(F ∩ IkLXv + Ik+1

L Xv). As k > 2,
Equation (Flatk) implies that the action ∇ is flat.

– By (Link), there is a well-defined C∞(L)-linear map def : Γ(AS
L )→ Γ(V k) given

by ξ 7→ [sk(ξ),E k] describing the defect of linearity up to order k + 1. The curvature

(9) ck(ξ, ζ) = [sk(ξ), sk(ζ)]− sk([ξ, ζ])

is valued in F and in IkLX
v, by assumption (Flatk). The first item in Lemma 2.10

implies that applying [·,E k] to a vector field in F ∩ IkLXv yields an element of
F ∩ IkLXv + Ik+1Xv: Therefore upon applying [·,E k] to Equation (9), we obtain[
sk(ξ), [sk(ζ),E k]

]
−
[
sk(ζ), [sk(ξ),E k]

]
= [sk([ξ, ζ]),E k] mod F ∩ IkLXv + Ik+1Xv,

which is exactly the cocycle condition: ∇ξ def(ζ)−∇ζ def(ξ)− def([ζ, ξ]).

Step 2. — We construct (E k+1, sk+1) satisfying (Link+1).
– Since L is simply connected, Lemma 2.1 implies that the class [def]∈H1(AS

L , V
k)

is zero. Choose εk ∈ IkLXv, such that εk is a primitive of def:

def(ξ) = ∇ξεk i.e., [sk(ξ),E k] = [sk(ξ), εk] mod F ∩ IkLXv + Ik+1
L Xv.

We define the new Euler-like vector field by E k+1 = E k − εk.
– By construction of E k+1, for every given ξ ∈ Γ(AS

L ), there exists a vector field
σk(ξ) in F ∩ IkLXv such that

[sk(ξ),E k+1] = σk(ξ) mod Ik+1
L Xv.

Using local trivializations and partitions of unity on L, the map ξ 7→ σk(ξ) can be
achieved to be C∞(L)-linear. We now define sk+1 = sk−σk/(k − 1). By construction,
sk+1 is still a Levi F -connection.
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– Let us verify (Link+1):

[sk+1(ξ),E k+1] =
[
sk(ξ)− σk(ξ)

k − 1
,E k+1

]
= σk(ξ)− 1

k − 1
[σk(ξ),E k+1] = 0 mod Ik+1

L Xv.

The last equality holds by the first item of Lemma 2.10.

Step 3. — Consider the curvature

ck+1(ξ, ζ) = [sk+1(ξ), sk+1(ζ)]− sk+1([ξ, ζ]).

We show that (Link+1) implies (Flatk+1), i.e., ck+1 = 0 modulo Ik+1
L Xv.

– Since sk+1 = sk modulo IkLXv, we know that

ck+1 = ck = 0 mod IkLX
v.

– In view of (Link+1), all underbraced terms in the following expression are in
Ik+1
L Xv.

[ck+1(ξ, ζ),E k+1]

= [sk+1(ξ), [sk+1(ζ),E k+1]︸ ︷︷ ︸]− [sk+1(ζ), [sk+1(ξ),E k+1]︸ ︷︷ ︸]− [sk+1([ξ, ζ]),E k+1]︸ ︷︷ ︸ .
Since sk+1(ξ) and sk+1(ζ) are projectable vector fields tangent to L, their bracket
with Ik+1

L Xv takes values in Ik+1
L Xv. Hence, [ck+1,E k+1] = 0 mod Ik+1

L Xv.
– The second item of Lemma 2.10, implies that ck+1 = 0 mod Ik+1

L Xv, i.e.,
(Flatk+1) holds.

This completes the proof. �

2.4. Examples and counter-examples. — Let us give counter examples to naive gen-
eralizations of Theorem 2.8. Let us explore the non-simply connected case.

Example 2.13. — For L a leaf in a regular foliation, we have

AL = Alin
L = AS

L = TL,

and every tubular neighborhood (U, π) induces a unique flat Levi F -connection: it suf-
fices to lift a vector field in L to the unique π-projectable vector field in F . However,
the transverse formal Euler-like vector field can only exist if the holonomy Φ(γ) is
a formally linearizable diffeomorphism of the transversal for all γ ∈ π1(L). The reg-
ular foliations (with dimension 1 leaves) obtained by suspension of diffeomorphism
φ : Rn → Rn fixing 0 are instances of such foliations with L ' S1 if φ is not formally
linearizable at zero (e.g. n = 2 and (x, y) 7→ (x, y + x2)).

Example 2.14. — Consider the “self-eating snake” singular foliation, as in Figure 1,
realized as follows. Let S be the “foliation by concentric circles”, i.e., the singular
foliation on R2 of all vector fields X such that X[φ] = 0, with φ =

∑2
i=1 x

2
i . Then

consider the direct product singular foliations on R2×R given by F := S×X(R). This
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foliation goes to the quotient through the equivalence relation (x, t) ∼ ( 1
2x, t+ 1), for

all (x, t) ∈ R2×R. The only singular leaf of the quotient singular foliation is L = S1.
In this case, the normal bundle ν is trivial as a vector bundle, a flat Levi

F -connection exists (which is also a flat Ehresmann connection since AS
L = TL), but

there is no Ehresmann F -connection that makes the normal bundle isomorphic to the
trivial one (i.e., the first return map on ν induced by any Ehresmann F -connection
is non-trivial).

Figure 1. Example 2.14

Here is an example of a leaf for which a section AS
L → Alin

L exists (because it is
transversally quadratic and AS

L = Alin
L ) but does not admit a flat Levi F -connection.

Example 2.15. — Let L be a manifold, α, β ∈ Ω1(L) closed 1-forms such that the
class of α ∧ β in H2(L) is not trivial. On M := L× R, we consider for all a, b, c ∈ N
with 2 6 a < b and c = a + b − 1 the C∞(M)-submodule F ⊂ X(M) generated by
the vector fields:

tc
∂

∂t
and ψ(u) := u+ α(u)ta

∂

∂t
+ β(u)tb

∂

∂t
with u ∈ X(L).

A direct computation shows that:[
ψ(u), tc

∂

∂t

]
=
(
(c− a)α(u)ta−1 + (c− b)β(u)tb−1

)
tc
∂

∂t

ψ([u, v])− [ψ(u), ψ(v)] = (b− a) (α(u)β(v)− β(u)α(v)) tc
∂

∂t
,

so that F is a singular foliation.
By construction, L × {0} is a leaf of F and IL is then the ideal generated by t.

The computations above imply that the holonomy Lie algebroid is the vector bundle
AL = TL⊕ R equipped with the bracket given for all u, v ∈ X(L), f, g ∈ C∞(L) by:

[(u, f), (v, g)] = ([u, v], u[g]− v[f ] + ω(u, v)),

where ω = (b − a)α ∧ β ∈ Ω2(L). The projection on TL is the anchor map. Any
Ehresmann F -connection is of the form:

u 7−→ ψ(u) + γt(u)tc
∂

∂t
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for some t-dependent 1-form γ on L. Its curvature is (ω+ddRγ0)tc∂/∂t+O(tc+1). Since
the 2-form ω is not exact, the leaf L does not admit a flat Ehresmann F -connection.

The following is an example of a possibly simply connected leaf, which does not
admit a section AS

L → Alin
L and therefore does not admit a flat Levi F -connection.

Example 2.16. — Let L be a manifold and let ω ∈ H2(L,Z) be the Chern class of an
S1-bundle P → L with connection θ. Consider the associated C-bundle π : E → L,
and equip it with the linear Ehresmann connection associated to θ. The horizontal
lifts û of vector fields u on L, together with the infinitesimal vector field R of the S1-
action generate a singular foliation F on E. For this foliation F the zero section L
is a leaf. In view of the relation:

[û+ π∗(f) ·R, v̂ + π∗(g) ·R] = [̂u, v] + π∗(u[g]− v[f ] + ω(u, v)) ·R
for all u, v ∈ X(L), f, g ∈ C∞(L),

the holonomy Lie algebroid of L is AL = TL ⊕ R, its anchor map is the projection
onto TL, and its Lie bracket is given for all u, v ∈ X(L), f, g ∈ C∞(L) by

[(u, f), (v, g)] = ([u, v], u[g]− v[f ] + ω(u, v)).

As ω is nonzero in cohomology, there can be no Lie algebroid section from TL = AS
L

to AL = Alin
L .

Let us construct examples for which Theorem 2.8 holds. Let τ : Γ(A) → X(V ) be
the action of a Lie algebroid A → L on the vector bundle V → L and R ⊂ X(V )

a singular foliation made of vertical vector fields. If
(1) R is invariant under the Lie algebroid action,
(2) τ(Γ(A)) intersects R trivially,

then vector fields in R, together with the vector fields for the infinitesimal A-action
on V , generate a singular foliation F on V .

The same construction can be completed when R is substituted by a formal singular
foliation R̂ along the zero section L. Let us fix notations:

Definition 2.17. — Let A → L be a Lie algebroid acting faithfully on V . For every
(maybe formal) singular foliation R satisfying the above conditions (1) and (2), then
the above singular foliation F is called the semi-direct product of A with R and is
denoted(2) by

F := A n̂R.

In all cases we are interested in, A → L is a transitive Lie algebroid. Also, R

will be made of vertical vector fields vanishing along the zero section L. Under these
conditions, the zero section L is a leaf of F . Let us give two examples.

(2)Notice that it is not true that Fproj ' Γ(A) n R as Lie algebras (there is only an inclusion).
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Example 2.18. — Consider a singular foliation R on Rn. The direct product of L
with R is obtained by choosing, in Definition 2.17, A to be the Lie algebroid TL→ L

and V to be the trivial TL-module Rn × L.

Example 2.19. — Let n > 3. Since SO(n + 1) acts on the sphere Sn, there is a
natural action of the transformation Lie algebroid A = so(n + 1) × Sn → Sn on
V = TSn → Sn. Let R be the singular foliation on TSn generated by the Euler
vector field. The assumptions in Definition 2.17 are easily satisfied. The semi-direct
product An̂R is a singular foliation on TSn, admitting the zero section L = Sn as
a leaf, with AS

L = A = so(n + 1) × L → L. For this leaf, the Euler field and the
Lie algebroid action of A on TSn give the formal Euler-like field and the formal Levi
F -connection whose existence is guaranteed by Theorem 2.8.

For n = 2, the construction of the singular foliation F still makes sense, and the
zero section L = S2 is still a leaf. However, since Alin

L is the transitive transformation
Lie algebroid (so(3) ⊕ R) × L → L, with R acting trivially, and since the isotropy
of the Lie algebroid Alin

L at every point in S2 is an Abelian two-dimensional Lie
algebra, we now have AS

L = TS2 → S2. Since there is no Lie algebroid section
TL→ (so(3)⊕ R× L)→ L for L = S2, Theorem 2.8 does not apply.

2.5. Geometric reformulation. — Let L be a locally closed leaf of F . Assume
both conditions in Theorem 2.8 are satisfied: L is simply connected and a section
z : AS

L → Alin
L exists. Theorem 2.8 then provides:

♠ a formal Euler-like vector field E , tangent to the fibers of π : U → L,
♦ a formal Levi F -connection s : Γ(AS

L )→ F̂ proj.
Moreover, the image of s is made of vector fields commuting with E . Let us spell out
the content of this data:
♠ The formal Euler-like vector field E yields a formal isomorphism Φ between the

fibers of normal bundle π : ν = TM |L/TL → L to the the fibers of π : U → L that
identifies, by construction, E with the Euler vector field Eν of the normal bundle.
We use Φ to transport to ν the formal jet F̂ of F .
♦ The composition Φ−1 ◦ s now becomes a flat Levi Φ−1(F̂ )-connection on the

fibers of π : ν → L.
Moreover, the image of Φ−1 ◦s is made of vector fields commuting with Eν , i.e., linear
vector fields on ν, so that the flat Levi F -connection of item ♦ is now a Lie algebroid
action of AS

L on the normal bundle. This proves the following Lemma.

Lemma 2.20. — The image of Φ−1 ◦ s is made of linear vector fields on ν → L. More
precisely, for every ξ ∈ Γ(AS

L ), the linear vector field on ν describing the natural Lie
algebroid action of z(ξ) ∈ Γ(Alin

L ) on ν coincides with Φ−1 ◦ s(ξ).

We call radical foliation of F the subspace R ⊂ F v of all vector fields in F v

whose image through the linearization map along L is in the radical of Alin
L . In view
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of the definition of AS
L , it can be defined by:

R := Ker(F proj −→ Γ(AsL)).

Lemma 2.21. — The space R is a singular foliation on U , included in F v, and

[s(Γ(AS
L )), R̂] ⊂ R̂ and s(Γ(AS

L ))⊕ R̂ = F̂ proj.

Proof. — The formal jet R̂ of R along L is the kernel of F̂ proj → Γ(AS
L ), and s is a

Lie algebra section of that projection. �

It follows from Lemma 2.21 that F̂ proj is, as a Lie algebra, isomorphic to the
semi-direct product:

F̂ proj ' s(Γ(AS
L )) n R̂.

Using the formal diffeomorphism Φ−1, we see that F̂ is indeed a singular foliation
of the form described in Definition 2.17 applied to A = AS

L → L, ν = V and R̂ν =

Φ−1(R̂). Using this language Theorem 2.8 takes the following form:

Theorem 2.22. — Let L be a locally closed leaf of the locally real analytic foliation F

on a manifold M . If π1(L) = 0, and there exists a Lie algebroid section z from the
semi-simple holonomy AS

L to the linear holonomy Alin
L , then:

(1) the normal bundle ν = TM |L/TL → L comes equipped with a flat AS
L -con-

nection,
(2) there is a formal diffeomorphism between M and ν (near L) that identifies F̂

and a semi-direct product(3) singular foliation on ν → L of the form:

F̂ = AS
L n̂ R̂ν ,

where Rν is a vertical singular foliation on ν, tangent to the fibers of ν → L, invariant
under the AS

L -action on ν, isomorphic to the formal jet of the radical foliation R

of F .

Remark 2.23. — The decomposition F̂ = AS
L n̂R̂ν should not confuse the reader.

Vector fields arising from the infinitesimal action of sections Γ(AS
L ) of the Lie alge-

broid AS
L on ν are in direct sum with R̂ν . But the C∞(ν)-module generated by

this infinitesimal action is a singular foliation that does in general intersect R̂ν . The
corollary below gives a context where this module contains R̂ν .

Corollary 2.24. — Let L be a locally closed leaf of the locally real analytic foliation F

on a manifold M . If π1(L) = 0, and AS
L = AL, then there is a formal diffeomorphism

between F and the singular foliation associated to the natural Lie algebroid action of
the holonomy Lie algebroid AL on the normal bundle.

(3)For the notation AS
L n̂R̂ν , see Definition 2.17.
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Proof. — According to [AS09, Prop. 1.5], in a neighborhood of p ∈ L, the singular
foliation F is generated by any family X1, . . . , Xd of vector fields in F whose image
in Γ(AL) is a local trivialization of AL. As a consequence, the image of s generates F .
The result then follows from Theorem 2.22. �

3. Local and semi-local structure of a singular foliation

3.1. Local structure of a singular foliation: Levi theorems. — Let us explore
the consequences of Theorem 2.8 in the neighborhood of a point p in a manifold M
equipped with a singular foliation F . Splitting Lemma 1.1 allows to make the addi-
tional assumption that all vector fields vanish at p, upon replacing M with a small
disk transversal to the leaf through m if necessary.

Throughout Section 3.1, F shall be a locally real analytic singular foliation made
of vector fields that vanish at a point p ∈M .

3.1.1. Relation with Cerveau’s Levi theorems. — The requirements of Theorem 2.8
(namely “If π1(L) = 0, and there exists a Lie algebroid section z from the semi-simple
holonomy AS

L to the linear holonomy Alin
L ”) hold automatically:

(1) Since L is reduced to the point {p}, it is simply connected.
(2) The Lie algebroids AL, Alin

L , A
S
L are finite dimensional Lie algebras:

(a) AL is the isotropy Lie algebra gp at p,
(b) Alin

L is the quotient gp/g>2
p ,

(c) AS
L is the semi-simple part gS

p of the Lie algebra gp.
Now, in view of the usual Levi-Malcev decomposition theorem for finite dimensional
Lie algebras, a Lie algebra section gS

p → gp exists. Its composition with the natural
projection gp → glinp is a Lie algebra section gS

p → glinp .
Theorem 2.8 specializes therefore to yield the following corollary:

Corollary 3.1 (Cerveau). — Let gS be the semi-simple part of the isotropy Lie alge-
bra of F at g. Then there exists a Lie algebra morphism s : gS → F̂p and a formal
Euler-like vector field E with respect to which the image of s is made of formally linear
vector fields.

A comparison of this Corollary with [Cer79, Th. 2.1] shows that both statements
are equivalent (although stated and proved quite differently here). Also, for L = {p},
Corollary 2.24 recovers the second part of [Cer79, Th. 2.2].

3.1.2. Levi theorem for projective foliations. — Let us assume that F is a projective
C∞(M)-module.(4) In this case, there exists a Lie algebroid (A, [· , ·], ρ), such that the
anchor map ρ : A→

∐
m∈M TmF , although it is not an isomorphism at every point,

is an isomorphism (of C∞(M)-modules) at the level of sections:

ρ : Γ(A) ∼= F .

(4)i.e., “a Debord foliation” in the terminology of [LGLS20], see [Deb01].

J.É.P. — M., 2021, tome 8



1060 C. Laurent-Gengoux & L. Ryvkin

Since all vector fields in F vanish at p, we have that ρ|p = 0, so that the fiber of Ap is
a Lie algebra: it is easily shown to coincide with the isotropy Lie algebra gp. Applying
Corollary 3.1 to this situation yields the following result, where Γ̂(A) stands for formal
sections of a vector bundle A near p:

Corollary 3.2 ([Wei00, Duf01, Zun03]). — Let A be the Lie algebroid associated to
a projective singular foliation made of vector fields vanishing at {p}. Denote by AS

p

the semi-simple part of the isotropy Lie algebra Ap. Then there exists a Lie algebra
morphism s : AS

p → Γ̂(A) and a formal Euler-like vector field E with respect to which
the image of ρ ◦ s is made of formally linear vector fields.

This statement indeed holds true for any Lie algebroid, see [Wei00, Duf01, Zun03].

3.2. Sections to the Holonomy Lie (∞-) algebroid. — Let F be a locally real an-
alytic singular foliation. For every leaf L such that π1(L) = π2(L) = 0, Corollary 2.5
ensures the existence of a Lie algebroid section AS

L → AL. Using Theorem 2.8, we
can loosen the 2-connectedness condition for M as follows:

Proposition 3.3. — Let F be a locally real analytic singular foliation and L a sim-
ply connected and locally closed leaf, such that there exists a Lie algebroid section
AS
L → Alin

L . Then there exists a Lie algebroid section AS
L → AL.

Proof. — Let c be the Artin-Rees bound for F at L. By “stopping early” in the
iteration for Theorem 2.8, we obtain a section s = sc+1 : Γ(AS

L )→ F and an Euler-
like vector field E = E c+1 such that [s(ξ), s(ζ)] − s([ξ, ζ]) ∈ Ic+1

L Xv ∩F ⊂ ILF for
all ξ, ζ ∈ Γ(AS

L ). Such a map s induces a section AS
L → AL which is a Lie algebroid

section. �

Proposition 3.3 can be generalized as follows. For the sake of simplicity, we will
assume below that the formal AS

L -action in Theorem 2.8 is convergent, and that the
leaf L is compact, so that we may refer to existing results in [LGLS20] and [LGR19].
These additional assumptions are certainly not relevant for both propositions below,
but avoiding them would require to extend to the formal setting the statements we
will refer to. In [LGLS20], it is shown that every real analytic singular foliation F

is, locally on a neighborhood U of a point, the image through the anchor map of a
universal Lie ∞-algebroid, i.e., a Lie ∞-algebroid UF = (E−i, [· · · ]i, ρ) whose 1-ary
bracket d = [·]1, together with its anchor map:

· · · d−−→ Γ(E−2)
d−−→ Γ(E−1)

ρ−−→ F |U

form a projective resolution of F . In [LGR19, Th. 2.26], the universal Lie∞-algebroid
is shown to exist in a neighborhood of a compact leaf. The restriction of such a Lie
∞-algebroid UF to L yields a transitive Lie ∞-algebroid over L denoted by UF |L.
It admits a canonical Lie ∞-morphism onto AL. We call Π its composition with the
projection AL → AS

L .

J.É.P. — M., 2021, tome 8



The neighborhood of a singular leaf 1061

Proposition 3.4. — Let F be a locally real analytic singular foliation and L a simply
connected and compact leaf, such that there exists a Lie algebroid section AS

L → Alin
L .

We assume that the formal section Γ(AS
L ) → F whose existence is guaranteed by

Theorem 2.8 can be chosen to converge in a neighborhood of L. Then Π admits a Lie
∞-algebroid section AS

L → UF |L.

Proof. — The Lie algebroid action of AS
L on U defines a sub-foliation AS

L in F ,
namely the image through the anchor map of the transformation Lie algebroid of this
action. In view of [LGLS20, Th. 2.9], there exists a Lie∞-algebroid morphism Φ from
this transformation Lie algebroid to the universal Lie ∞-algebroid UF . The desired
morphism is the restriction of Φ to the leaf L. �

An important question for a given singular foliation is to know whether or not it
comes from a Lie algebroid action [AZ13]. When the leaf L is a point {p}, the rank of
such a Lie algebroid has to be greater than or equal to the dimension of the isotropy
Lie algebra gp. Although the general problem remains open, gp carries a Chevalley-
Eilenberg cohomology 3-class, called the NMRLA-class that obstructs the possibility
to have a Lie algebroid whose rank is minimal i.e., equal to dim(gp) (see [LGLS20,
Prop. 4.29]). Proposition 3.4 has strong implications for this class: it shows that it is
effaçable.

Recall that for g a Lie algebra and V a finite dimensional g-module, a class ω in
a Chevalley-Eilenberg cohomology group Hk(g, V ) is effaçable (or erasable) if there
exists a finite dimensional g-module W containing V such that the image of ω in
Hk(g,W ) is zero.

Let us briefly describe the NMRLA class assuming L = {p} is a point leaf. In
this case, UF |{p} is a Lie ∞-algebra whose 1-ary bracket can be assumed to be zero.
Then, its degree (−1) component is a Lie algebra isomorphic to gp (see [LGLS20,
Prop. 4.14]), its degree (−2)-component is a gp-module V , and the restriction to gp
of the 3-ary bracket is a Chevalley-Eilenberg 3-cocycle valued in V (see [LGLS20,
Prop. 4.27]), defining the NMRLA class.

Proposition 3.5. — Let F be a locally real analytic singular foliation and {p} a point
leaf such that the formal section gS

p → F whose existence is guaranteed by Corol-
lary 3.1 can be chosen to converge in a neighborhood of p. Then the NMRLA-class
of F at p is effaçable.

Proof. — In view of [Hoc54, Th. 1], a cohomology class is effaçable if and only if its
restriction to a maximal semi-simple Lie subalgebra is zero. Let Φ: gS

p →UF |p be a
Lie∞-algebroid morphism as in Proposition 3.4. The Taylor coefficient Φ1 : gS

p →gS
p

of Φ is the identity map and the second Taylor coefficient Φ2 : ∧2 gS
p → V satisfies

(see [LGLS20, Eq. (4.10)]) for all a, b, c ∈ gS
p ,{

a, b, c
}
3

=
{
a,Φ2(b, c)

}
2
− Φ2

(
{a, b}2, c

)
+ � abc.

This means that the restriction of the 3-ary bracket to gS
p is a Chevalley-Eilenberg

coboundary. This concludes the proof. �
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3.3. Transversally quadratic simply connected leaves. — Let F be a locally real
analytic foliation and L a leaf. We say that a leaf L is transversally quadratic if its
transverse singular foliation (see Lemma 1.1) is made of vector fields vanishing at
least quadratically. There is an easy characterization in terms of the holonomy Lie
algebroid of the leaf L:

Proposition 3.6. — A leaf L is transversally quadratic if and only if Alin
L = AS

L =

TL. In particular, the normal bundle ν carries a natural flat connection ∇ν .

Proof. — By definition of Alin
L , the first part of the proposition follows from the

following intermediate characterization of transversally quadratic leaves. A leaf is
transversally quadratic if F v ⊂ I2LX

v. The second part of the proposition follows
from the existence, for every leaf L, of a natural Alin

L -action on ν, see Section 1.1. �

Remark 3.7. — It follows immediately from Proposition 3.6 that a leaf L ⊂M whose
normal bundle is not flat cannot be transversally quadratic, which is a very strong
constraint. For instance, S2 ⊂ TS2 cannot be transversally quadratic.

For a regular foliation, it is well-known that in a neighborhood of a simply con-
nected leaf L, the foliation is “trivial”, i.e., formally, it is isomorphic to the direct
product of the leaf L with an open disk. The same phenomenon occurs for transver-
sally quadratic leaves:

Theorem 3.8. — Every simply-connected, transversally quadratic and locally closed
leaf L of a locally real analytic singular foliation F is formally trivial, i.e., the formal
jet F̂ along L is isomorphic to the direct product(5) of L with the formal jet of the
transverse foliation.

Proof. — Both conditions in Theorem 2.22 are satisfied: L is simply connected by
assumption and a section AS

L → Alin
L exists since both algebroids coincide with TL

by Proposition 3.6. There is therefore a formal isomorphism between F̂ and TLn̂R̂,
with R being the radical foliation. In this case, however, there are several obvious
identifications:

(1) The radical foliation R of F is simply the transverse singular foliation.
(2) By Proposition 3.6, the normal bundle ν is flat. Since L is simply connected,

it is indeed a trivial vector bundle: ν ' L× νp, with νp some given fiber.
The semi-direct product is then reduced to a direct product. This gives the desired
formal isomorphism. �

Remark 3.9. — Theorem 3.8 is a purely singular foliation phenomenon: there is no
such a result for Lie algebroids or Poisson structures. In fact, even for regular Poisson
or Lie algebroid structures there is no such a result. For instance, choose of a volume
form ω on the 2-sphere S2, let π = ω−1 be its inverse Poisson structure and consider
the Poisson structure on S2 × R given by etπ ⊕ 0 with t the parameter on R. The

(5)Direct products of L with a singular foliation are discussed in Example 2.18.

J.É.P. — M., 2021, tome 8



The neighborhood of a singular leaf 1063

symplectic leaves are the fibers of the projection S2 × R → R. They are therefore
simply-connected and their transverse Poisson structure is zero (in particular, it is
transversally quadratic: it vanishes at order at least 2). But since the volumes of all
the symplectic leaves are different, this Poisson structure cannot be isomorphic to a
direct product of π = ω−1 with the trivial Poisson structure on R in a neighborhood
of a given leaf (even formally).

Similarly, consider sections of the vector bundle A = T (S2 ⊕R) over the manifold
S2×R as pairs (X, f) or (Y, g) with X,Y being t-dependent vector fields tangent to S2

and f, g t-dependent real-valued functions on S2 (with t the parameter along R). The
bracket:

[(X, f), (Y, g)] = ([X,Y ], X[g]− Y [f ] + tω(X,Y ))

is a Lie algebroid bracket on A. The leaves of A are 2-spheres: they are therefore
simply connected. The transverse Lie algebroid TR→ R has trivial anchor and trivial
bracket. The restriction of the Lie algebroid A to any two leaves are isomorphic, except
for the exceptional leaf t = 0. Hence the Lie algebroid A is not a direct product near
the leaf t = 0.

By applying the “stopping early” strategy from Proposition 3.3 in the proof of the
previous Theorem, we obtain the following result:

Corollary 3.10. — The holonomy Lie algebroid AL of a simply connected, transver-
sally quadratic and locally closed leaf L is the direct sum of TL with the isotropy Lie
algebra of its transverse foliation.

Proof. — By Proposition 3.3, a Lie algebroid section s : X(L)→ F v/ILF v ' Γ(AL)

exists. This section makes the isotropy Lie algebra bundle ker(ρ) of AL a flat Lie
algebra bundle. Since L is simply connected, it is a trivial Lie algebra bundle. �

The proof of Theorem 3.8 is fact shows the following more general statement:

Theorem 3.11. — A simply-connected and locally closed leaf L of a locally real analytic
singular foliation F is formally trivial (i.e., the formal jet F̂ along L is isomorphic
to the direct product of L with the formal jet of the transverse foliation) if and only
if there exists a Lie algebroid section TL→ Alin

L .
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