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THE CONTINUUM DIRECTED POLYMER IN LÉVY NOISE

by Quentin Berger & Hubert Lacoin

Abstract. —We present in this paper the construction of a continuum directed polymer model
in an environment given by space-time Lévy noise. One of the main objectives of this construc-
tion is to describe the scaling limit of a discrete directed polymer in a heavy-tail environment
and for this reason we put special emphasis on the case of α-stable noises with α ∈ (1, 2). Our
construction can be performed in arbitrary dimension, provided that the Lévy measure satisfies
specific (and dimension dependent) conditions. We also discuss a few basic properties of the
continuum polymer and the relation between this model and the stochastic heat equation with
multiplicative Lévy noise.

Résumé (Polymère dirigé continu dans un bruit de Lévy). — Nous présentons dans cet article
la construction d’un modèle de polymère dirigé continu dans un environnement donné par
un bruit de Lévy en espace-temps. L’un des principaux objectifs de cette construction est de
décrire la limite d’échelle d’un polymère dirigé discret dans un environnement à queue lourde et,
pour cette raison, nous mettons plus particulièrement en avant le cas de bruits α-stables avec
α ∈ (1, 2). Notre construction peut être réalisée en n’importe quelle dimension, pourvu que la
mesure de Lévy satisfasse certaines conditions (qui dépendent de la dimension). Nous examinons
aussi quelques propriétés de base du polymère continu, ainsi que la relation entre ce modèle et
l’équation de la chaleur stochastique avec bruit multiplicatif de Lévy.
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214 Q. Berger & H. Lacoin

1. Introduction

The aim of this paper is to build a continuum model which describes the scaling
limit of directed polymers in Zd with an environment which has infinite second mo-
ment: the continuum directed polymer in a space-time Lévy noise. Our construction
can be thought as an extension to arbitrary noise and dimension of that presented
in [2] of a continuum polymer in dimension 1 with Gaussian white noise. In a com-
panion paper [9], we prove that the scaling limit of the directed polymer in Zd with
heavy tailed environment is indeed the continuum model constructed in the present
paper.

Whereas the construction in [2] is directly based on the solution of the stochastic
heat equation (SHE) with multiplicative noise, our approach here needs to be slightly
different since the solution of SHE with a general Lévy noise (see [23] for recent
developments) does not display sufficient regularity. Our continuum model is thus
defined via a martingale approximation of the noise obtained by truncating the “small
jumps” part of the noise. This construction is not specific to directed polymers and
can possibly be applied to describe the scaling limit of a wide variety of disordered
models with heavy tailed noise, including the disordered pinning model (see [17, 19]
for the construction of the corresponding Gaussian scaling limits).

In order to motivate our construction, we provide a brief introduction to the di-
rected polymer model, the notion of its scaling limit and review some literature on
the subject.

1.1. Directed polymer in a random environment (the discrete model)

Let us consider η = (ηn,x)n∈N,x∈Zd a discrete (1 + d)-dimensional field of i.i.d.
random variables, with law denoted by P. We assume that

(1.1) P[η > −1] = 1 and E[η] = 0.

With some harmless abuse of notation, we let η denote a generic random variable
with the same law as ηn,x. We consider the following (1 + d)-dimensional (discrete)
directed polymer model, in environment (ηn,x)n∈N,x∈Zd . Let S = (Si)i>0 be the simple
symmetric random walk on Zd, with law denoted by P. Given a parameter β ∈ (0, 1)

(which allows to tune the disorder’s intensity) we define the partition function ZηN,β by

(1.2) ZηN,β := E

[ N∏
n=1

(
1 + βηn,Sn

)]
,

and the associated polymer (Gibbs) measure PηN,β by

(1.3)
dPηN,β

dP
(S) :=

1

ZηN,β

N∏
n=1

(
1 + βηn,Sn

)
.

The environment η can be thought as a field of impurities, and under PηN,β the law
of the random walk is modified so that it favors visits to (space-time) sites where η
assumes a larger value. Assumptions (1.1) are merely practical: they ensure that
1 + βηn,Sn is always positive and imply that E[ZηN,β ] = 1.
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The continuum directed polymer in Lévy noise 215

The directed polymer model has a long history, dating back to [36], see [26] for
an extensive review. In many directed polymer references (including [26]) the setup
is slightly different and the Gibbs weights are rather written in an exponential form
exp(β

∑N
n=1 η̃n,Sn) instead of

∏N
n=1

(
1 + βηn,Sn

)
used here. For most purposes the

two formalisms are equivalent, but the latter turns out to be the adequate one for the
specific problem we wish to study (we discuss this point later in the introduction, see
Remark 1.1).

Localization transition. — A major point of focus in the directed polymer model has
been the localization transition from a high temperature diffusive phase (small β) to
a low temperature localized phase (large β). This phase transition can be studied via
the free-energy p(β) := − limN→∞

1
NE[logZηN,β ]; we refer to [27, Prop. 2.5] for a proof

of its existence. The free-energy is a non-negative, non-decreasing and continuous
function of β ∈ (0, 1) (see [29, Th. 3.2] for a proof, [48, Th.A.1] for its adaptation to
the setup presented here). In particular there exists a critical value βc ∈ [0, 1] which
is such that p(β) = 0 if and only if β 6 βc.

This phase transition has been mostly studied in the case where the environment
has a finite second moment E[η2] <∞. In the exponential setup, this corresponds to
having E[e2βη̃] < ∞ (the standard assumption considered in the literature is that η
has exponential moment of all orders see e.g. [1]) and under this assumption it has
been show that βc > 0 when d > 3, in [13, 37], while βc = 0 when d = 1 [28] and
d = 2 [39]. In particular this implies that there is no observable transition in dimension
d = 1 and d = 2.

Intermediate disorder regime and scaling limit. — When d 6 2, under a finite second
moment assumption (assuming that β > 0 and Var(η) > 0), we have

lim
N→∞

ZηN,β = 0 and lim
β→0

ZηN,β = 1.

A legitimate question is therefore to know how to scale β with N (or N with β)
in order to observe a non-trivial random behavior for ZηN,βN and PηN,β in the limit
N →∞.

This problem has been the object of a large number of works [1, 17, 19] (see the
review [18] and references therein). When d = 1, the correct scaling is to take β
proportional to N−1/4 — note that in this case, N is proportional to the correlation
length of the system which is given by |p(β)|−1 � β−4 see [3, 44]. The limit is formally
obtained by replacing the random walk path and its environment by their scaling limit,
which are respectively given by Brownian motion and space-time White Noise. In
particular, the scaling limit of the partition function limN→∞ Zη

N,β̂N−1/4
is intimately

related to the solution of the stochastic heat equation (SHE) with multiplicative
noise [11].

The case of the dimension d = 2 presents additional difficulty as the SHE with
multiplicative noise is ill-defined, so that the heuristic picture we had in dimension
d = 1 cannot be valid. For a hierarchical version of the model the scaling limit of
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216 Q. Berger & H. Lacoin

the polymer measure when βN is sent to zero at the appropriate rate is identified
in [24]. The original problem for the model on Z2 (and its continuum counterpart
on R2) is still partially open but it has witnessed substantial progress in the recent
years [20, 21, 35]. A decisive step toward the identification of the scaling limit, i.e.,
the convergence of the partition functions for the right value of βN , has be made
in a recent breakthrough paper [22]. More precisely it is shown that taking βN =√

π√
logN

(1 + ϑ/logN) for some ϑ ∈ R, the rescaled field of point-to-point partition
functions NZηN,βN (

√
dNxe,

√
dNye))x∈Rd,y∈Rd converges in distribution when N →

∞ to a non-trivial limit, called the critical 2D stochastic heat flow. Note that in this
case also, the choice for βN is such that the corresponding correlation length |p(βN )|−1

is proportional to N1+o(1), since log |p(β)| ∼ −π/β2 as β ↓ 0 (see [7]).

Heavy tailed disorder. — Our main motivation is to investigate intermediate disorder
limits beyond the case E[η2] <∞. Our interest lies in the case where η is in the domain
of attraction of an α-stable law for α ∈ (1, 2) and that (1.1) still holds (we can also
consider the case α ∈ (0, 1] if one drops the assumption that η has zero average).
To be more specific, let us assume the tail distribution has a pure power-law decay,
i.e., that in the large z limit we have

(1.4) P(η > z) = z−α(1 + o(1)).

This kind of heavy tail environment has been studied in [48]. In this case, the
existence of a non-trivial weak disorder phase depends on α and the dimension d.
We have βc = 0 if and only if d 6 2/(α− 1), see [48, Th. 1.1]. Moreover, when
d < 2/(α− 1), the behavior of the free energy near criticality (that is, for β small) is
given by p(β) = βν+o(1) with ν = 2α/(2− d(α− 1)).

One of our main goal is to identify the intermediate disorder scaling limit of this
model under the assumption (1.4), when α < 1 + 2/d, i.e., α ∈ (0, 1] or α ∈ (1, 2)

and d < 2/(α− 1). We present in this paper the construction of the continuum
measure that appears as the limit of PηN,βN in the intermediate disorder regime. The
convergence of the discrete model to the continuum one, when βN goes to 0 at some
adequate rate, is the object of a separate work [9], see Theorem A below.

Remark 1.1. — Let us stress that directed polymers in heavy-tail random environ-
ment are also considered in [4, 10, 30]: the main difference is that in these papers
the Gibbs weights are written in the exponential form exp(β

∑N
n=1 η̃n,Sn). When the

second moment of η̃n,Sn is infinite, such a model exhibits very strong localization
properties: polymer trajectories remain in the neighborhood of a single favorite tra-
jectory which visits the high energy sites (see [4, 10]). Also, the intermediate disorder
regime is somehow trivial in this case. Indeed, in [10] the authors show that there is
a specific scaling at which a sharp weak-to-strong disorder transition occurs. Under
this scaling, there is a (random) threshold below which the partition function goes
to 1 and above which it goes to +∞ (see [10, Th. 2.7-2.8] for a more precise state-
ment). For a fixed value of β, the two setups, exponential (eβη̃) and additive (1 +βη)
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The continuum directed polymer in Lévy noise 217

are equivalent, since one can be obtained from the other via a simple transformation.
Of course such a correspondence between the two setup disappears when studying the
limit β → 0, with a fixed distribution for η or η̃. In the heavy-tail environment case,
the additive setup (1 +βη) is the one which keeps a balance between the randomness
of the random walk and the rewards of the environment and allows the existence of
a scaling limit in which both are retained. This comes from the fact the field βηn,x
converges after scaling (as a distribution) to a non trivial limit — this is never the
case for exp(βη̃n,x), even after centering, because large values of η̃ create too wild
fluctuations.

1.2. An informal definition of a continuum polymer with Lévy noise

Before stating our main result concerning the intermediate disorder regime in
α-stable environment, we need to provide a description of the scaling limit. The object
we construct is formally obtained by considering a Feynman–Kac formula where the
random walk and the environment are replaced by their respective scaling limits.

The scaling limit of our random walk is a Brownian motion with covariance ma-
trix 1

dId where Id is the identity matrix in Rd. To define the continuum polymer, we
rather consider a standard d-dimensional Brownian motion (Bt)t∈[0,T ] (for practical
reason it is convenient to define B only until a fixed finite time horizon T ). We let Q
denote the associated distribution (we omit the dependence in T to lighten notation)
on the Wiener space

C0([0, T ]) :=
{
ϕ : [0, T ]→ Rd : ϕ is continuous and ϕ(0) = 0

}
,

endowed with the topology of uniform convergence and the associated Borel σ-algebra.
When η has a finite second moment, the scaling limit for the environment is given

by a space-time Gaussian white noise. In that case a Brownian polymer model in
dimension d = 1 can be (and has been) constructed based on the solution of the
stochastic heat equation, see [2]. On the other hand, in the case where (1.4) is satisfied
for some α ∈ (0, 2), we have to consider a different object, namely the space-time
(1 + d)-dimensional α-stable noise with Lévy measure supported on R+. This is the
multidimensional analog of the derivative of the α-stable process with only positive
jumps. This is a well studied object, see [31] and references therein, but we try to
offer here a short and self-contained introduction for the sake of completeness. For
simplicity, we focus our exposition on the case α ∈ (1, 2), which displays the most
interesting phenomenology. However we also treat below a much more general class
of noise which includes the case α ∈ (0, 1].

One-sided α-stable noise in R×Rd. — Given α ∈ (1, 2), we start with a Poisson point
process ω on R× Rd × R+ (time, space, and value of disorder) with intensity

(1.5) dt⊗ dx⊗ αυ−(1+α)dυ,

which is obtained as the scaling limit of the extremal process associated with the
field (ηn,x)n∈N,x∈Zd , under the assumption (1.4). As it shall draw no confusion the
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218 Q. Berger & H. Lacoin

distribution of ω is also denoted by P. Our α-stable Lévy noise ξω is the random
distribution which is formally obtained by summing weighted Dirac masses υ δ(t,x)

corresponding to all the points (t, x, υ) ∈ ω and subtracting a non-random quantity
so that the obtained distribution is centered in expectation. The delicate part is that,
as in the definition of α-stable processes, the counter term that has to be subtracted
is infinite.

Let us thus explain how ξω can be obtained using a limiting procedure. We con-
sider ω as a set of points, and for any a ∈ (0, 1] we define ω(a) := {(t, x, υ) ∈ ω : υ > a}
the truncated environment, i.e., removing atoms (jumps) of size less than a. We then
let ξ(a)

ω be the random measure on R× Rd defined by

(1.6) ξ(a)
ω :=

( ∑
(t,x,υ)∈ω

υ1{υ>a}δ(t,x)

)
− α(a1−α − 1)

α− 1
L ,

where L denotes Lebesgue measure on R×Rd (note that our centering only compen-
sates the jumps of intensity smaller than one, so that ξ(a)

ω is not centered). We define ξω
as the distributional limit of ξ(a)

ω when a tends to zero.
For the sake of fixing ideas, let us specify a functional space in which this conver-

gence holds. Given s ∈ R, the Sobolev space Hs(R1+d) is defined as the closure of the
space of smooth compactly supported function with respect to the norm

(1.7) ‖f‖Hs :=

(∫
R1+d

(1 + |z|2)s|f̂(z)|2dz

)1/2

,

where f̂(z) =
∫
Rd+1 f(x)e−iz·xdx is the Fourier transform of f . We also consider the

local Sobolev space

Hs
loc(R1+d) :=

{
f : fψ ∈ Hs for every C∞ compactly supported ψ

}
,

considered with the topology induced by the family of semi-norms ‖ψf‖Hs indexed
by ψ. We then have the following (standard) result: When α ∈ (1, 2), then ξ

(a)
ω

converges almost surely in H−sloc (R1+d) with s > (1 + d)/2 towards a limit ξω ∈
H−sloc (R1+d), see Proposition A.1. In particular, this means that ξω can be integrated
against any function in Hs(R1+d) which has compact support.

Informal description of the scaling limit. — In order to describe the candidate scaling
limit of the model (1.3) we must make sense of a Feynman–Kac formula analogous to
(1.2) in which the random walk S is replaced by a Brownian motion B and η replaced
by the α-stable noise ξω. Similarly to (1.3) we wish to define a polymer model which
is a modification of the Wiener Brownian measure Q obtained via tilting by an energy
functional. For T > 0 and β > 0 we would like to define Qω

T,β as

(1.8)
dQω

T,β

dQ
(B) =

1

Z ω
T,β

:eβHω(B):,
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where the energy functional is given by ξω integrated against the Brownian trajectory,
in the following sense (δ(s,y) denotes the Dirac mass at (s, y))

Hω(B) = ξω

(∫ T

0

δ(t,Bt) dt

)
.

At this stage, we only consider this expression at a formal level, as it is quite clear
that the fact that ξω ∈ H−sloc is not sufficient to provide a mathematical interpretation
of this expression.

The exponential :eβHω(B): is to be interpreted as an analogous of the time-ordered
Wick exponential which is considered for the continuum directed polymer in white
noise, see [2]. Informally, :eβHω(B): is defined via the following expansion

(1.9) :eβHω(B): =

∞∑
k=0

βk
∫

0<t1<···<tk<T

k∏
i=1

ξω(δ(ti,Bti )dti).

While it is challenging to make sense of the above formula, things become simpler if
one looks at the partition function Z ω

T,β = Q
[
:eβHω(B):

]
, because a formal integration

with respect to Brownian trajectories makes the integrand more regular. Let us denote

(1.10) ρt(x) :=
1

(2πt)d/2
e−‖x‖

2/2t

the heat-kernel on Rd associated with the Brownian motion (‖x‖ stands for the Eu-
clidean norm of x). For 0 < t1 < · · · < tk and x1, . . . , xk ∈ Rd, we also use the
short-hand notation

(1.11) %(t,x) :=

k∏
i=1

ρti−ti−1
(xi − xi−1),

with by convention t0 = 0 and x0 = 0 (in the following, if a different choice is made it
will be duly notified). We will also use the notation dt and dx for Lebesgue measure
on Rk and (Rd)k respectively. With these notation, the expectation of (1.9) with
respect to the Wiener measure can be formally defined by

(1.12) Z ω
T,β = 1 +

∞∑
k=1

βk
∫

0<t1<···<tk<T

∫
(Rd)k

%(t,x)

k∏
i=1

ξω(dti,dxi).

In order to give a meaning to the above expression, we will approximate ξω by ξ(a)
ω and

investigate the limiting behavior when a goes to zero. As it will be seen later, giving a
meaning to Z ω

T,β is the most important step in order to give a rigorous interpretation
to (1.8).

Acknowledgements. — The authors are grateful to Carsten Chong for insightful com-
ment on a first draft of the paper (see in particular Remark 4.9) as well as for providing
us with relevant references concerning stochastic PDEs with Lévy noise.
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2. Model and results

We can now introduce our results. We present in Sections 2.1–2.2 our construction
of the continuum measure Qω

T,β , thus defining the continuum directed polymer in
Lévy noise. For pedagogical reason, we first present in Section 2.1 the case of the
α-stable noise with α ∈ (1, 2), since it corresponds to the scaling limit of the model
introduced in Section 1.1 above; we turn afterward in Section 2.2 to the case of a
general heavy-tail noise. In Section 2.3, we present finer properties of the measure
constructed and in Section 2.4 we discuss the relation between our model and the
stochastic heat equation with multiplicative Lévy noise. Further comments on the
results are made in Section 2.5.

2.1. The construction of the continuum polymer in Lévy α-stable noise

Our main result is the construction of a measure on the Wiener space C0([0, T ]),
corresponding to the definition (1.8). To ease the exposition, we single out the most
important step of this construction which is the construction of the partition function,
that is giving a mathematical interpretation for the formal integral (1.12). As men-
tioned above, we treat the case of an α-stable noise first, before we turn to more
general noises.

Recall the definition (1.6) of the truncated noise ξ(a)
ω . We define, for a > 0,

(2.1) Z ω,a
T,β := 1 +

∞∑
k=1

βk
∫

0<t1<···<tk<T

∫
(Rd)k

%(t,x)

k∏
i=1

ξ(a)
ω (dti,dxi).

Since ξ(a)
ω (dti,dxi) is a locally finite signed measure, the only possible issue with the

above definition is the integrability over ti’s and xi’s and summability over k. These
conditions are not difficult to check and this done in Proposition 3.1. It is also not
immediate from (2.1) that Z ω,a

T,β is positive (which is a required property for being a
partition function), but this is ensured by Lemma 3.3.

We prove that considering the limit of Z ω,a
T,β when a ↓ 0, we obtain a non-trivial

(i.e., disordered) quantity, provided that α is smaller than a critical threshold. Let us
define

(2.2) αc = αc(d) =

{
2 if d = 1, 2,

1 + 2/d if d > 3.

Theorem 2.1. — If α ∈ (1, αc) with αc defined in (2.2), there exists an almost surely
positive random variable Z ω

T,β such that the following convergence

lim
a→0

Z ω,a
T,β = Z ω

T,β

holds almost surely and in L1. When d > 3 and α ∈ [αc, 2) then for all β > 0 we have
lima→0 Z ω,a

T,β = 0 almost surely.

Remark 2.2. — Note that the definitions (1.6) and (2.1) also make sense when α > 2.
In that case ξ(a)

ω does not converge to a limiting distribution but this does a priori
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prevent Z ω,a
T,β from having a non-trivial limit. Proposition 2.12 below shows that

we have in fact lima↓0 Z ω,a
T,β = 0 for every α ∈ [αc,∞) in any dimension d > 1.

Let us now present the construction of the polymer measure described in (1.8).
Recall that our objective is to define a probability on the Wiener space C0([0, T ])

which corresponds to the formal definition (1.8). We proceed in a similar manner as
with the partition function: we first consider a measure on C0([0, T ]) built with the
truncated noise ξ(a)

ω . Let us introduce the following families of functions on C0([0, T ]):

B := {f : C0([0, T ])→ R : f measurable and bounded},
C := {f : C0([0, T ])→ R : f continuous and bounded},

Bb := {f ∈ B : Support(f) is bounded},
Cb := {f ∈ C : Support(f) is bounded}.

Recall that C0([0, T ]) is equipped with the topology of the supremum norm: hence
we say that f : C0([0, T ]) → R has bounded support if there exists M > 0 such that
f(ϕ) = 0 for any ϕ ∈ C0([0, T ]) with ‖ϕ‖∞ > M .

Given a bounded Borel-measurable function f ∈ B, we define

(2.3) Z ω,a
T,β (f) = Q(f) +

∞∑
k=1

βk
∫

0<t1<···<tk<T

∫
(Rd)k

%(t,x, f)

k∏
i=1

ξ(a)
ω (dti,dxi),

where we use the notation Q(f) := Q(f((Bt)t∈[0,T )), and where %(t,x, f) is defined
by (recall (1.11))

%(t,x, f) = %(t,x)Q
[
f
(
(Bt)t∈[0,T ]

) ∣∣ ∀ i ∈ [[1, k]], Bti = xi

]
.

With some abuse of notation, the conditional measure Q( · | ∀ i ∈ [[1, k]], Bti = xi) de-
notes the distribution of the process obtained by concatenating independent Brownian
bridges linking (ti−1, xi−1) to (ti, xi) for i ∈ [[1, k]]. The fact that (2.3) is well-defined
for f ∈ Bb is ensured by Proposition 3.1 below; the extension to non-negative f ∈ B

is given in Lemma 3.3. Note that f 7→ %(t,x, f) is linear and thus so is Z ω,a
T,β (·).

From Lemma 3.3 below, Z ω,a
T,β (f) > 0 when f > 0 and Z ω,a

T,β (1) = Z ω,a
T,β > 0. As a

consequence, for any a > 0, we can define a probability measure Qω,a
T,β on C0([0, T ])

by setting

(2.4) Qω,a
T,β (A) :=

Z ω,a
T,β (1A)

Z ω,a
T,β

,

for any Borel set A. We also write Qω,a
T,β (f) for the expectation, with respect to

Qω,a
T,β , of a function f : C0([0, T ])→ R. In the same way as for the partition function,

we define the measure Qω
T,β as the limit of Qω,a

T,β when a goes to zero: this requires
α < αc, and the convergence holds for the weak topology. Let MT denote the space of
probability measures on C0([0, T ]) equipped with the topology of weak convergence.
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Theorem 2.3. — If α ∈ (1, αc), there exists a probability measure Qω
T,β on C0([0, T ])

such that the following convergence holds almost surely in MT

lim
a→0

Qω,a
T,β = Qω

T,β .

In other words, we have almost surely for every f ∈ C

lim
a→0

Qω,a
T,β(f) = Qω

T,β(f).

Since Z ω,a
T,β (·) induces a positive measure on C0([0, T ]) the above statement turns

out to be equivalent to the existence of a positive measure Z ω
T,β such that for every

f ∈ C

lim
a→0

Z ω,a
T,β (f) = Z ω

T,β(f).

2.1.1. Scaling limit of the discrete model. — In order to justify the fact that Qω,a
T,β is

the natural model for a continuum polymer based on α-stable noise, let mention here
the scaling limit result which we prove in [9], namely that the discrete polymer model
defined in (1.3), when properly rescaled, converges to the continuum polymer in Lévy
stable noise. We present the convergence with time horizon T = 1 (which yields no
loss of generality by scaling) and set Qω

β̂
:= Qω

β̂,1
.

Let S(N)
t be the linear interpolation of a random walk trajectory, rescaled diffu-

sively:

S
(N)
t :=

√
d

N

(
(1− ut)SbNtc + utSbNtc+1

)
, with ut = Nt− dNte.

We then have the following convergence result.

Theorem A (cf. [9]). — Assume that the distribution of the environment η satis-
fies (1.4) for some α ∈ (1, αc), with αc defined in (2.2). Setting

βN := β̂ 2(1−α)/αdd(1−α)/2N−(d/2α)(1+2/d−α),

then we have the following convergence in distribution in M1,

PηN,βN
(
(S

(N)
t )t∈[0,1] ∈ ·

) N→∞−→ Qω
β̂
.

Remark 2.4. — The prefactor in βN comes from various factors, including the nor-
malization of the Brownian motion and the periodicity of the random walk. The
above theorem remains valid slightly beyond the assumption (1.4), one can allow for
a slowly varying function in the tail distribution provided an appropriate correction
in the scaling of βN is made. The analogous result is valid also for α ∈ (0, 1]. We refer
to [9] for details.

2.2. The case of a general noise. — We have focused until now on the case of an
α-stable noise with α ∈ (1, 2), both because our motivation is to describe the scaling
limit for the discrete polymer model with heavy tailed environment and to make the
exposition lighter. Our result can nonetheless be applied to a much larger variety of
noise. Let us consider in this section a Poisson process ω on R×Rd×R+ with density

dt⊗ dx⊗ λ(dυ),
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where λ is a measure on (0,∞) such that λ([a,∞)) < ∞ for every a > 0. One may
keep in mind the case λ(dυ) = αυ−(1+α)dυ with α ∈ (0, 2), referred to as α-stable.
We define the truncated noise ξ(a)

ω for a > 0 similarly to (1.6) (recall that L denotes
the Lebesgue measure on R× Rd)

(2.5) ξ(a)
ω =

( ∑
(t,x,υ)∈ω

υ1{υ>a}δ(t,x)

)
− κaL ,

where

(2.6) κa =

∫
[a,1)

υλ(dυ),

note that we have in particular κa = 0 for a > 1. The truncated noise ξ(a)
ω converges

to a limit ξω ∈ H−sloc (R1+d) with s > (1 + d)/2, if and only if
∫

(0,1)
υ2λ(dυ) <∞ (the

result is definitely standard, but we could not find a reference where it is displayed
in this form form, hence we include a proof in the Appendix for completeness, see
Proposition A.1). Note also that if

∫
(0,1)

υλ(dυ) < +∞, then κ0 < ∞ and the defi-
nition (2.5) directly makes sense with a = 0 so this approximation procedure is not
required. We define, similarly to (2.3), for any f ∈ Bb

(2.7) Z ω,a
T,β (f) := Q(f) +

∞∑
k=1

βk
∫

0<t1<···<tk<T

∫
(Rd)k

%(t,x, f)

k∏
i=1

ξ(a)
ω (dti,dxi).

The condition that f has a bounded support ensures that all the integrals are well-
defined since the integration is only over a bounded space-time region; the summa-
bility is shown in Proposition 3.1 below. Let us stress that Lemma 3.3 below ensures
that Z ω,a

T,β (f) > 0 when f is non-negative. Given an increasing sequence of positive
functions fn ∈ Bb converging to 1, one sets

(2.8) Z ω,a
T,β := lim

n→∞
Z ω,a
T,β (fn).

Lemma 3.3 also ensures that the above definition does not depend on the choice of fn.
Note that the above definition makes it possible to have Z ω,a

T,β =∞, but this does not
occur provided the following condition is satisfied:

(2.9)
∫

[1,∞)

(log υ)d/2λ(dυ) <∞.

Proposition 2.5. — Under the assumption (2.9), we have Z ω,a
T,β ∈ (0,∞) for any

a ∈ (0, 1].

The condition (2.9) is in fact optimal, if it fails to hold then our partition function
is degenerate.

Proposition 2.6. — If the measure λ does not satisfy (2.9) then for any a ∈ (0, 1]

we have Z ω,a
T,β =∞ almost surely.
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Remark 2.7. — The condition (2.9) arises from an entropy-energy comparison. We
let XR,T be the largest atom in the environment located within a distance R in the
time interval [0, T ], that is

XR,T := max
{
v : (t, x, v) ∈ ω, t ∈ [0, T ], R/2 6 ‖x‖ 6 R

}
.

In the large R limit, the probability of visiting the corresponding atom under the
Wiener measure is of order exp(−cTR2). For any fixed δ, T > 0, the criterion (2.9) is
equivalent (via a Borel–Cantelli argument) to having

sup
R>0

(
XR,T e

−δR2)
<∞.

From this, it is not difficult to deduce that the contribution of trajectories that visit
one large atom located far away remains finite. This provides a heuristic justification
of the criterion (2.9).

Using the partition function (2.7), we can define a probability measure Qω,a
T,β on

C0([0, T ]) in the same way as in (2.4), i.e., setting for any Borel set A ⊂ C0([0, 1])

Qω,a
T,β(A) :=

Z ω,a
T,β (1A)

Z ω,a
T,β

.

Note that A 7→ Z ω,a
T,β (1A) defines a locally finite measure on C0([0, T ]) even when

(2.9) is not satisfied, cf. Proposition 3.1. Our main result in this section is that the
limit when a goes to 0 is non-degenerate if λ satisfies the following assumption:

(2.10)
{∫

(0,1)
υ2λ(dυ) <∞, if d = 1,∫

(0,1)
υpλ(dυ) <∞ for some p < 1 + 2/d, if d > 2.

Theorem 2.8. — Under the assumption (2.10), for any fixed f ∈ Bb the limit

(2.11) lim
a→0

Z ω,a
T,β (f) = Z ω

T,β(f)

exists almost surely and is finite. We have Z ω
T,β(f) > 0 if f is non-negative and

Q(f) > 0. Furthermore, if (2.9) also holds then (2.11) also holds for f ∈ B. In par-
ticular, in the case f ≡ 1 we have,

(2.12) lim
a→0

Z ω,a
T,β = Z ω

T,β ∈ (0,∞).

The convergence holds in L1 if and only if
∫

[1,∞)
υλ(dυ) <∞.

Additionally, Qω,a
T,β converges weakly when a→ 0: There exists a probability measure

Qω
T,β on C0([0, T ]) such that, almost surely, for every f ∈ C we have

(2.13)
Z ω
T,β(f)

Z ω
T,β

= lim
a→0

Qω,a
T,β(f) = Qω

T,β(f).

Remark 2.9. — Note that the conditions (2.9)–(2.10) are satisfied when λ(dυ) =

αυ−(1+α)dυ for α ∈ (0, αc). When α ∈ [αc,∞), Proposition 2.12 below establishes
that the limit is degenerate.
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Remark 2.10. — When (2.9) is not satisfied, it is not difficult to check from our proof
that almost surely, the convergence (2.11) holds simultaneously for all f ∈ Cb, that is
Z ω,a
T,β ( · ∩A) converges vaguely (as a measure), for any bounded set A.

Remark 2.11. — A statement similar to the weak convergence of Qω,a
T,β can also be

made in the case when (2.9) does not hold. In that case there exists a locally finite
measure ZωT,β on C0([0, T ]) (in the sense that for every M it gives finite mass to the
set {ϕ : ‖ϕ‖∞ < M}) which is such that almost surely, for every f ∈ Cb

lim
a→0

Z ω,a
T,β (f) = ZωT,β(f).

The condition (2.10), which prevents Z ω,a
T,β (f) from vanishing as a tends to zero,

is close to optimal. Let us introduce the following alternative and almost equivalent
condition

(2.14)


∫

(0,1)
υ2λ(dυ) <∞, if d = 1,∫

(0,1)
υ2| log(υ)|λ(dυ) <∞, if d = 2,∫

(0,1)
υ1+2/dλ(dυ) <∞, if d > 3.

Then we prove that the limit is degenerate as soon as (2.14) is violated. In particular
the following result ensures that one cannot define the continuum polymer model
when

∫
(0,1)

υ2λ(dυ) = ∞, in which case the noise ξω is itself not well-defined (see
Remark A.2).

Proposition 2.12. — If the measure λ does not satisfies (2.14) then for any f ∈ Bb

we almost surely have

lim
a→0

Z ω,a
T,β (f) = 0.

If (2.9) also holds, we have lima→0 Z ω,a
T,β = 0.

Note that this result proves the last statement of Theorem 2.1.

Remark 2.13. — From a Borel–Cantelli consideration, we have (for any value of d)

(2.15)
∫

(0,1)

υ1+2/dλ(dυ) <∞ ⇐⇒ sup
(t,x,v)∈ω

t∈[0,T ], v∈(0,1)

vρ(t, x) <∞ a.s.

The quantity vρ(t, x) corresponds to the multiplicative weight gained by trajectories
which visit the point (t, x) multiplied by the entropic cost to visit it. On a heuristic
level, if vρ(t, x) is unbounded, it means that there are atoms with arbitrarily small am-
plitude z which have a large impact on the value log Z ω,a

T,β , preventing the convergence
of Z ω,a

T,β to a non-zero value. In view of the conditions (2.10)–(2.14) in Theorem 2.8
and Proposition 2.12, this criterion is not far from being sharp when d > 2. When
d = 1 the condition (2.15) is less restrictive than the one necessary for the convergence
of ξ(a)

ω (cf. Proposition A.1).
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Remark 2.14. — The difference between the conditions (2.10) and (2.14) when d > 2

leaves a small family of Lévy measures for which the question whether Z ω,a
T,β converges

to a positive limit or to zero remains open. We do not believe that either condition
(2.10) or (2.14) are optimal. Although refinements of the proofs presented here could
most likely yield slightly finer condition on both sides, finding the necessary and
sufficient condition remains a challenging issue. Even if the condition is not optimal,
the | log υ| factor present in (2.14) is of importance in dimension d = 2, since it
underlines that in any dimension d > 2, in contrast with the case d = 1, there are
some (Poisson) noises for which the continuum polymer (and the noisy stochastic heat
equation see Section 2.4 below) are not defined.

Remark 2.15. — After a first draft of this manuscript was published, in a collaborative
effort with C. Chong [6], the conditions (2.10) and (2.14) have been improved. More
precisely, it is shown in [6] that when d > 2 Theorem 2.8 holds under the condition∫

(0,1)
υ1+2/d| log(υ)|λ(dυ) <∞. This identifies the necessary and sufficient condition

for convergence when d = 2. When d > 3 the condition (2.14) for Proposition 2.12
has been improved to∫

(0,e−e)

υ1+2/d| log(υ)|(log | log(υ)|)−cλ(dυ) <∞,

with c any constant greater than 5 + 4/d, leaving only a very narrow gap between the
necessary and the sufficient condition.

2.3. Main properties of the continuum directed polymer in Lévy noise

Let us assume throughout the rest of this section that Assumptions (2.9)–(2.10) are
satisfied. We describe under these assumptions a few key properties of our polymer
measure. First, we underline how Qω

T,β is in some aspects very similar to the Wiener
measure and is in others very singular with respect to it. Then, we provide an explicit
expression for the finite-dimensional marginal density of the measure, via point-to-
point partition functions.

2.3.1. Basic properties of the continuum polymer in Lévy noise. — Let us define PoQω
T,β

the averaged polymer measure as follows

P oQω
T,β(A) := E[Qω

T,β(A)].

Proposition 2.16. — The averaged polymer measure PoQω
T,β is absolutely continuous

with respect to Q.

Proposition 2.16 yields an important information concerning Qω
T,β since it implies

that P-almost surely Qω
T,β inherits any given Q-almost sure property of the Brownian

motion.

Corollary 2.17. — If A is a Borel set of C0([0, T ]) such that Q(A) = 1, then P-a.s.
we have Qω

T,β(A) = 1. As an example, for almost every ω, a trajectory (Bt)t∈[0,T ] has
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Qω
T,β-a.s. a modulus of continuity given by

√
2h log(1/h): in other words,

Qω
T,β

({
ϕ ∈ C0([0, T ]) ; lim sup

h↓0
sup

06t6T−h

|ϕ(t+ h)− ϕ(t)|√
2h log(1/h)

= 1
})

= 1.

This implies in particular that for any γ < 1/2, polymer trajectories are Qω
T,β-a.s.

everywhere locally γ-Hölder continuous.

On the other hand we have to mention that Qω
T,β is very singular with respect to Q,

most strikingly when
∫

(0,1)
υλ(dυ) = ∞. To illustrate this fact, given ϕ ∈ C0([0, T ])

let us consider ∆(ϕ, ω) the set of times at which the graph of ϕ visits points of ω:

(2.16) ∆(ϕ, ω) := {t ∈ [0, T ] : ∃ υ > 0, (t, ϕ(t), υ) ∈ ω}.

Let us set
Adense(ω) :=

{
ϕ ∈ C0([0, T ]) : ∆(ϕ, ω) is dense in [0, T ]

}
,

Aempty(ω) :=
{
ϕ ∈ C0([0, T ]) : ∆(ϕ, ω) = ∅

}
,

A∞(ω) :=
{
ϕ ∈ C0([0, T ]) : #∆(ϕ, ω) =∞

}
.

Proposition 2.18. — Under Assumptions (2.9)–(2.10) the following statements hold.
(i) We have almost surely Q(Aempty) = 1.
(ii) If

∫
(0,1)

υλ(dυ) <∞ then Qω
T,β(Aempty) ∈ (0, 1) and Qω

T,β(A∞) = 0 a.s.
(iii) If

∫
(0,1)

υλ(dυ) =∞ we have Qω
T,β(Adense) = 1 a.s.

Remark 2.19. — Note that when
∫

(0,1)
υλ(dυ) <∞, we have in fact

Qω
T,β(· | Aempty) = Q,

soQω
T,β is in that case not singular with respect to the Wiener measure. The technique

used for the proof of Proposition 2.18 can possibly be pushed a bit further to yield
the following statement:

– When
∫

(0,1)
υλ(dυ) <∞ then the convergence of Qω,a

T,β towards Qω
T,β holds also

for the total variation distance.
– When

∫
(0,1)

υλ(dυ) =∞ then ‖Qω,a
T,β −Qω

T,β‖TV = 1 for every a > 0.

2.3.2. Point-to-point partition functions and finite dimensional marginals. — The aim
of this section is to give an explicit description of the finite-dimensional marginals of
Qω
T,β . If we fix 0 < t1 < · · · < tk 6 T , then the distribution of (Bt1 , . . . , Btk) under

Qω
β,T is absolutely continuous with respect to the Lebesgue measure and its density

can be expressed using the so-called point-to-point partition functions. For any a > 0,
define for all t > 0 and x ∈ Rd the partition function from (0, 0) to (t, x) as (recall
the definition (1.11))
(2.17) Z ω,a

β (t, x)

:= ρt(x) +

∞∑
k=1

βk
∫

0<t1<···<tk<t

∫
(Rd)k

%(t,x)ρt−tk(x− xk)

k∏
i=1

ξ(a)
ω (dti,dxi),
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if the integral is convergent (and set Z ω,a
β (t, x) =∞ if not). The following proposition

shows that the point-to-point partition function of our continuum model — defined
as the limit of Z ω,a

β (t, x) when a tends to zero — is well-defined, positive and finite.

Proposition 2.20. — Suppose that (2.9) holds, then given a ∈ (0, 1], t > 0 and x ∈ Rd

we have almost surely

(2.18) Z ω,a
β (t, x) ∈ (0,∞).

If (2.10) also holds then given t > 0 and x ∈ Rd, we have almost surely

(2.19) Z ω
β (t, x) = lim

a→0
Z ω,a
β (t, x), with Z ω

β (t, x) ∈ (0,∞).

If
∫

[1,∞)
υλ(dυ) <∞ then the convergence holds in L1.

For (s, y) ∈ R× Rd, let us define the shifted environment

θ(s,y)ω :=
{

(t− s, x− y, υ) : (t, x, υ) ∈ ω
}
.

Then, we can define for (t1, x1), (t2, x2) ∈ R × Rd, t1 < t2 the partition function
linking two arbitrary points:

Z ω,a
β [(t1, x1), (t2, x2)] := Z

θ(t1,x1)ω,a

β (t2 − t1, x2 − x1).

Finally we set

(2.20) Z ω
β [(t1, x1), (t2, x2)] := lim sup

a→0
Z ω,a
β [(t1, x1), (t2, x2)],

and we omit the first coordinate in the notation when it is equal to 0. We use a lim sup

instead of a limit in the definition only to make sure that Z ω
β [(t1, x1), (t2, x2)] is

defined simultaneously for all (t1, x1) and (t2, x2). Note that Proposition 2.20, togeth-
er with translation invariance, shows that for any fixed (t1, x1) (t2, x2) the lim sup

in (2.20) can almost surely be replaced by a limit (so the point-to-point partition
function Z ω

β [(t1, x1), (t2, x2)] is almost surely well-defined, positive and finite).

Proposition 2.21. — For any 0 < t1 < · · · < tk = T , the set{
(x1, . . . , xk) : ∀ i ∈ [[1, k]], Z ω

β [(ti−1, xi−1), (ti, xi)] = lim
a→0

Z ω,a
β [(ti−1, xi−1), (ti, xi)]

}
has almost surely full Lebesgue measure. Furthermore, the convergence

lim
a→0

k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)] =

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)],

holds almost surely in L1((Rd)k). Additionally, for almost every ω, the k-marginals
measure Qω

T,β((Bt1 , . . . , Btk) ∈ ·) is absolutely continuous with respect to the Lebesgue
measure and we have for any bounded measurable g on (Rd)k

Qω
T,β

(
g(Bt1 , . . . Btk)

)
=

1

Z ω
β,T

∫
(Rd)k

g(x)

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)] dx.

Remark 2.22. — For k = 1 the above proposition states that the density of the
distribution of BT under Qω

T,β is given by Z ω,a
β (T, ·)/Z ω,a

β,T .
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Remark 2.23. — Let us stress that in the above proposition, we fix 0<t1< · · ·<tk=T

before considering a realization of ω. This is an important point since there are ex-
ceptional times for which Qω

T,β(Bt ∈ ·) admits no density. In fact is not difficult to
check that if (t, x, υ) ∈ ω then Qω

T,β(Bt = x) > 0.

2.4. Connection with the stochastic heat equation with multiplicative Lévy noise

In [2] the continuum directed polymer model with white noise is constructed direct-
ly from the solution of the stochastic heat equation (SHE) with multiplicative Gauss-
ian white noise. It is not possible to proceed in this way with a general Lévy noise
(simply because the solution is not regular enough) and our approach here is quite dif-
ferent. The continuum model constructed in Theorem 2.8 bears nonetheless a strong
connection with the SHE with multiplicative Lévy noise. We discuss here this connec-
tion in some more detail and compare our results with the existing ones concerning
the SHE with Lévy noise. Our formal definition Z ω

T,β = Q
[
:eβHω(B):

]
(see (1.9))

corresponds to a Feynman–Kac formula associated with the following equation

(2.21) ∂tu :=
1

2d
∆u+ βξω · u.

More precisely, the point-to-point partition function Z ω
β (t, x) defined in (2.17) for-

mally corresponds to the solution of (2.21) with δ0 initial condition. Starting from an
arbitrary initial condition u0 (a locally finite signed measure), the solution of (2.21)
should take the form

(2.22) u(t, x) :=

∫
Rd

Z ω
β [(0, y), (t, x)]u0(dy).

In the case u0(dy) = g0(y)dy for some bounded and measurable function g0, the fact
that (2.22) is well-defined derives from Proposition 2.21 (in the case k = 1), combined
with a time-reversal argument giving(

Z ω
β [(0, y), (t, x)]

)
y∈Rd

(d)
=
(
Z ω
β [(0, x), (t, y)]

)
y∈Rd ,

that ensures that Z ω
β [(0, ·), (t, x)] ∈ L1(Rd) almost surely. For the general case

where u0 is a measure, we refer to Proposition 2.26 below for the well-posedness
of (2.22).

The equation (2.21) has been extensively studied (often under a more general form,
see e.g. [43, 45]). To our knowledge the most complete results concerning the existence
of solutions have been given in [23]. More precisely, in [23] the existence of solutions
in the integral form

(2.23) u(t, x) =

∫
Rd
ρt(x− y)u0(dy) + β

∫ t

0

∫
Rd
ρt−s(x− y)u(s, y)ξω(ds,dy),

called mild solutions, are obtained under the condition

(2.24)
∫

(0,1)

υpλ(dυ) <∞ and
∫

[1,∞)

υqλ(dυ) <∞,
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with p ∈ (0, 1+2/d) and (2+2/d−p)−1 6 q 6 p and for u0 = g0(y)dy with g0 bounded
and measurable. Uniqueness has been established earlier [45] under the more stringent
assumption

∫
(0,∞)

υpλ(dυ) <∞ for some p ∈ [1, 1 + 2/d), which for instance excludes
α-stable noises. Let us stress that the above is a very partial account of the results
in [23] since the existence results deal with a more general class of equations and
allows for a wider variety of noise (it allows for complex jumps and when d = 1 for a
Gaussian white noise part as well as for space-time inhomogeneities).

While our assumptions (2.9)–(2.10) are less restrictive than (2.24), we cannot prove
that (2.22) solves the equation (2.23) under these assumptions. However, we can show
that the solution of the equation with a truncated noise converges almost surely when
the truncation levels goes to zero and infinity respectively. Additionally, we keep quite
a large freedom concerning the choice of the initial condition. Let us write this result
in full detail for completeness. We are going to make the following assumption on the
initial condition u0:

(2.25) lim sup
r→∞

r−2 log
(
|u0|([−r, r]d)

)
, <

1

2T

where |u0| is the total variation of the measure u0. This condition is present to ensure
that (2.22) is well defined and almost surely finite on the interval [0, T ]. For b > a,
let us introduce ξ[a,b)

ω the noise truncated at levels a and b (recall the notation (2.6)
for κa)

(2.26) ξ[a,b)
ω :=

∑
(t,x,υ)∈ω

υ1{υ∈[a,b)}δ(t,x) + (κb − κa)L .

Then, setting by convention the quantity to be∞ when the integral is not well-defined,
we set

(2.27) u[a,b)(t, x) :=

∫
Rd

Z
ω,[a,b)
β [(0, y), (t, x)]u0(dy),

where Z
ω,[a,b)
β [(0, y), (t, x)] is defined as in (2.17) with ξ

(a)
ω replaced by ξ

[a,b)
ω .

By [45, Th. 1.2.1], if u0 is absolutely continuous with bounded density w.r.t. to the
Lebesgue measure, then u[a,b) is the unique solution (in some reasonable functional
space) of (2.23) (with noise ξ[a,b)

ω ). We first observe that u[a,b) converges when b tends
to infinity under very mild assumptions.

Proposition 2.24. — Assume that (2.9) holds, and that u0 satisfies (2.25). Then for
any given t ∈ [0, T ] and x ∈ Rd, for any a > 0

ua(t, x) :=

∫
Rd

Z ω,a
β [(0, y), (t, x)]u0(dy)

is almost surely finite.

Remark 2.25. — When
∫

[1,∞)
υλ(dυ) < ∞, and for bounded initial conditions, ap-

plying Theorem 1.2.1 in [45] we get that ua(t, x) is the unique solution of (2.23). For
noise with heavier tails, ua(t, x) should also be a solution of (2.23) and coincide with
the solution considered in [23] whenever it is well-defined. Since this is not the main
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focus of the paper we do not include a proof of this statement, which in any case
would only provide a minor extension on the class of noises considered [23] which
includes

∫
[1,∞)

υpλ(dυ) < ∞ for all p > 0. We do not have an argument establishing
uniqueness in that case.

Let us now present the result. It establishes the convergence of ua when a tends
to 0. While the limit is the natural candidate to be a solution to (2.23) under less
restrictive assumptions than those considered in [23], we could not verify that u solves
the equation.

Proposition 2.26. — Assume that (2.9)–(2.10) are satisfied. Given u0 a locally finite
signed measure on Rd satisfying (2.25), then for (t, x) ∈ [0, T ]×Rd the integral defining
u(t, x) in (2.22) is almost surely finite (and well-defined) and for every fixed t ∈ [0, T ]

we have
lim
a→0

ua(t, x) = u(t, x),

except on a set (of Rd) of Lebesgue measure zero.

Remark 2.27. — When (2.24) is satisfied and the initial condition has a bounded
density w.r.t to the Lebesgue measure, it follows from results of [23] and [45] that u
is the solution of (2.23) constructed in [23, Th. 3.1].

2.5. Further discussion on the results. — Let us now comment further on our
results, and explain how they compare with the literature, how they can be extended
and what interesting open questions remain to be solved.

2.5.1. Scaling properties in the case of α-stable Lévy noise. — Let us come back further
on the case of the α-stable noise, that is when λ(dυ) = αυ−(1+α)dυ, with α ∈ (0, 2).
We have already seen that in that case Assumptions (2.9)–(2.10) are satisfied provided
that α ∈ (0, αc), so Theorem 2.8 and more importantly (2.13) holds, so that Qω

T,β is
well-defined. Now, notice that in the α-stable case the Poisson point process ω has
the following scaling property

ω
(d)
= {(rt, sx, (rsd)1/αυ) : (t, x, υ) ∈ ω}

for any r, s > 0. Using additionally the Brownian scaling, one can then check that
the continuum polymer in α-stable Lévy environment satisfies the following scaling
property: if α ∈ (0, αc), for all r > 0

Qω
T,β(A)

(d)
= Qω

rT,r−ζβ(Ar), with ζ =
d

2α
(1 + 2/d− α).

where Ar := {ϕr : t 7→ (1/
√
r)ϕ(t/r), ϕ ∈ A}.

2.5.2. SHE with Lévy noise: advantages and disadvantages of our method

Let us now compare our Proposition 2.26 with the results of Chong [23]. First of
all, as we already stressed in Section 2.4, our Proposition 2.26 gives a weaker notion
of solution to the SHE (2.21) than existence of solutions in the integral form (2.23),
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as proved in [23]. Additionally, Chong’s results allows to deal with a larger class of
integral equations

Y (t, x) =

∫
Rd
G(0, y; t, x)Y0(y)dy +

∫ t

0

∫
Rd
G(s, y; t, x)σ(Y (s, y))M(ds,dy),

where: (i) M is a noise that can include a white noise part when d = 1 and a (signed)
pure jump component; (ii) σ is a globally Lipschitz function; (iii) G(t, x; s, y) is mea-
surable and dominated by a constant times the heat kernel ρt−s(x− y).

We have presented our results in the case where M = ξω (i.e., has no white noise
component and only positive jumps), σ(Y ) = Y and G(t, x; s, y) = ρt−s(x − y). Let
us now present the advantages of our method, and in which directions it can be
generalized.

(a) First and foremost, our method enables us to make sense of Feynman–Kac
formulas containing a functional f of the Brownian motion, that is Z ω

β (f) (see The-
orem 2.8 (2.11)). This is something absolutely required to be able to define the con-
tinuum model.

(b) Our tail assumptions (2.9)–(2.10) on the Lévy measure are less restrictive than
those (2.24) which are used in [23]. In particular our method allows to treat the
integrability issues at 0 and ∞ separately. Note also that in view of Propositions 2.6
and 2.12, our assumptions (2.9)–(2.10) are close to being optimal.

(c) We are able to deal with more singular initial conditions than in [23]. For the
application we have in mind, it is of the utmost importance to be able to deal with
Dirac initial condition, which corresponds to the point-to-point partition function
Z ω
β (t, x) and appears to be excluded in [23].
(d) We can easily adapt our proof to the case of an arbitrary kernel ρt (in particular,

not only the ones dominated by Gaussians), but this would require to adapt the
conditions (2.10)–(2.9) In particular, we could replace the Laplacian ∆ with more
general operators. For instance, in dimension 1, we could replace the Brownian motion
by a Lévy process, see the paragraph below for further discussion.

(e) While our method does not seem to allow to treat the case of general Lip-
shitz σ (for which we lose the existence of a Feynman–Kac representation of the
solution), let us mention, that it should extend without much problem to the case
where σ(u) = au+ b with a, b > 0 (that is, considering a mixture of additive and
multiplicative noise).

(f) To conclude, we stress that maybe the most problematic part would be to
extend our results to a more general noise. In particular, our method does not al-
low to deal with general complex (or signed) noise: the issue essentially arises in
the proof of Proposition 4.1, which shows that (Z ω,a

β )a∈(0,1] is uniformly integrable
(if
∫

[1,∞)
υλ(dυ) < ∞); all the other points extend quite easily. In view of our tech-

niques (in particular Sections 4.3–4.4), this appears to be manageable in dimension
d = 1, but it is possibly more problematic in dimension d > 2 (the truncation we use
is based on a multi-body functional that needs to be adapted in the case of a com-
plex or signed noise). Similarly, in accordance with the literature on directed polymer
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models, adding a white-noise component should be feasible in dimension d = 1, but
it is likely that in dimension d > 2 it would make the limit degenerate (in analogy
with the SHE with multiplicative white noise in dimension d = 2, see [21, 35]).

2.5.3. Applications of our method to other disordered systems. — Our method appears
robust enough to be adapted to the setting of other models with heavy-tail disorder.
In particular, in analogy with [19], one should be able to consider several (discrete)
models, and construct their continuum counterpart with Lévy noise. This includes for
instance:

(A) the (1 + d)-dimensional long-range directed polymer, see [25, 49] for the case
of dimension d = 1, where the underlying random walk (Sn)n>0 is in the γ-stable
domain of attraction, with γ ∈ (0, 2);

(B) the disordered pinning model, see [33] for an overview (it has been studied
in [40] in the case of a heavy-tail noise).
We could also consider other disordered models, such as the copolymer model (see [32,
Ch. 6] for an overview and [14, 16] for the question of the scaling limit) or the random
field Ising model (see [15, Ch. 7] for an overview and [19] for the question of the scaling
limit). We however chose to focus on the two examples (A)–(B) above, which might
provide a sufficient illustration on how general our construction is. In both cases (A)
and (B) we only briefly present the models and discuss how the assumptions (2.9)–
(2.10) have to be adapted to ensure the convergence of the partition function. In order
to be fully understood, the discussion below requires to be familiarized with the proof
of our main result. It can be thus be skipped during the first reading.

(A) The continuum (1 + d)-dimensional long-range directed polymer in Lévy noise

The idea is to replace in the definitions the Brownian motion (Bt)t>0 by a d-dimen-
sional γ-stable process (Xt)t>0 with γ ∈ (0, 2), that we suppose centered and isotropic
for simplicity. More precisely, we can define, analogously to (2.1), the partition func-
tion
(2.28) Z ω,a

β,long

:= 1 +

∞∑
k=1

βk
∫

0<t1<···<tk<T

∫
(Rd)k

k∏
i=1

ρ
(γ)
ti−ti−1

(xi − xi−1)

k∏
i=1

ξ(a)
ω (dti,dxi),

where ρ(γ)
t (x) is the transition kernel of our γ-stable process, and is defined by

ρ
(γ)
t (x) :=

1

(2π)d

∫
Rd
e−t‖z‖

γ

cos(x · z) dz.

While ρ(γ)
t does not admit a closed expression, its asymptotic properties are well

known (dating back to [38], see also [46, Ch. 2]). It is a bounded radial function and
has the following asymptotic behavior

ρ
(γ)
1 (x) ∼ cd,γ‖x‖−(d+γ), as ‖x‖ −→ ∞.

The scaling relation ρ(γ)
t (x) = t−d/γρ1(t−1/γx) also implies that ‖ρ(γ)

t ‖∞ = c′d,γt
−d/γ .
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Now let us discuss under which condition on the Lévy measure λ the partition
function in (2.28) remains finite. Note first that if

∫
[1,∞)

υλ(υ) < ∞, then we have
E[Z ω,a

β,long] <∞ from Lemma 3.1 (or rather its straightforward adaptation to this case)
and a discussion is necessary only for the integrability of heavier-tailed noises. In anal-
ogy with (2.9), we want to make sure that the weight of Poisson points with large
intensity is compensated by the cost of making a long jump to visit them, which by
(2.28) is of order ‖x‖−(d+γ). Hence we need a condition that ensures that

(2.29) sup
{
υ(1 + ‖x‖)−(d+γ) : (t, x, υ) ∈ ω, t ∈ [0, T ]

}
<∞.

We should require in fact a bit more than (2.29) but not much more (we opt not
to stretch the discussion any further) and we believe a condition that ensures that
Z ω,a
β,long <∞ and thus replaces (2.9) in this case is

(2.30)
∫

[1,∞)

υqλ(dυ) <∞ for some q > d

d+ γ
.

On the other hand, the condition (2.10) prevents the possible accumulation of
small weights that would make the limiting partition function degenerate. It is in-
timately related to the local limit behavior of ρ(γ)

t (x) at small times, more pre-
cisely to

∫
Rd(ρ

(γ)
t (x))2dx which by scaling is equal to t−d/γ

∫
Rd(ρ

(γ)
1 (x))2dx. In anal-

ogy with (2.10), a (near-optimal) condition that ensures that lima→0 Z ω,a
β,long is non-

degenerate should therefore be

(2.31)
∫

(0,1)

υpλ(dυ) <∞, for some p < min
(
1 + γ/d, 2

)
.

We therefore conjecture that if (2.30)–(2.31) hold, then the partition func-
tion Z ω,a

β,long defined in (2.28) converges a.s. to a non-degenerate limit and that
one can construct a continuum measure corresponding to the (1 + d)-dimensional
long-range directed polymer in Lévy noise. Let us stress that in the case of an
α-stable noise (i.e., λ(dυ) = αυ−(1+α)dυ), the conditions (2.30)–(2.31) translate into
the condition 1/γ < α < min(1 + d/γ, 2). Additionally, in analogy with Theorem A,
the continuum long-range directed polymer model in α-stable noise should appear as
the scaling limit of the long-range directed polymer model, defined as in (1.2) with a
random walk (Sn)n>0 in the domain of attraction of a γ-stable law and heavy tailed
disorder satisfying (1.4).

(B) The continuum disordered pinning model in Lévy noise. — The disordered pinning
model describes a renewal process τ = {τ0 = 0, τ1, τ2, . . .} on N (representing contact
points) interacting with an inhomogeneous defect line. In the case of a heavy tailed
environment (ηx)x∈N, it is convenient to write the partition function of the model as
follows, see [40]:

(2.32) ZηN,β,h := E
[ N∏
n=1

eh1{n∈τ}
(
1 + βηn1{n∈τ}

)]
,
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where h in an additional (homogeneous) pinning parameter. A standard (and natural)
assumption in the literature is that P(τ1 = n) = (1 + o(1))cn−(1+γ) as n goes to
infinity, for some γ > 0. Under this assumption, if γ ∈ (0, 1), then the set of contact
points τ ∩ [0, N ], properly scaled, converges to what is called the regenerative set of
index γ. This leads us to make the following definition for the truncated partition
function of the continuum disordered pinning model: for β > 0 and h ∈ R,

Z ω,a
β,h,pin := 1 +

∞∑
k=1

βk
∫

0<t1<···<tk<1

k∏
i=1

uγ(ti − ti−1)

k∏
i=1

(ξ(a)
ω + hL )(dti),

where uγ(t) := cγt
−(1−γ) is the transition kernel of the regenerative set of index γ.

Here, no condition analogue to (2.9) is needed to keep Z ω,a
β,h,pin a.s. finite, since

there is no spatial dimension. On the other hand, in analogy with (2.10), in view of
the form uγ(t) = cγt

−(1−γ) and since there is no spatial dimension, a (near-optimal)
condition that ensures that lima→0 Z ω,a

β,h,pin is non-degenerate should therefore be

(2.33)
∫

(0,1)

υpλ(dυ) <∞, for some p < min
(
1/(1− γ), 2

)
.

Hence, we conjecture that if (2.33) holds, the partition function Z ω,a
β,h,pin defined

in (2.28) converges a.s. to a non-degenerate limit, and that one can construct a con-
tinuum measure corresponding to the disordered pinning model in Lévy noise. In the
case of an α-stable noise (i.e., λ(dυ) = αυ−(1+α)dυ), the condition (2.33) translates
into α < min

(
1/(1− γ), 2

)
, which corresponds to the disorder relevance condition

found in [40] (where the roles of γ and α are exchanged). Additionally, in analogy
with Theorem A, the continuum pinning model in α-stable noise should then appear
as the scaling limit of the disordered pinning model defined above in (2.32) and heavy
tailed disorder satisfying (1.4).

2.5.4. Other open questions. — To conclude this section, we present a brief list of
interesting open questions.

(a) A first question that we already raised is that of considering a more general
noise. We leave as an open problem the issue of adding a Gaussian white-noise com-
ponent to ξω. We believe that in dimension d = 1 the partition function converges to
a non-degenerate limit even when a Gaussian component is added to the noise and
that consequently on can define a continuum polymer in that case.

(b) Another natural question is that of the Lp convergence in Theorem 2.8. It is
natural to expect some Lp convergence to hold, but this appears to be technically
challenging. We leave as an open problem to show that, if

∫
(0,1)

υpλ(dυ) <∞ for some
p < min(1 + 2/d, 2) and

∫
[1,∞)

υqλ(dυ) <∞ for some q > 1, then Z ω,a
β,T converges to

Z ω
β in Lmin(p,q).
(c) To conclude, let us mention an important and challenging question. In the case

of an α-stable noise, we have treated the case α < αc = min(1 + 2/d, 2); in particular,
αc < 2 in dimension d > 3. It would then be an interesting question to investigate the
case α = αc, called marginal (in particular in the case where αc < 2, since marginal
behavior may depend on αc). In analogy with other marginally relevant disordered
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systems (see [20] in the context of scaling limits), one would then expect that one
should find a non-trivial limit in distribution by allowing β to depend on a in such a
way that lima→0 βa = 0 (recall that from Proposition 2.12 we have lima→0 Z ω,a

β,T = 0

in that case). It seems likely (again considering the analogy with [20]) that the right
scaling for βa should be of the form βa = c(log a)−ν(1 + o(1)) where c and ν are
positive constant.

Remark 2.28. — Since the first version of this paper appeared as a draft, progress has
been made in [6] on several fronts including a few of the open questions mentioned
above. We refer to the introduction of [6] for a full account.

2.6. Organization of the rest of the paper. — Let us briefly present how the rest
of the paper is organized and outline the ideas of the proofs of Theorems 2.1 and 2.8.

– In Section 3 we present preliminary results concerning the partition function with
truncated noise Z ω,a

T,β that are needed in the rest of the paper. We prove in particular
its well-posedness (Proposition 3.1), its positivity (Lemma 3.3, which provides an
important alternative representation for the partition function), and a martingale
property (under suitable integrability condition, see Lemma 3.5). We also give an
enlightening representation of the size-biased law of the environment (i.e., its law
biased by the partition function, see the definition (3.11)) and we recall Mecke’s
multivariate equation for Poisson point processes, which is used throughout the paper.

– In Section 4, we prove our main result, that is, Theorem 2.8 (Theorems 2.1
and 2.3 being only particular cases). The proof needs to be decomposed in several
steps, a detailed account of which is given in Section 4.1. Most of the proofs of this
section can be adapted to control the point-to-point partition function, and thus we
prove along the way Proposition 2.20 and Proposition 2.24.

– In Section 5, we study the cases where the limiting partition function degenerates
either to zero or infinity, that is we prove Proposition 2.6 and Proposition 2.12.

– In Section 6, we prove the various properties of the continuum directed polymer in
Lévy noise that are gathered in Section 2.3, that is Proposition 2.16, Proposition 2.18
and Proposition 2.21.

– In Section 7, we prove our statement concerning the convergence of the solution
of the SHE with truncated noise, Proposition 2.26.

– Finally, we collect in the appendix several technical results that are used along
the paper.

Notational warning. — For simplicity we assume in the rest of the paper that T = 1,
and we drop the dependence in T in all notations.

3. Preliminaries: some properties of Z ω,a
β

We let |ξ(a)
ω | denote the total variation associated with the locally finite signed

measure ξ(a)
ω defined in (2.5), and we let

Xk :=
{
t = (t1, . . . , tk) ∈ Rk : 0 < t1 < · · · < tk < 1

}
,

denote the open simplex.
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3.1. Well-posedness. — Our first task is to check that our definitions Z ω,a
β in (2.1)

and Z ω,a
β (f) in (2.7) are well posed. This is given by the following result.

Proposition 3.1. — For any choice of λ satisfying λ([a,∞)) < +∞ for every a > 0,
for any f ∈ Bb, the function %(t,x, f) defined on Xk×(Rd)k is almost surely integrable
with respect to the product measure |ξ(a)

ω |⊗k. Moreover we almost surely have, for any
β > 0,

(3.1)
∞∑
k=0

βk
∫
Xk×(Rd)k

%(t,x, f)

k∏
i=1

|ξ(a)
ω |(dti,dxi) <∞.

If µ :=
∫

[1,∞)
υλ(dυ) < ∞, then %(t,x) is integrable with respect to the product

measure |ξ(a)
ω |⊗k and

(3.2)
∞∑
k=0

βk
∫
Xk×(Rd)k

%(t,x)

k∏
i=1

|ξ(a)
ω |(dti,dxi) <∞.

Furthermore, we have for all f ∈ Bb

(3.3) ∀ a ∈ (0, 1], E
[
Z ω,a
β (f)

]
= eβµQ(f).

Proof. — Let us start with the case
∫

[1,∞)
υλ(dυ) < ∞. It is sufficient to check that

the expectation of the l.h.s. in (3.2) is finite. Now using the definition (2.5) for ξ(a)
ω

we have on Xk × (Rd)k,

E
[
⊗ki=1|ξ(a)

ω |(dti,dxi)
]

=

(∫
[a,∞)

υλ(dυ) + κa

)k k∏
i=1

dti dxi.

Letting Ca :=
∫

[a,∞)
υλ(dυ) + κa <∞, we therefore get that

E
[∫

Xk×(Rd)k
%(t,x)

k∏
i=1

|ξ(a)
ω |(dti,dxi)

]
= Cka

∫
Xk×(Rd)k

%(t,x)

k∏
i=1

dti dxi =
Cka
k!
.

This implies both the convergence of the integral and the summability in k.
The fact that E[Z ω,a

β (f)] = eβµQ(f) directly follows from the definition (2.6)–(2.7)
and Fubini, using that

∏k
i=1 ξ

(a)
ω (dti,dxi) has mean (µL )⊗k.

Now let us prove (3.1) when
∫

[1,∞)
υλ(dυ) =∞. For this we first consider a trun-

cated version of the noise to place ourselves back in the integrable case, and then let
the truncation threshold go to infinity. This procedure is going to be used repeatedly
in the paper. For b > a, recall the definition (2.26) of ξ[a,b)

ω . Using the assumption
f ∈ Bb, we let M > 0 be such that f(ϕ) = 0 if ‖ϕ‖∞ > M . Then %(t,x, f) = 0

if maxki=1 ‖xi‖∞ > M . Therefore, since λ([a,∞)) < ∞, there exists b0(M,ω) such
that for every b > b0, the restriction of ξ(a)

ω on [0, 1]× [−M,M ]d coincides with that
of ξ[a,b)

ω . Hence it is sufficient to show that (3.1) holds for ξ[a,b)
ω for every b > 1, which

we can do by repeating the proof of (3.2). �
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Remark 3.2. — Notice that we have the analogous result for the point-to-point par-
tition function Z ω,a

β (t, x). For any x ∈ Rd, the function %(t,x)ρt−tk(x−xk) is almost
surely integrable on Xk × [−M,M ]k for any M > 0 with respect to the product
measure |ξ(a)

ω |, and it is integrable on Xk × (Rd)k if
∫

[1,∞)
υλ(dυ) <∞. We also have

(3.4) ∀ a ∈ (0, 1], E
[
Z ω,a
β (t, x)

]
= eβµtρt(x).

3.2. The partition function Z ω,a
β as a sum. — Let us now present an alternative

expression for Z ω,a
β , from which it will be clear that Z ω,a

β is positive. Indeed, it
is not obvious that the chaos decomposition (2.7) is non-negative, due to the term
−κaL in the definition (2.5) of ξaω. The idea of Lemma 3.3 below is to integrate out
this “Lebesgue part” of ξaω. This operation has the effect of giving rise to a prefactor
e−βκa .

We let P[0,t](ω) denote the set of finite collections of points in ω whose time
coordinates belong to the interval [0, t]. When t = 1 we simply write P(ω). We define
similarly P[0,t](ω

(a)) and P(ω(a)) the sets of finite collections of points in ω(a) =

{(t, x, υ) ∈ ω : υ > a} (as defined above (1.6)). For σ ∈ P(ω) we let |σ| denote its
cardinality and we use the notation (ti, xi, ui)

|σ|
i=1 to denote the points in σ ordered in

increasing time. Given a > 0 we define the following weight function wa,β(σ) on P(ω)

(3.5) wa,β(σ) := e−βκaβ|σ|%(t,x)

|σ|∏
i=1

ui1{ui>a},

with κa =
∫

[a,1)
υλ(dυ) as defined in (2.6). Let us stress here that wa,β puts a positive

weights only on elements of P(ω(a)). By convention, we say that the empty set belongs
to P(ω) and we set wa,β(∅) := e−βκa . Similarly, for any f ∈ B, we define

wa,β(σ, f) := e−βκaβ|σ|%(t,x, f)

|σ|∏
i=1

ui1{ui>a},

wa,β(∅, f) := e−βκaQ(f).

(3.6)

The following lemma provides an alternative formulation of the partition func-
tion which is convenient to assert positivity. Its proof is straightforward (one only
needs to integrate out the Lebesgue part of ξaω) and is presented in Appendix B.1 for
completeness.

Lemma 3.3. — Given a > 0, β > 0 and f ∈ Bb we have

(3.7) Z ω,a
β (f) =

∑
σ∈P(ω)

wa,β(σ, f).

In particular Z ω,a
β (f) > 0 if f > 0 and Q(f) > 0. Also, by monotone convergence,

recalling the definition (2.8), we have

(3.8) Z ω,a
β =

∑
σ∈P(ω)

wa,β(σ).
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Let us stress that the representations (3.7) and (3.8) are valid without any assump-
tion on the intensity measure λ, since all the terms in the sums are positive, but it
may be the case that both sides of (3.8) are infinite.

Remark 3.4. — Similarly, for the point-to-point partition function, the following iden-
tity holds

(3.9) Z ω,a
β (t, x) =

∑
σ∈P[0,t](ω)

wa,β(σ, (t, x)),

with wa,β(σ, (t, x)) := e−βκaβ|σ|%(t,x)ρt−tk(x − xk)
∏|σ|
i=1 ui1{ui>a}, as long as the

r.h.s. is finite. Note that by Fubini’s theorem this gives that, for any a > 0

(3.10)
∫
Rd

Z ω,a
β (t, x)dx = Z ω,a

β,t .

3.3. Martingale property. — In the case
∫

[1,∞)
υλ(dυ) < ∞, the convergence of

Z ω,a
β (f) as a ↓ 0 is an immediate consequence of the following observation.

Lemma 3.5. — Let F = (Fa)a∈(0,1] be the filtration where Fa is the σ-field gener-
ated by ω(a). If the measure λ satisfies µ :=

∫
[1,∞)

υλ(υ)dυ < ∞, then the following
processes are (time-reversed) martingales for the filtration F :

– (Z ω,a
β (f))a∈(0,1] for any f ∈ B, and in particular (Z ω,a

β )a∈(0,1];
– (Z ω,a

β (t, x))a∈(0,1] for any (t, x) ∈ R∗+ × Rd.
The mean of these martingales are E[Z ω,a

β (f))] = eβµQ(f) and E[Z ω,a
β (t, x)] =

eβµtρt(x).
Moreover, if g is a bounded measurable function of ϕ and ω and g(ϕ, ω) is Fa0-mea-

surable for every ϕ, then
(
Z ω,a
β (g(·, ω))

)
a∈(0,a0]

is a (time-reversed) martingale.

Proof. — Using the expression (2.7) (or (2.17) for the point-to-point partition func-
tion), the result follows from the fact that the sequence of measures( k∏

i=1

ξ(a)
ω (dti,dxi)

)
a∈(0,1]

on Xk × (Rd)k

is a martingale. Indeed for b < a 6 1 we have

E
[ k∏
i=1

ξ(b)
ω (dti,dxi)−

k∏
i=1

ξ(a)
ω (dti,dxi)

∣∣∣Fa

]

=

k∑
i=1

E
[(i−1∏

j=1

ξ(b)
ω (dtj ,dxj)

)
(ξ(b)
ω − ξ(a)

ω )(dti,dxi)
( k∏
j=i+1

ξ(a)
ω (dtj ,dxj)

) ∣∣∣Fa

]
= 0,

where in the last equality we used that by construction (ξ
(b)
ω − ξ

(a)
ω )(dti,dxi) is of

zero average, independent of Fa and conditionally independent of
∏i−1
j=1 ξ

(b)
ω (dtj ,dxj).

The proof for a random function follows the same line, using that %(t,x, g(·, ω)) is
Fa0-measurable for all t and x. �
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Since Z ω,a
β > 0, this directly implies in the case

∫
[1,∞)

υλ(υ)dυ < ∞ that
lima↓0 Z ω,a

β exists almost surely. We will show that if additionally assumption (2.10)
holds, the martingale is uniformly integrable.

Remark 3.6. — In the case
∫

[1,∞)
υλ(υ)dυ = ∞, we will consider the truncated

partition function Z
[a,b)
β (f) defined as in (2.3) but with ξ

(a)
ω replaced by the trun-

cated noise ξ[a,b)
ω defined in (2.26) — this corresponds to considering the intensity

measure λ(0,b)(dυ) := 1{υ<b}λ(dυ). Then, for any b > 0, Lemma 3.5 shows that
(Z

[a,b)
β (f))a∈(0,b] is a martingale.

3.4. A representation for the size-biased measure

When µ :=
∫

[1,∞)
υλ(υ)dυ <∞, since

Z
ω,a

β := e−βµZ ω,a
β

is non-negative and of average one, one can define an alternative measure P̃aβ for the
environment, defined by

(3.11) P̃aβ(ω ∈ A) := E
[
Z

ω,a

β 1ω∈A
]
.

The measure P̃aβ is often referred to as the size-biased measure — the probability of
an event is biased by the “size” of the partition function. Convenient representations of
the size-biased measure have been given for directed polymers [12, Lem. 1] and similar
models such as branching random walks (see [47, Ch. 4] and references therein) or the
disordered pinning model [40, §5.2]. The size-biased measure for all these models
is obtained by tilting the distribution of the environment along a randomly chosen
trajectory. The result we present below is a strict analog in a continuous setup.

We let P′a be the distribution of a Poisson point process ω′a on [0, 1] × R+ whose
intensity is dt ⊗ βυ1{υ>a}λ(dυ), (that is dt ⊗ βαυ−α1{υ>a}dυ in the α-stable case)
and we recall that Q is the distribution of a standard Brownian motion. We then
introduce the random set of points ω̂(ω, ω′a, B) in R× Rd × R+ defined by

ω̂ := ω ∪
{

(t, Bt, υ) : (t, υ) ∈ ω′a
}
.

Then, the distribution of ω under the measure P̃aβ can be described as follows.

Lemma 3.7. — Suppose that µ :=
∫

[1,∞)
υλ(υ)dυ <∞. Then with the notation defined

above, for any measurable bounded function g we have

(3.12) P̃aβ [g(ω)] = P⊗ P′a ⊗Q[g(ω̂(ω, ω′a, B))].

In other words, the distribution of ω under P̃aβ is obtained by adding to the original
point process an independent Poisson process of intensity dt⊗ βυ1{υ>a}λ(dυ) drawn
on the trajectory a Brownian motion.

The proof, though elementary, requires some cumbersome computation. We present
it in Appendix B.2 for completeness.
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3.5. An important tool: Mecke’s multivariate equation. — Let us recall here a clas-
sical formula for Poisson point processes which we will repeatedly use in our compu-
tations. It is a particular case of Mecke’s multivariate equation (see e.g. [41, Th. 4.4]).

Proposition 3.8. — Given λ a sigma-finite measure on a measurable space (X,X ),
and ω a Poisson point process with intensity λ, then for any k ∈ N and any measurable
function g : Xk → R+ such that g(x1, . . . , xk) = 0 as soon as xi = xj for some i 6= j

then

E
[ ∑

(x1,...,xk)∈ωk
g(x1, . . . , xk)

]
=

∫
Xk
g(x1, . . . , xk)λ⊗k(dx1, . . . ,dxk).

Of course we are going to apply this formula for the Poisson process ω. In our
applications we mostly deal with sums running on subsets of ω whose cardinality is
not fixed, see the expression (3.8) for the partition function above. Hence, in practice,
the formula we will use is rather

E
[∑
k>1

∑
(x1,...,xk)∈ωk

gk(x1, . . . , xk)

]
=
∑
k>1

∫
Xk
gk(x1, . . . , xk)λ⊗k(dx1, . . . ,dxk),

where gk is a sequence of positive functions on Xk.

4. Convergence of the partition function and of the measure:
proof of Theorem 2.8

4.1. Organization of the section. — We decompose the proof of the theorem in
several steps. We provide the details of this decomposition before going to the core of
the proof.

First step. — Our first and main task is to prove the convergence of the partition
function under the additional assumption

∫
[1,∞)

υλ(dυ) <∞.

Proposition 4.1. — If the measure λ satisfies
∫

[1,∞)
υλ(dυ) <∞ and (2.10), then the

martingale (Z ω,a
β )a∈(0,1] is uniformly integrable. As a consequence there exists Z ω

β

such that the following convergence holds holds almost surely and in L1,

lim
a→0

Z ω,a
β = Z ω

β .

Since from Lemma 3.5 we know that (Z ω,a
β )a∈(0,1] is a positive martingale, it is

sufficient to show that (Z ω,a
β )a∈(0,1] is uniformly integrable. Our strategy consists in

considering a sequence of approximation (Ẑ ω,a
β,q )q>1 of Z ω,a

β , obtained by somehow
restricting the partition function to “not-too-large” weights. We choose our restriction
so that two key properties are satisfied:

(A) For large q’s, Ẑ ω,a
β,q is a good approximation of Z ω,a

β in L1, uniformly in a.
(B) For any q, (Ẑ ω,a

β,q )a∈(0,1] is bounded in L2.
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We refer to Section 4.2 for a more detailed description of this strategy, which is then
implemented in Section 4.3 in dimension d = 1 and in Section 4.4 in dimension d > 2,
where the restriction strategy is more subtle.

Notice that from Lemma 3.3 (in particular (3.8)), we have that Z ω,a
β (f) 6

‖f‖∞Z ω,a
β for any f ∈ B. Hence an immediate consequence of Proposition 4.1 is the

following.

Corollary 4.2. — If the measure λ satisfies
∫

[1,∞)
υλ(dυ) <∞ and (2.10), then for

every f ∈ B the martingale (Z ω,a
β (f))a∈(0,1] is uniformly integrable, and the following

convergence holds almost surely and in L1

lim
a→0

Z ω,a
β (f) = Z ω

β (f).

Second step. — Our second task is to remove the assumption
∫

[1,∞)
υλ(dυ) < ∞

from Proposition 4.1 (and Corollary 4.2), i.e., to prove Proposition 2.5. This is done
in Section 4.5. Along the way we also prove Proposition 2.24 and the first part of
Proposition 2.20, that is (2.18). We then use Proposition 2.5 to prove the following
lemma (which corresponds to (2.11)–(2.12)), in Section 4.6.

Lemma 4.3. — Under the assumption (2.10), for every f ∈ Bb the following conver-
gence holds almost surely and the limit is finite

lim
a→0

Z ω,a
β (f) = Z ω

β (f).

Furthermore if (2.9) also holds then the statement is valid for f ∈ B. In particular,
we have

lim
a→0

Z ω,a
β = Z ω

β < +∞.

Third step. — Our third task, which is crucial for the convergence of Qω,a
β , is to

ensure that the limiting partition function is positive (let us record the statement as
a proposition). This is done in Section 4.7.

Proposition 4.4. — If λ satisfies (2.10), then for any non-negative f ∈ Bb with
Q(f) > 0, we have almost surely

Z ω
β (f) > 0.

As a consequence, if λ satisfies (2.9)–(2.10) then we have almost surely

(4.1) Z ω
β ∈ (0,∞).

Fourth step. — Finally we complete the proof of Theorem 2.8 by proving the conver-
gence of Qω,a

β . Note that Lemma 4.3 and Proposition 4.4 imply for any given f ∈ Bb

the almost sure convergence of Qω,a
β (f). Hence we only need to prove tightness.

Proposition 4.5. — If λ satisfies (2.9)–(2.10), then for almost every ω, the family
of measures (Qω,a

β )a∈(0,1] is tight with respect to the topology of weak convergence
on MT , the set of probability measures on C0([0, 1]).
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The reader can then check that combining all the statements above yields the
complete proof of Theorem 2.8.

Let us finally comment on how the proof of the second part of Proposition 2.20
(the convergence (2.19) to a positive limit) is completed. We simply need to show
that Proposition 4.1 and Proposition 4.4 (that is Equation (4.1)) remain valid for the
point-to-point partition function. Since the proofs are nearly identical we will point
at the end of the various proofs which modifications are required, when there are any.

4.2. A uniform integrability criterion. — As outlined above, our proof of uniform
integrability is going to rely on a second moment computations. This requires to
overcome some subtleties since the second moment of Z ω,a

β might be infinite for
every a > 0 (this is for instance the case when d > 2). We follow an approach similar to
the one used in [5] for the proof of the convergence of Gaussian Multiplicative Chaos.
We look for a family of restrictions of the partition functions which is bounded in L2

but does not produce any loss of mass at infinity. Let us summarize our approach in
the form of a proposition.

Proposition 4.6. — Consider (Xa)a∈(0,1] a collection of positive random variables.
Assume that there exists X(q)

a a sequence of approximation of Xa, indexed by q > 1,
which satisfies:

lim
q→∞

sup
a∈(0,1]

E
[
|X(q)

a −Xa|
]

= 0;

sup
a∈(0,1]

E
[
(X(q)

a )2
]
<∞ for every q > 1.

Then (Xa)a∈(0,1] is uniformly integrable.

Proof. — We may write, for any M > 0 and a > 0,

E
[
|Xa|1{|Xa|>M}

]
6 E

[
|X(q)

a −Xa|
]

+ E
[
(X(q)

a )2
]1/2P(|Xa| > M

)1/2
,

where we have used Cauchy–Schwarz inequality for the second term. Applying
Markov’s inequality and taking the supremum over a ∈ (0, 1], we therefore get

sup
a∈(0,1]

E
[
|Xa|1{|Xa|>M}

]
6 sup
a∈(0,1]

E
[
|X(q)

a −Xa|
]

+M−1/2 sup
a∈(0,1]

E
[
(X(q)

a )2
]1/2

sup
a∈(0,1]

E[|Xa|]1/2.

The first term can be made smaller than ε/2 by choosing q sufficiently large. Then
once q is fixed, we can make the second term smaller than ε/2 by choosing M large
(our assumptions imply that (Xa)a∈(0,1] is bounded in L1). �

Our idea is now to apply Proposition 4.6 to variables X(q)
a which are obtained by

considering the sum of the weights wa,β(σ) on a strict subset of P(ω) (recall the
representation of Z ω,a

β in Lemma 3.3).
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4.3. Proof of Proposition 4.1 in dimension d = 1. — The case d = 1 gives us the
occasion to apply Proposition 4.6 with a relatively simple setup. In this case, the only
thing that prevents Z ω,a

β from being bounded in L2 are the large values of ui. The
modified partition function obtained by ignoring these points in the Poisson point
process ω turns out to be bounded in L2. The idea is thus to apply Proposition 4.6
for partition functions with truncated environment, taking X(q)

a = Z
ω,[a,q)
β (recall the

definition after (2.27)). We then prove the following.

Proposition 4.7. — Suppose that λ satisfies µ :=
∫

[1,∞)
υλ(dυ) <∞ and that (2.10)

holds. For every d > 1, we have

(4.4) lim
q→∞

sup
a∈(0,1]

E
[∣∣Z ω,a

β −Z
ω,[a,q)
β

∣∣] = 0.

Moreover, when d = 1, we additionally have that for every q > 1

(4.5) sup
a∈(0,1]

E
[(

Z
ω,[a,q)
β

)2]
<∞.

These statements imply that both requirement of Proposition 4.6 are satisfied and
therefore that (Z ω,a

β )a∈(0,1] is uniformly integrable and converges in L1. As can be
checked from the proof, (4.5) is false when d > 2 and in that case we will need a more
subtle restriction for the set of trajectories (developed in the next subsection). While
the latter restriction also covers the d = 1 case, the proof presented in this section
is considerably simpler, and may prepare the reader for the more involved proof in
dimension d > 2. Additionally note that (4.4) is valid when d > 2; it will be used in
Section 4.4.

Proof of Proposition 4.7. — To compute the expectation in (4.4) we use Proposi-
tion 3.8: recalling the definitions (3.5) of wa,β(σ) and (2.6) of κa, we obtain that
Z ω,a
β −Z

ω,[a,q)
β > 0 and that

(4.6) E
[
Z ω,a
β −Z

ω,[a,q)
β

]
= E

[ ∑
σ∈P(ω)

wa,β(σ)1{∃ i∈[[1,|σ|]], ui>q}

]
= e−βκa

∑
k>1

βk
∫
Xk×(Rd)k×(0,∞)k

1{
max

16i6k
ui>q

}%(t,x)dtdx

k∏
i=1

ui1{ui>a}λ(dui).

Note that the integral in x and t readily simplifies since we have (recall that ρt(x)

is a probability density)

(4.7)
∫

(Rd)k
%(t,x)dx = 1 and

∫
Xk

dt =
1

k!
.
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Hence, setting µ :=
∫

[1,∞)
υλ(dυ) and µq :=

∫
[1,q)

υλ(dυ), the r.h.s. of (4.6) is equal to

e−βκa
∑
k>1

βk

k!

∫
[a,∞)k

1{
max

16i6k
ui>q

} k∏
i=1

uiλ(dui)

= e−βκa
∑
k>1

βk

k!

[ ∫
[a,∞)k

k∏
i=1

uiλ(dui)−
∫

[a,q)k

k∏
i=1

uiλ(dui)

]

= e−βκa
∑
k>1

βk

k!

[
(κa + µ)k − (κa + µq)

k
]

= eβµ − eβµq .

(4.8)

Hence we have E
[
Z ω,a
β − Z

ω,[a,q)
β

]
= eβµ − eβµq , which does not depend on a, and

converges to 0 as q →∞ (notice that this is true even for d > 2).
To check (4.5), set Aq := {(ti, xi, ui)ki=1 : ∀ i ∈ [[1, k]], ui 6 q}. By Lemma 3.3

we have

E
[(

Z
ω,[a,q)
β

)2]
= E

[ ∑
σ1,σ2∈P(ω)

wa,β(σ1)wa,β(σ2)1Aq (σ1)1Aq (σ2)

]
.

In order to facilitate the of use Mecke’s multivariate equation (Proposition 3.8) we set

ς = σ1 ∩ σ2 and ςi = σi r ς for i = 1, 2.

By removing the constraint that u 6 q on ςi, i = 1, 2, we obtain

(4.9) E
[
(Ẑ ω,a

β,q )2
]
6 E

[ ∑
ς1,ς2,ς∈P(ω) disjoints

w(ς1 ∪ ς)w(ς2 ∪ ς)1Aq (ς)

]
.

Now we can apply Proposition 3.8. To do so, we split the sum according to the
cardinality of ς (= {(ti, xi, ui)}mi=1), and also according to the number of points in ς1
and ς2 in each of the intervals (ti−1, ti), i ∈ [[1,m + 1]] (t0 = 0 tm+1 = 1). After
factorizing we obtain that the r.h.s. in (4.9) is equal to

(4.10)
∑
m>0

∫
0<t1<···<tm<1

∫
(Rd)m

∫
[a,q)m

βm
m∏
i=1

u2
i zβ,a

(
(ti−1, xi−1), (ti, xi)

)2
(∫

Rd
zβ,a

(
(tm, xm), (1, x)

)
dx
)2 m∏

i=1

dti dxi λ(dui),

where zβ,a
(
(t, x), (t′, x′)

)
is the expected value of the point-to-point partition function

for the polymer in the environment ω(a). With the convention s0 = t, s`+1 = t′ and
y0 = x, y`+1 = x′, it is given by

(4.11) zβ,a((t, x), (t′, x′)) := e−βκa(t′−t)
[
ρt′−t(x

′ − x)

+

∞∑
`=1

β`
∫
t<s1<···<s`<t′

∫
(Rd)`

∫
[a,∞)`

`+1∏
j=1

ρsj−sj−1(yj − yj−1)
∏̀
j=1

dsj dyj vjλ(dvj)

]
.

To see that (4.10) holds, observe that expanding all the products we obtain a sum
over the indices m (standing for the number of points in ς) and `

(1)
i , `(2)

i (we need
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two indices to expand z2
β,a) which stands for the number of points of ς1 and ς2 in

the time interval (ti−1, ti) (the term ρt′−t(x
′ − x) in (4.11) corresponding to ` = 0).

The expression of zβ,a((t, x), (t′, x′)) simplifies after integration over all intermediate
variables

zβ,a((t, x), (t′, x′))

= e−βκa(t′−t)ρt′−t(x
′ − x)

∞∑
`=0

[β(κa + µ)(t′ − t)]`

`!
= eβµ(t′−t)ρt′−t(x

′ − x).

Reinjecting this into (4.10) and performing the integral over ui ∈ (0, q) instead of
[a, q) — this yields an upper bound which is uniform in a —, we obtain that

(4.12) E
[
(Ẑ ω,a

β,q )2
]
6
∑
m>0

(
βe2βµVq

)m ∫
Xm×(Rd)m

%(t,x)2dx dt,

where we also used that (
∫
Rdρ1−tm(x−xm)dx)2 =1, and defined Vq :=

∫
(0,q)

υ2λ(dυ)<∞
(recall (2.10)). Now using the definition (1.10) of ρt(x), we have

(4.13)
∫
Rd

(ρt(x))2dx = 2−d(πt)−d/2.

Hence, in dimension d = 1 we get that

(4.14) E
[
(Ẑ ω,a

β,q )2
]
6
∑
m>0

(
2−1π−1/2βe2βµVq

)m ∫
Xm

m∏
i=1

dti√
ti − ti−1

.

To conclude, notice that (with the convention tm+1 = 1)

am =

∫
Xm

m∏
i=1

dti√
ti − ti−1

6 a′m :=

∫
Xm

m+1∏
i=1

dti√
ti − ti−1

=
Γ(1/2)m+1

Γ((m+ 1)/2)
,

where the last identity is a standard calculation, see e.g. [9, Lem.A.3]. Hence (am)m>0

decays super-exponentially, so the r.h.s. of (4.14) is finite for every value of q. �

Remark 4.8. — In the case of the point-to-point partition function Z ω,a
β (t, x), one

uses X(q)
a = Z

ω,[a,b)
β (t, x) instead of Zω,[a,b)β and the representation (3.9) instead

of (3.8) to compute the first an second moment. The proof is carried out in an identical
manner as above, replacing %(t,x) with %(t,x)ρt−tk(x−xk); whose integral on (Rd)k

is ρt(x). The main difference is in (4.10) where the variable x in zβ,a((tm, xm), (1, x))

is no longer integrated, which leads to having an extra ρt−tm(x − xm)2 in the last
integral in (4.12). An easy induction on m yields that

(4.15)
∫

(Rd)m
%(t,x)2ρt−tm(x− xm)2dx =

e−‖x‖
2/t

π(m+2)/2
∏m+1
i=1

√
ti − ti−1

.

This leads us to having a′m instead of am in the series (4.14) (with an extra tm if t 6= 1)
and does not change the conclusion.
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4.4. Proof of Proposition 4.1 in dimension d > 2. — The proof of the previous
section cannot apply to higher dimension. From a purely technical point of view the
reason for this is that the r.h.s. of (4.13) is not integrable in t when d > 2, making
the r.h.s. of (4.14) infinite.

To circumvent this problem we need to refine our selection of trajectories. As the
divergence in (4.13) comes from small values of t, we want to add a restriction that
forbids favorable sites to have an abnormaly high concentration in a small time frame.
Our selection scheme presents some formal analogy and was inspired by the multibody
techniques used in [8, 34] in the very different context of disordered pinning models
at marginality.

Fine tuning our parameters, under the assumption (2.10) we find a restriction of
the trajectories based on this idea which allows to apply Proposition 4.6.

Remark 4.9. — An alternative proof of the uniform integrability of Z ω,a
β for d > 2

was brought to our attention by C. Chong. Once (4.4) has been proved, it is sufficient
to show that

sup
a∈(0,1]

E
[
(Z

ω,[a,q)
β )p

]
<∞,

for some p > 1 (the conclusion of Proposition 4.6 remains valid, using Hölder’s inequal-
ity instead of Cauchy–Schwarz). This last bound can be extracted from [45, Th. 1.3.1]
after observing that Z

ω,[a,q)
β is the solution at time 1 and coordinate 0 of the sto-

chastic heat equation with initial condition u0 ≡ 1. To extend this argument to the
point-to-point partition function, some more care is required since in this case one has
to consider the solution of the SHE with Dirac initial condition (not treated in [45])
but the argument should in principle also work.

However, our argument presents a few advantages. Firstly, it does not rely on any
tool of stochastic integration and only marginally on the properties of the heat-kernel:
it is therefore easily adaptable to the context of other disordered systems presented
in Section 2.5. Also, our proof of Theorem A in [9] relies on a similar strategy and
we believe that the proof in the continuum setup (which is much simpler than that
in the discrete one) could be of use for potential readers of [9].

4.4.1. A finer restriction of the set of trajectories. — Let us now consider the restriction
of the partition function to “good trajectories” σ. Thanks to assumption (2.10), we can
fix some p ∈ (1, 1 + 2/d) with p < 2 such that

∫
(0,1)

υpλ(dυ) <∞. We then fix for the
rest of this section a parameter γ > 0 which satisfies

d− 2

2(2− p)
< γ <

1

p− 1

(
i.e., γ(p− 1) < 1 and d

2
− γ(2− p) < 1

)
.

The assumption p ∈ (1, 1 + 2/d) entails that γ = d/2 is always a valid choice, but we
prefer to write the two separate conditions we have on γ to make the requirements
more transparent. Then, for any q > 1, we define Bq as

(4.16) Bq :=
{
σ ∈P(ω) : ∀σ′ ⊂ σ,

∏|σ′|
j=1 u

′
j < q|σ

′|∏|σ′|
j=1(t′j − t′j−1)γ

}
,
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where t′ and u′ is used to denote the coordinates of time ordered points in σ′ (with
t′0 = 0 by convention). We set in this section.

Ẑ ω,a
β,q :=

∑
σ∈P(ω)

wa,β(σ)1Bq
(σ).

Note that σ ∈ Bq implies in particular that ui 6 q for i ∈ [[1, |σ|]] and hence Ẑ ω,a
β,q 6

Ẑ
ω,[a,q)
β . Now, Theorem 2.1 is a consequence of Propositions 4.10 and 4.11 below

(which allow to control respectively the first and second moment of Ẑ ω,a
β,q ) and of

Proposition 4.6.

Proposition 4.10. — Assuming that γ < 1/(p− 1) we have

lim
q→∞

sup
a∈(0,1]

E
[∣∣Z ω,a

β − Ẑ ω,a
β,q

∣∣] = 0.

Proposition 4.11. — Assuming that γ > (d− 2)/2(2− p), for every q > 1 we have

sup
a∈(0,1]

E
[(

Ẑ ω,a
β,q

)2]
<∞.

The proof of Propositions 4.10 and 4.11 are technically more involved than that of
Proposition 4.7. This is in particular because the restriction Bq produces an integral
that does not factorize as well as the one obtained when only Aq is considered. We first
need to introduce some technical bounds on some type of multivariate integrals which
appear in our first and second moment computations respectively.

4.4.2. Technical preliminaries: an upper bound on multivariate integrals. — The follow-
ing upper bounds are the key ingredients in the proof of Proposition 4.10 and 4.11
as they allow to control the multivariate integrals produced by the application of
Mecke’s multivariate equation (Proposition 3.8).

Lemma 4.12. — Assume that
∫

(0,1)
υpλ(dυ) < ∞ for some p ∈ (1, 2) and also that∫

[1,∞)
υλ(dυ)<∞. Then for any q>1 there is a constant cq, satisfying limq→∞ cq=0,

such that for every m > 1 and every h ∈ (0, 1), we have

(4.17)
∫

(0,q)m
1{∏m

j=1 uj>h q
m
} m∏
i=1

uiλ(dui) 6
1

p− 1

(cq)
mh1−p

(m− 1)!

[
log(2m/h)

]m−1
.

In particular, for any 0 < ε < 1, we have

(4.18)
∫

(0,q)m
1{∏m

j=1 uj>h q
m
} m∏
i=1

uiλ(dui) 6
(2εcq/ε)

m

p− 1
h1−p−ε.

Lemma 4.13. — Assume that
∫

(0,1)
υpλ(dυ) < ∞ for some p ∈ (1, 2). Then for any

q > 1 there is a constant Cq such that for every m > 1 and every h ∈ (0, 1), we have

(4.19)
∫

(0,q)m
1{∏m

j=1 uj6h q
m
} m∏
i=1

u2
iλ(dui) 6 h

2−p(Cq)
m

m∑
`=1

(2− p)−`

(m− `)!
[
log(1/h)

]m−`
.
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In particular, for any 0 < ε < 2− p, we have

(4.20)
∫

(0,q)m
1{∏m

j=1 uj6h q
m
} m∏
i=1

u2
iλ(dui) 6

(Cq/ε)
m

2− p− ε
h2−p−ε.

For both lemmas, the idea is to compare the integrals with some integrals with
respect to the Lebesgue measure: we postpone to the Appendix the proof of the two
following claims (presented as Propositions C.1 and C.2 respectively).

Claim 1. — Under the assumptions of Lemma 4.12, there exists a constant cq satis-
fying limq→∞ cqq

1−p = 0 such that

(4.21)
∫

(0,q)m
1{∏m

j=1 uj>h q
m
} m∏
i=1

uiλ(dui) 6 (cq)
m

∫
(0,2q)m

1{∏m
j=1 uj>h q

m
} m∏
i=1

u−pi dui.

Claim 2. — Under the assumptions of Lemma 4.13, there exists a constant Cq such
that

(4.22)
∫

(0,q)m
1{∏m

j=1 uj6h q
m
} m∏
i=1

u2
iλ(dui) 6 (Cq)

m

∫
(0,q)m

1{∏m
j=1 uj6h q

m
} m∏
i=1

u1−p
i dui.

Proof of Lemma 4.12. — Thanks to (4.21), we only have to prove that for any h∈(0, 1)

(4.23)
∫

(0,2q)m
1{∏m

j=1 uj>h q
m
} m∏
i=1

u−pi dui 6
h1−p

p− 1

q(1−p)m

(m− 1)!

[
log(2m/h)

]m−1

and then set cq := cq q
1−p (which satisfies limq→∞ cq = 0). First of all, notice that by

a change of variable v = u/2q it is sufficient to prove (4.23) only in the case q = 1/2.
We set, for all h ∈ (0, 1),

pk(h) := (p− 1)hp−1

∫
(0,1)k

1{∏k
j=1 uj>h

} k∏
i=1

u−pi dui,

so to obtain (4.23) with q = 1/2 we need to show that for k > 1

(4.24) pk(h) 6
1

(k − 1)!
(log(1/h))k−1 ∀h ∈ (0, 1)

and apply it to 2−mh instead of h. By a direct calculation, we have p1(h)=1− hp−161

for all h ∈ (0, 1), which gives the result for k = 1. Then we can proceed by induction.
Integrating with respect to the value of u1 and using the change of variable v =

log(u1/h), we obtain

pk+1(h) = hp−1

∫ 1

h

u−p1 (h/u1)
1−p

pk(h/u1) du1 =

∫ log(1/h)

0

pk(e−v) dv.

From this and p1(h) 6 1 we easily obtain (4.24) by induction.
To obtain (4.18) from (4.17), we just use that eεt > 1

(m−1)! (εt)
m−1 for any t > 0

and any m > 1, by a Taylor expansion: applying this to t = log(2m/h), we get the
bound (4.18). �
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Proof of Lemma 4.13. — Similarly to Lemma 4.12, thanks to (4.22) we only have to
prove

(4.25)
∫

(0,q)m
1{∏m

j=1 uj6h q
m
} m∏
i=1

u1−p
i dui 6 h

2−p q(2−p)m
m∑
`=1

(2− p)−`

(m− `)!
[
log(1/h)

]m−`
and then set Cq := q2−p. Again, by a change of variable it is sufficient to prove (4.25)
only in the case q = 1. We set, for all h ∈ (0, 1),

p̃k(h) := hp−2

∫
(0,1)k

1{∏k
j=1 uj6h

} k∏
i=1

u1−p
i dui,

and a direct calculation gives that p̃1(h) = (2−p)−1, which yields the result form = 1.
For the induction step, decomposing according to whether u1 6 h or u1 > h, we get
that

p̃k+1(h) = hp−2

[∫ h

0

u1−p
1 du1

(∫ 1

0

v1−pdv

)k
+

∫ 1

h

u1−p
1 (h/u1)

2−p
p̃k(h/u1)du1

]
=
( 1

2− p

)k+1

+

∫ log(1/h)

0

p̃k(e−v)dv,

where we also used a change of variable v = log(u1/h) for the last identity. From this
we easily obtain by induction that

p̃k(h) 6
k∑
`=1

(2− p)−`

(k − `)!
(log(1/h))k−`,

which is the desired result. Now, to obtain (4.20) from (4.19), we use the inequality
eεt > (εt)m−`/(m− `)! with t = log(1/h) to get that for any 0 < ε < 2− p

m∑
`=1

(2− p)−`

(m− `)!
[
log(1/h)

]m−`
6

m∑
`=1

( ε

2− p

)`
ε−mh−ε 6

ε

2− p− ε
ε−mh−ε.

This concludes the proof of (4.20). �

4.4.3. Proof of Proposition 4.10. — Note that as we have already proved (4.4) and
since Z

ω,[a,q)
β > Ẑ ω,a

β,q , it is sufficient to prove that

lim
q→∞

sup
a∈(0,1]

E
[
Z

ω,[a,q)
β − Ẑ ω,a

β,q

]
= 0.

Decomposing over the cardinality of σ, using Proposition 3.8 as in (4.6) and integrat-
ing over the space variable (recall (4.7)) we obtain

(4.26) E
[
Z

ω,[a,q)
β − Ẑ ω,a

β,q

]
= e−βκa

∑
k>0

βk
∫
Xk×[a,q)k

1B{
q
(t,u)

k∏
i=1

uiλ(dui)dti,

where we recall that Bq has been defined in (4.16). Here, with some abuse of notation,
we identified B{

q and its image by the projection (t,x,u) 7→ (t,u); note that Bq does
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not involve the space variable. To estimate the above integral, we use a union bound
for 1(Bq){

(t,u). When the value of k is fixed we have

1(Bq){
(t,u) 6

k∑
m=1

∑
16i1<···<im6k

1{∏m
`=1 ui`>q

m
∏m
`=1(ti`−ti`−1

)γ}.

With this done, we can perform first the integral with respect to uj and tj for j /∈
{i1, . . . , im}: summing over the number of points ki that can be fitted between two
points i` < i`+1, we obtain after factorization that the r.h.s. in (4.26) is smaller than

e−βκa
∑
m>1

∫
0<t1<···<tm<1

∫
[a,q)m

βm1{∏m
i=1 ui>q

m
∏m
i=1(ti−ti−1)γ

}
×

m∏
i=0

( ∞∑
ki=0

βki
∫
ti<t

(i)
1 <···<t(i)ki <ti+1

∫
[a,q)ki

ki∏
j=1

u
(i)
j λ(du

(i)
j )dt

(i)
j

) m∏
i=1

uiλ(dui)dti,

where we used the convention t0 = 0 and tm+1 = 1. Now we can compute explicitly
each term of the product in the second line above (as in (4.8)). Replacing q by ∞ in
the domain of integration, which yields an upper bound and makes the computation
simpler, we get, recalling that

∫
[a,∞)

uλ(du) = κa + µ,
∞∑
ki=0

βki
∫
ti<t

(i)
1 <···<t(i)ki <ti+1

∫
[a,∞)ki

ki∏
j=1

u
(i)
j λ(du

(i)
j )dt

(i)
j = eβ(κa+µ)(ti+1−ti).

The product of these terms gives a factor eβ(κa+µ) and we therefore get the inequality

(4.27) E
[
Z

ω,[a,q)
β − Ẑ ω,a

β,q

]
6 eβµ

∑
m>1

∫
Xm×[a,q)m

βm1{∏m
i=1 ui>q

m
∏m
i=1(ti−ti−1)γ

} m∏
i=1

uiλ(dui)dti,

The r.h.s. in (4.27) can be bounded above using Lemma 4.12. More specifically we use
(4.18) to bound the integral over ui, setting a to 0 to obtain an upper bound that
does not depend on a. We fix ε small enough so that γ(p + ε − 1) < 1 (recall that
we have γ(p− 1) < 1 by assumption) and by (4.18) we obtain

(4.28)
∫

[a,q)m
1{∏m

i=1 ui>q
m

∏m
i=1(ti−ti−1)γ

} m∏
i=1

uiλ(dui)

6
(cq/ε)

m

p− 1

m∏
i=1

(ti − ti−1)γ(1−p−ε).

We therefore obtain that (4.27) is smaller than

(4.29) eβµ

p− 1

∑
m>1

(
βcq/ε

)m ∫
Xm

m∏
i=1

(ti − ti−1)γ(1−p−ε)dti

=
eβµ

p− 1

∑
m>1

(
βcq/ε

)m Γ(1− γ(p+ ε− 1))m

Γ(m(1− γ(p+ ε− 1)) + 1)
,
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where in the last equality we used that γ(p + ε − 1) < 1. The sum in the r.h.s. of
(4.29) is finite for any value of q > 1, and can be made arbitrarily small by choosing q
large (with ε and γ fixed), since Lemma 4.12 ensures that the constant cq goes to 0

as q →∞. �

4.4.4. Proof of Proposition 4.11. — We have

E
[(

Ẑ ω,a
β,q

)2]
= E

[ ∑
σ1,σ2∈P(ω)

wa,β(σ1)wa,β(σ2)1Bq
(σ1)1Bq

(σ2)

]
.

We use again the notation ς = σ1 ∩ σ2 and ςi = σi r ς. Let us relax the condition
σ1, σ2 ∈ Bq to obtain something which is easier to handle in the computation. For-
mally the divergence of the second moment of the (unrestricted) partition is obtained
when integrating the contribution of the environment at the points in the replica in-
tersection σ1∩σ2, hence we should not be losing too much if we restrict our constraint
to ς. With this in mind, we set

Dq =
{
ς = (ti, xi, ui)

|ς|
i=1 : max

16i6|ς|
ui < q,

|ς|∏
i=1

ui 6 q
|ς|
|ς|∏
i=1

(ti − ti−1)γ
}
.

and observe that

E
[
(Ẑ ω,a

β,q )2
]
6 E

[ ∑
ς1,ς2,ς∈P(ω) disjoints

wa,β(ς1 ∪ ς)wa,β(ς2 ∪ ς)1Dq (ς)

]
.

Using again Proposition 3.8 as in (4.10) and using (4.11) to integrate over all the
variables associated with ξ1 and ξ2 we obtain

(4.30) E
[ ∑
ς1,ς2,ς∈P(ω) disjoints

wa,β(ς1 ∪ ς)wa,β(ς2 ∪ ς)1Dq (ς)

]

=
∑
m>0

(βe2βµ)m
∫
Xm×(Rd)m×[a,∞)m

1Dq (t,x,u)%(t,x)2
m∏
i=1

u2
iλ(dui)dti dxi.

Now integrating over x and using (4.13), we obtain that the r.h.s. above is equal to

(4.31)
∑
m>0

( βe2βµ

2dπd/2

)m
·
∫
Xm×[a,q)m

1{∏m
i=1 ui6q

m
∏m
i=1(ti−ti−1)γ

} m∏
i=1

dti
(ti − ti−1)d/2

u2
iλ(dui).

To estimate the integral over u1, . . . , um, we use (4.20) in Lemma 4.13. We integrate
over (0, q) to get an upper bound which is uniform in a. We fix ε such that d

2 − (2−
p− ε)γ < 1 (recall that d

2 − (2− p)γ < 1 by assumption) and by (4.20) we obtain∫
[a,q)m

1{∏m
i=1 ui6q

m
∏m
i=1(ti−ti−1)γ

} m∏
i=1

u2
iλ(dui) 6

(Cq/ε)
m

2− p− ε

m∏
i=1

(ti − ti−1)γ(2−p−ε).
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Reinjected in (4.31), this yields

(4.32) E
[(

Ẑ ω,a
β,q

)2]
6
∑
m>0

(
2−dπ−d/2βeβµCq/ε

)m
2− p− ε

∫
Xm

m∏
i=1

dti

(ti − ti−1)
d
2−(2−p−ε)γ

.

To conclude we just need to show that the above sum is finite. To check this, we
simply observe that, thanks to the fact that d

2 − γ(2− p− ε) < 1, the integral in t is
equal to

Γ(1− (2− p− ε)γ + d/2)m

Γ(m[1− (2− p− ε)γ + d/2] + 1)
,

and that the corresponding series in m has an infinite radius of convergence. �

Remark 4.14. — For the proof of Propositions 4.10–4.11 in the case of the point-to-
point partition function Z ω,a

β (t, x), we need to slightly change the definition of Bq to
take care of the end point, setting

Bq :=
{
σ ∈P(ω) : ∀σ′ ⊂ σ,

∏|σ′|
j=1 u

′
j < q|σ

′|∏|σ′|+1
j=1 (t′j − t′j−1)γ

}
,

with the convention that t′|σ′|+1 = t. For the proof of Proposition 4.10, there is an
additional term ρt(x) in (4.26), coming from the integration of %(t,x)ρt−tk(x−xk) over
the space variable, but the main difference comes in (4.28) when applying Lemma 4.12.
The computation in (4.29) is different (we have the integral of

∏m+1
i=1 (ti−ti−1)γ(1−p−ε)

over Xm after scaling by t if t 6= 1) but the conclusion is identical. For the proof of
Proposition 4.11, there is an additional term ρt−tm(x−xm)2 in (4.30). We proceed as in
(4.15) when integrating on x1, . . . , xm and this yields only an extra multiplicative term
Ce−‖x‖

2/t(t − tm)−d/2. Then, the integral in (4.32) is different (we have the integral
of
∏m+1
i=1 (ti − ti−1)−

d
2 +γ(p−2+ε) over Xm) but this does not change the conclusion.

4.5. Finiteness of partition functions. — We are going to prove here simultaneously
Proposition 2.5, the first part of Proposition 2.20, (2.18) and Proposition 2.24. Note
that the fact that Z ω,a

β and other partition functions are positive is a direct conse-
quence of the rewriting given in (3.8). It remains to prove that under assumption (2.9)
they are almost surely finite. This is the following statement.

Proposition 4.15. — If (2.9) is satisfied, then for every u0 satisfying (2.25) (with
T = 1) we have for any t ∈ [0, 1], almost surely∫

Rd
Z ω,a
β (t, x)|u0|(dx) <∞.

In particular the cases u0 = δx and u0(dx) = dx respectively give

(4.33) Z ω,a
β (t, x) <∞ and Z ω,a

β <∞.

Remark 4.16. — Proposition 2.5 and (2.18) are direct consequences of (4.33). Propo-
sition 2.24 also follows by observing that by time reversal and translation invariance
we have the following identity in distribution∫

Rd
Z ω,a
β [(0, y), (t, x)]u0(dy)

(d)
=

∫
Rd

Z ω,a
β (t, y − x)u0(dy)

and thus we just need to apply the result to u0 translated by x.
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Proof of Proposition 4.15. — For σ = (ti, xi, ui)
|σ|
i=1 ∈P(ω) (with tk 6 1), we define

H(σ) :=

|σ|∑
i=1

‖xi − xi−1‖2

ti − ti−1
and G(σ) :=

|σ|∑
i=1

log(ui).

The quantity H(σ) and G(σ) corresponds roughly to the cost and gains at the expo-
nential level to visit all the points in σ. We refer to H(σ) as the entropy of the path.
Our statement is an almost direct consequence of the following lemma.

Lemma 4.17. — If (2.9) holds, for any fixed ε > 0, we have almost surely

T (ω) := sup
σ∈P(ω)

{
G(σ)− ε

2
H(σ)

}
<∞.

We postpone the proof of this lemma and first deduce the proposition from it. Using
the representation (3.8) of the partition function (recall that ω(a) denote the set of
points in the environment with jump size larger than a) and applying Lemma 4.17,
we can write for t 6 1

eβκaZ ω,a
β (t, x) =

∑
σ∈P[0,t](ω(a))

β|σ|eG(σ)%(t,x)ρt−tk(x− xk)

6
∑

P[0,t](ω(a))

β|σ|eT + ε
2H(σ)

|σ|∏
i=1

%(t,x)ρt−tk(x− xk)

= eT
∑

σ∈P[0,t](ω(a))

( β

(1− ε)d/2
)|σ|

ρt−tk(x− xk)

|σ|∏
i=1

e−(1−ε)‖xi−xi−1‖2/2(ti−ti−1)(
2π(ti − ti−1)/(1− ε)

)d/2 ,
so that setting ϑ = ϑ(ε) := (1− ε)−1 and assuming that ε < 1/2

e−T Z ω,a
β (t, x) 6 e−βκa

∑
σ∈P[0,t](ω(a))

(2d/2β)|σ|%(ϑt,x)ϑd/2ρϑ(t−tk)(x− xk).

By Mecke’s formula (Proposition 3.8) we conclude that

(4.34) E
[
e−T (ω)

∫
Rd

Z ω,a
β (t, x)u0(dx)

]
6 2d/2eβ[2d/2λ([a,∞))−κa]

∫
Rd
ρϑt(x)u0(dx).

Using assumption (2.25) on u0 and fixing ε sufficiently small (i.e., ϑ close enough to 1)
so that ρϑt(x) is integrable w.r.t. |u0| (recall t 6 T = 1), we get that (4.34) is finite.
This proves that

∫
Rd Z ω,a

β (t, x)u0(dx) <∞ almost surely thanks to Lemma 4.17. �

Proof of Lemma 4.17. — First of all, notice that if σ = (ti, xi, ui)
|σ|
i=1 has a point with

ui < 1, then by removing this point from σ we obtain a set σ′ with (strictly) smaller
entropy H(σ′) < H(σ) and (strictly) higher energy G(σ′) > G(σ). In the supremum,
we therefore can restrict ourselves to points (t, x, υ) ∈ ω with υ > 1. Let us now
separate points according to the size of their jump. For each k > 1 we define

ωk :=
{

(t, x, υ) ∈ ω : t ∈ [0, 1] and log υ ∈ [ek−1, ek)
}
,
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and we let π(ωk) be its projection on the first two coordinates. Note that the π(ωk)’s
are independent Poisson processes on [0, 1]×Rd with respective intensity λkdt⊗ dx,
where

λk := λ
([

exp(ek−1), exp(ek)
))
.

One can then easily see that our assumption (2.9) is equivalent to having

(4.35)
∑
k>1

λke
dk/2 <∞.

Our proof is based on the following statement, proved below.

Lemma 4.18. — Fix θ ∈ (1, 1 + 1/d) and let K > 0 be arbitrary. Let Ak,n be the event
that there exists a path of n points in ωk whose entropy is smaller than Knθek, i.e.,

Ak,n =
⋃

σ∈P(ωk), |σ|=n

{
H(σ) 6 Knθek

}
.

Then, assuming (2.9), we have
∑
k,n P(Ak,n) <∞.

Given σ, we let nk(σ) denote the number of points that the path displays in ωk.
We have

G(σ) 6
∞∑
k=1

eknk(σ).

We let k0(ω), n0(ω) be such that A{
k,n holds for every k > k0 (for every n), and for

every n > n0 (for every k). For every k, we have

nk(σ) 6 (K−1H(σ)e−k)1/θ + n01{k6k0},

where we have used that H(σ) > H(σk), with σk ∈ P(ωk) the set obtained by
removing all points in σ which are not in ωk. In particular, we have nk(σ) = 0 for
k > 1 + max(k0, log(K−1H(σ))). This yields

G(σ) 6
k0∑
k=1

ekn0 + (K−1H(σ))1/θ

blog(K−1H(σ))c∑
k=0

ek(θ−1)/θ

6 C(ω) + (1− e(1−θ)/θ)−1K−1H(σ).

Since K is arbitrary, fixing K > (2/ε)(1 − e(1−θ)/θ)−1 yields that G(σ) 6 C(ω) +

(ε/2)H(σ) almost surely, which concludes the proof. �

Proof of Lemma 4.18. — Let us start with the case n = 1. Using that H(σ) > ‖x‖2 if
σ = (t, x, υ) is reduced to one point (recall t 6 1), we get that

Ak,1 ⊂
⋃

(t,x,υ)∈ωk
{‖x‖2 6 Kek};

in other words, if Ak,1 is satisfied then there is a point in ωk within a distance
√
Kek/2

from the origin. The probability of Ak,1 is therefore smaller than a constant times
Kd/2ekd/2λk and this is summable over k thanks to (4.35). The case n = 2 can be
treated similarly.
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When n > 3, let σ = (ti, xi, ui)
n
i=1 be a path of points in ωk satisfying our event,

i.e., H(σ) 6 Knθek. We make the two following claims.

Claim 1. — The path cannot venture too far:

(4.36) max
i∈[[1,n]]

‖xi‖ 6
√
Knθ/2ek/2.

Claim 2. — There are three consecutive points in our path in a relatively small cylin-
der: there exists i ∈ [[1, n− 2]] satisfying

(4.37) ti+2 − ti 6
4

n− 2
and ‖xi+1 − xi‖2 + ‖xi+2 − xi−1‖2 6

16Knθek

(n− 2)2
.

Before proving the two claims (4.36)–(4.37), let us use them to conclude the proof
of Lemma 4.18. We can cover [0, 1]× [−

√
Knθ/2ek/2,

√
Knθ/2ek/2]d with a collection

of CKn1+d overlapping cylinders (of the type [t, t+ 8
n−2 ]× [x, x+ 8

n−2

√
Knθ/2ek/2]d

for a collections of t’s distant by 4
n−2 and of x’s distant by 4

n−2

√
Knθ/2ek/2). Thanks

to the above claims, if Ak,n is satisfied then there exists some path σ ∈ P(ω) of
length n satisfying (4.36)–(4.37), meaning that at least one of the constructed cylin-
ders contains three points in π(ωk). By a union bound, since each cylinder is of area
bounded by C ′Kn(d/2)θ−(d+1)ekd/2, we therefore get that

P(Ak,n) 6 CKn
1+d ×

(
C ′Kn

(d/2)θ−(d+1)ekd/2λk

)3

6 C ′′K
(
λke

kd/2
)3
n(3d/2)θ−2(d+1).

We conclude simply by observing that this upper bound is summable over k and n,
thanks to (4.35) and since (3d/2)θ − 2(d + 1) < − 1

2 (d + 1) thanks to our choice
θ < 1 + 1/d.

The first claim (4.36) just follows by observing that the entropy of the path is larger
than ‖xi‖2/ti > ‖xi‖2 for every i ∈ [[1, n]]. For the second claim (4.37), we observe
that we have

∑n−2
i=1 (ti+2 − ti) 6 2, which means that setting

I :=
{
i ∈ [[1, n− 2]], ti+2 − ti 6 4/(n− 2)

}
,

we have |I| > n−2
2 . We also have, by definition of I,∑

i∈I
‖xi+1−xi‖2+‖xi+2−xi+1‖2 6

4

n− 2

∑
i∈I

‖xi+1 − xi‖2

ti+1 − ti
+
‖xi+2 − xi+1‖2

ti+2 − ti+1
6

8H(σ)

n− 2
.

Then (4.37) is simply a consequence of the fact that the smallest element of the sum
is smaller than the average and that H(σ) 6 Knθek. �

4.6. Proof of Lemma 4.3. — We now adapt Proposition 4.1 to prove the conver-
gence of Z ω,a

β (f) and Z ω,a
β without the condition

∫
[1,∞)

υλ(dυ) < ∞, i.e., we prove
Lemma 4.3. Recall the definition (2.26) and set for f ∈ B

(4.38) Z
ω,[a,b)
β (f) := 1 +

∞∑
k=1

βk
∫
Xk×(Rd)k

%(t,x, f)

k∏
i=1

ξ[a,b)
ω (dti,dxi).
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Note that Proposition 4.1 (or rather Corollary 4.2), applied to the measure λb de-
fined by

(4.39) λb(A) = λ(A ∩ [0, b))

automatically yields the following convergence of Z
ω,[a,b)
β (f).

Corollary 4.19. — Under the assumption (2.10), for any f ∈ B and any fixed b > 1

we have that (Z ω,[a,b)(f))a∈(0,1] is a uniformly integrable time-reversed martingale.
Hence the following convergence therefore holds almost surely and in L1:

lim
a→0

Z ω,[a,b)(f) =: Z
ω,[0,b)
β (f).

Note also that we have E[Z ω,[a,b)(f)] = eβµbQ(f) for all a ∈ (0, 1], with µb :=∫
[1,b)

υλ(dυ).

We now prove the convergence of Z ω,a
β (f) for f ∈ Bb. Repeating the argument

from the proof of Proposition 3.1, there exists b0(ω, f) such that for b > b0, we have
Z ω,a
β (f) = Z

ω,[a,b)
β (f) for every a ∈ (0, 1]. Thus we have, from Corollary 4.19,

lim
a→0

Z ω,a
β (f) = Z

ω,[0,b0)
β (f).

It only remains to prove that lima→0 Z ω,a
β (f) exists and is finite for f ∈ B when

(2.9) also holds. We focus on the case f ≡ 1 for simplicity but the argument adapts
immediately to the case of non-negative bounded f , so there is no loss of generality.
The convergence of Z ω,a

β is a consequence of the following statement, valid for any
ε > 0,

(4.40) lim
b→∞

P
(

sup
a∈(0,1]

(
Z ω,a
β −Z

ω,[a,b)
β

)
> ε
)

= 0.

Indeed, by monotonicity in b (cf. Lemma 3.3) we have for every b ∈ (1,∞),

lim inf
a→0

Z ω,a
β > Z

ω,[0,b)
β .

Thus to ensure that Z ω,a
β converges to limb→∞Z

ω,[0,b)
β and that the latter is finite,

the only thing that needs be proved is that for every ε > 0, there almost surely exists
b0(ω, ε) such that

(4.41) lim sup
a→0

Z ω,a
β 6 Z

ω,[0,b0)
β + ε.

Since supa∈(0,1](Z
ω,a
β −Z

ω,[a,b)
β ) is non-increasing in b, (4.40) implies that

(4.42) lim
b→∞

sup
a∈(0,1]

(
Z ω,a
β −Z

ω,[a,b)
β

)
= 0 P-a.s.,

and this readily implies that (4.41) holds for some large b0.
To prove (4.40), we observe that the process

{
ε∧ (Z

ω,[a,b′)
β −Z

ω,[a,b)
β ) : a ∈ (0, 1]

}
is a time-reversed positive (for b′ > b > 1) super-martingale, thanks to Lemma 3.5.
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Using Doob’s maximal inequality we thus obtain that for any fixed b′ > b > 1

P
(

sup
a∈(0,1]

(
Z

ω,[a,b′)
β −Z

ω,[a,b)
β

)
> ε
)
6

1

ε
E
[(

Z
ω,[1,b′)
β −Z

ω,[1,b)
β

)
∧ ε
]
.

Sending b′ to infinity on both sides and noting that Z ω,a
β = limb′→∞Z

ω,[a,b′)
β by

monotone convergence (see Lemma 3.3), we obtain

(4.43) P
(

sup
a∈(0,1]

(
Z ω,a
β −Z

ω,[a,b)
β

)
> ε
)
6

1

ε
E
[(

Z ω,1
β −Z

ω,[1,b)
β

)
∧ ε
]
.

The right-hand side goes to zero by dominated convergence, thanks to Proposition 2.5,
using again that Z ω,1

β = limb→∞Z
ω,[1,b)
β . �

4.7. Almost sure positivity of Z ω
β (f). — In this section, we prove Proposition 4.4.

Let f ∈ Bb be non-negative and such that Q(f) > 0. Recall the definitions (2.26)
and (4.38) of the truncated noise and of the corresponding partition function. We are
going to show first that the positivity of Z

ω,[0,b)
β (f) does not depend on the value

of b, for any 0 < b < b′ 6 1.

(4.44) P
({

Z
ω,[0,b)
β (f) > 0

}
4
{
Z

ω,[0,b′)
β (f) > 0

})
= 0.

where 4 stands for the symmetric difference (in other words the events are equal in
the L1 sense and in particular have the same probability). Applying Lemma 3.3 to
the measure λb (recall (4.39)) we obtain that

Z
ω,[a,b)
β (f) = e−β(κa−κb)

∑
σ∈P(ω)

β|σ|%(t,x, f)

|σ|∏
i=1

ui1{ui∈[a,b)}.

This last expression implies that for every a < b′ 6 b we have almost surely

(4.45) Z ω,a
β (f) > e−βκbZ ω,[a,b)

β (f) > e−βκb′Z ω,[a,b′)
β (f),

and taking the limit when a tends to zero we obtain

Z ω
β (f) > e−βκbZ ω,[0,b)

β (f) > e−βκb′Z ω,[0,b′)
β (f).

This yields
P
({

Z
ω,[0,b′)
β (f) > 0

}
r
{
Z

ω,[0,b)
β (f) > 0

})
= 0.

On the other hand, the same argument as in Lemma 3.5 yields that (Z
ω,[a,b)
β (f))b∈(a,1]

is a martingale (in b) for the filtration Gb defined by

Gb := σ
(
{(t, x, υ) ∈ ω : υ < b}

)
.

Taking a to zero in the conditional expectation (using uniform integrability cf. Corol-
lary 4.19) we obtain that for 1 > b′ > b

E
[
Z

ω,[0,b)
β (f)

∣∣Gb′] = Z
ω,[0,b′)
β (f),

which yields the second inclusion of (4.44)

P
({

Z
ω,[0,b)
β (f) > 0

}
r
{
Z

ω,[0,b′)
β (f) > 0

})
= 0.
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Now let us fix a decreasing sequence bn ∈ (0, 1] with bn ↓ 0 and consider the event
A(f) :=

⋂
m>0

⋃
n>m

{
Z

ω,[0,bn)
β (f) > 0

}
. An immediate consequence of (4.44) is that

P
(
Z

ω,[0,1)
β (f) > 0

)
= P[A(f)].

Now A(f) is measurable with respect to the σ-algebra G0 :=
⋂
n>0 Gbn . There-

fore, by Kolmogorov’s 0−1 law, it has probability either 0 or 1; indeed, for any
n > 1, G0 is independent of Fbn = σ({(t, x, υ) ∈ ω : υ > bn}): since A ∈ G0 and
A ∈ σ(

⋃
n>0 Fbn), we get that A is independent of itself. From Corollary 4.19 the

martingale (Z
ω,[a,1)
β )a∈(0,1] is uniformly integrable and thus

E
[
Z

ω,[0,1)
β (f)

]
= Q(f) > 0.

Combining these two facts we obtain that necessarily P
(
Z

ω,[0,1)
β (f) > 0

)
= 1, which

concludes the proof using (4.45). �

Remark 4.20. — The proofs in Section 4.6–4.7 apply verbatim to the point-to-point
partition function. They give that for any (t, x) ∈ R∗+×Rd we have the a.s. convergence
lima→∞Z ω,a

β (t, x) = Z ω
β (t, x), with Z ω

β (t, x) positive and finite almost surely.

4.8. Proof of Proposition 4.5. — We now show that (Qω,a
β )a∈(0,1] is tight. We need

to find a sequence of compact sets KN such that almost surely

lim
N→∞

sup
a∈(0,1]

Qω,a
β (K {

N ) = 0.

Since Z ω,a
β converges to a positive limit, this is of course equivalent to proving

(4.46) lim
N→∞

sup
a∈(0,1]

Z ω,a
β (1K {

N
) = 0.

In the case µ :=
∫

[1,∞)
υλ(dυ) < ∞, since E[Z ω,a

β (1A)] = eβµQ(A), using Doob’s
maximal inequality we have

P
(

sup
a∈(0,1]

Z ω,a
β (1K {

N
) > ε

)
6

1

ε
eβµQ

[
K {
N

]
.

It is then easy to show that (4.46) holds for an arbitrary increasing sequence of
compacts satisfying limN→∞Q[KN ] = 1 (using the monotonicity of f 7→ Z ω,a

β (f),
cf. Lemma 3.3). For instance one can take

KN :=
{
ϕ ∈ C0([0, 1]) : |ϕ(t)− ϕ(s)| 6 N |t− s|1/4 ∀ s, t ∈ [0, 1]

}
.

In the case
∫

[1,∞)
υλ(dυ) = ∞, we proceed analogously with the truncated partition

function Z
ω,[a,b)
β . We obtain that for any b > 0,

lim
N→∞

sup
a∈(0,1]

Z
ω,[a,b)
β (1K {

N
) = 0.

We then conclude using (4.42), to get that a.s.

lim
b→∞

sup
a∈(0,1]

sup
N∈N

(
Z ω,a
β (1K {

N
)−Z

ω,[a,b)
β (1K {

N
)
)
6 lim
b→∞

sup
a∈(0,1]

(
Z ω,a
β −Z

ω,[a,b)
β

)
= 0.
�

J.É.P. — M., 2022, tome 9



260 Q. Berger & H. Lacoin

5. Degeneracy of the partition function: Propositions 2.6 and 2.12

5.1. Proof of Proposition 2.6. — Let us assume that
∫

[1,∞)
(log υ)d/2λ(dυ) =∞ and

show that the partition function Z ω,a
β is a.s. infinite. We use the representation (3.8).

Keeping only paths σ with cardinality one in the sum and keeping only those with
t ∈ [1/2, 1] we have

Z ω,a
β > e−βκa

∑
(t,x,υ)∈ω(a)

ρt(x)υ >
e−βκa

πd/2

∑
(t,x,υ)∈ω(a), t>1/2

υ e−‖x‖
2

.

Hence to conclude it is sufficient to show that almost surely

sup
(t,x,υ)∈ω:t∈[1/2,1]

{
log υ − ‖x‖2

}
=∞.

For this it is sufficient to check that almost surely, the event Aj defined by

Aj :=
{
∃ (t, x, υ) ∈ ω : t ∈ [ 1

2 , 1], ‖x‖∞ ∈ [2j−1, 2j), log υ > 4j+1
}
.

is satisfied for infinitely many j. By Borel–Cantelli, since the Aj are by construc-
tion independent it suffices to show that

∑∞
j=1 P(Aj) = ∞. The number of points

(t, x, υ) ∈ ω such that t ∈ [ 1
2 , 1], ‖x‖∞ ∈ [2j−1, 2j) and log υ > 4j+1 is a Poisson

random variable with mean

λj = 1
2 2dj(1− 2−d)λ

(
[exp(4j+1),∞)

)
.

Hence we have P(Aj) = 1 − e−λj and we simply need to show that
∑∞
j=1 λj = ∞.

But this is a direct consequence of our assumption
∫

[1,∞)
(log υ)d/2λ(dυ) =∞ since∫

[1.∞)

(log υ)d/2λ(dυ) 6
∞∑
j=1

∫ exp(4j+2)

exp(4j+1)

(4j+2)d/2λ(dυ) 6
2

1− 2−d
4d
∞∑
j=1

λj . �

5.2. Proof of Proposition 2.12. — Since the use of the size-biased measure is at the
heart of our proof we are going first to assume that µ :=

∫
[1,∞)

υλ(υ)dυ <∞, in order
to be able to use Lemma 3.7. At the end of the proof we explain how to deal with the
case µ =∞.

Note that Z ω,a
β converges almost surely, as a consequence of the martingale prop-

erty: we only need to prove that it converges to zero in probability. Since Z
ω,a

β :=

e−βµZ ω,a
β is a positive variable with mean 1 it is sufficient to identify a sequence of

events Ja such that

lim
a→0

E
[
Z

ω,a

β 1Ja
]

= 0 and lim
a→0

P(Ja) = 1,

as it implies that Z
ω,a

β 1Ja and thus Z ω,a
β converge to zero in probability. This is

equivalent to proving that the total variation distance between the two measures P
and P̃aβ goes to 1. That is, according to Lemma 3.7, we need to prove that

(5.1) lim
a→0

∥∥P (ω ∈ ·)−Q⊗ E⊗ E′a (ω̂ ∈ ·)
∥∥
TV

= 1.
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Our proof’s strategy relies on finding a statistic that helps to distinguish between ω
and ω̂ for most realizations of the Brownian trajectory. More precisely, we use the
second moment method. We are going to define a functional Ya(ω) which satisfies

(5.2) lim
a→0

(
Q⊗ E⊗ E′a [Ya(ω̂)]− E [Ya(ω)]

)2
VarP(Ya(ω)) + VarQ⊗E⊗E′a(Ya(ω))

=∞.

The above implies that asymptotically Ya(ω̂) and Ya(ω) concentrate around different
values and thus that (5.1) holds (see [42, Prop. 7.12] for a quantitative statement and
its proof). We treat separately the cases d > 3, d = 1 and d = 2, in that order.

5.2.1. The case d > 3. — We assume that
∫

(0,1)
υ1+2/dλ(dυ) = +∞. In order to find

a statistic that allows us to distinguish between P and P̃aβ , the idea here is to find a
region of R×Rd×R+ where P̃aβ displays significantly more points than P. We consider
a sequence Ra going (slowly) to infinity (we set its value later on) and we set

Ya(ω) := #
{

(t, x, u) ∈ ω : ‖x‖∞ 6 Ra
√
t, u >

(
a ∨ td/2

)}
.

Under P, Ya is a Poisson variable with mean given by

E [Ya(ω)] := (2Ra)d
∫ 1

0

td/2λ
(
[a ∨ td/2,∞)

)
dt.

Note that our assumption on λ readily implies that
∫ 1

0
td/2λ([a∨td/2,∞))dt and hence

E [Ya(ω)] go to infinity as a ↓ 0. On the other hand, conditionally on (Bt)t∈[0,1], under
P⊗ P′a, we have that Ya(ω̂) is a Poisson random variable with mean

(5.3) E⊗ E′a [Ya(ω̂)] = (2Ra)d
∫ 1

0

td/2λ
(
[a ∨ td/2,∞)

)
dt+ βXa,

where we have set

Xa :=

∫ 1

0

1{|Bt|6Ra
√
t}

∫
[a∨td/2,∞)

υλ(dυ)dt.

Before averaging with respect to the Brownian motion, since Ra tends to infin-
ity, notice that we can almost replace 1{|Bt|6Ra

√
t} by 1, so Xa is close to ma :=∫ 1

0

∫
[a∨td/2,∞)

υλ(dυ)dt. With this in mind (and the fact that the variance of a Pois-
son variable is equal to its expectation), the important part that has to be checked
for (5.2) to hold is that

(5.4) lim
a→0

m2
a

(Ra)d
∫ 1

0
td/2λ([a ∨ td/2,∞))dt

=∞.

Since

ma =

∫ 1

0

∫
[a∨td/2,∞)

υλ(dυ)dt >
∫ 1

0

td/2λ([a ∨ td/2,∞)) dt

and ∫ 1

0

td/2λ([td/2,∞)) dt = +∞
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by assumption, the condition (5.4) is satisfied as long as Ra diverges slowly enough.
We can choose for instance

Ra =

(∫ 1

0

td/2λ([a ∨ td/2,∞))dt

)1/2d

.

Now that all the notation have been set, let us complete the proof of (5.2). Setting
qa := Q (|B1| 6 Ra), we have by that Brownian scaling that

Q(Xa) = qa

∫ 1

0

∫
[a∨td/2,∞)

υλ(dυ)dt = qama,

VarQ (Xa) = Q(X 2
a )−Q(Xa)2 6 (1− q2

a)m2
a.

(5.5)

As a consequence, recalling (5.3), we have that

Q⊗ E⊗ E′a [Ya(ω̂)]− E [Ya(ω)] = βqama.

We also have

VarQ⊗P⊗P′a [Ya(ω̂)] = Q
(
VarP⊗P′a(Ya(ω̂)

)
+ β2VarQ (Xa)

6 (2Ra)d
∫ 1

0

td/2λ([a ∨ td/2,∞))dt+ βqama + β2(1− q2
a)m2

a.

Now we can conclude that (5.2) holds, simply by using (5.4) and the fact that qa
tends to 1 as a ↓ 0 (using also that ma = o(m2

a) since ma goes to ∞). �

5.2.2. The case d = 1. — We assume that
∫

(0,1)
υ2λ(dυ) =∞. In this case we set

Ya(ω) :=
∑

(t,x,υ)∈ω

υ1{υ∈[a,1), t∈[0,1], ‖x‖∞6Ra},

where again Ra is a sequence going to infinity sufficiently slowly (it is chosen below).
Then, we have

E[Ya(ω)] = 2Ra

∫
[a,1)

υλ(dυ), Var(Ya(ω)) = 2Ra

∫
[a,1)

υ2λ(dυ).

Additionally, setting this time qa :=
∫ 1

0
Q (|Bt| 6 Ra) dt we have

Q⊗ E⊗ E′a
[
Ya(ω̂)

]
= 2Ra

∫
[a,1)

υλ(dυ) + βqa

∫
[a,1)

υ2λ(dυ),

and using a variant of the argument used in (5.5)
VarQ⊗P⊗P′a

[
Ya(ω̂)

]
6 2Ra

∫
[a,1)

υ2λ(dυ) + βqa

∫
[a,1)

υ3λ(dυ) + β2(1− q2
a)
(∫

[a,1)

υ3λ(dυ)
)2

6 (2Ra + βqa)

∫
[a,1)

υ2λ(dυ) + β2(1− q2
a)
(∫

[a,1)

υ2λ(dυ)
)2

,

where we simply used that υ 6 1 for the second inequality. Now, since qa goes to 1

as a ↓ 0, to conclude that (5.2) holds it is sufficient to have Ra = o
(∫

[a,1)
υ2λ(dυ)

)
which can be obtained by setting Ra = (

∫
[a,1)

υ2λ(dυ))1/2. �
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5.2.3. The case d = 2. — We assume that
∫

(0,1)
υ2| log υ|λ(dυ) = ∞. In this case we

define

Ya(ω) :=
∑

(t,x,υ)∈ω

υ

t ∨ υ
1{

υ∈[a,1), t∈[0,1], ‖x‖∞6Ra
√
t
},

where Ra goes to infinity slowly enough (it is chosen below). In that case, we have

E[Ya(ω)] = (2Ra)2

∫
[a,1)

∫ 1

0

υt

t ∨ υ
dt λ(dυ)

Var(Ya(ω)) = (2Ra)2

∫
[a,1)

∫ 1

0

υ2t

(t ∨ υ)2
dt λ(dυ).

Now with qa := Q (|B1| 6 Ra) we have,

Q⊗ E⊗ E′a[Ya(ω̂)] == (2Ra)2

∫
[a,1)

∫ 1

0

υt

t ∨ υ
dt λ(dυ) + qaβ

∫
[a,1)

∫ 1

0

υ2

t ∨ υ
dt λ(dυ).

Using again a variant of (5.5) to bound the variance from above we obtain

VarQ⊗P⊗P′a
[
Ya(ω̂)

]
6 (2Ra)2

∫
[a,1)

∫ 1

0

υ2t

(t ∨ υ)2
dt λ(dυ)

+ qaβ

∫
[a,1)

∫ 1

0

υ3

(t ∨ υ)2
dt λ(dυ) + β2(1− qa)2

(∫
[a,1)

∫ 1

0

υ2

t ∨ υ
dt λ(dυ)

)2

.

To conclude we need to check that (5.2) holds. It is not difficult to show that the
second and third term appearing in the variance of Ya(ω̂) can be neglected (recall
that qa goes to 1) and hence to conclude one only needs to ensure that

lim
a→0

(∫
[a,1)

∫ 1

0
υ2

t∨υ dt λ(dυ)
)2

(2Ra)2
∫

[a,1)

∫ 1

0
υ2t

(t∨υ)2 dt λ(dυ)
=∞.

Now this can be done by setting Ra = (
∫

[a,1)
υ2| log υ|dυ)1/4 since both integrals in

the numerator and the denominator are comparable to
∫

[a,1)
υ2| log υ|dυ. �

5.2.4. Conclusion of the proof of Proposition 2.12. — When
∫

[1,∞)
υλ(υ)dυ < ∞,

we have shown that if (2.14) is not satisfied, then lima→0 Z ω,a
β = 0 almost surely.

If f ∈ B, simply using that |Z ω,a
β (f)| 6 ‖f‖∞Z ω,a

β gives us lima→0 Z ω,a
β (f) = 0.

Let us now turn to the case
∫

[1,∞)
υλ(υ)dυ = ∞,. For f ∈ Bb we can replace

the noise ξ(a)
ω by a truncated one ξ[a,b)

ω (recall (2.26)), like in the proof of Proposi-
tion 3.1, using that f has a bounded support. We therefore conclude that we also
have lima→0 Z ω,a

β (f) = 0.
It remains to show that if (2.9) holds, then we also have lima→0 Z ω,a

β = 0 a.s.
We set

fn(B) := 1{maxt∈[0,1] |Bt|6n} and fn = 1− fn.
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We have for any n lima→0 Z ω,a
β (fn) = 0 a.s. and we can thus conclude if we prove

that

(5.6) lim
n→∞

sup
a∈(0,1]

Z ω,a
β (fn) = 0

Using Doob’s maximal inequality for the super-martingale (Z
ω,[a,b)
β (fn) ∧ ε)a∈(0,1],

we get

P
(

sup
a∈(0,1]

Z
ω,[a,b)
β (fn) > ε

)
6

1

ε
E
[
Z

ω,[1,b)
β (fn) ∧ ε

]
.

Taking b to infinity on both sides we get

P( sup
a∈(0,1]

Z ω,a
β (fn) > ε) 6

1

ε
E[Z ω,1

β (fn) ∧ ε],

which proves (5.6) by dominated convergence, thanks to Proposition 2.5. �

6. Properties of the continuum directed polymer in Lévy noise

In this section, we prove various properties of the measure Qω
β constructed in

Theorem 2.8. We always suppose that Assumptions (2.9)–(2.10) are satisfied.

6.1. Proof of Proposition 2.16. — The proof is based on the following technical
result.

Lemma 6.1. — For any fixed f ∈ B we have almost surely

(6.1) Qω
T,β(f) = lim

a→0
Qω,a
T,β(f).

Let us briefly comment on the result above before we present its proof. Lemma 4.3
and Proposition 4.4 ensure that Qω,a

T,β(f) converges a.s. as a quotient: for any f ∈ B,
we have almost surely

(6.2) lim
a→0

Qω,a
T,β(f) =

Z ω
T,β(f)

Z ω
T,β

.

What requires a proof is that for a fixed f ∈ B we almost surely have

(6.3) Z ω
T,β(f) = Z ω

T,βQ
ω
T,β(f) =: ZωT,β(f).

This is a non trivial statement since the two terms correspond to different definitions:
Qω
T,β(f) is the expectation of f with respect to the weak limit of Qω,a

T,β . The definition
of weak convergence only implies that (6.3) holds when f ∈ C .

Note also here that the position of quantifiers is important. The convergence (6.1)
holds with probability one, simultaneously for every f ∈ C , but not necessarily simul-
taneously for all bounded measurable functions. The latter statement would corre-
spond to convergence in total variation and does not hold when

∫
(0,1)

vλ(dv) = ∞
(see Remark 2.19).
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Proof. — To prove (6.1), we only need to verify that for any fixed measurable bounded
set A, we almost surely have

(6.4) lim
a→0

Qω,a
β (A) = Qω

β (A).

Indeed, (6.4) implies that (6.1) is satisfied for non-negative simple functions with
bounded support. Then given a non-negative f ∈ B, consider a non-negative sequence
of simple functions with bounded support (fn)n>1 which is such that fn ↑ f . Using
monotone convergence, we have for every m > 1

Z ω
T,β(f)

Z ω
T,β

= lim
a→0

Qω,a
β (f) = lim

a→0
lim
n→∞

Qω,a
β (fn) > lim

a→0
Qω,a
β (fm) = Qω

β (fm).

Letting m → ∞ and using monotone convergence again, we get Z ω
T,β(f) >

Z ω
T,βQ

ω
β (f). Since we also have (for the same reason) Z ω

T,β(g) > Z ω
T,βQ

ω
β (g) for

g = (‖f‖∞ − f), we obtain the equality (6.1).
Let us now prove (6.4). Since Q is a regular measure, one can find an increasing

sequence of closed set (A
(1)
n )n>1 and a decreasing sequence of bounded open sets

(A
(2)
n )n>1 such that

(6.5) ∀n > 1, A(1)
n ⊂ A ⊂ A(2)

n , and lim
n→∞

Q(A(2)
n rA(1)

n ) = 0.

The inclusions implies that

lim
a→0

Qω,a
β (A(1)

n ) 6 lim
a→0

Qω,a
β (A) 6 lim

a→0
Qω,a
β (A(2)

n ).

Now, by the Portmanteau theorem, we have for every n > 1

lim
a→0

Qω,a
β (A(1)

n ) 6 Qω
β (A(1)

n ) 6 Qω
β (A) 6 Qω

β (A(2)
n ) 6 lim

a→0
Qω,a
β (A(2)

n ).

Hence to conclude that lima→0 Q
ω,a
β (A) = Qω

β (A), it is sufficient prove that

(6.6) lim
n→∞

lim
a→0

Qω,a
β (A(2)

n rA(1)
n ) = (Z ω

β )−1 lim
n→∞

Z ω
β (1

A
(2)
n rA(1)

n
) = 0,

where the first equality is just a consequence of the definitions (see (6.2)). If we assume
that µ :=

∫
[1,∞)

υλ(dυ) < ∞, then using successively Fatou’s lemma, Corollary 4.2
and (6.5), we obtain that

E
[

lim
n→∞

Z ω
β

(
1
A

(2)
n rA(1)

n

)]
6 lim
n→∞

E
[
Z ω
β

(
1
A

(2)
n rA(1)

n

)]
= eβµ lim

n→∞
Q(A(2)

n rA(1)
n ) = 0,

proving (6.6). Now if
∫

[1,∞)
υλ(dυ) =∞, the previous argument yields that for any b,

lim
n→∞

Z
ω,[0,b)
β

(
1
A

(2)
n rA(1)

n

)
= 0.

Since A(2)
n r A

(1)
n ⊂ A

(2)
1 for all n with A(2)

1 bounded, we have that for b sufficiently
large,

Z ω
β

(
1
A

(2)
n rA(1)

n

)
= Z

ω,[0,b)
β

(
1
A

(2)
n rA(1)

n

)
for every n. This allows to conclude that Z ω

β (1
A

(2)
n rA(1)

n
) goes to 0 also in that case. �

J.É.P. — M., 2022, tome 9



266 Q. Berger & H. Lacoin

Proof of Proposition 2.16. — Given A such that Q(A) = 0, we have a.s. Qω,a
β (A)=0,

for any a ∈ (0, 1]. If µ < ∞, this follows from (3.3). If µ = ∞, one has a.s.
Z

ω,[a,b)
β (1A)=0, for any b>1: by monotonicity Z ω,a

β (1A)=limb→∞Z
ω,[a,b)
β (1A)=0.

Thus Lemma 6.1 applied to 1A implies that Qω
β (A) = 0 for almost every ω, giving

that P oQω
β (A) = 0. �

6.2. Proof of Proposition 2.18. — Let us start with item (i), Q(Aempty(ω)) = 1,
which is the easiest statement. For any t > 0 and x ∈ Rd we have Q(Bt = x) = 0,
hence,

Q(A {
empty) 6

∑
(t,x,υ)∈ω

Q(Bt = x) = 0.

Now, to prove item (ii), we notice that when κ0 :=
∫

(0,1)
υλ(dυ) <∞ then almost

surely the Qω
β -probability of an event A is given by

(6.7) Qω
β (A) =

1

Z ω
β

∑
σ∈P(ω)

w0,β(σ,1A),

where w0,β(σ,1A) is defined as in (3.6) with a = 0. Note that we have w0,β(σ, f) =

lima→0 wa,β(σ, f) provided that κ0 < +∞ (otherwise lima→0 wa,β(σ, f) = 0). Notice
that the sum in the r.h.s. of (6.7) is finite since, by monotone convergence (note that
eβκawa,β(σ,1A) is non-increasing in a),

eβκ0

∑
σ∈P(ω)

w0,β(σ,1A) = lim
a→0

eβκa
∑

σ∈P(ω)

wa,β(σ,1A) = lim
a→0

eβκaZ ω,a
β (1A)

= eβκ0Z ω
β (1A),

the last term being finite thanks to Lemma 4.3. We can then conclude that (6.7) holds
using Lemma 6.1. In particular, from (6.7) we have

Qω
β (Aempty) =

e−βκ0

Z ω
β

∈ (0, 1).

For A∞ the same argument as in item (i) shows that w0,β(σ,1A∞) = 0, since A∞
requires that the trajectory visits at least one point outside of σ (recall that σ is
finite), and hence Qω

β (A∞) = 0.
Let us now turn to the more delicate item (iii). Our idea is to find a sequence An

of sets in C0([0, 1]) which are such that

(6.8) lim
n→∞

Qω
β (A{

n) = 0 a.s. and lim supAn :=
⋂
n>0

⋃
m>n

Am ⊂ Adense.

We will then get that almost surely

Qω
β (Adense) > lim

n→∞
Qω
β

( ⋃
m>n

An

)
= 1.

By (6.1) the first requirement in (6.8) is equivalent to limn→∞ lima→0 Q
ω,a
β (A{

n) = 0

and thus to

(6.9) lim
n→∞

lim
a→0

Z ω,a
β (1A{

n
) = 0,
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since Z ω,a
β converges to a positive limit and is thus bounded away from 0. The obvious

way to bound Z ω,a
β (A{

n) is via the computation of its expectation. For this reason
we first assume that µ =

∫
[1,∞)

υλ(dυ) < ∞. Let us denote z(a, ϕ, ω) the maximal
spacing in the times of visit to points in ω(a), i.e.,

z(a, ϕ, ω) := sup
{
s : ∃ t ∈ [0, 1− s], ∆(ϕ, ω(a)) ∩ [t, t+ s] = ∅

}
,

where we recall that ∆(ϕ, ω) = {t ∈ [0, 1] : ∃ υ > 0, (t, ϕ(t), υ) ∈ ω} (see (2.16)). Let
us also set

an := sup{a : κa > n},
which goes to 0 as n tends to infinity. To lighten notation, let us set κn := κan > n

and κn := µ+ κan . We then define

An :=
{
ϕ : z(an, ϕ, ω) 6 κ−1/2

n

}
.

and notice that Adense is satisfied as soon as infinitely many An’s are satisfied. Now,
from Lemma 3.5 we have that (Z ω,a

β (A{
n))a∈(0,an] is a martingale which is uniformly

integrable: we can therefore extend it at 0. By Markov’s inequality we have

P
(

lim
a→0

Z ω,a
β (A{

n) > n−1
)
6 nE

[
Z ω,an
β (A{

n)
]
.

The r.h.s. can be computed explicitly: we have (recall t0 = 0, t|σ|+1 = 1)

Z ω,an
β (A{

n) =
∑

σ∈P(ω(an)), ∃ i∈[[0,|σ|]], ti+1−ti>κ−1/2
n

wan,β(σ).

Hence we have

E
[
Z ω,an
β (A{

n)
]
6 e−βκn

∞∑
k=0

(βκn)k
∫
Xk

1{∃ i∈[[0, k]],ti+1−ti>κ−1/2
n }dt.

Now, by symmetry (the roles of ti+1 − ti can be exchanged), we have for any k > 1∫
Xk
1{∃ i∈[[0,k]],ti+1−ti>(logn)2/n}dt 6 (k+ 1)

∫
Xk
1{tk61−κ−1/2

n }dt =
(k + 1)

(
1− κ−1/2

n

)k
k!

.

Thus, bounding k + 1 6 2k for k > 1, we have,

E
[
Z ω,an
β (A{

n)
]
6 e−βκn

(
1 + 2βκne

βκn(1−κ−1/2
n )

)
6 e−βn + 2βκne

βµe−βκ
1/2
n 6 n−3,

where the last inequality holds for n sufficiently large. We therefore get that for n
sufficiently large

P
(

lim
a→0

Z ω
β (A{

n) > n−1
)
6 n−2,

which is summable, so we conclude that (6.9) holds a.s. by Borel–Cantelli lemma.
When

∫
[1,∞)

υλ(dυ) =∞, in order to prove (6.9) (for the same An), we observe that

Z ω,a
β (A{

n) 6
(
Z ω,a
β −Z

ω,[a,b)
β

)
+ Z

ω,[a,b)
β (A{

n).

The second term goes to zero by the above proof and the first one can be made
arbitrarily small by choosing b large, thanks to Proposition 2.5 which ensures that
Z ω,a
β < +∞. �
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6.3. Proof of Proposition 2.21. — Recall that (see (2.20))

Z ω
β [(t1, x1), (t2, x2)] := lim sup

a→0
Z ω,a
β [(t1, x1), (t2, x2)].

We use a lim sup so that the quantity is defined everywhere (which is necessary for
integration). However, as a consequence of Proposition 2.20 (proved in Section 4) and
of translation invariance, for a fixed choice of end points, the lim sup can almost surely
be replaced by a limit, and hence for any fixed 0 < t1 < · · · < tk = 1 and (x1, . . . , xk)

P
(
∃ i ∈ [[1, k]], Z ω

β [(ti−1, xi−1), (ti, xi)] > lim inf
a→0

Z ω,a
β [(ti−1, xi−1), (ti, xi)]

)
= 0.

Thus, as a consequence of Fubini’s theorem, the set{
(x1, . . . , xk) : ∃ i∈ [[1, k]], Z ω

β [(ti−1, xi−1), (ti, xi)]> lim inf
a→0

Z ω,a
β [(ti−1, xi−1), (ti, xi)]

}
has almost surely zero Lebesgue measure. Now, let g be a bounded continuous func-
tion of k variables in Rd, satisfying 0 6 g 6 1. Applying (2.13) with g(ϕ) :=

g(ϕ(t1), . . . , ϕ(tk)), we have

Qω
β (g(Bt1 , . . . , Btk)) = lim

a→0
Qω,a
β (g(Bt1 , . . . , Btk)), a.s.

For any a > 0 we have

Qω,a
β (g(Bt1 , . . . , Btk)) =

1

Z ω,a
β

∫
(Rd)k

g(x)

k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)] dx.

To conclude, we only need to show that almost surely

(6.10) lim
a→0

∫
(Rd)k

g(x)

k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)]dxi

=

∫
(Rd)k

g(x)

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)]dx.

In particular, taking g ≡ 1, this will give that (recall (3.10))

(6.11) Z ω
β =

∫
(Rd)k

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)]dxi.

Let us first treat the case
∫

[1,∞)
υλ(dυ) <∞. In that case we have

E
[∣∣∣ ∫

(Rd)k
g(x)

k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)] dx

−
∫

(Rd)k
g(x)

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)] dx

∣∣∣]

6
∫

(Rd)k
g(x)E

[∣∣∣ k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)]−

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)]

∣∣∣]dx.
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Now, thanks to Proposition 2.20 and the fact that the product of independent vari-
ables converging in L1 also converges in L1, we have for every x1, . . . , xk ∈ Rd

(6.12) lim
a→0

E
[∣∣∣ k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)]−

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)]

∣∣∣] = 0.

Moreover, we have (recall (3.4))

(6.13) E
[∣∣∣ k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)]−

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)]

∣∣∣]
6 2eβµ%(t,x)

and thus the convergence (6.10) holds in L1 by dominated convergence. The fact that
the convergence is also almost sure comes from the fact that the l.h.s. in (6.10) is a
martingale.

In the case
∫

[1,∞)
υλ(dυ) =∞, we can apply (6.10) for the truncated environment

and obtain that almost surely

lim
a→0

∫
(Rd)k

g(x)

k∏
i=1

Z
ω,[a,b)
β [(ti−1, xi−1), (ti, xi)]dx

=

∫
(Rd)k

g(x)

k∏
i=1

Z
ω,[0,b)
β [(ti−1, xi−1), (ti, xi)]dx.

Bounding above Z
ω,[a,b)
β by Z ω,a

β in the l.h.s. and using monotone convergence for
the r.h.s., we obtain that

lim
a→0

∫
(Rd)k

g(x)

k∏
i=1

Z ω,a
β [(ti−1, xi−1), (ti, xi)]dx

>
∫

(Rd)k
g(x)

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)]dx.

Since the same inequality is also valid for 1 − g, to conclude it is sufficient to check
that we have equality when g ≡ 1. This corresponds to checking that

(6.14)
∫

(Rd)k

k∏
i=1

Z ω
β [(ti−1, xi−1), (ti, xi)]dxi = Z ω

β .

But thanks to (6.10) (see in particular (6.11)), we have∫
(Rd)k

k∏
i=1

Z
ω,[0,b)
β [(ti−1, xi−1), (ti, xi)]dxi = Z

ω,[0,b)
β ,

for all b, so (6.14) follows by monotone convergence. �

7. stochastic heat equation with Lévy noise: proof of Proposition 2.26

Recall that Proposition 2.24 has been proved in Section 4 (see Remark 4.16).
It remains to show that for fixed t ∈ [0, 1] and x ∈ Rd, we have

lim
a→0

∫
Rd

Z ω,a
β [(0, y), (t, x)]u0(dy) =

∫
Rd

Z ω
β [(0, y), (t, x)]u0(dy)
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and that the right-hand-side is finite. For simplicity, we assume that u0 is a posi-
tive measure, since otherwise we simply treat the positive and negative parts of u0

separately.
In the case

∫
[1,∞)

υλ(dυ) <∞, we can repeat the proof of Proposition 2.21. We have

E
[∣∣ua(t, x)− u(t, x)

∣∣] 6 ∫
Rd

E
[∣∣∣Z ω,a

β [(0, y), (t, x)]−Z ω
β [(0, y), (t, x)]

∣∣∣]u0(dy).

Using (6.12)–(6.13) with k = 1 together with the fact that
∫
Rd ρt(y − x)u0(dy) < ∞

thanks to our assumption (2.25), we conclude by dominated convergence that

lim
a→0

ua(t, x) = u(t, x)

in L1 and almost surely (since (ua(t, x))a∈(0,1] is a martingale).
Let us now turn to the case

∫
[1,∞)

υλ(dυ) =∞. Recall the definition (2.27) of u[a,b)

and notice that for all a ∈ (0, 1] and b > 1 we have u[a,b)(t, x) 6 ua(t, x) <∞ almost
surely. Applying the L1 and a.s. convergence with the truncated environment, we get
that

lim
a→0

u[a,b)(t, x) = u[0,b)(t, x) :=

∫
Rd

Z
ω,[0,b)
β [(0, y), (t, x)]u0(dy), a.s.

To conclude, we need to show that we can take the limit b → ∞ uniformly for
a ∈ (0, 1]. More precisely, similarly to (4.40), we show that for any ε > 0 we have

(7.1) lim
b→∞

P
(

sup
a∈(0,1]

(
ua(t, x)− u[a,b)(t, x)

)
> ε
)

= 0.

Indeed, for any b′ > b > 1, considering the super-martingale

ε ∧ (u[a,b′)(t, x)− u[a,b)(t, x))a∈(0,1]

and applying Doob’s inequality, we get

P
(

sup
a∈(0,1]

(
u[a,b′)(t, x)− u[a,b)(t, x)

)
> ε
)
6

1

ε
E
[
ε ∧
(
u[1,b′)(t, x)− u[1,b)(t, x)

)]
.

Sending b′ to infinity we therefore get by monotone convergence (analogously
to (4.43))

P
(

sup
a∈(0,1]

(
ua(t, x)− u[a,b)(t, x)

)
> ε
)
6

1

ε
E
[
ε ∧
(
u1(t, x)− u[1,b)(t, x)

)]
.

Then, since u1(t, x) < ∞, the limit (7.1) follows by dominated convergence. As a
by-product, this shows that u(t, x) <∞ a.s. �

Appendix A. On Lévy noises

Recall that we consider a Poisson process ω on R × Rd × R+ with intensity
dt⊗ dx⊗ λ(dυ), where λ is a positive measure on (0,∞) with λ([1,∞)) <∞. Recall
the definition (2.5) of the truncated and centered measure ξ(a)

ω on R× Rd.
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Proposition A.1. — If λ satisfies
∫

(0,1)
υ2λ(dυ) < ∞, then ξ

(a)
ω converges in

H−sloc (R× Rd) with s > (d+ 1)/2, i.e., there exists a distribution ξω ∈ H−sloc (R× Rd)
such that for any non-negative smooth compactly supported ψ

lim
a→0
‖ψ(ξ(a)

ω − ξω)‖H−s = 0.

Remark A.2. — The optimality of the criterion above on λ can be checked by com-
puting the characteristic function of the random variable

∫
θdξ

(a)
ω for a smooth θ with

compact support. We have

χ(a)(θ) := E
[
ei

∫
θdξ(a)ω

]
= exp

(∫
R×Rd×[a,∞)

(
eivθ(t,x) − 1− ivθ(t, x)1[a,1)(v)

)
dtdxλ(dv)

)
.

When
∫

(0,1)
υ2λ(dυ) = ∞, we have lima→0 χ

(a)(uθ) = 1{0}(u) for any non-trivial θ,
and hence

∫
θdξ

(a)
ω does not converge (even in distribution).

Proof. — Let ψ be non-negative, C∞ and compactly supported. Let us show that
(ψ ξ

(a)
ω )a∈(0,1] is a Cauchy sequence in H−s(R1+d). In this proof only, we denote

d = 1 + d, and x, y will denote elements of Rd.
First, we observe that ψ ξ(a)

ω belongs to H−s(R1+d) almost surely because its
Fourier transform is smaller than |ξ(a)

ω |(ψ) < +∞, and (1 + |z|2)−s is integrable
as 2s > d. Now, to show that (ξ

(a)
ω ) is a Cauchy sequence, we need to prove that

lim
a→0

sup
b∈(0,a]

‖ψ (ξ(a)
ω − ξ(b)

ω )‖H−s = 0.

We have (recall the definition (1.7))

‖ψ(ξ(a)
ω − ξ(b)

ω )‖2H−s =

∫
Rd

(1 + |z|2)−s
∣∣∣∣∫

Rd
eiz·xψ(x)(ξ(a)

ω − ξ(b)
ω )(dx)

∣∣∣∣2 dz

and hence by Fatou’s lemma
(A.1) sup

b∈(0,a]

‖ψ(ξ(a)
ω − ξ(b)

ω )‖2H−s

6
∫
Rd

(1 + |z|2)−s sup
b∈(0,a]

∣∣∣∣∫
Rd
eiz·xψ(x)(ξ(a)

ω − ξ(b)
ω )(dx)

∣∣∣∣2 dz.

Now, as
(∫

(ξ
(a)
ω − ξ

(b)
ω )(dx)eiz·xψ(x)dx

)
b∈(0,a]

is a (complex valued) time reversed
martingale with càdlàg path, Doob’s maximal inequality yields

E
[

sup
b∈(0,a]

∣∣∣∫
Rd
eiz·xψ(x)(ξ(a)

ω −ξ(b)
ω )(dx)

∣∣∣2] 6 4 lim
b→0

E
[∣∣∣∫

Rd
eiz·xψ(x)(ξ(a)

ω −ξ(b)
ω )(dx)

∣∣∣2].
The right-hand side is then straightforward to compute. Expanding the square and
using the fact that the off-diagonal integral∫

Rd×Rd
ψ(x)ψ(y)1{x6=y}e

iz·(x−y)(ξ(a)
ω − ξ(b)

ω )(dx)(ξ(a)
ω − ξ(b)

ω )(dy)
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has zero mean, we obtain that for any a > b > 0

E
[∣∣∣∫

Rd
eiz·xψ(x)(ξ(a)

ω − ξ(b)
ω )(dx)

∣∣∣2] = E
[ ∑

(x,υ)∈ω

υ21{υ∈(b,a]}ψ(x)2

]
.

We can compute the last expression using the formula for Poisson point process (see
Proposition 3.8): we obtain

E
[ ∑

(x,υ)∈ω

υ21{υ∈(b,a]}ψ(x)2

]
6 E

[ ∑
(x,υ)∈ω

υ21{υ∈(0,a]}ψ(x)2

]
=

∫
Rd
ψ(x)2dx

∫
(0,a)

υ2λ(dυ).

Hence we obtain from (A.1)

E
[

sup
b∈(0,a]

‖ψ(ξ(a)
ω − ξ(b)

ω )‖2H−s
]
6
∫
Rd

(1 + |z|2)−sdz

∫
Rd
ψ(x)2dx

∫
(0,a)

υ2λ(dυ),

which is sufficient to conclude that lima→∞ supb∈(0,a] ‖ψ(ξ
(a)
ω − ξ

(b)
ω )‖2H−s = 0 a.s.,

by Fatou’s lemma. �

Appendix B. Proofs of some properties of Z ω,a
β

B.1. Alternative representation of Z ω,a
β : proof of Lemma 3.3. — For σ ∈ P(ω),

we let E k(σ) denote the collection of k space-time points which include (ti, xi)
|σ|
i=1 and

no other space-points of the Poisson process, that is

E k(σ) := {(t,x) ∈ Xk × (Rd)k : {(ti, xi)}ki=1 ∩ π(ω) = π(σ)},

where π denote the projection on the first two coordinates. The following technical
result, which immediately implies Lemma 3.3, establishes that wa,β(σ, f) (recall its
definition (3.6)) corresponds to the contribution to the partition function of the inte-
gral over the disjoint unions of E k(σ), k > |σ|. The idea is that the integration over
E k(σ) decouples the Poisson and the Lebesgue parts of ξaω, i.e., the contribution of
points respectively inside and outside of σ.

Lemma B.1. — For any f ∈ B and any given σ ∈P(ω) we have

wa,β(σ, f) := e−βκaβ|σ|%(t,x, f)

|σ|∏
i=1

ui1{ui>a}

=
∑
k>|σ|

βk
∫

E k(σ)

%(t,x, f)

k∏
i=1

ξ(a)
ω (dti,dxi).

When σ = ∅ the term k = 0 in the sum is by convention equal to Q(f).

In order to lighten notations, we write the proof only in the case of a function
f ≡ 1. We assume that

∫
[1,∞)

υλ(dυ) < ∞ so that all the integrals below are well
defined (recall Proposition 3.1). The general case with a function f ∈ Bb (for which
all terms are well defined assuming that λ([a,∞)) <∞, thanks to Proposition 3.1) is
a mere adaptation of notation.
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Proof of Lemma B.1. — Let σ be a fixed set of points with |σ| = ` > 1 (the case σ = ∅
can be checked separately) and let (ti, xi, ui)

`
i=1 denote the (time ordered) points in σ.

Given i ∈ [[0, `]], and (s, y) ∈ E k(σ), we let s(i)
j , y(i)

j , j 6 ki denote the space time
points of (s, y) in the time interval (ti, ti+1) (note that ki here is a function of (s, y)).
Then by splitting the integrals according the the value of the ki’s, grouping the terms
and factorizing, we obtain that

∑
k>` β

k
∫

E k(σ)
%(t,x)

∏k
i=1 ξ

(a)
ω (dti,dxi) is equal to

β`
`−1∏
i=0

ui+11{ui+1>a}

∞∑
ki=0

(−βκa)
ki

×
∫
ti<s

(i)
1 <···<s(i)ki <ti+1

∫
(Rd)ki

(ki+1∏
j=1

ρ∆js(i)(∆jy
(i))

) ki∏
j=1

ds
(i)
j dy

(i)
j

×
∞∑
k`=0

(−βκa)
k`

∫
t`<s

(`)
1 <···<s(`)k` <1

∫
(Rd)k`

( k∏̀
j=1

ρ∆js(`)(∆jy
(`))

) k∏̀
j=1

ds
(`)
j dy

(`)
j ,

with the convention ∆js
(i) := s

(i)
j − s

(i)
j−1, s

(i)
0 = ti, s(i)

ki+1 = ti+1 and analogously
for y(i)

j . When ki = 0 resp. k` = 0, the value of the above integrals are by convention∫
ti<s

(i)
1 <···<s(i)k <ti+1

∫
(Rd)ki

(ki+1∏
j=1

ρ∆js(i)(∆jy
(i))

) ki∏
j=1

ds
(i)
j dy

(i)
j = ρti+1−ti(xi+1 − xi)

and ∫
t`<s

(i)
1 <···<s(i)k`<1

∫
(Rd)k`

( k∏̀
j=1

ρ∆js(`)(∆jy
(`))

) k∏̀
j=1

ds
(`)
j dy

(`)
j = 1.

Now, one can check that
∞∑
ki=0

(−βκa)
ki

∫
ti<s

(i)
1 <···<s(i)k <ti+1

∫
(Rd)ki

(ki+1∏
j=1

ρ∆js(i)(∆jy
(i))

) ki∏
j=1

ds
(i)
j dy

(i)
j

= ρti+1−ti(xi+1 − xi)
(

1 +

∞∑
ki=1

(−βκa)
ki

∫
ti<s

(i)
1 <···<s(i)k <ti+1

ki∏
j=1

ds
(i)
j

)
= ρti+1−ti(xi+1 − xi)e−βκa(ti+1−ti),

and similarly
∞∑
k`=0

(−βκa)
k`

∫
t`<s

(`)
1 <···<s(`)k` <1

∫
(Rd)k`

( k∏̀
j=1

ρ∆js(`)(∆jy
(`))

) k∏̀
j=1

ds
(`)
j dy

(`)
j

is equal to e−βκa(1−t`), which concludes the proof. �

Proof of (3.9). — The proof of (3.9) works exactly as above when
∫

[1,∞)
υλ(dυ) <∞.

For the general case, one needs first to have an identity for a positive integral so
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that we have no trouble with our definition. Truncating the environment and using
monotone convergence we have

ρt(x) +

∞∑
k=1

βk
∫

0<t1<···<tk<t

∫
(Rd)k

%(t,x)ρt−tk(x− xk)

k∏
i=1

|ξ(a)
ω |(dti,dxi)

= e2κatβ
∑

P[0,t](ω)

wa(σ, (t, x)).

This ensures that the sum and integrals in (2.17) are convergent if and only if we
have

∑
P[0,t](ω) ω(σ, (t, x)) < ∞. Then, repeating the proof above, we obtain that

(3.9) holds. �

B.2. The size-biased measure: proof of Lemma 3.7. — Let us recall here, for the
sake of clarity, the content of Lemma 3.7. The size-biased measure P̃aβ is defined
as P̃aβ(J) = E[Z

ω,a

β 1J ]. Then Lemma 3.7 states that for all bounded measurable
function f ,

P̃aβ [f(ω)] = P⊗ P′a ⊗Q
[
f(ω̂(ω, ω′a, B))

]
,

where ω̂(ω, ω′a, B) = ω∪{(t, Bt, u) : (t, u) ∈ ω′a}, withQ the distribution of a standard
Brownian motion B, P′a the distribution of a Poisson point process ω′a on [0, 1]× R+

with intensity dt⊗ βαυ1{υ>a}λ(du) and P the distribution of the Poisson point pro-
cess ω introduced in (1.5). Recall that we assume that µ :=

∫
[1,∞)

υλ(dυ) <∞.

Proof of Lemma 3.7. — It is sufficient to check that the distributions of the two point
processes in Equation (3.12) coincide when restricted to [0, 1] × Rd × [a,∞), since
their distributions outside of this set are unaltered by the size-biasing and remain
independent of the rest.

Given a bounded measurable subset A of [0, 1]× Rd × [a,∞), we define

NA := #(ω ∩A).

Our proof starts with the observation that the distribution of simple point processes
is completely characterized by P (NA = 0) for all bounded and measurable set A, see
[41, Th. 6.11], and hence a fortiori by the distribution of NA.

Hence, setting N̂A := #(ω̂ ∩A), it is sufficient for us to prove that for every set A
and any k > 0

(B.1) 1

k!
Ẽaβ
[
NA(NA−1) · · · (NA−k)

]
=

1

k!
P⊗P′a⊗Q

[
N̂A(N̂A − 1) · · · (N̂A − k)

]
and that the quantities above do not grow faster than exponentially, so that the
distributions of NA and N̂A are indeed characterized by their moments.

Let us define f = fk,A :
(
[0, 1]× Rd × [a,∞)

)k → R by

fk,A
(
(ti, xi, ui)

k
i=1

)
:= 1{t1<t2<···<tk}

k∏
i=1

1A(ti, xi, ui).
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Since almost surely, there are no two points in ω with the same time coordinate we
have almost-surely∑

(ti,xi,ui)ki=1∈ωk
fk,A

(
(ti, xi, ui)

k
i=i

)
=

1

k!
NA(NA − 1) · · · (NA − k + 1)

and the analogous identity is valid for N̂A. Hence we can check that the identity (3.12)
holds simply by applying Mecke’s formula (Proposition 3.8) to each side in (B.1).

Let us start with the (easier) case of ω̂, i.e., the right-hand side of (B.1). We set

Ak :=
{

(ti, xi, ui)
k
i=i ∈ Ak : t1 < t2 < · · · < tk

}
and we obtain (recalling the definition of P′a)

P⊗ P′a
[ ∑

(ti,xi,ui)ki=1∈ ω̂k
fk,A

(
(ti, xi, ui)

k
i=i

)]
=

∫
Ak

k∏
i=1

(
dti dxiλ(dui) + βdtiδBti (dxi)uiλ(dui)

)
.

Now expanding the product and averaging with respect to the Brownian motion B

we obtain that the right-hand side in (B.1) is equal to

(B.2)
∫
Ak

∑
I⊂[[1,k]]

β|I|uIρI(t,x)

k∏
i=1

dti dxiλ(dui),

where uI =
∏
i∈I ui and ρI(t,x) :=

∏|I|
j=1 ρtji−tji−1

(xji − xji−1
) with (ij)

|I|
j=1 the

ordered indices of I (by convention i0 = 0 and t0 = 0, x0 = 0).
Now let us move to the left-hand side of (B.1), that is the expectation with respect

to the size-biased measure. Recalling the definition (3.11) of P̃aβ and the representa-
tion (3.8) of Z ω,a

β , it is equal to

(B.3) Ẽaβ
[ ∑

(ti,xi,ui)ki=i∈ ω̂k
fk,A

(
(ti, xi, ui)

k
i=i

)]
= e−βµE

[ ∑
σ∈P(ω)

wa,β(σ)
∑

(ti,xi,ui)ki=i∈ ωk
fk,A

(
(ti, xi, ui)

k
i=1

)]
.

We are going to decompose the sum above according to how σ intersects with the
points (ti, xi, ui)

k
i=1 that are arguments of fk,A. For any given I ⊂ [[1, k]] with |I| = m

and ` = (`i)
m+1
i=1 , we set

PI,` =
{
σ ∈P(ω) :

(
σ ∩ (ti, xi, ui)

k
i=1

)
= (ti, xi, ui)i∈I

and ∀ j ∈ [[1,m+ 1]], #
{

(t, x, u) ∈ σ, t ∈ (tij−1
, tij )

}
= `j

}
,

where (ij)
m
j=1 are the ordered elements of I, with i0 = 0 and im+1 = k+1 (and t0 = 0,

tk+1 = 1) by convention. For this computation we introduce

κa =

∫
[a,∞)

υλ(dυ) = κa + µ.
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Using again Mecke’s formula and recalling the definition (3.5) of wa,β(σ), we have,
for any such I and `,

E
[ ∑
σ∈PI,`

wa,β(σ)
∑

(ti,xi,ui)ki=i∈ ωk
fk,A((ti, xi, ui)

k
i=i)

]

= e−βκa
∫
Ak

Ha
β(tim , xim , `m)

m∏
j=1

Gaβ(tij−1
, tij , xij−1

, xij , `j)β
|I|uI

k∏
i=1

dti dxiλ(dui),

where we set

Gaβ(t, t′, x, x′, `) := β`
∫
t<s1<···<s`<t′

∫
(Rd)`

∫
(a,∞)`

(`+1∏
i=1

ρ∆is(∆iy)

)∏̀
i=1

dsidyiviλ(dvi)

= (βκa)
` (t′ − t)`

`!
ρt′−t(x

′ − x),

with ∆is = si − si−1 (s0 = t, s`+1 = t′) and ∆iy = yi − yi−1 (y0 = x, y`+1 = x′) by
convention; and we also set

Ha
β(t, x, `) := β`

∫
t<s1<···<s`<1

∫
(Rd)`

∫
(a,∞)`

(∏̀
i=1

ρ∆is(∆iy)

)∏̀
i=1

dsidyiviλ(dvi)

= (βκa)
` (1− t)`

`!
.

Replacing Gaβ and Ha
β by their value we obtain (recall that tm+1 = 1 by convention)

E
[ ∑
σ∈PI,`

wa,β(σ)
∑

(ti,xi,ui)ki=i∈ωk
fk,A

(
(ti, xi, ui)

k
i=i

)]

= e−βκa
∫
Ak

m+1∏
j=1

(βκa)
`j (tj − tj−1)`j

`j !
β|I|uIρI(t,x)

k∏
i=1

dti dxiλ(dui).

Summing over all the possible `j just results in a factor eβκa = eβµeβκa and thus after
summing over I we obtain

Ẽaβ
[ ∑

(ti,xi,ui)ki=i∈ ω̂k
fk,A

(
(ti, xi, ui)

k
i=i

)]
= eβµ

∑
I⊂[[1,k]]

∫
Ak

β|I|uIρI(t,x)

k∏
i=1

dti dxiλ(dui).

All together, we find that (B.3) is equal to (B.2). This proves (B.1), which concludes
the proof of Lemma 3.7. �

Appendix C. Stochastic comparisons

We provide here two results enabling us to compare some integrals with respect to
the measure λ to integrals with respect to the Lebesgue measure. In particular, they
establish the two claims (4.21)–(4.22).

Proposition C.1. — Assume that

µ :=

∫
[1,∞)

υλ(dυ) <∞ and also
∫

(0,1)

υpλ(dυ) <∞
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for some p ∈ (1, 2). Then for q > 1 there is a constant cq, satisfying lim
q→∞

cqq
1−p = 0,

such that for every m > 1 and any non-decreasing function g : Rm → R+, i.e., non-
decreasing in every coordinate, with Support(g) ⊂ (ε,∞)m for some ε > 0, we have∫

(0,q)m
g(u1, . . . , um)

m∏
i=1

uiλ(dui) 6 (cq)
m

∫
(0,2q)m

g(u1, . . . , um)

m∏
i=1

u−pi dui.

Proof. — Let us begin with a few observations. First, we only need to treat the
case m = 1 since applying the result successively to the functions ui 7→ f(u1, . . . , um)

concludes the proof. Second, we can work with a differentiable and bounded function g,
the general case being obtained by monotone convergence.

By an integration by part, defining µq(u) :=
∫

(u,q)
υλ(dυ), we get that

(C.1)
∫

(0,q)

g(u)uλ(du) =

∫
[ε,q)

g(u)uλ(du) =

∫
[ε,q)

g′(u)µq(u)du.

Now, an important observation is that under our assumptions we have that

(C.2) µq(u) :=

∫
(u,q)

υλ(dυ) 6 cqu
1−p, ∀u ∈ (0, q),

for a constant cq satisfying limq→∞ cqq
1−p = 0. Let us postpone the proof of (C.2),

but we can already see that plugged in (C.1) and using that g′(u) > 0, it implies that∫
(0,q)

g(u)uλ(du) 6 cq

∫
[ε,q)

g′(u)u1−pdu = cqg(q)q1−p + (p− 1)cq

∫
[ε,q)

g(u)u−pdu,

where we have used another integration by parts in the last identity. Using again
that g is non-decreasing, we get that∫

[q,2q)

g(u)u−pdu >
1

p− 1
(1− 21−p)g(q)q1−p,

and we therefore end up with∫
(0,q)

g(u)uλ(du) 6 cp cq

∫
(0,2q)

g(u)u−pdu,

where the constant cp only depends on p. This concludes the proof.
It remains to see why (C.2) is true. We consider the cases u < 1 and u > 1

separately. If u < 1, we use the fact that c′p :=
∫

(0,1)
υpλ(dυ) < +∞ to get that

µq(u) 6
∫

(u,1)

υ1−pυpλ(dυ) +

∫
[1,∞)

υλ(dυ) 6 c′pu
1−p + µ 6 c′′pu

1−p,

since p > 1. If u > 1, we simply use that

µq(u) 6 c′′qu
1−p with c′′q := sup

u∈[1,q)

µq(u)/u1−p

and notice that since µq(u) is non-increasing and goes to 0 as u → ∞ this implies
that limq→∞ q1−pc′′q = 0. Combining the above estimates gives (C.2). �

J.É.P. — M., 2022, tome 9



278 Q. Berger & H. Lacoin

Proposition C.2. — Assume that
∫

(0,1)
υpλ(dυ) < ∞ for some p ∈ (1, 2). Then for

any q > 1 there is a constant Cq, such that for every m > 1 and any non-increasing
function g : Rm → R+ we have∫

(0,q)m
g(u1, . . . , um)

m∏
i=1

u2
iλ(dui) 6 (Cq)

m

∫
(0,q)m

g(u1, . . . , um)

m∏
i=1

u1−p
i dui.

Proof. — The proof is similar to that of Proposition C.1 above. Again, we only have
to treat the casem = 1 and of a bounded and differentiable function g, with ‖g‖∞ 6 1

to simplify.
Setting F (u) :=

∫
(0,u]

υ2λ(dυ) (which is finite for any u > 0), an integration by
parts gives that ∫

(0,q)

g(u)u2λ(du) = g(q)F (q)−
∫

(0,q)

g′(u)F (u)du.

Now, notice that there is a constant Cq :=
∫

(0,q]
υpλ(dυ) <∞ such that

F (u) =

∫
(0,u]

υ2−pυpλ(dυ) 6 Cqu
2−p, ∀u ∈ (0, q].

Using that g′(u) 6 0, we therefore get that∫
(0,q)

g(u)u2λ(du) 6 Cqg(q)q2−p − Cq
∫

(0,q)

g′(u)u2−pdu = (2− p)Cq
∫

(0,q)

g(u)u1−pdu,

where we used another integration by parts for the last identity. �
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