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THE CONTINUUM DIRECTED POLYMER IN LEVY NOISE

BY QuenTIN BERGER & HUBERT LACOIN

AsTracT. — We present in this paper the construction of a continuum directed polymer model
in an environment given by space-time Lévy noise. One of the main objectives of this construc-
tion is to describe the scaling limit of a discrete directed polymer in a heavy-tail environment
and for this reason we put special emphasis on the case of a-stable noises with o € (1,2). Our
construction can be performed in arbitrary dimension, provided that the Lévy measure satisfies
specific (and dimension dependent) conditions. We also discuss a few basic properties of the
continuum polymer and the relation between this model and the stochastic heat equation with
multiplicative Lévy noise.

Résumic (Polymere dirigé continu dans un bruit de Lévy). — Nous présentons dans cet article
la construction d’un modele de polymere dirigé continu dans un environnement donné par
un bruit de Lévy en espace-temps. L’un des principaux objectifs de cette construction est de
décrire la limite d’échelle d’un polymere dirigé discret dans un environnement a queue lourde et,
pour cette raison, nous mettons plus particulierement en avant le cas de bruits a-stables avec
a € (1,2). Notre construction peut étre réalisée en n’importe quelle dimension, pourvu que la
mesure de Lévy satisfasse certaines conditions (qui dépendent de la dimension). Nous examinons
aussi quelques propriétés de base du polymeére continu, ainsi que la relation entre ce modele et
I’équation de la chaleur stochastique avec bruit multiplicatif de Lévy.
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214 Q. Bercer & H. Lacoix

1. INnTRODUCTION

The aim of this paper is to build a continuum model which describes the scaling
limit of directed polymers in Z? with an environment which has infinite second mo-
ment: the continuum directed polymer in a space-time Lévy noise. Our construction
can be thought as an extension to arbitrary noise and dimension of that presented
in [2] of a continuum polymer in dimension 1 with Gaussian white noise. In a com-
panion paper [9], we prove that the scaling limit of the directed polymer in Z¢ with
heavy tailed environment is indeed the continuum model constructed in the present
paper.

Whereas the construction in [2] is directly based on the solution of the stochastic
heat equation (SHE) with multiplicative noise, our approach here needs to be slightly
different since the solution of SHE with a general Lévy noise (see [23] for recent
developments) does not display sufficient regularity. Our continuum model is thus
defined via a martingale approximation of the noise obtained by truncating the “small
jumps” part of the noise. This construction is not specific to directed polymers and
can possibly be applied to describe the scaling limit of a wide variety of disordered
models with heavy tailed noise, including the disordered pinning model (see [17, 19]
for the construction of the corresponding Gaussian scaling limits).

In order to motivate our construction, we provide a brief introduction to the di-
rected polymer model, the notion of its scaling limit and review some literature on
the subject.

11 . IV)IRECTED POLYMER IN A RANDOM ENVIRONMENT (THE DISCRETE MODEL)

Let us consider n = (Mn,o)nenwezd a discrete (1 + d)-dimensional field of i.i.d.
random variables, with law denoted by P. We assume that

(1.1) Pp>-1=1 and E[n =0.

With some harmless abuse of notation, we let 1 denote a generic random variable
with the same law as 7, ;. We consider the following (1 + d)-dimensional (discrete)
directed polymer model, in environment (7, . )nen zezd- Let S = (Si)i>o be the simple
symmetric random walk on Z¢, with law denoted by P. Given a parameter 3 € (0, 1)
(which allows to tune the disorder’s intensity) we define the partition function ZX,, 5 by

N
(1.2) Z} s :E[H(l+ﬂnn,sn)},
n=1
and the associated polymer (Gibbs) measure P;(,, 5 by
dP?%, 1 X
B .
(1.3) ()= [T+ Bns,).

N, n=1

The environment 7 can be thought as a field of impurities, and under P"N, P the law
of the random walk is modified so that it favors visits to (space-time) sites where 7
assumes a larger value. Assumptions (1.1) are merely practical: they ensure that
1+ Bnn,s, is always positive and imply that E[Z], ;] = 1.

JE.P.— M., 2022, tome g



THE CONTINUUM DIRECTED POLYMER IN LLEVY NOISE 21D

The directed polymer model has a long history, dating back to [36], see [26] for
an extensive review. In many directed polymer references (including [26]) the setup
is slightly different and the Gibbs weights are rather written in an exponential form
exp(8 25:1 Tn.s, ) instead of HT]:I:1(1 + Bnn,s,) used here. For most purposes the
two formalisms are equivalent, but the latter turns out to be the adequate one for the
specific problem we wish to study (we discuss this point later in the introduction, see
Remark 1.1).

Localization transition. — A major point of focus in the directed polymer model has
been the localization transition from a high temperature diffusive phase (small 3) to
a low temperature localized phase (large 3). This phase transition can be studied via
the free-energy p(8) := — limy 0 %E[log Z}z,”g]; we refer to [27, Prop. 2.5] for a proof
of its existence. The free-energy is a non-negative, non-decreasing and continuous
function of 5 € (0,1) (see [29, Th.3.2] for a proof, [48, Th. A.1] for its adaptation to
the setup presented here). In particular there exists a critical value . € [0, 1] which
is such that p(8) = 0 if and only if 5 < ..

This phase transition has been mostly studied in the case where the environment
has a finite second moment E[?] < co. In the exponential setup, this corresponds to
having E[e?%] < oo (the standard assumption considered in the literature is that n
has exponential moment of all orders see e.g. [1]) and under this assumption it has
been show that 8. > 0 when d > 3, in [13, 37], while 8. = 0 when d = 1 [28] and
d = 2 [39]. In particular this implies that there is no observable transition in dimension
d=1and d=2.

Intermediate disorder regime and scaling limit. When d < 2, under a finite second
moment assumption (assuming that 8 > 0 and Var(n) > 0), we have

lim Z;\’,ﬂ =0 and

N—o0

glg}) ZY 5= 1.

A legitimate question is therefore to know how to scale § with N (or N with f)
in order to observe a non-trivial random behavior for ZXL N and P"N7 5 in the limit
N — o0.

This problem has been the object of a large number of works [1, 17, 19] (see the
review [18] and references therein). When d = 1, the correct scaling is to take S
proportional to N~/ — note that in this case, N is proportional to the correlation
length of the system which is given by |p(8)|~* < 87% see [3, 44]. The limit is formally
obtained by replacing the random walk path and its environment by their scaling limit,
which are respectively given by Brownian motion and space-time White Noise. In

particular, the scaling limit of the partition function limy_ o Z is intimately

]7\]/151\/71/4
related to the solution of the stochastic heat equation (SHE) with multiplicative
noise [11].

The case of the dimension d = 2 presents additional difficulty as the SHE with
multiplicative noise is ill-defined, so that the heuristic picture we had in dimension

d = 1 cannot be valid. For a hierarchical version of the model the scaling limit of

JIEP. — M., 2022, tome g



216 Q. Bercer & H. Lacoix

the polymer measure when Sy is sent to zero at the appropriate rate is identified
in [24]. The original problem for the model on Z? (and its continuum counterpart
on R?) is still partially open but it has witnessed substantial progress in the recent
years [20, 21, 35]. A decisive step toward the identification of the scaling limit, i.e.,
the convergence of the partition functions for the right value of By, has be made
in a recent breakthrough paper [22]. More precisely it is shown that taking Sy =

\/%(1 + ¥/log N) for some ¥ € R, the rescaled field of point-to-point partition

functions NZy 5 (v/[Nz],/[NY|))zera yers converges in distribution when N —
o0 to a non-trivial limit, called the critical 2D stochastic heat flow. Note that in this

case also, the choice for By is such that the corresponding correlation length [p(8x)|~*
is proportional to N'*T°() since log|p(B)| ~ —n/B% as £ 1 0 (see [7]).

Heayy tailed disorder. — Our main motivation is to investigate intermediate disorder
limits beyond the case E[n?] < co. Our interest lies in the case where 7 is in the domain
of attraction of an a-stable law for o € (1,2) and that (1.1) still holds (we can also
consider the case a € (0,1] if one drops the assumption that n has zero average).
To be more specific, let us assume the tail distribution has a pure power-law decay,
i.e., that in the large z limit we have

(1.4) P(np > z) =271+ o(1)).

This kind of heavy tail environment has been studied in [48]. In this case, the
existence of a non-trivial weak disorder phase depends on « and the dimension d.
We have . = 0 if and only if d < 2/(a—1), see [48, Th.1.1]. Moreover, when
d < 2/(a — 1), the behavior of the free energy near criticality (that is, for 8 small) is
given by p(f) = B*T°M) with v = 2a/(2 — d(a — 1)).

One of our main goal is to identify the intermediate disorder scaling limit of this
model under the assumption (1.4), when o < 14 2/d, i.e., « € (0,1] or o € (1,2)
and d < 2/(a—1). We present in this paper the construction of the continuum
measure that appears as the limit of P7\,7 gy 1D the intermediate disorder regime. The
convergence of the discrete model to the continuum one, when Sy goes to 0 at some
adequate rate, is the object of a separate work [9], see Theorem A below.

Remark 1.1. — Let us stress that directed polymers in heavy-tail random environ-
ment are also considered in [4, 10, 30]: the main difference is that in these papers
the Gibbs weights are written in the exponential form exp(8 Zivzl Mn,s,,)- When the
second moment of 7, g is infinite, such a model exhibits very strong localization
properties: polymer trajectories remain in the neighborhood of a single favorite tra-
jectory which visits the high energy sites (see [4, 10]). Also, the intermediate disorder
regime is somehow trivial in this case. Indeed, in [10] the authors show that there is
a specific scaling at which a sharp weak-to-strong disorder transition occurs. Under
this scaling, there is a (random) threshold below which the partition function goes
to 1 and above which it goes to 400 (see [10, Th.2.7-2.8] for a more precise state-
ment). For a fixed value of 3, the two setups, exponential (¢7) and additive (1 + 3n)

JE.P.— M., 2022, tome g
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are equivalent, since one can be obtained from the other via a simple transformation.
Of course such a correspondence between the two setup disappears when studying the
limit 8 — 0, with a fixed distribution for 7 or 7. In the heavy-tail environment case,
the additive setup (1 + 8n) is the one which keeps a balance between the randomness
of the random walk and the rewards of the environment and allows the existence of
a scaling limit in which both are retained. This comes from the fact the field 87, .
converges after scaling (as a distribution) to a non trivial limit — this is never the
case for exp(B,,.), even after centering, because large values of 7] create too wild
fluctuations.

12 AN INFORMAL DEFINITION OF A CONTINUUM POLYMER WITH LE/]\X NOISE

Before stating our main result concerning the intermediate disorder regime in
a-stable environment, we need to provide a description of the scaling limit. The object
we construct is formally obtained by considering a Feynman—Kac formula where the
random walk and the environment are replaced by their respective scaling limits.

The scaling limit of our random walk is a Brownian motion with covariance ma-
trix é]d where I is the identity matrix in R?. To define the continuum polymer, we
rather consider a standard d-dimensional Brownian motion (B;):c(o,1 (for practical
reason it is convenient to define B only until a fixed finite time horizon T'). We let Q
denote the associated distribution (we omit the dependence in T to lighten notation)
on the Wiener space

Co([0,T)) := {p: [0,T] — R? : ¢ is continuous and ¢(0) = 0},

endowed with the topology of uniform convergence and the associated Borel o-algebra.

When 7 has a finite second moment, the scaling limit for the environment is given
by a space-time Gaussian white noise. In that case a Brownian polymer model in
dimension d = 1 can be (and has been) constructed based on the solution of the
stochastic heat equation, see [2]. On the other hand, in the case where (1.4) is satisfied
for some a € (0,2), we have to consider a different object, namely the space-time
(1 + d)-dimensional a-stable noise with Lévy measure supported on Ry. This is the
multidimensional analog of the derivative of the a-stable process with only positive
jumps. This is a well studied object, see [31] and references therein, but we try to
offer here a short and self-contained introduction for the sake of completeness. For
simplicity, we focus our exposition on the case @ € (1,2), which displays the most
interesting phenomenology. However we also treat below a much more general class
of noise which includes the case « € (0, 1].

One-sided o-stable noise in R x R, Given « € (1,2), we start with a Poisson point
process w on R x R? x R, (time, space, and value of disorder) with intensity

(1.5) dt ® dz ® av~ ¥ do,
which is obtained as the scaling limit of the extremal process associated with the

field (1)n,2)nen ez, under the assumption (1.4). As it shall draw no confusion the
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218 Q. Bercer & H. Lacoix

distribution of w is also denoted by P. Our a-stable Lévy noise £, is the random
distribution which is formally obtained by summing weighted Dirac masses v d; )
corresponding to all the points (¢,z,v) € w and subtracting a non-random quantity
so that the obtained distribution is centered in expectation. The delicate part is that,
as in the definition of a-stable processes, the counter term that has to be subtracted
is infinite.

Let us thus explain how &, can be obtained using a limiting procedure. We con-
sider w as a set of points, and for any a € (0, 1] we define w(® = {(t,z,v) € w: v > a}
the truncated environment, i.e., removing atoms (jumps) of size less than a. We then
let f&a) be the random measure on R x R¢ defined by

ala'=* -1
(1.6) ¢ = < > Ul{u>a}5(t,x)) - giﬂ,

(t,z,v)Ew a-1

where . denotes Lebesgue measure on R x R? (note that our centering only compen-
sates the jumps of intensity smaller than one, so that ffja) is not centered). We define &,
as the distributional limit of ffua) when a tends to zero.

For the sake of fixing ideas, let us specify a functional space in which this conver-
gence holds. Given s € R, the Sobolev space H*(R'*9) is defined as the closure of the
space of smooth compactly supported function with respect to the norm

(1.7) e = ([ |z|2>8|f<z>|2dz)l/27

where f(z) = Jgasr f(z)e™ " *dz is the Fourier transform of f. We also consider the
local Sobolev space

HE (R .= {f : fi € H® for every C°° compactly supported w},

considered with the topology induced by the family of semi-norms |[¢f| g+ indexed
by . We then have the following (standard) result: When a € (1,2), then (o)
converges almost surely in H 5(R'™?) with s > (1 + d)/2 towards a limit &, €
H? (R'*4) see Proposition A.1. In particular, this means that &, can be integrated
against any function in H*(R!'*%) which has compact support.

Informal description of the scaling limit. — In order to describe the candidate scaling
limit of the model (1.3) we must make sense of a Feynman—Kac formula analogous to
(1.2) in which the random walk S is replaced by a Brownian motion B and 5 replaced
by the a-stable noise &,,. Similarly to (1.3) we wish to define a polymer model which
is a modification of the Wiener Brownian measure Q obtained via tilting by an energy
functional. For "> 0 and 8 > 0 we would like to define Q7. 5 as

QFp py_ L smum),

(1.8) 10 ):.fc‘”fjg e ;

JE.P.— M., 2022, tome g



THE CONTINUUM DIRECTED POLYMER IN LLEVY NOISE 219

where the energy functional is given by £, integrated against the Brownian trajectory,
in the following sense (é(s,,) denotes the Dirac mass at (s,y))

T
H,(B) =&, (/0 d(t,By) dt>'

At this stage, we only consider this expression at a formal level, as it is quite clear
that the fact that &, € H, 7 is not sufficient to provide a mathematical interpretation
of this expression.

The exponential :e?H«(B): is to be interpreted as an analogous of the time-ordered
Wick exponential which is considered for the continuum directed polymer in white
noise, see [2]. Informally, :e?H«(B): is defined via the following expansion

0 k
(19) ;=5 g | TT & (5,00
k=0 0

<t <<t <T i=1

While it is challenging to make sense of the above formula, things become simpler if
one looks at the partition function Q‘”jﬁ 5=Q [:eBHW(B) :], because a formal integration
with respect to Brownian trajectories makes the integrand more regular. Let us denote
1 2
1.10 )= —— e~ l=ll*/2t
( ) pt( ) (27Tt)d/2
the heat-kernel on R associated with the Brownian motion (||z|| stands for the Eu-

clidean norm of z). For 0 < t; < --- < t3 and z1,...,7; € R? we also use the
short-hand notation

k
(1.11) o(t, @) := Hpti—ti,l(xi —Zi-1),
i=1

with by convention ¢t = 0 and 2y = 0 (in the following, if a different choice is made it
will be duly notified). We will also use the notation d¢ and da for Lebesgue measure
on R* and (R?)* respectively. With these notation, the expectation of (1.9) with
respect to the Wiener measure can be formally defined by

(1.12) ZE =1+ ZB’“/
k=1 0

k

/ o(t, @) [ ] éu(dts, day).

<ty <<t <T S (RE)F im1

In order to give a meaning to the above expression, we will approximate &, by &(fl) and
investigate the limiting behavior when a goes to zero. As it will be seen later, giving a
meaning to Qf:ﬁ 8 is the most important step in order to give a rigorous interpretation
to (1.8).

Acknowledgements. — The authors are grateful to Carsten Chong for insightful com-
ment on a first draft of the paper (see in particular Remark 4.9) as well as for providing
us with relevant references concerning stochastic PDEs with Lévy noise.
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220 Q. Bercer & H. Lacoix

2. MoDEL AND RESULTS

We can now introduce our results. We present in Sections 2.1-2.2 our construction
of the continuum measure Q7 5, thus defining the continuum directed polymer in
Lévy noise. For pedagogical reason, we first present in Section 2.1 the case of the
a-stable noise with « € (1,2), since it corresponds to the scaling limit of the model
introduced in Section 1.1 above; we turn afterward in Section 2.2 to the case of a
general heavy-tail noise. In Section 2.3, we present finer properties of the measure
constructed and in Section 2.4 we discuss the relation between our model and the
stochastic heat equation with multiplicative Lévy noise. Further comments on the
results are made in Section 2.5.

2.1. Tur CONSTRUCTION OF THE CONTINUUM POLYMER IN LE/]\W (Q-STABLE NOISE

Our main result is the construction of a measure on the Wiener space Cy([0,T1]),
corresponding to the definition (1.8). To ease the exposition, we single out the most
important step of this construction which is the construction of the partition function,
that is giving a mathematical interpretation for the formal integral (1.12). As men-
tioned above, we treat the case of an a-stable noise first, before we turn to more
general noises.

Recall the definition (1.6) of the truncated noise féa). We define, for a > 0,

[ k
(2.1) =14 Zﬁk/ / ot o) [T &l (dti, day).
k=1 0 (RE)* i=1

Since fi,a) (dt;, dx;) is a locally finite signed measure, the only possible issue with the
above definition is the integrability over ¢;’s and x;’s and summability over k. These
conditions are not difficult to check and this done in Proposition 3.1. It is also not
immediate from (2.1) that 5:”; ﬁa is positive (which is a required property for being a
partition function), but this is ensured by Lemma 3.3.

We prove that considering the limit of Q‘”T‘” Ba when a | 0, we obtain a non-trivial
(i.e., disordered) quantity, provided that « is smaller than a critical threshold. Let us
define

2 ifd=1,2,
(2.2) a. = a.(d) =
1+2/d  ifd>3.

<t <--<tp<T

Tueorem 2.1. If a € (1, ) with a. defined in (2.2), there exists an almost surely
positive random variable 5}2‘{6 such that the following convergence

lim 275 = 275
holds almost surely and in L. When d > 3 and « € [ae, 2) then for all § > 0 we have

lim,_,0 ffj‘i’; = 0 almost surely.

Remark 2.2, — Note that the definitions (1.6) and (2.1) also make sense when a > 2.
In that case f&a) does not converge to a limiting distribution but this does a priori

JE.P.— M., 2022, tome g



THE CONTINUUM DIRECTED POLYMER IN LLEVY NOISE 2921

prevent 275 from having a non-trivial limit. Proposition 2.12 below shows that
we have in fact limgjo 275 = 0 for every a € [a,, 00) in any dimension d > 1.

Let us now present the construction of the polymer measure described in (1.8).
Recall that our objective is to define a probability on the Wiener space Cy([0,T])
which corresponds to the formal definition (1.8). We proceed in a similar manner as
with the partition function: we first consider a measure on Cy([0,7]) built with the
truncated noise fo(fl). Let us introduce the following families of functions on Cy([0,T)):

PB:={f: Co([0,T]) = R : f measurable and bounded},
€ :={f: Co([0,T]) = R : f continuous and bounded},
By = {f € P : Support(f) is bounded},

6y = {f € € : Support(f) is bounded}.

Recall that Cy([0,T]) is equipped with the topology of the supremum norm: hence
we say that f: Co([0,7]) — R has bounded support if there exists M > 0 such that
f(p) =0 for any p € Cy([0,T]) with ||¢]e > M.

Given a bounded Borel-measurable function f € %, we define

0o k
23 Qaw,a = k ta 9 (E)a) dtud 1)y
@) zgo=an+ s [ [ e n ][
where we use the notation Q(f) := Q(f((Bt)ep,r)), and where o(t,z, f) is defined
by (recall (1.11))

o(t.@, f) = ot @)Q|f (Bi)iewor)) | Vi € [LK], By, = xi).

With some abuse of notation, the conditional measure Q(-|Vi € [1,k], By, = x;) de-
notes the distribution of the process obtained by concatenating independent Brownian
bridges linking (¢;—1,x;—1) to (¢;,2;) for i € [1,k]. The fact that (2.3) is well-defined
for f € %, is ensured by Proposition 3.1 below; the extension to non-negative f € %
is given in Lemma 3.3. Note that f > o(t,z, f) is linear and thus so is 2775'(:).
From Lemma 3.3 below, 2774(f) > 0 when f > 0 and 27°5(1) = 277 > 0. As a
consequence, for any a > 0, we can define a probability measure Q7 on Co([0,T7)
by setting

wa 275 (1a)
(2.4) QT75 (A):= Tﬁiw,a7
’ 21 s

for any Borel set A. We also write Q“}g (f) for the expectation, with respect to
Q“Hg, of a function f: Cy([0,7T]) — R. In the same way as for the partition function,
we define the measure Q7. s as the limit of Q;g when a goes to zero: this requires
a < ag, and the convergence holds for the weak topology. Let .#7 denote the space of
probability measures on Cy([0,T]) equipped with the topology of weak convergence.

JIEP. — M., 2022, tome g



299 Q. Bercer & H. Lacoix

TaroREM 2.3. If a € (1,ac), there exists a probability measure Q3. 5 on Co([0,T])
such that the following convergence holds almost surely in M
lim Q775 = Q75

In other words, we have almost surely for every f € €
: w,a _ w
iﬂ% QT,ﬁ(f) = T,B(f)'

Since 27775 (-) induces a positive measure on Co([0,7T7]) the above statement turns
out to be equivalent to the existence of a positive measure fT‘*’ P such that for every

fee
lim 25(f) = Z85(f)-

a—0

2.1.1. Scaling limit of the discrete model. — In order to justify the fact that Q;aﬁ is
the natural model for a continuum polymer based on a-stable noise, let mention here
the scaling limit result which we prove in [9], namely that the discrete polymer model
defined in (1.3), when properly rescaled, converges to the continuum polymer in Lévy
stable noise. We present the convergence with time horizon 7' = 1 (which yields no
loss of generality by scaling) and set Q% = Q?J.

Let St(N) be the linear interpolation of a random walk trajectory, rescaled diffu-
sively:
s ._ 4y ithow —
t = N ( _ut)SI_NtJ +utSLNtJ+1 s wit ut—Nt— ’VNﬂ
We then have the following convergence result.

Treorem A (cf. [9]). — Assume that the distribution of the environment n satis-
fies (1.4) for some « € (1, ), with a. defined in (2.2). Setting

By = B2lme)/agd(l=a)/2 nr—(d/2a)(1+2/da)
then we have the following convergence in distribution in M,

N N—oo w
P?V,ﬁN((St( ))te[O,l] E') - Q@

Remark 2.4. The prefactor in Sy comes from various factors, including the nor-
malization of the Brownian motion and the periodicity of the random walk. The
above theorem remains valid slightly beyond the assumption (1.4), one can allow for
a slowly varying function in the tail distribution provided an appropriate correction
in the scaling of 8y is made. The analogous result is valid also for a € (0, 1]. We refer
to [9] for details.

2.2. THE cASE OF A GENERAL NoIsE. — We have focused until now on the case of an
a-stable noise with « € (1, 2), both because our motivation is to describe the scaling
limit for the discrete polymer model with heavy tailed environment and to make the
exposition lighter. Our result can nonetheless be applied to a much larger variety of
noise. Let us consider in this section a Poisson process w on R x R x R, with density

dt ® dz ® A(dv),
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where A is a measure on (0,00) such that A([a,00)) < oo for every a > 0. One may
keep in mind the case A\(dv) = av~ 1+ dvy with a € (0,2), referred to as a-stable.
We define the truncated noise f&a) for a > 0 similarly to (1.6) (recall that £ denotes
the Lebesgue measure on R x R?)

(2~5) &E}a) = ( Z Ul{v}a}d(t,aﬁ)> — KoL,

(t,z,v)Ew

where
(2.6) Ka = / vA(dv),
[a,1)

note that we have in particular k, = 0 for a > 1. The truncated noise §5Ja) converges
to a limit &, € H; ;2 (R™?) with s > (1 + d)/2, if and only if Jo) v2A(dv) < oo (the
result is definitely standard, but we could not find a reference where it is displayed
in this form form, hence we include a proof in the Appendix for completeness, see
Proposition A.1). Note also that if f(o,l) vA(dv) < +oo, then kg < oo and the defi-
nition (2.5) directly makes sense with a = 0 so this approximation procedure is not

required. We define, similarly to (2.3), for any f € %,

<t <<t <T

[e*S) k

1) ZEn =+ [ [ et [] iz,
k=1 70 (Re)® i=1

The condition that f has a bounded support ensures that all the integrals are well-

defined since the integration is only over a bounded space-time region; the summa-

bility is shown in Proposition 3.1 below. Let us stress that Lemma 3.3 below ensures

that QF; Ba( f) = 0 when f is non-negative. Given an increasing sequence of positive

functions f, € %, converging to 1, one sets

(2.8) Q‘”Twﬁa = nlggo D@F;;(fn)
Lemma 3.3 also ensures that the above definition does not depend on the choice of f,,.

Note that the above definition makes it possible to have 5:”; Ba = 00, but this does not
occur provided the following condition is satisfied:

(2.9) / (log )2 \(dv) < .

[1,00)
Prorosition 2.5. Under the assumption (2.9), we have ff}f; € (0,00) for any
a € (0,1].

The condition (2.9) is in fact optimal, if it fails to hold then our partition function
is degenerate.

Provosirion 2.6. — If the measure A does not satisfy (2.9) then for any a € (0,1]
we have 275 = 0o almost surely.
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Remark 2.7. The condition (2.9) arises from an entropy-energy comparison. We
let Xg 7 be the largest atom in the environment located within a distance R in the
time interval [0, 7], that is

Xpr=max{v: (t,z,v) €w, t €[0,T], R/2< ||z < R}.

In the large R limit, the probability of visiting the corresponding atom under the
Wiener measure is of order exp(—cyR2). For any fixed §,T > 0, the criterion (2.9) is
equivalent (via a Borel-Cantelli argument) to having

sup (Xg,r e*‘SRg) < oo0.

R>0

From this, it is not difficult to deduce that the contribution of trajectories that visit
one large atom located far away remains finite. This provides a heuristic justification
of the criterion (2.9).

Using the partition function (2.7), we can define a probability measure Q‘;Z on
Co([0,T]) in the same way as in (2.4), i.e., setting for any Borel set A C Cy([0, 1])

Q) o 200
T = e
Note that A ~ 277(14) defines a locally finite measure on Co([0,7]) even when

(2.9) is not satisfied, cf. Proposition 3.1. Our main result in this section is that the
limit when a goes to 0 is non-degenerate if A satisfies the following assumption:

{f(o,l) 2\ (dv) < o0, ifd=1,

2.10
(2.10) f(o 1y VPA(dv) < oo for some p < 1+ 2/d, if d > 2.

Turorem 2.8. — Under the assumption (2.10), for any fized f € By the limit
(2.11) lim 2775 (f) = 275(f)

a—0

exists almost surely and is finite. We have ffj?ﬂ(f) > 0 if f is non-negative and
Q(f) > 0. Furthermore, if (2.9) also holds then (2.11) also holds for f € B. In par-
ticular, in the case f =1 we have,

(2.12) lim 275 = 25 € (0,00).

The convergence holds in 1Ly if and only if f[l 00) vA(dv) < oo.
Additionally, Q})’g converges weakly when a — 0: There exists a probability measure

Q% 5 on Co([0,T]) such that, almost surely, for every f € € we have

gw
Zislf) _ Q75(f) = Q4 5(f).

(2.13) Z, a0

Remark 2.9. — Note that the conditions (2.9)—(2.10) are satisfied when A(dv) =
av~ 1+ dy for a € (0,a.). When a € [, 00), Proposition 2.12 below establishes
that the limit is degenerate.
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Remarx 2.10. When (2.9) is not satisfied, it is not difficult to check from our proof
that almost surely, the convergence (2.11) holds simultaneously for all f € %}, that is
27 ﬁa( - N A) converges vaguely (as a measure), for any bounded set A.

Remank 2.11. A statement similar to the weak convergence of Q73 can also be
made in the case when (2.9) does not hold. In that case there exists a locally finite
measure Z5 5 on Co([0,77]) (in the sense that for every M it gives finite mass to the
set {¢ 1 ||¢lloo < M}) which is such that almost surely, for every f € %,

lim 2775 (f) = 27 5(f)-

a—0

The condition (2.10), which prevents 27, ;( f) from vanishing as a tends to zero,
is close to optimal. Let us introduce the following alternative and almost equivalent
condition

f(o 0 v2\(dv) < o0, ifd=1,
(2.14) Jo v?]log(v)|A(dv) < oo, ifd=2,
f(o N v1+2/A)\(dv) < oo, if d > 3.

Then we prove that the limit is degenerate as soon as (2.14) is violated. In particular
the following result ensures that one cannot define the continuum polymer model
when f(O,l) v?A\(dv) = oo, in which case the noise &, is itself not well-defined (see
Remark A.2).

Prorosirion 2.12. — If the measure A does not satisfies (2.14) then for any f € %
we almost surely have
lim 2775 (f) = 0.

If (2.9) also holds, we have lim,—o 275 = 0.

Note that this result proves the last statement of Theorem 2.1.

Remark 2.13. — From a Borel-Cantelli consideration, we have (for any value of d)
(2.15) / VAN (dv) < 00 = sup vp(t,x) < 0o  a.s.
(0,1) (t,z,v)Ew

te[0,T],v€(0,1)

The quantity vp(t, z) corresponds to the multiplicative weight gained by trajectories
which visit the point (¢, 2) multiplied by the entropic cost to visit it. On a heuristic
level, if vp(t, ) is unbounded, it means that there are atoms with arbitrarily small am-
plitude z which have a large impact on the value log Q‘;‘f ’;, preventing the convergence
of 2774 to a non-zero value. In view of the conditions (2.10)~(2.14) in Theorem 2.8
and Proposition 2.12, this criterion is not far from being sharp when d > 2. When
d = 1 the condition (2.15) is less restrictive than the one necessary for the convergence
of &(ua) (cf. Proposition A.1).
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Remark 2.14. The difference between the conditions (2.10) and (2.14) when d > 2
leaves a small family of Lévy measures for which the question whether 7‘3’ ; converges
to a positive limit or to zero remains open. We do not believe that either condition
(2.10) or (2.14) are optimal. Although refinements of the proofs presented here could
most likely yield slightly finer condition on both sides, finding the necessary and
sufficient condition remains a challenging issue. Even if the condition is not optimal,
the |logwv| factor present in (2.14) is of importance in dimension d = 2, since it
underlines that in any dimension d > 2, in contrast with the case d = 1, there are
some (Poisson) noises for which the continuum polymer (and the noisy stochastic heat
equation see Section 2.4 below) are not defined.

Remark 2.15. After a first draft of this manuscript was published, in a collaborative
effort with C. Chong [6], the conditions (2.10) and (2.14) have been improved. More
precisely, it is shown in [6] that when d > 2 Theorem 2.8 holds under the condition
f(O,l) v1+2/4| log(v)|A(dv) < oo. This identifies the necessary and sufficient condition
for convergence when d = 2. When d > 3 the condition (2.14) for Proposition 2.12
has been improved to

/ 274 1og(v)](log | log()])"*A(dv) < oo,
(0,e=¢)

with ¢ any constant greater than 5+ 4/d, leaving only a very narrow gap between the
necessary and the sufficient condition.

2.3. MAIN PROPERTIES OF THE CONTINUUM DIRECTED POLYMER IN LEVY NOISE

Let us assume throughout the rest of this section that Assumptions (2.9)—-(2.10) are
satisfied. We describe under these assumptions a few key properties of our polymer
measure. First, we underline how Q% 5 is in some aspects very similar to the Wiener
measure and is in others very singular with respect to it. Then, we provide an explicit
expression for the finite-dimensional marginal density of the measure, via point-to-
point partition functions.

2.3.1. Basic properties of the continuum polymer in Léoy noise. — Let us define PxQf. 5
the averaged polymer measure as follows

P x Q7.5(4) :=E[Q7 5(A)].

Prorosition 2.16. The averaged polymer measure Px Q7. 5 is absolutely continuous
with respect to Q.

Proposition 2.16 yields an important information concerning Q7. 5 since it implies
that P-almost surely Q7. 5 inherits any given Q-almost sure property of the Brownian
motion.

Cororrary 2.17. — If A is a Borel set of Cy([0,T]) such that Q(A) = 1, then P-a.s.
we have Q% 5(A) = 1. As an exzample, for almost every w, a trajectory (By)icjo,1) has
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% g-a.s. a modulus of continuity given by \/2hlog(1/h): in other words,
: lp(t+ 1) — (1) )
5 € Co([0,T]); limsup su —:1} =1.
Qs <{(p oll0.7]) R0 pogtgg—h 2hlog(1/h)

This implies in particular that for any v < 1/2, polymer trajectories are Q7 5-a.s.
everywhere locally ~v-Hdélder continuous.

On the other hand we have to mention that Q7. 5 is very singular with respect to Q,
most strikingly when f(o 1) vA(dv) = oo. To illustrate this fact, given ¢ € Co([0,T])
let us consider A(p,w) the set of times at which the graph of ¢ visits points of w:

(2.16) Alp,w) :={t €[0,T]: 3v >0, (t,0(t),v) € w}.
Let us set
Hgense(w) 1= { € Co([0,T]) : A(cp,w) is dense in [0, 7]},
Hempty(w) = {p € Co([0,T]) : Ap,w) = @}
oo(w) = {10 € Co((0,T)) : #A (p,w) = oo}

Prorosition 2.18. —  Under Assumptions (2.9)—(2.10) the following statements hold.

(i) We have almost surely Q(empty) = 1.
(ii Iffo n vA(dv) < oo then Q% 3(Hempty) € (0,1) and Qf. 5(Foo) = 0 a.s.
(iii) If f(o 1 vA(dv) = co we have QT)B(MdCHSC) =1 a.s.

Remark 2.19. Note that when fo 1 vA(dv) < oo, we have in fact
QT,ﬁ(' | fQ{cmpty) =Q,

s0 Q7 5 is In that case not singular with respect to the Wiener measure. The technique
used for the proof of Proposition 2.18 can possibly be pushed a bit further to yield
the following statement:

— When |, ©0.1) vA(dv) < oo then the convergence of Q towards Q7 5 holds also
for the total variation distance.
— When f ) VA(dv) = oo then 1Q75 — Q% sllrv = 1 for every a > 0.

2.3.2. Point-to-point partition functions and finite dimensional marginals. — The aim
of this section is to give an explicit description of the finite-dimensional marginals of
Q% 5 If we fix 0 <ty <--- <t < T, then the distribution of (B, ..., By,) under
Qg 1 is absolutely continuous with respect to the Lebesgue measure and its density
can be expressed using the so-called point-to-point partition functions. For any a > 0,
define for all t+ > 0 and = € R? the partition function from (0,0) to (¢,z) as (recall
the definition (1.11))

(2.17)  2Z5°(t, @)

x)—!—l;ﬁk/

Kk
0<ty <<t <t /(Rd)k

Q(ta m)pt—tk (1’ - xk) H ﬁ(ua) (dti7 dl’i),

i=1
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if the integral is convergent (and set 23(t,2) = oo if not). The following proposition
shows that the point-to-point partition function of our continuum model — defined
as the limit of ,Q”ﬁ“J’a(t7 x) when a tends to zero — is well-defined, positive and finite.

Prorosition 2.20. — Suppose that (2.9) holds, then given a € (0,1],t > 0 and z € R?
we have almost surely

(2.18) 25t x) € (0,00).
If (2.10) also holds then given t > 0 and x € R%, we have almost surely
(2.19) Z5(t,x) = (113}) 25t x),  with 25 (t, ) € (0,00).

If f[leo) vA(dv) < oo then the convergence holds in L.

For (s,y) € R x R?, let us define the shifted environment
e(s,y)w = {(t —-s,x—y,v): (t,z,v) € w}.

Then, we can define for (t1,z1), (t2,72) € R x R% ¢; < ty the partition function
linking two arbitrary points:
0 xT ’

ff[-‘BJJ7(I[(tlv'7;1)7 (tanQ)] = gﬁ(tb D a(tQ - t1,$2 - .231)-
Finally we set
(2.20) 25 [(t1, 1), (t2, x2)] := lim sup 257 (tr, 1), (t2, 22)],

a—

and we omit the first coordinate in the notation when it is equal to 0. We use a lim sup
instead of a limit in the definition only to make sure that Z3°[(t1,21), (t2, 22)] is
defined simultaneously for all (¢1,x1) and (¢2, x2). Note that Proposition 2.20, togeth-
er with translation invariance, shows that for any fixed (¢1,21) (t2,22) the limsup
in (2.20) can almost surely be replaced by a limit (so the point-to-point partition
function 2§ [(t1, x1), (t2, 22)] is almost surely well-defined, positive and finite).

Prorosition 2.21. — Forany 0 <ty <--- <t =T, the set
{(xlv s 717@) Vi€ ﬂlv k]]v ‘ffﬁw[(tifla xifl)v (tia CCZ)] = ili% %‘A}’a[(tiflaxifl)» (tmxz)}}

has almost surely full Lebesque measure. Furthermore, the convergence
k k
lim [T 25 ((tior, 2io1), (i, 20)] = [ [ 25 [(tim1, mimn), (t, 20)],
i=1

a—0
=1

holds almost surely in Li((RY)*). Additionally, for almost every w, the k-marginals
measure Q% 5((Bt,, - .., By, ) € +) is absolutely continuous with respect to the Lebesgue
measure and we have for any bounded measurable g on (R%)*

1 k
Q75(9(Bt,, - By)) = % /(Rd) g(x)Hgﬁ[(h—hxi—l), (ti, )] de.

i=1
Remark 2.22. — For k = 1 the above proposition states that the density of the
distribution of Br under Q% 5 is given by 237(T,-)/ Z5; .
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Remark 2.23. Let us stress that in the above proposition, we fix 0 <ty <---<tp=T
before considering a realization of w. This is an important point since there are ex-
ceptional times for which Q7. ﬂ(Bt € -) admits no density. In fact is not difficult to
check that if (t,z,v) € w then Qf 5(B; = x) > 0.

24 CO,\INECTION WITH THE STOCHASTIC HEAT EQUATION WITH MULTIPLICATIVE LE/]VY NOISE

In [2] the continuum directed polymer model with white noise is constructed direct-
ly from the solution of the stochastic heat equation (SHE) with multiplicative Gauss-
ian white noise. It is not possible to proceed in this way with a general Lévy noise
(simply because the solution is not regular enough) and our approach here is quite dif-
ferent. The continuum model constructed in Theorem 2.8 bears nonetheless a strong
connection with the SHE with multiplicative Lévy noise. We discuss here this connec-
tion in some more detail and compare our results with the existing ones concerning
the SHE with Lévy noise. Our formal definition 27, = Q [:efH(B)] (see (1.9))
corresponds to a Feynman—Kac formula associated with the following equation

1
(2.21) Opu = % Au+ BE, - u.

More precisely, the point-to-point partition function 2%°(¢,z) defined in (2.17) for-
mally corresponds to the solution of (2.21) with J¢ initial condition. Starting from an
arbitrary initial condition ug (a locally finite signed measure), the solution of (2.21)
should take the form

(2.22) u(t,x) := y Z51(0,y), (t,z)] uo(dy).

In the case ug(dy) = go(y)dy for some bounded and measurable function gg, the fact
that (2.22) is well-defined derives from Proposition 2.21 (in the case k = 1), combined
with a time-reversal argument giving

(25100,9). (1,0)) g 2 (Z200.2), (1)),

that ensures that Z4°[(0,-), (t,z)] € L1(R%) almost surely. For the general case
where ug is a measure, we refer to Proposition 2.26 below for the well-posedness
of (2.22).

The equation (2.21) has been extensively studied (often under a more general form,
see e.g. [43, 45]). To our knowledge the most complete results concerning the existence
of solutions have been given in [23]. More precisely, in [23] the existence of solutions
in the integral form

2 uto)= [ ole=nu@) s [ [ oo pusnesd)

called mild solutions, are obtained under the condition

(2.24) / vPA(dv) < oo and / vIA(dv) < oo,
(0,1) [1,00)
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with p € (0,1+2/d) and (2+2/d—p)~! < ¢ < p and for ug = go(y)dy with go bounded
and measurable. Uniqueness has been established earlier [45] under the more stringent
assumption f(O,oo) vPA(dv) < oo for some p € [1,142/d), which for instance excludes
a-stable noises. Let us stress that the above is a very partial account of the results
in [23] since the existence results deal with a more general class of equations and
allows for a wider variety of noise (it allows for complex jumps and when d =1 for a
Gaussian white noise part as well as for space-time inhomogeneities).

While our assumptions (2.9)—(2.10) are less restrictive than (2.24), we cannot prove
that (2.22) solves the equation (2.23) under these assumptions. However, we can show
that the solution of the equation with a truncated noise converges almost surely when
the truncation levels goes to zero and infinity respectively. Additionally, we keep quite
a large freedom concerning the choice of the initial condition. Let us write this result
in full detail for completeness. We are going to make the following assumption on the
initial condition ug:

1
(2.25) 1imsup7“7210g(|uo|([—r, r]d)),< —
77— 00 2T

where |up| is the total variation of the measure w. This condition is present to ensure
that (2.22) is well defined and almost surely finite on the interval [0,T]. For b > a,
let us introduce fi?

for kq)

(2.26) o= N vluean)y O + (Kb — o)L

(t,z,v)Ew

) the noise truncated at levels a and b (recall the notation (2.6)

Then, setting by convention the quantity to be co when the integral is not well-defined,
we set
(2:27) alt(t,x) = [ 251(0,), (1 0)] uo(dy),

R
where %‘”’[“”’)[(o,y), (t,z)] is defined as in (2.17) with & replaced by &%
By [45, Th.1.2.1], if ug is absolutely continuous with bounded density w.r.t. to the
Lebesgue measure, then ul®?) is the unique solution (in some reasonable functional
space) of (2.23) (with noise @[jl’b)). We first observe that u/*®) converges when b tends
to infinity under very mild assumptions.

Prorosirion 2.24. — Assume that (2.9) holds, and that ug satisfies (2.25). Then for
any given t € [0,T] and z € RY, for any a > 0

wit.)s= [ 2770 (0] uoldy)
is almost surely finite.

Remark 2.25. When f[l.,oo) vA(dv) < oo, and for bounded initial conditions, ap-
plying Theorem 1.2.1 in [45] we get that u®(¢, ) is the unique solution of (2.23). For
noise with heavier tails, u®(t, z) should also be a solution of (2.23) and coincide with
the solution considered in [23] whenever it is well-defined. Since this is not the main
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focus of the paper we do not include a proof of this statement, which in any case
would only provide a minor extension on the class of noises considered [23] which
includes f[l,oo) vPA(dv) < oo for all p > 0. We do not have an argument establishing
uniqueness in that case.

Let us now present the result. It establishes the convergence of u® when a tends
to 0. While the limit is the natural candidate to be a solution to (2.23) under less
restrictive assumptions than those considered in [23], we could not verify that u solves
the equation.

Prorosirion 2.26. — Assume that (2.9)~(2.10) are satisfied. Given ug a locally finite
signed measure on R satisfying (2.25), then for (t,z) € [0, T]xR? the integral defining
u(t, z) in (2.22) is almost surely finite (and well-defined) and for every fized t € [0,T)
we have

lim u®(¢t, ) = u(t, x),
a—0

except on a set (of R%) of Lebesgue measure zero.

Remark 2.27. When (2.24) is satisfied and the initial condition has a bounded
density w.r.t to the Lebesgue measure, it follows from results of [23] and [45] that u
is the solution of (2.23) constructed in [23, Th. 3.1].

2.5. FURTHER DISCUSSION ON THE RESULTS. — Let us now comment further on our
results, and explain how they compare with the literature, how they can be extended
and what interesting open questions remain to be solved.

2.5.1. Scaling properties in the case of a-stable Lévy noise. — Let us come back further
on the case of the a-stable noise, that is when A(dv) = av~(1+¥dv, with a € (0,2).
We have already seen that in that case Assumptions (2.9)—(2.10) are satisfied provided
that a € (0, a.), so Theorem 2.8 and more importantly (2.13) holds, so that Q. 5 is
well-defined. Now, notice that in the a-stable case the Poisson point process w has
the following scaling property
w? (rt, sz, (rs®)Y ) : (t,z,v) € w}

for any r,s > 0. Using additionally the Brownian scaling, one can then check that
the continuum polymer in a-stable Lévy environment satisfies the following scaling
property: if a € (0, ), for all 7 >0

d . d
Q%,ﬁ(A) g ;fT,r*CB(AT)a with ¢ = %(1 +2/d - a).

where A, 1= {¢: t = (1//r)p(t/r), ¢ € A}

2.5.2. SHE with Lévy noise: advantages and disadvantages of our method

Let us now compare our Proposition 2.26 with the results of Chong [23]. First of
all, as we already stressed in Section 2.4, our Proposition 2.26 gives a weaker notion
of solution to the SHE (2.21) than existence of solutions in the integral form (2.23),

JIEP. — M., 2022, tome g



232 Q. Bercer & H. Lacoix

as proved in [23]. Additionally, Chong’s results allows to deal with a larger class of
integral equations

Vita) = [ GOwtalswis+ [ [ Gty () Mdsd),

where: (i) M is a noise that can include a white noise part when d = 1 and a (signed)
pure jump component; (ii) o is a globally Lipschitz function; (iii) G(¢, x; s,y) is mea-
surable and dominated by a constant times the heat kernel p;_s(z — y).

We have presented our results in the case where M = &, (i.e., has no white noise
component and only positive jumps), o(Y) =Y and G(¢,2z;s,y) = pi—s(x — y). Let
us now present the advantages of our method, and in which directions it can be
generalized.

(a) First and foremost, our method enables us to make sense of Feynman—Kac
formulas containing a functional f of the Brownian motion, that is Z%°(f) (see The-
orem 2.8 (2.11)). This is something absolutely required to be able to define the con-
tinuum model.

(b) Our tail assumptions (2.9)—(2.10) on the Lévy measure are less restrictive than
those (2.24) which are used in [23]. In particular our method allows to treat the
integrability issues at 0 and oo separately. Note also that in view of Propositions 2.6
and 2.12, our assumptions (2.9)—(2.10) are close to being optimal.

(c) We are able to deal with more singular initial conditions than in [23]. For the
application we have in mind, it is of the utmost importance to be able to deal with
Dirac initial condition, which corresponds to the point-to-point partition function
25 (t,x) and appears to be excluded in [23].

(d) We can easily adapt our proof to the case of an arbitrary kernel p; (in particular,
not only the ones dominated by Gaussians), but this would require to adapt the
conditions (2.10)—(2.9) In particular, we could replace the Laplacian A with more
general operators. For instance, in dimension 1, we could replace the Brownian motion
by a Lévy process, see the paragraph below for further discussion.

(e) While our method does not seem to allow to treat the case of general Lip-
shitz o (for which we lose the existence of a Feynman-Kac representation of the
solution), let us mention, that it should extend without much problem to the case
where o(u) = au+b with a,b > 0 (that is, considering a mixture of additive and
multiplicative noise).

(f) To conclude, we stress that maybe the most problematic part would be to
extend our results to a more general noise. In particular, our method does not al-
low to deal with general complex (or signed) noise: the issue essentially arises in
the proof of Proposition 4.1, which shows that (Q‘%’J’a)ae(oyu is uniformly integrable
(if f[lpo) vA(dv) < 00); all the other points extend quite easily. In view of our tech-
niques (in particular Sections 4.3—4.4), this appears to be manageable in dimension
d =1, but it is possibly more problematic in dimension d > 2 (the truncation we use
is based on a multi-body functional that needs to be adapted in the case of a com-
plex or signed noise). Similarly, in accordance with the literature on directed polymer
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models, adding a white-noise component should be feasible in dimension d = 1, but
it is likely that in dimension d > 2 it would make the limit degenerate (in analogy
with the SHE with multiplicative white noise in dimension d = 2, see [21, 35]).

2.5.3. Applications of our method o other disordered systems. — Our method appears
robust enough to be adapted to the setting of other models with heavy-tail disorder.
In particular, in analogy with [19], one should be able to consider several (discrete)
models, and construct their continuum counterpart with Lévy noise. This includes for
instance:

(A) the (1 + d)-dimensional long-range directed polymer, see [25, 49] for the case
of dimension d = 1, where the underlying random walk (S,,),>0 is in the v-stable
domain of attraction, with v € (0, 2);

(B) the disordered pinning model, see [33] for an overview (it has been studied
in [40] in the case of a heavy-tail noise).

We could also consider other disordered models, such as the copolymer model (see [32,
Ch. 6] for an overview and [14, 16] for the question of the scaling limit) or the random
field Ising model (see [15, Ch. 7] for an overview and [19] for the question of the scaling
limit). We however chose to focus on the two examples (A)—(B) above, which might
provide a sufficient illustration on how general our construction is. In both cases (A)
and (B) we only briefly present the models and discuss how the assumptions (2.9)—
(2.10) have to be adapted to ensure the convergence of the partition function. In order
to be fully understood, the discussion below requires to be familiarized with the proof
of our main result. It can be thus be skipped during the first reading.

(A) The continuum (1 + d)-dimensional long-range directed polymer in Lévy noise

The idea is to replace in the definitions the Brownian motion (By);> by a d-dimen-
sional y-stable process (X¢)>0 with v € (0, 2), that we suppose centered and isotropic
for simplicity. More precisely, we can define, analogously to (2.1), the partition func-
tion

(2.28) D@pgjl’gng .

[e'S) k
=1+ Z Bk / / H p§72t171 (x’b - xi*1> H gi}a) (dti? dwl)v
k=1 0<t1<---<tp<T (

RA)k 524 =1

where p?)(x) is the transition kernel of our 7-stable process, and is defined by

1 _
pp) (x) = L /]Rd e~ tli=l” cos(x - z) dz.

While pp) does not admit a closed expression, its asymptotic properties are well
known (dating back to [38], see also [46, Ch.2]). It is a bounded radial function and

has the following asymptotic behavior
P (@) ~ canllal T as el — oo

The scaling relation piw (z) =t~y (t~/7z) also implies that ||p§7) lloo = cil,,yt_d/"y.
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Now let us discuss under which condition on the Lévy measure A\ the partition
function in (2.28) remains finite. Note first that if f[lm) vA(v) < oo, then we have
E[Z ong] < 0o from Lemma 3.1 (or rather its straightforward adaptation to this case)
and a discussion is necessary only for the integrability of heavier-tailed noises. In anal-
ogy with (2.9), we want to make sure that the weight of Poisson points with large
intensity is compensated by the cost of making a long jump to visit them, which by

(2.28) is of order ||z||~(4*7). Hence we need a condition that ensures that
(2.29) sup{v(1 + [lz])) =) 2 (t,2,v) € w, t €[0,T]} < oo.

We should require in fact a bit more than (2.29) but not much more (we opt not
to stretch the discussion any further) and we believe a condition that ensures that
Z 5 iong < 00 and thus replaces (2.9) in this case is

(2.30) / viIA(dv) < oo for some g > L
[1,00) d+v

On the other hand, the condition (2.10) prevents the possible accumulation of

small weights that would make the limiting partition function degenerate. It is in-

timately related to the local limit behavior of pgv)(z) at small times, more pre-

cisely to fRd(pEW) (2))?dz which by scaling is equal to t=4/7 [, (o (2))2dz. In anal-

ogy with (2.10), a (near-optimal) condition that ensures that lim, o 275" is non-

B,long
degenerate should therefore be
(2.31) / vPA(dv) < oo,  for some p < min(1 + v/d, 2).
(0,1)

We therefore conjecture that if (2.30)—(2.31) hold, then the partition func-
tion Qf;l’gng defined in (2.28) converges a.s. to a non-degenerate limit and that
one can construct a continuum measure corresponding to the (1 + d)-dimensional
long-range directed polymer in Lévy noise. Let us stress that in the case of an
a-stable noise (i.e., A(dv) = av~ 1+ dv), the conditions (2.30)~(2.31) translate into
the condition 1/ < a < min(1 4 d/7,2). Additionally, in analogy with Theorem A,
the continuum long-range directed polymer model in a-stable noise should appear as
the scaling limit of the long-range directed polymer model, defined as in (1.2) with a
random walk (S,,),>0 in the domain of attraction of a y-stable law and heavy tailed
disorder satisfying (1.4).

(B) The continuum disordered pinning model in Léoy noise. — The disordered pinning
model describes a renewal process 7 = {79 = 0,71, 72,...} on N (representing contact
points) interacting with an inhomogeneous defect line. In the case of a heavy tailed
environment (1;)zen, it is convenient to write the partition function of the model as
follows, see [40]:

N
(232) Z;(f,@h = E|:H ehl{nET} (1 + /B’r]n]-{nET}):Ia

n=1
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where h in an additional (homogeneous) pinning parameter. A standard (and natural)
assumption in the literature is that P(r; = n) = (1 + o(1))en= 147 as n goes to
infinity, for some v > 0. Under this assumption, if v € (0,1), then the set of contact
points 7 N [0, N], properly scaled, converges to what is called the regenerative set of
index . This leads us to make the following definition for the truncated partition
function of the continuum disordered pinning model: for 5 > 0 and h € R,

oo k k
oo =143 ph /0 Tt — te ) [[(€ + h2)(dn),
k=1

<t  <---<tp<1 i=1 i=1

where u,(t) := cyt*(l’w is the transition kernel of the regenerative set of index 7.
Here, no condition analogue to (2.9) is needed to keep %"fipin a.s. finite, since

there is no spatial dimension. On the other hand, in analogy with (2.10), in view of

the form u.(t) = ¢,t~(1=7) and since there is no spatial dimension, a (near-optimal)

condition that ensures that lim,_.q %‘”}L‘lpin is non-degenerate should therefore be

(2.33) / vPA(dv) < 0o,  for some p < min(1/(1—7),2).
(0,1)

Hence, we conjecture that if (2.33) holds, the partition function Q‘?;" ;Zpin defined
in (2.28) converges a.s. to a non-degenerate limit, and that one can construct a con-
tinuum measure corresponding to the disordered pinning model in Lévy noise. In the
case of an a-stable noise (i.e., A(dv) = av~(F*)dw), the condition (2.33) translates
into @ < min(1/(1 —~),2), which corresponds to the disorder relevance condition
found in [40] (where the roles of v and a are exchanged). Additionally, in analogy
with Theorem A, the continuum pinning model in a-stable noise should then appear
as the scaling limit of the disordered pinning model defined above in (2.32) and heavy
tailed disorder satisfying (1.4).

2.5.4. Other open questions. — To conclude this section, we present a brief list of
interesting open questions.

(a) A first question that we already raised is that of considering a more general
noise. We leave as an open problem the issue of adding a Gaussian white-noise com-
ponent to &,. We believe that in dimension d = 1 the partition function converges to
a non-degenerate limit even when a Gaussian component is added to the noise and
that consequently on can define a continuum polymer in that case.

(b) Another natural question is that of the L, convergence in Theorem 2.8. It is
natural to expect some L, convergence to hold, but this appears to be technically
challenging. We leave as an open problem to show that, if f(0,1) vPA(dv) < oo for some
p < min(1 + 2/d, 2) and f[l’oo) vIA(dv) < oo for some g > 1, then 2375 converges to
ng" in ]Lmin(p,q)~

(¢) To conclude, let us mention an important and challenging question. In the case
of an a-stable noise, we have treated the case @ < a, = min(1+2/d, 2); in particular,
a. < 2 in dimension d > 3. It would then be an interesting question to investigate the
case a = ., called marginal (in particular in the case where o, < 2, since marginal
behavior may depend on a.). In analogy with other marginally relevant disordered
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systems (see [20] in the context of scaling limits), one would then expect that one
should find a non-trivial limit in distribution by allowing 8 to depend on a in such a
way that lim,_,0 8, = 0 (recall that from Proposition 2.12 we have lim,_,o Qfﬁw 7=0
in that case). It seems likely (again considering the analogy with [20]) that the right
scaling for S, should be of the form 8, = ¢(loga) (1 + o(1)) where ¢ and v are
positive constant.

Remark 2.28. — Since the first version of this paper appeared as a draft, progress has
been made in [6] on several fronts including a few of the open questions mentioned
above. We refer to the introduction of [6] for a full account.

2.6. ORGANIZATION OF THE REST OF THE PAPER. Let us briefly present how the rest
of the paper is organized and outline the ideas of the proofs of Theorems 2.1 and 2.8.

— In Section 3 we present preliminary results concerning the partition function with
truncated noise D@”Tw ; that are needed in the rest of the paper. We prove in particular
its well-posedness (Proposition 3.1), its positivity (Lemma 3.3, which provides an
important alternative representation for the partition function), and a martingale
property (under suitable integrability condition, see Lemma 3.5). We also give an
enlightening representation of the size-biased law of the environment (i.e., its law
biased by the partition function, see the definition (3.11)) and we recall Mecke’s
multivariate equation for Poisson point processes, which is used throughout the paper.

— In Section 4, we prove our main result, that is, Theorem 2.8 (Theorems 2.1
and 2.3 being only particular cases). The proof needs to be decomposed in several
steps, a detailed account of which is given in Section 4.1. Most of the proofs of this
section can be adapted to control the point-to-point partition function, and thus we
prove along the way Proposition 2.20 and Proposition 2.24.

— In Section 5, we study the cases where the limiting partition function degenerates
either to zero or infinity, that is we prove Proposition 2.6 and Proposition 2.12.

— In Section 6, we prove the various properties of the continuum directed polymer in
Lévy noise that are gathered in Section 2.3, that is Proposition 2.16, Proposition 2.18
and Proposition 2.21.

— In Section 7, we prove our statement concerning the convergence of the solution
of the SHE with truncated noise, Proposition 2.26.

— Finally, we collect in the appendix several technical results that are used along
the paper.

Notational warning. — For simplicity we assume in the rest of the paper that 7' =1,
and we drop the dependence in T in all notations.

w,a
3. PRELIMINARIES: SOME PROPERTIES OF ffﬁ '

We let |§£,a)| denote the total variation associated with the locally finite signed
measure @(Ja) defined in (2.5), and we let
= {t=(ti,....tp) ER":0 <ty <+ <ty <1},
denote the open simplex.
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3.1. Werr-posepness. — Our first task is to check that our definitions 23 in (2.1)
and Z7“(f) in (2.7) are well posed. This is given by the following result.

Prorosition 3.1. — For any choice of X satisfying A([a,00)) < 400 for every a > 0,
for any f € By, the function o(t, x, f) defined on X*x (R%)¥ 4s almost surely integrable

with respect to the product measure |§£,a)|®k. Moreover we almost surely have, for any
p>0,

k

(3.1) Zﬁk/ o(t,z, £) [ 167](dti, da;) < oo

Xk x (R9)E i
If p = f[l vA(dv) < oo, then o(t,x) is integrable with respect to the product

measure £ \‘X’k and

k

3.2 9| (dt;,d

(32) Z o 26D T ) <
Furthermore, we have for all f € By,

(3.3) Vae (0,1, E[Z5(f)] =™Q(f).

Proof. — Let us start with the case f[1 00) vA(dv) < oco. Tt is sufficient to check that

the expectation of the Lh.s. in (3.2) is finite. Now using the definition (2.5) for ffua)
we have on XF x (R%)¥,

B et ar)] = (

a,00)

vA(dv) + /{a> H dt; dz;.

Letting C, := f[a 50) vA(dv) + ko < 00, we therefore get that

k k &
@\(at: de) | = Ok s = 2o

E wamk o(t, x) 1;[1 I35 |(dt“dxl)} Ck /W(Rd)k o(t, x) il;[ldtz da; = —
This implies both the convergence of the integral and the summability in k.

The fact that E[257(f)] = ePrQ(f) directly follows from the definition (2.6)—(2.7)
and Fubini, using that Hle fua)(dti7dxi) has mean (u.2)%".

Now let us prove (3.1) when f[1,oo) vA(dv) = co. For this we first consider a trun-
cated version of the noise to place ourselves back in the integrable case, and then let
the truncation threshold go to infinity. This procedure is going to be used repeatedly
in the paper. For b > a, recall the definition (2.26) of &[f,l’b). Using the assumption
f € By, we let M > 0 be such that f(¢) = 0 if ||¢|lcc = M. Then o(t,z,f) =0
if max?_| ||7;||coc = M. Therefore, since A([a,00)) < oo, there exists by(M,w) such
that for every b > by, the restriction of @(f) on [0,1] x [~M, M]¢ coincides with that
of &[5 *) Hence it is sufficient to show that (3.1) holds for §£§1 ) for every b > 1, which
we can do by repeating the proof of (3.2). O
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Remark 3.2. Notice that we have the analogous result for the point-to-point par-
tition function 2% (¢, ). For any x € R9, the function o(t, z)p;_¢, (x — x1) is almost
surely integrable on X* x [~M, M]¥ for any M > 0 with respect to the product
measure \&E)a)|, and it is integrable on X¥ x (R?)* if f[1 00) vA(dv) < co. We also have

(3.4) Vae (0,1, E[Z;(t,z)] =™ pi(a).

3.2. THE PARTITION FUNCTION ﬁfﬂ“”a AS A SUM. Let us now present an alternative
expression for 23", from which it will be clear that 23" is positive. Indeed, it
is not obvious that the chaos decomposition (2.7) is non-negative, due to the term
—koZ in the definition (2.5) of £2. The idea of Lemma 3.3 below is to integrate out
this “Lebesgue part” of £%. This operation has the effect of giving rise to a prefactor
e Pra,

We let Py 4(w) denote the set of finite collections of points in w whose time
coordinates belong to the interval [0, ¢]. When ¢ = 1 we simply write &?(w). We define
similarly &g ¢ (w®) and Z(w(®) the sets of finite collections of points in w(®) =
{(t,z,v) € w: v > a} (as defined above (1.6)). For 0 € £ (w) we let |o| denote its
cardinality and we use the notation (¢;, x;, u;) lzill to denote the points in o ordered in
increasing time. Given a > 0 we define the following weight function wg g(o) on £ (w)

o]

(3.5) Wa,p(0) = e*ﬁ““ﬁ“’lg(t,x) Huil{ui>a},

i=1
with K, = f[a 1) vA(dv) as defined in (2.6). Let us stress here that wq, s puts a positive
weights only on elements of ,@(w(“)). By convention, we say that the empty set belongs

to Z(w) and we set w, 5(@) := e~ P*e. Similarly, for any f € %, we define

o]

waﬁ(aa f) = e—ﬂﬁaﬁhﬂg(t, Z, f) H uil{ui>a}a

i=1

(3.6)
wa,5(9, f) = e P Q(f).

The following lemma provides an alternative formulation of the partition func-
tion which is convenient to assert positivity. Its proof is straightforward (one only
needs to integrate out the Lebesgue part of £%) and is presented in Appendix B.1 for
completeness.

Lemva 3.3, — Givena >0, 8> 0 and f € %, we have

(3.7) 25N = > waplof).

ceP(w)

In particular ng)a(f) >04f f >0 and Q(f) > 0. Also, by monotone convergence,
recalling the definition (2.8), we have

(3.8) 250 = Y wap(o)

ceP(w)
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Let us stress that the representations (3.7) and (3.8) are valid without any assump-
tion on the intensity measure A, since all the terms in the sums are positive, but it
may be the case that both sides of (3.8) are infinite.

Remark 3.4. — Similarly, for the point-to-point partition function, the following iden-
tity holds
(3.9) 25ty = Y wap(o,(tx)),

TEP 0,4 (W)

with w, g(0, (t,2)) 1= e Praplolo(t, x)p; 4, (v — x3) H‘gl uil{y,>a}, as long as the
r.h.s. is finite. Note that by Fubini’s theorem this gives that, for any a > 0

(3.10) g 20t x)de = 2570
3.3. MartiNGALE PrOPERTY. — In the case f[l 00) vA(dv) < oo, the convergence of

25°(f) as a | 0 is an immediate consequence of the following observation.

Lemwva 3.5. Let F = (Fa)ac(o,) be the filtration where F, is the o-field gener-
ated by w ¥ . If the measure \ satisfies j := f[l,oo) vA(v)dv < oo, then the following
processes are (time-reversed) martingales for the filtration 5 :

- (%‘“’“(f))ae(o,u for any f € A, and in particular (%w’a)ae(o,l];

- (Q”g”a(t,x))ae(ojl] for any (t,z) € R x R<.
The mean of these martingales are B[2"(f))] = e’*Q(f) and E[Z5(t,2)] =
ePrtp(x).

Moreover, if g is a bounded measurable function of ¢ andw and g(p,w) is F,,-mea-
surable for every @, then (Q‘”é‘”a(g(~,w)))ae(07%] is a (time-reversed) martingale.

Proof. — Using the expression (2.7) (or (2.17) for the point-to-point partition func-
tion), the result follows from the fact that the sequence of measures

k
(H §O(Ja)(dti,dxi)> on X* x (RH*
a€(0,1]

i=1

is a martingale. Indeed for b < a < 1 we have

k k
E [ [Tc9 dti, day) — T €l (dts, day) fia]
i=1 . - i=1 .
= 38| (T 60 .)€~ an, o) ] €(aty.ae)) | 5] =0,
i=1 j=1 Jj=i+1

where in the last equality we used that by construction ( U(Jb) — {U(Ja))(dti,dxi) is of
zero average, independent of %, and conditionally independent of H;;ll f&b) (dt;, dx;).
The proof for a random function follows the same line, using that o(¢,z, g(-,w)) is
Fa,-measurable for all ¢ and x. O
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Since 23" > 0, this directly implies in the case f[l 00) vA(v)dv < oo that
limg o %w,a exists almost surely. We will show that if additionally assumption (2.10)
holds, the martingale is uniformly integrable.

Remark 3.6. In the case f[l’oo) vA(v)dv = oo, we will consider the truncated
partition function Qpﬁ[a’b)( f) defined as in (2.3) but with fu(fl) replaced by the trun-
cated noise fLa’b) defined in (2.26) — this corresponds to considering the intensity
measure A% (dv) := 1y<pyA(dv). Then, for any b > 0, Lemma 3.5 shows that
(ﬁpﬂ[a’b)(f))ae(o’b] is a martingale.

%4 A REPRESENTATION FOR THE SIZE-BIASED MEASURE

When p = |

[1,00) vA(v)dv < oo, since

e -8 w,a
Zy =z

is non-negative and of average one, one can define an alternative measure P for the
environment, defined by

(3.11) PY(w e A) :=E[Z 5 Luea].

The measure ]T”‘é is often referred to as the size-biased measure — the probability of
an event is biased by the “size” of the partition function. Convenient representations of
the size-biased measure have been given for directed polymers [12, Lem. 1] and similar
models such as branching random walks (see [47, Ch. 4] and references therein) or the
disordered pinning model [40, §5.2]. The size-biased measure for all these models
is obtained by tilting the distribution of the environment along a randomly chosen
trajectory. The result we present below is a strict analog in a continuous setup.

We let P/, be the distribution of a Poisson point process w/, on [0,1] x R} whose
intensity is dt ® Bvli,zq)A(dv), (that is dt @ Bav™*1f,>43dv in the a-stable case)
and we recall that Q is the distribution of a standard Brownian motion. We then
introduce the random set of points &(w,w’,, B) in R x R% x R defined by

©=wU{(tB,v): (t,v) € w,}.
Then, the distribution of w under the measure ﬁ”g can be described as follows.

Lemva 3.7. — Suppose that p := f[l 00) vA(v)dv < co. Then with the notation defined
above, for any measurable bounded function g we have

(3.12) Phlg(w)] =P ® P, ® Qg(@(w,w;, B))].

In other words, the distribution of w under ﬁg is obtained by adding to the original
point process an independent Poisson process of intensity dt @ Buli,>qyA(dv) drawn
on the trajectory a Brownian motion.

The proof, though elementary, requires some cumbersome computation. We present
it in Appendix B.2 for completeness.
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3.5. AN IMPORTANT TOOL: MECKE’S MULTIVARIATE EQUATION. Let us recall here a clas-
sical formula for Poisson point processes which we will repeatedly use in our compu-
tations. It is a particular case of Mecke’s multivariate equation (see e.g. [41, Th. 4.4]).

Prorosition 3.8. Given A a sigma-finite measure on a measurable space (X, Z),
and w a Poisson point process with intensity A, then for any k € N and any measurable
function g : XF — Ry such that g(x1,...,2) = 0 as soon as x; = x; for some i # j
then

IE{ Z g(xl,...,xk)] :/xk g(xy, ..., xp) A% (day, ..., day).

(T1,00 57 ) EWP

Of course we are going to apply this formula for the Poisson process w. In our
applications we mostly deal with sums running on subsets of w whose cardinality is
not fixed, see the expression (3.8) for the partition function above. Hence, in practice,
the formula we will use is rather

E[Z > gk(zl,...,xk)] :Z/Xkgk(:cl,...,zk))\@)k(dzl,...,dxk),

k21 (21,...,x1) Ewk k>1

where gy, is a sequence of positive functions on X*.

4. CONVERGENCE OF THE PARTITION FUNCTION AND OF THE MEASURE:
PROOF OF THEOREM 2.8
4.1. OrGANIZATION OF THE SECTION. — We decompose the proof of the theorem in

several steps. We provide the details of this decomposition before going to the core of
the proof.

First step. — Our first and main task is to prove the convergence of the partition
function under the additional assumption f[l 00) vA(dv) < oo.

Prorosiriox 4.1. — If the measure X satisfies f[l 00) vA(dv) < 0o and (2.10), then the
martingale (fﬁ‘”’“)ae(o’l} is uniformly integrable. As a consequence there exists 2’
such that the following convergence holds holds almost surely and in L1,

lim 27" = Z¥.
a0 P 8

Since from Lemma 3.5 we know that (23"“)ac(0,1] is a positive martingale, it is
sufficient to show that (23"“)aec(0,1) is uniformly integrable. Our strategy consists in
considering a sequence of approximation (5"? Wg=1 of Z5, obtained by somehow
restricting the partition function to “not-too-large” weights. We choose our restriction
so that two key properties are satisfied:

(A) For large ¢’s, é’g"&“ is a good approximation of 23" in Ly, uniformly in a.

(B) For any q, (D@/’”EJ’Q)GE(OJ} is bounded in L.
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We refer to Section 4.2 for a more detailed description of this strategy, which is then
implemented in Section 4.3 in dimension d = 1 and in Section 4.4 in dimension d > 2,
where the restriction strategy is more subtle.

Notice that from Lemma 3.3 (in particular (3.8)), we have that Z37“(f) <
[ flloc 25" for any f € . Hence an immediate consequence of Proposition 4.1 is the
following.

CoroLLary 4.2. — If the measure A satisfies f[1 00) vA(dv) < oo and (2.10), then for
every [ € A the martingale (Qi;‘)’a(f))ae(o,l] is uniformly integrable, and the following
convergence holds almost surely and in 1Ly

lim 25°°(f) = 25(f).

Second step. — Our second task is to remove the assumption f[l,oo) vA(dv) < o0
from Proposition 4.1 (and Corollary 4.2), i.e., to prove Proposition 2.5. This is done
in Section 4.5. Along the way we also prove Proposition 2.24 and the first part of
Proposition 2.20, that is (2.18). We then use Proposition 2.5 to prove the following
lemma (which corresponds to (2.11)—(2.12)), in Section 4.6.

Levmma 4.3. — Under the assumption (2.10), for every f € By the following conver-
gence holds almost surely and the limit is finite

lim 237°(f) = 25 (/).

Furthermore if (2.9) also holds then the statement is valid for f € . In particular,
we have

lim 5’%‘)’“ = 25 < +oo0.

a—0

Third step. Our third task, which is crucial for the convergence of Qg™“, is to
ensure that the limiting partition function is positive (let us record the statement as
a proposition). This is done in Section 4.7.

Provosirion 4.4. — If X satisfies (2.10), then for any non-negative f € By, with
Q(f) > 0, we have almost surely
Z(f) > 0.
As a consequence, if A satisfies (2.9)—(2.10) then we have almost surely
(4.1) 25 € (0,00).
Fourth step. — Finally we complete the proof of Theorem 2.8 by proving the conver-

gence of Q. Note that Lemma 4.3 and Proposition 4.4 imply for any given f € %,
the almost sure convergence of Qg’a( f). Hence we only need to prove tightness.

Prorosition 4.5. — If X satisfies (2.9)—(2.10), then for almost every w, the family
of measures (Q;’a)ae(o,l] is tight with respect to the topology of weak convergence
on M, the set of probability measures on Co([0,1]).
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The reader can then check that combining all the statements above yields the
complete proof of Theorem 2.8.

Let us finally comment on how the proof of the second part of Proposition 2.20
(the convergence (2.19) to a positive limit) is completed. We simply need to show
that Proposition 4.1 and Proposition 4.4 (that is Equation (4.1)) remain valid for the
point-to-point partition function. Since the proofs are nearly identical we will point
at the end of the various proofs which modifications are required, when there are any.

4.2. A UNIFORM INTEGRABILITY CRITERION. As outlined above, our proof of uniform
integrability is going to rely on a second moment computations. This requires to
overcome some subtleties since the second moment of Q‘%" '* might be infinite for
every a > 0 (this is for instance the case when d > 2). We follow an approach similar to
the one used in [5] for the proof of the convergence of Gaussian Multiplicative Chaos.
We look for a family of restrictions of the partition functions which is bounded in L,
but does not produce any loss of mass at infinity. Let us summarize our approach in
the form of a proposition.

Prorosition 4.6. — Consider (Xa)ac(0,1) @ collection of positive random variables.

Assume that there exists Xéq) a sequence of approximation of X,, indexed by q > 1,
which satisfies:

lim sup E[|X(gq) - X,|] =0;
47 4e(0,1]

sup ]E[(X(Sq))z] < oo for every q > 1.
a€(0,1]

Then (Xa)ae(o,1) s uniformly integrable.

Proof. We may write, for any M > 0 and a > 0,
1/2 1/2
E[|XalLqx,p>0] < E[X = Xa[] +E[(X()?] /P Xa| > M),
where we have used Cauchy—Schwarz inequality for the second term. Applying
Markov’s inequality and taking the supremum over a € (0, 1], we therefore get
sup E[|Xa|1{|Xa\>M}] < sup E“Xc(lq) 7Xa|]
a€(0,1] a€(0,1]
+ M~Y2 sup IE[(X(S‘I))Q]U2 sup E[|X,[]"/2.
ae(0,1] a€(0,1]
The first term can be made smaller than £/2 by choosing ¢ sufficiently large. Then
once ¢ is fixed, we can make the second term smaller than /2 by choosing M large
(our assumptions imply that (X,).e(0,1) is bounded in Ly). O

Our idea is now to apply Proposition 4.6 to variables XéQ) which are obtained by

considering the sum of the weights w, g(c) on a strict subset of &?(w) (recall the
representation of 25" in Lemma 3.3).
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4.3. Proor or Prorosition 4.1 N pimension d = 1. The case d = 1 gives us the
occasion to apply Proposition 4.6 with a relatively simple setup. In this case, the only
thing that prevents Qpﬁw '“ from being bounded in Ly are the large values of u;. The
modified partition function obtained by ignoring these points in the Poisson point
process w turns out to be bounded in L. The idea is thus to apply Proposition 4.6
for partition functions with truncated environment, taking X(gq) =% ﬁw’[a’q) (recall the
definition after (2.27)). We then prove the following.

Proprosition 4.7. — Suppose that X satisfies p := f[l 00) vA(dv) < oo and that (2.10)
holds. For every d > 1, we have

(4.4) lim sup E[|25 — 270 <o,

47 4e(0,1]

Moreover, when d = 1, we additionally have that for every g > 1

(4.5) sup E[(%w’[a’q))z} < 0.
a€(0,1]

These statements imply that both requirement of Proposition 4.6 are satisfied and
therefore that (ffg’ “)ac(0,1) is uniformly integrable and converges in L;. As can be
checked from the proof, (4.5) is false when d > 2 and in that case we will need a more
subtle restriction for the set of trajectories (developed in the next subsection). While
the latter restriction also covers the d = 1 case, the proof presented in this section
is considerably simpler, and may prepare the reader for the more involved proof in
dimension d > 2. Additionally note that (4.4) is valid when d > 2; it will be used in
Section 4.4.

Proof'of Proposition 4.7. — To compute the expectation in (4.4) we use Proposi-
tion 3.8: recalling the definitions (3.5) of we (o) and (2.6) of k., we obtain that
ﬁfﬂw’a — Qpﬁw’[a’q) > 0 and that

(4.6) E|25 - 2500] - E{ 3

wa,6(0) {35, l0]], ui>q}}
€D (W)

k
_ ,—BKa k
=e B / 1 o(t,x)dtdx | | wilgy,>ar A(du;).
Z Xk x (R x (0,00)k max ui>q} ( ) H {ui=a} ( )

k>1 1<i<k i=1

Note that the integral in @ and ¢ readily simplifies since we have (recall that p:(x)
is a probability density)

(4.7) / ot,z)dz =1 and / dt = l
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1

Hence, setting p := f[l 0oy VA(dV) and puq := f[l o VA(dv), the rhus. of (4.6) is equal to

—Bra Z - / 1 woa} ] Hul (du;)

k=1 la,00)F 1<i<k

(4.8) :e—m '{/ Hui/\(duz / Hu duz}
k>1 kL a00) la,9)% 5=

i:l

—Br g
¢—Pra kz 7 [0+ 0)F = (a4 1)) = &P = e,
>1

Hence we have E[.ffﬁw’a - Q‘”ﬁw’[a’q)] = ePr* — ePra_ which does not depend on a, and
converges to 0 as ¢ — oo (notice that this is true even for d > 2).

To check (4.5), set o, := {(t;,xi,u;)¥_, : Vi € [1,k], u; < ¢}. By Lemma 3.3
we have

w,[a 2
]E{(ffg’[ ,Q)) } :]E{ Z wa,lg(al)wa’ﬁ(ag)l%(01)1%(02)].
01,02€ P (w)

In order to facilitate the of use Mecke’s multivariate equation (Proposition 3.8) we set

¢=o01Noy and ¢ =o0; ~¢ fori=1,2.

By removing the constraint that u < q on ¢;, i = 1,2, we obtain

(4.9) E [(é’g"q‘l)?} < JE[ Z w(s1 Uw(sa Ug)ly, (g)] )

61,52,6€ P (w) disjoints
Now we can apply Proposition 3.8. To do so, we split the sum according to the
cardinality of ¢ (= {(t;, z;, u;)}), and also according to the number of points in ¢
and ¢y in each of the intervals (¢;—1,%;), @ € [1,m + 1] (to = 0 t;m41 = 1). After
factorizing we obtain that the r.h.s. in (4.9) is equal to

(410) Z/ / / 5mH“32,&a((ti—1vxi—1),(%%‘))2
0<t; < <tm<l J(REH™ J[a,q)™ .

m2=0 i=1

</]Rd 28,0 ((tms Tm), (1, x))dx)2 ﬁdti dx; AM(duy),

where 2 4 ((t, x), (', 2 )) is the expected value of the point-to-point partition function
for the polymer in the environment w(®_ With the convention sy = t, ser1 =t and
Yo = X, Yeyr1 = ', it is given by

(411)  zz4((t, ), (', 2')) 1= e Pra®=D) [pt/t(ac' — )

+;ﬁf/

t<s1 < <o <t/

41 ¢
/ / Hpsrs, (5 = yi1) [ dsj dy; vi(doy) |
Rd)l’ a OO)[ j=1
To see that (4.10) holds, observe that expanding all the products we obtain a sum
1) 42 (

over the indices m (standing for the number of points in ) and ¢; we need
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two indices to expand Z%a) which stands for the number of points of ¢; and ¢ in
the time interval (¢;_1,t;) (the term py_(2’ — 2) in (4.11) corresponding to £ = 0).
The expression of z5 ,((¢,z), (', 2’)) simplifies after integration over all intermediate
variables

2.a((t,2), (¥, 2"))

SS)
, " t =) ,
_ e—B/—ca(t _t)pt’—t(xl _ .23) 2 : [/8(’% + u’)( )] — eB,u(t —t)

7 pr—t(z" — ).

£=0

Reinjecting this into (4.10) and performing the integral over u; € (0,q) instead of

[a, ) — this yields an upper bound which is uniform in @ —, we obtain that
(4.12) E [(5’?;)2} < Z (5625”‘/,1)7”/ o(t, x)?dx dt,
’ m>0 xm x (Rd)m

where we also used that ( [p.01-¢,, (=2, )dz)? =1, and defined V, := f(o q)vz)\(dv) <00
(recall (2.10)). Now using the definition (1.10) of pi(x), we have

(4.13) /R (pula) ke = 2 )2

Hence, in dimension d = 1 we get that

P00 ,aN\ 2 -1_-1/2p3,28 " 1 L
(4.14) E[(%q)}ggo@ 712 Be2my ) /melm

To conclude, notice that (with the convention ¢, 1 = 1)

Lt Ir(1/2)m+

am:/ Higa’m::/ H = )
m o Vi —ti—1 m o Vbt —ti_1 F((m + 1)/2)

where the last identity is a standard calculation, see e.g. [9, Lem. A.3]. Hence (@ )m>0
decays super-exponentially, so the r.h.s. of (4.14) is finite for every value of q. O

Remark 4.8. — In the case of the point-to-point partition function 23“(t,z), one
uses X\ = D@Pﬂw’[a’b) (t,z) instead of Z;’[a’b) and the representation (3.9) instead
of (3.8) to compute the first an second moment. The proof is carried out in an identical
manner as above, replacing o(t, ) with o(t, x)p;_, (x — x%); whose integral on (R%)*
is py(x). The main difference is in (4.10) where the variable z in 2g 4 ((tm, Tm), (1,2))
is no longer integrated, which leads to having an extra p;_;, (v — x,,)? in the last
integral in (4.12). An easy induction on m yields that

e—llzl?/t
2 [ G =i

This leads us to having a/,, instead of a,, in the series (4.14) (with an extra t™ if ¢t # 1)
and does not change the conclusion.

(4.15) | oo, (o e =
(Rd)m

JE.P.— M., 2022, tome g



THE CONTINUUM DIRECTED POLYMER IN LLEVY NOISE ‘)./|7'

4.4. Proor or Prorosition 4.1 1N pimENsION d > 2. The proof of the previous
section cannot apply to higher dimension. From a purely technical point of view the
reason for this is that the r.h.s. of (4.13) is not integrable in ¢t when d > 2, making
the r.h.s. of (4.14) infinite.

To circumvent this problem we need to refine our selection of trajectories. As the
divergence in (4.13) comes from small values of ¢, we want to add a restriction that
forbids favorable sites to have an abnormaly high concentration in a small time frame.
Our selection scheme presents some formal analogy and was inspired by the multibody
techniques used in [8, 34] in the very different context of disordered pinning models
at marginality.

Fine tuning our parameters, under the assumption (2.10) we find a restriction of
the trajectories based on this idea which allows to apply Proposition 4.6.

Remark 4.9. — An alternative proof of the uniform integrability of Q%’J " for d > 2
was brought to our attention by C. Chong. Once (4.4) has been proved, it is sufficient
to show that
sup E [(%w’[a’q))p} < 00,
a€(0,1]

for some p > 1 (the conclusion of Proposition 4.6 remains valid, using Holder’s inequal-
ity instead of Cauchy—Schwarz). This last bound can be extracted from [45, Th. 1.3.1]
after observing that D@”ﬂw 29 45 the solution at time 1 and coordinate 0 of the sto-
chastic heat equation with initial condition ug = 1. To extend this argument to the
point-to-point partition function, some more care is required since in this case one has
to consider the solution of the SHE with Dirac initial condition (not treated in [45])
but the argument should in principle also work.

However, our argument presents a few advantages. Firstly, it does not rely on any
tool of stochastic integration and only marginally on the properties of the heat-kernel:
it is therefore easily adaptable to the context of other disordered systems presented
in Section 2.5. Also, our proof of Theorem A in [9] relies on a similar strategy and
we believe that the proof in the continuum setup (which is much simpler than that
in the discrete one) could be of use for potential readers of [9].

4.4.1. A finer restriction of the set of trajectories. Let us now consider the restriction
of the partition function to “good trajectories” o. Thanks to assumption (2.10), we can
fix some p € (1,14 2/d) with p < 2 such that f(O,l) vPA(dv) < co. We then fix for the
rest of this section a parameter v > 0 which satisfies
d—2
22-p T p-1
The assumption p € (1,1+ 2/d) entails that v = d/2 is always a valid choice, but we

d
(ie,v(p—1) <1 and 3 —v(2-p) <1).

prefer to write the two separate conditions we have on v to make the requirements
more transparent. Then, for any ¢ > 1, we define %, as

(4.16) B, = {a € Pw): Yo' Co, [I7huh <1 I (1) - t;_l)v},
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where t' and v’ is used to denote the coordinates of time ordered points in ¢’ (with
ty = 0 by convention). We set in this section.

250 =Y wap(o)ls,(0).
ceP(w)

Note that o € %, implies in particular that u; < g for ¢ € [1, |o|] and hence 5’;"(’1‘1 <

fg)’[a’q). Now, Theorem 2.1 is a consequence of Propositions 4.10 and 4.11 below

(which allow to control respectively the first and second moment of é’? (’Ja) and of
Proposition 4.6.

Prorosirion 4.10. — Assuming that v < 1/(p — 1) we have

lim sup IE“%‘”’“ - 3’?;’;‘] =0.

470 4€(0,1]
Prorosition 4.11. — Assuming that v > (d — 2)/2(2 — p), for every g = 1 we have

sup E[(é’?q@)ﬂ < oo.
a€(0,1]

The proof of Propositions 4.10 and 4.11 are technically more involved than that of
Proposition 4.7. This is in particular because the restriction %, produces an integral
that does not factorize as well as the one obtained when only .27, is considered. We first
need to introduce some technical bounds on some type of multivariate integrals which
appear in our first and second moment computations respectively.

4.4.2. Technical preliminaries: an upper bound on multivariate integrals. The follow-
ing upper bounds are the key ingredients in the proof of Proposition 4.10 and 4.11
as they allow to control the multivariate integrals produced by the application of
Mecke’s multivariate equation (Proposition 3.8).

Lemma 4.12. Assume that f(o 1 VPA(dv) < oo for some p € (1,2) and also that
f[lm) vA(dv) <oo. Then for any g1 there is a constant cq, satisfying limg_,o c¢g=0,
such that for every m > 1 and every h € (0,1), we have

1 (Cq)mhlip m—1
. 7 7 g - m .
(4.17) /(O}q)m 1{1_[}”:1 ujzhqm iI:Ilu Aldu;) p—1 (m—1)! [log(2™/h)]

In particular, for any 0 < e < 1, we have

m

1 (fgacq/s)m L
. /(| Im m Ui)\ dui < =~ 4 7 h —p_s.
( ) (0,9)™ { Jj=1 u;>hq } Z1:[1 ( )

Leywva 4.13. Assume that f(o 1 vPA(dv) < oo for some p € (1,2). Then for any
q > 1 there is a constant C, such that for every m > 1 and every h € (0,1), we have

m m _ Y
(4.19) /(0 )}L{H’-’il u; <hqgm H u?)\(dui) < h2—P(Cq)mZ ((QTn—p)f)' [log(l/h)]mil.
4 7= i=1 =1
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In particular, for any 0 < & < 2 — p, we have

. )\ d i < (7 h2 p_g.
( ) /(O’q)m { ;77;1 legh(]m} J |1 Ul ( u ) q

For both lemmas, the idea is to compare the integrals with some integrals with
respect to the Lebesgue measure: we postpone to the Appendix the proof of the two
following claims (presented as Propositions C.1 and C.2 respectively).

Cramv 1. — Under the assumptions of Lemma 4.12, there exists a constant cq satis-
Jying limy 00 cgq* =P = 0 such that

. . m P .
(421) /(O,q)ml{ny;luj>hqm}i1;[1“l)‘(d“l><(6q> /(O,Qq),}{ng';lwhqm}gui dus.

Cramv 2. Under the assumptions of Lemma 4.13, there exists a constant C; such
that

m m
4.22 1 w2\ (du;) < (C m/ 1, ur Pdug.
(4.22) /(){H ARG AT IRY | el

Proofof Lemma 4.12. — Thanks to (4.21), we only have to prove that for any he (0, 1)

m
— hlip q(lfp)m 1
4.23 1 “Pdu, <2 4 om /1,
) /<0,2q>m (I wzhar Eu WS ST (m oy Los@" /)]

and then set ¢4 := ¢ q'~P (which satisfies lim, 0 ¢ = 0). First of all, notice that by
a change of variable v = u/2q it is sufficient to prove (4.23) only in the case ¢ = 1/2.
We set, for all h € (0,1),

k
h) = (p—1)hP~! 1 ; Pdu,
pr(h) = (p— 1) /() Y |

so to obtain (4.23) with ¢ = 1/2 we need to show that for k& > 1

(4.24) p(h) < (log(1/h)* Yhe (0,1)

1
(k1)
and apply it to 27™h instead of h. By a direct calculation, we have p; (h)=1 — h?~1 <1
for all h € (0,1), which gives the result for £ = 1. Then we can proceed by induction.
Integrating with respect to the value of w; and using the change of variable v =
log(uy/h), we obtain

1

log(1/h)
pry1(h) = hp*l/ u? (hfuy) '™ pr(hfuy) dug :/ pr(e”") do.

h 0
From this and p;(h) < 1 we easily obtain (4.24) by induction.

To obtain (4.18) from (4.17), we just use that et > ﬁ(st)m_l for any t > 0
and any m > 1, by a Taylor expansion: applying this to ¢t = log(2™/h), we get the
bound (4.18). O
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Proofof Lemma 4.13. — Similarly to Lemma 4.12, thanks to (4.22) we only have to
prove

m ) YA

(2
(4.25) /(Oq)i{ml%ghq,,L}Hu “Pdu; < h2P g3 p>m27p€)[log(1/h)]

and then set C, := ¢*>P. Again, by a change of variable it is sufficient to prove (4.25)
only in the case ¢ = 1. We set, for all h € (0, 1),

pk(h) = /0 1)k {H7 1“J<h} Hu du“

and a direct calculation gives that p;(h) = (2—p)~!, which yields the result for m = 1.
For the induction step, decomposing according to whether u; < h or u; > h, we get
that

h 1 1
mﬂ(h):h“[ / ui—pdul( / d) 4 [l ) Bt )y
0 0 h

1 k+1 log(1/h) _
= (ﬂ) —I—/ pr(e”")dv,
0

where we also used a change of variable v = log(uy /h) for the last identity. From this

k

we easily obtain by induction that

k

Z log(l/h))

=1

which is the desired result. Now, to obtain (4.20) from (4.19), we use the inequality
et > (Et)m_z/(m —£)! with t = log(1/h) to get that forany 0 <e <2 —p

m m c Y, - - c I
Z log(l/h)] 2(2 p) eMhTe < mé‘ h™¢.
=1 =1
This concludes the proof of (4.20). O

4.4.5. Proof()f'Pmposin'()n 4.10. Note that as we have already proved (4.4) and
since ff; la Qfﬁwqa, it is sufficient to prove that
lim sup E[fépw’[a’q) — f?w’a} =0.
4= 4 (0.1] B B,q
Decomposing over the cardinality of o, using Proposition 3.8 as in (4.6) and integrat-
ing over the space variable (recall (4.7)) we obtain
k

(4.26) E|z50 - égfﬂ = P N g / 10 (t,w) [ [ wir(dus)dt;,

k>0 Xk xla,q)* i=1

where we recall that %, has been defined in (4.16). Here, with some abuse of notation,
we identified ﬁg and its image by the projection (¢, z,u) — (¢, u); note that %, does
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not involve the space variable. To estimate the above integral, we use a union bound
for 14 yo(t,u). When the value of & is fixed we have

1(=ﬁ )G t ’LL Z Z 1{1_[2";1 Ui, 2q™ Hznzl(tie*tiefl)w}.

m=11<i1 < <im <k

With this done, we can perform first the integral with respect to w; and t; for j ¢
{i1,...,4m }: summing over the number of points k; that can be fitted between two
points iy < ig41, we obtain after factorization that the r.h.s. in (4.26) is smaller than

e / / A1
e m m
2 0<ty <<ty <1 J[a,q)m {Im wezem iz (-t

m2>1

XH(Z / / Hu(z du(z t())Huz (du)dt:,
<t{<.. <t(b)<t1+1 [a,q)®

where we used the convention ¢y = 0 and ¢,,+; = 1. Now we can compute explicitly
each term of the product in the second line above (as in (4.8)). Replacing ¢ by oo in
the domain of integration, which yields an upper bound and makes the computation
simpler, we get, recalling that f[a’oo) ul(du) = kg + p,

/ / H“( IAAuP)dL = Blratn) b=t
t1<t(7)< <t(l)<tb+1 la,00)

The product of these terms gives a factor eﬂ (rat1) and we therefore get the inequality

(1.27) E[2510 - 23]

<65“Z/

m>17 X" x[a

{H, L ui>qm H;’;l(ti*ti—l)’y} ]:[1 uA(du;)dt;,

The r.h.s. in (4.27) can be bounded above using Lemma 4.12. More specifically we use
(4.18) to bound the integral over u;, setting a to 0 to obtain an upper bound that
does not depend on a. We fix e small enough so that y(p + e — 1) < 1 (recall that
we have y(p — 1) < 1 by assumption) and by (4.18) we obtain

4.28 / m m ul)\ dul
( ) [a,q)™ {l_[ L Ui =qm Hi:l(ti_tiil)’Y}E ( (> / )m .
Cq/€
< Y ti—ti_ y(1—p—e)
: il_[l( 1)

We therefore obtain that (4.27) is smaller than

(4.29) pe (Bey/e ’”/ Ht gy,

m>1
eBr

_ c F(L—ryp+e-1)™
P n;(ﬁq/e) Lim(l—y(p+e—1))+1)

JIEP. — M., 2022, tome g



259 Q. Bercer & H. Lacoix

where in the last equality we used that v(p + & — 1) < 1. The sum in the r.h.s. of
(4.29) is finite for any value of ¢ > 1, and can be made arbitrarily small by choosing ¢
large (with € and ~y fixed), since Lemma 4.12 ensures that the constant ¢, goes to 0
as g — oo. O

4.4.4. Proof of Proposition 4.11. — We have

E[(é};;)?}:E{ S was(00)was(02) 1, (01) 15, (03)]

01,026 P (w)

We use again the notation ¢ = o1 Noy and ¢; = g; N ¢. Let us relax the condition
01,09 € %, to obtain something which is easier to handle in the computation. For-
mally the divergence of the second moment of the (unrestricted) partition is obtained
when integrating the contribution of the environment at the points in the replica in-
tersection o No9, hence we should not be losing too much if we restrict our constraint
to ¢. With this in mind, we set

.@q = {§ = (ti,l‘i,ui)L<2|1 © max u; < ¢, Hui < q|§| H(ti — ti_l)’y}.

1<igq]

and observe that

B[] <B| X wasaUdunataUsis, @)

§1,52,6€ P (w) disjoints

Using again Proposition 3.8 as in (4.10) and using (4.11) to integrate over all the
variables associated with & and &, we obtain

(4.30) E > wa,5(51 U ) wa,s(s2 U)o, (<)}

$1,62,6€ P (w) disjoints

= 37 (g2 / 1, (£, 2, w)o(t, 2)? T u2A(dus)dt; da.

>0 xm x (R4)™ x [a,00)™ =1

Now integrating over  and using (4.13), we obtain that the r.h.s. above is equal to

431) Y (%)m

20 " dt
1 L W2A(duy).
xmx[a,q)™ {Hllluigqm Hﬁl(ti—ti*)v} Zl;[l (t; —tim1)¥2 " (dus)
To estimate the integral over uq, . .., U, we use (4.20) in Lemma 4.13. We integrate

over (0,q) to get an upper bound which is uniform in a. We fix € such that % - (2-
p—e)y <1 (recall that ¢ — (2 — p)y < 1 by assumption) and by (4.20) we obtain

(Cy/a)™ s

1 2A(duy) < =T ts —t;1) @ P9,
/[a,q)’" {Hflluigqmnill(tf“*)v}il;[luz () 2_p—€i1;[1( 1)
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Reinjected in (4.31), this yields
g 9—dpr—d/23.8n m m )
(4.32) E[(%‘f;]‘l)ﬂ < Z (274w BePrC, [e) / dt;
xntl

- .
m>0 2-p-¢ o (ti— b)) 2 Gy

To conclude we just need to show that the above sum is finite. To check this, we
simply observe that, thanks to the fact that % —5(2 —p—¢) <1, the integral in ¢ is

equal to
Q- (2-p—g)y+d/2)"

Tm[l—2—-p—e)y+d/2]+1)’
and that the corresponding series in m has an infinite radius of convergence. O

Remark 4.14. — For the proof of Propositions 4.10-4.11 in the case of the point-to-
point partition function .,@”Bw’“(t, x), we need to slightly change the definition of %, to
take care of the end point, setting

’ / "|+1
B, = {a € P(w): Vo' Co, [II7h ) < g1 T e, —t;.,m},

with the convention that tia,‘ 41
additional term p;(x) in (4.26), coming from the integration of (¢, €)p;—_¢, (x—x)) over
the space variable, but the main difference comes in (4.28) when applying Lemma 4.12.
The computation in (4.29) is different (we have the integral of H;:{l (ti—t;_q)7—P=e)
over X™ after scaling by t if ¢ # 1) but the conclusion is identical. For the proof of
Proposition 4.11, there is an additional term p; ¢ (x—x,,)? in (4.30). We proceed as in

= t. For the proof of Proposition 4.10, there is an

(4.15) when integrating on z1, . .., 2, and this yields only an extra multiplicative term
Cel=I°/t(¢ — ¢,,)=4/2. Then, the integral in (4.32) is different (we have the integral
of [T (8 — ti_1)~ 2 T7(P=2+2) oyer X™) but this does not change the conclusion.

4.5. FINITENESS OF PARTITION FUNCTIONS. — We are going to prove here simultaneously
Proposition 2.5, the first part of Proposition 2.20, (2.18) and Proposition 2.24. Note
that the fact that QFB“’ " and other partition functions are positive is a direct conse-
quence of the rewriting given in (3.8). It remains to prove that under assumption (2.9)
they are almost surely finite. This is the following statement.

Prorosition 4.15. If (2.9) is satisfied, then for every wg satisfying (2.25) (with
T = 1) we have for any t € [0,1], almost surely

/ 25 (t, ) uo| (dw) < oo.

Rd

In particular the cases ug = 6, and ug(dz) = dx respectively give
(4.33) 25t x) <oo  and 2" < oo.

Remark 4.16. — Proposition 2.5 and (2.18) are direct consequences of (4.33). Propo-
sition 2.24 also follows by observing that by time reversal and translation invariance
we have the following identity in distribution

| 20w tauolan) @ [ 25— oyuolay

and thus we just need to apply the result to ug translated by x.
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Proof of Proposition 4.15. — For o = (ti,xi,ui)gl € P (w) (with t; < 1), we define

o]
lzs — zi-1])?
H(o):= Z ————— and G(o):= Zlog(ui).
= ti—tia P
The quantity H (o) and G(o) corresponds roughly to the cost and gains at the expo-
nential level to visit all the points in o. We refer to H (o) as the entropy of the path.
Our statement is an almost direct consequence of the following lemma.

Lemma 4.17. — If (2.9) holds, for any fized € > 0, we have almost surely

I (w) :== sup {G(a) - EH(cr)} < 0.
o€ P (w) 2
We postpone the proof of this lemma and first deduce the proposition from it. Using
the representation (3.8) of the partition function (recall that w(®) denote the set of
points in the environment with jump size larger than a) and applying Lemma 4.17,
we can write for ¢t < 1

eﬂma%w’a(ta .’E) = Z ﬁ‘g‘eG(U)Q(taw)pt*tk (ZL’ - ‘rk)

ae@[o,t](w<a)) ‘o"

< Z 5‘0|6§+%H(J) H o(t, @) pr—y, (x — x1)

Proay(w@) i=1
9] o~ (1=e)llzs—ai—a |2 /2(ti—ti-1)

8 o]
=e7 Z (m) Pt—ty (T — T) H /2’

o€ Pl (w(@) =1 (2n(ti —tic1)/(1—¢))

so that setting ¥ = ¥(g) := (1 — &) ~! and assuming that ¢ < 1/2

e_yi‘%w’a(t, z) < e Pra Z (29281l o (9, )9 2 pys 1, ) (@ — a,).
ae(@[oyt](w@l))

By Mecke’s formula (Proposition 3.8) we conclude that

(4.34) E[e—? ) Qfﬁw’a(t,x)uo(dx)} < 24/2P12%/A([a.00)) k] / par()uo(de).
R,

R4
Using assumption (2.25) on ug and fixing € sufficiently small (i.e., ¥ close enough to 1)
so that py:(z) is integrable w.r.t. |ug| (recall t < T = 1), we get that (4.34) is finite.
This proves that [, 23" (t, z)ug(dz) < 0o almost surely thanks to Lemma 4.17. [

Proofof Lemma 4.17. — First of all, notice that if o = (¢;, x;, ul)‘l‘;ll has a point with
u; < 1, then by removing this point from o we obtain a set ¢’ with (strictly) smaller
entropy H(c') < H(o) and (strictly) higher energy G(¢’) > G(0). In the supremum,
we therefore can restrict ourselves to points (t,z,v) € w with v > 1. Let us now
separate points according to the size of their jump. For each k£ > 1 we define

Wy 1= {(t,a:,v) €w:t€l0,1] and logv € [ekil,ek)},
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and we let 7(wy) be its projection on the first two coordinates. Note that the 7(wg)’s
are independent Poisson processes on [0, 1] x R? with respective intensity \ydt ® dz,
where

Ak 1= )\([exp(ekfl),exp(ek))).
One can then easily see that our assumption (2.9) is equivalent to having
(4.35) Z Mpe®/? < 0.
k1

Our proof is based on the following statement, proved below.

Levva 4.18. — Fiz 0 € (1,14 1/d) and let K > 0 be arbitrary. Let Ay be the event
that there exists a path of n points in wy, whose entropy is smaller than Kn’e*, i.e.,

App = U {H(0) < Kngek}.
o€ P(wi), |o|=n

Then, assuming (2.9), we have >,  P(Ayn) < co.

Given o, we let ng (o) denote the number of points that the path displays in wy.
We have

G(o) < eFni(o).
k=1

We let ko(w), no(w) be such that Agyn holds for every k > ko (for every n), and for
every n > ng (for every k). For every k, we have
k(o) < (K™ H(o)e ™) + nol ko)

where we have used that H(c) > H(oy), with o5, € Z(wy) the set obtained by
removing all points in o which are not in wy. In particular, we have ni(c) = 0 for
k > 1+ max(kg,log(K~1H(c))). This yields

ko llog(K ~* H(0))]
G(O’) < Zekno + (Kle(O_))l/O Z ek(eq)/e
k=1 k=0

<COw)+ (1 — =N K=1H(5).

Since K is arbitrary, fixing K > (2/e)(1 — e'=9/9)=1 yields that G(0) < C(w) +
(e/2)H (o) almost surely, which concludes the proof. O

Proof of Lemma 4.18. — Let us start with the case n = 1. Using that H (o) > ||=|? if
o = (t,z,v) is reduced to one point (recall ¢ < 1), we get that
A U A{llz]? < Ke';
(t,z,v)Ewy

in other words, if Ay, ; is satisfied then there is a point in wy, within a distance v/ Kek/2

from the origin. The probability of A, is therefore smaller than a constant times
K/2ekd/2)\; and this is summable over k thanks to (4.35). The case n = 2 can be
treated similarly.
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When n > 3, let 0 = (t;, 2, u;)7-; be a path of points in wy, satisfying our event,
ie., H(o) < Kneek. We make the two following claims.

Cram 1. The path cannot venture too far:
(4.36) max_||z;]| < VEn/2ek/2,
i€[1,n]
Cramvm 2. — There are three consecutive points in our path in a relatively small cylin-
der: there exists i € [1,n — 2] satisfying
4 16Knfe*
(437) tiyo —t; < m and ||$i+1 - xl||2 + ||.Z‘i+2 - J,‘,‘_1||2 < m

Before proving the two claims (4.36)—(4.37), let us use them to conclude the proof
of Lemma 4.18. We can cover [0, 1] x [—vEKn?/2e¥/2 \/Knf/2e#/2)4 with a collection
of Crxn't¢ overlapping cylinders (of the type [t,t + —25] x [z,2 + =25 \Fna/Qek/Q]d
for a collections of #’s distant by — and of z’s dlstant by — 4 \ﬁ ne/ 2ek/ 2). Thanks
to the above claims, if Ay, is Satlsﬁed then there exists some path ¢ € Z(w) of
length n satisfying (4.36)—(4.37), meaning that at least one of the constructed cylin-
ders contains three points in 7 (wy). By a union bound, since each cylinder is of area
bounded by C-n(?/2)0=(d+1)ekd/2 e therefore get that

P(Aj.) < Crnt? x (C}(n(d/2)9—(d+1)ekd/2>\k)3 <cn (Akekd/Q)3n(3d/2)9—2(d+1).

We conclude simply by observing that this upper bound is summable over k and n,
thanks to (4.35) and since (3d/2)0 — 2(d + 1) < —3(d + 1) thanks to our choice
0<1+1/d.

The first claim (4.36) just follows by observing that the entropy of the path is larger
than ||z;||?/t; > ||z;||* for every i € [1,n]. For the second claim (4.37), we observe
that we have 27"~ *(ti12 — t;) < 2, which means that setting

I:= {Z el,n—2], tiya —t; < 4/(n—2)}7

we have || > . We also have, by definition of I,

Dz —ailP+llzise—zia | <

Z |zit1 — lel Jr||951'+2 — ziqa|? . 8H(0)
i€l zeI tivr =

tiyo —tigr  n—2

Then (4.37) is simply a consequence of the fact that the smallest element of the sum
is smaller than the average and that H (o) < KnPe”. O

4.6. Proor or Lemma 4.3. We now adapt Proposition 4.1 to prove the conver-
gence of 257%(f) and 2”* without the condition f[l 00) vA(dv) < oo, i.e., we prove
Lemma 4.3. Recall the definition (2.26) and set for f € Z

(4.38) 21V (f) =1+ Zﬂ’“ /

xkx(Rd)k

k
otz f) [ eV (dts, day).
i=1
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Note that Proposition 4.1 (or rather Corollary 4.2), applied to the measure A, de-
fined by

(4.39) Ap(A4) = AM(ANJ0,b))
automatically yields the following convergence of Q‘”Bw"[a’b)( 1)

CororLrary 4.19. — Under the assumption (2.10), for any f € B and any fized b > 1
we have that (2°*1:) (f))ae(,1] 8 a uniformly integrable time-reversed martingale.
Hence the following convergence therefore holds almost surely and in Ly :

lim gw,[a,b) (,f) —. %w7[07b)(f)-

a—0

Note also that we have E[Z<[@0)(f)] = P Q(f) for all a € (0,1), with py :=
f[l,b) vA(dv).

We now prove the convergence of QFB‘” ““(f) for f € Bp. Repeating the argument
from the proof of Proposition 3.1, there exists bg(w, f) such that for b > by, we have
25(f) = Qﬁ”ﬁ“”[a’b)(f) for every a € (0,1]. Thus we have, from Corollary 4.19,

. w,a ,[0,b
lim 257°(f) = 250" (f).

a—0

It only remains to prove that lim, . %w,a( f) exists and is finite for f € % when
(2.9) also holds. We focus on the case f = 1 for simplicity but the argument adapts
immediately to the case of non-negative bounded f, so there is no loss of generality.
The convergence of ﬁfﬂ“”“ is a consequence of the following statement, valid for any
e >0,

(4.40) lim IF’( sup (25" — f;’[a’b)) > 5) =0.

b=oo N\ae(0,1]
Indeed, by monotonicity in b (cf. Lemma 3.3) we have for every b € (1, c0),
P w,a w,[0,b)
han Jélf ffﬁ > ffB .
Thus to ensure that %“”a converges to limp_, o Q%w [00) and that the latter is finite,

the only thing that needs be proved is that for every € > 0, there almost surely exists
bo(w, &) such that

(4.41) limsup 257 < 25700 4 e,

a—0

Since sup,e(o,1)(Z5"" — %w’[a’b)) is non-increasing in b, (4.40) implies that

4.42 lim sup (29— @by — 0 Pas,
( ) b—>°°ae(0,1]( A s )

and this readily implies that (4.41) holds for some large by.
To prove (4.40), we observe that the process {& A (.,@”Bw’[a’b )_ Q‘”ﬁw’[a’b)) ra€(0,1]}
is a time-reversed positive (for ¥’ > b > 1) super-martingale, thanks to Lemma 3.5.
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Using Doob’s maximal inequality we thus obtain that for any fixed &’ > b > 1

w,|a / w, | a 1 w / w
B sup (25" — 25Y) > o) < ZE[(251) - 25 ne.

a€(0,1]

Sending b’ to infinity on both sides and noting that 23" = limy e Qfﬁw’[a’b/) by
monotone convergence (see Lemma 3.3), we obtain
w, | a 1 w w
(4.43) P(sup (25— 25" > ) < ZE[(25 - 25MY) nel,
a€(0,1] €
The right-hand side goes to zero by dominated convergence, thanks to Proposition 2.5,
using again that %w’l = limp_, 00 Q”;’[l’b). O

4.7. Armost sure posiTivity oF Z5°(f). — In this section, we prove Proposition 4.4.
Let f € %, be non-negative and such that Q(f) > 0. Recall the definitions (2.26)
and (4.38) of the truncated noise and of the corresponding partition function. We are
going to show first that the positivity of %w’[o’b)( f) does not depend on the value
of b, for any 0 < b < b’ < 1.

(4.44) P({fg”[o’b)(f) >0}z (1) > o}) —0.

where A stands for the symmetric difference (in other words the events are equal in
the L; sense and in particular have the same probability). Applying Lemma 3.3 to
the measure A, (recall (4.39)) we obtain that

il

%wy[a’b)(f)ze_ﬂ(%_m Z ﬂ‘alg(tw,f)Huil{uie[a,b)}-
=1

cEP(w)
This last expression implies that for every a < b < b we have almost surely
(4.45) ) 2 eI 20 (f) 3 e 20 ),
and taking the limit when a tends to zero we obtain

25 (f) 2 e Pz 00 (f) > e 20 ),
This yields

P({25°(5) > 0} < {257 (5) > 0}) =0

On the other hand, the same argument as in Lemma 3.5 yields that (Qi;‘)’[a’b) (fNbeta
is a martingale (in b) for the filtration 4, defined by

4, = o ({(t,z,v) €w:v <b}).

Taking a to zero in the conditional expectation (using uniform integrability cf. Corol-
lary 4.19) we obtain that for 1 > b > b

E[2;"0 () [ 4] = 250 (),
which yields the second inclusion of (4.44)

P({25°0(5) > 0}~ {25 (1) > 0}) =00
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Now let us fix a decreasing sequence b,, € (0,1] with b, | 0 and consider the event
A(f) = Nmso Un>m{%w’[0’b")(f) > 0}. An immediate consequence of (4.44) is that

P(2; O (f) > 0) = PIA(f)).

Now A(f) is measurable with respect to the o-algebra % := (),5,%, . There-
fore, by Kolmogorov’s 0—1 law, it has probability either 0 or 1; indeed, for any
n > 1, % is independent of .7, = o({(t,z,v) € w: v = b,}): since A € % and
A € 0(U,>0 Pb,), we get that A is independent of itself. From Corollary 4.19 the

martingale (27 ’[a’l))ae(oyll is uniformly integrable and thus

E[Zy "V ()] = Q(f) > 0.

Combining these two facts we obtain that necessarily IP’(D@"; ’[0’1)( f) > 0) = 1, which
concludes the proof using (4.45). O

Remark 4.20. — The proofs in Section 4.6-4.7 apply verbatim to the point-to-point
partition function. They give that for any (¢, z) € R*. xR% we have the a.s. convergence
lim, 0 257%(t, ) = 24 (t, @), with Z5(t, z) positive and finite almost surely.

4.8. Proor or Prorosition 4.5. We now show that (Qj5“)ac (0,17 is tight. We need
to find a sequence of compact sets J#x such that almost surely

lim sup Q9%(#L) =o0.
N—=004e(0,1] A S

Since %“”a converges to a positive limit, this is of course equivalent to proving

4.46 lim sup 25%(1,c)=0.
( ) N_)OOQE(O,l] A ( %N)

In the case p := f[l 2oy VA(dV) < 00, since E[Z5“(14)] = ’#Q(A), using Doob’s
maximal inequality we have
1
IP( sup 2571 ¢ 26) < - ePrQlurt].
a€(0,1] p %N) € [ N}

It is then easy to show that (4.46) holds for an arbitrary increasing sequence of
compacts satisfying limy_,o Q[#n] = 1 (using the monotonicity of f — Qfﬁ‘”’a(f)7
cf. Lemma 3.3). For instance one can take

Hn = {cp € Co([0,1]) : |@(t) — (s)| < N|t — s|*/* Vs,t € [0, 1}}
In the case f[l 00) vA(dv) = oo, we proceed analogously with the truncated partition

function ffg’[a’b). We obtain that for any b > 0,

lim sup gelad gy =o.
N—>ooae(0,1] p (XN)

We then conclude using (4.42), to get that a.s.

lim sup sup (Qf‘“’a(l o) — Fleb (g c)) < lim sup (wa’a - Qf‘”’[a’b)> =0.
b—00 4€(0,1] NEN g N p N b—00 4¢(0,1] g p 0
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5. DEGENERACY OF THE PARTITION FUNCTION: PRoPOSITIONS 2.6 AND 2.12

5.1. Proor or Prorosition 2.6. — Let us assume that f[lm)(log v)42\(dv) = oo and
show that the partition function %w’a is a.s. infinite. We use the representation (3.8).
Keeping only paths ¢ with cardinality one in the sum and keeping only those with
t € [1/2,1] we have

e~ B¥a

%w,a > e Pra Z pt(x)v > W Z Uefﬂwlb'

(t,z,v)Ewl® (t,z,v)Ew@) [ t>1/2

Hence to conclude it is sufficient to show that almost surely

sup {logv — ||z[|*} = oo.
(t,z,v)Ew:te[1/2,1]

For this it is sufficient to check that almost surely, the event A; defined by
Aj={3tz,v)ew:te 3 1], [lz]e € [277,27), logv > 471}

is satisfied for infinitely many j. By Borel-Cantelli, since the A; are by construc-
tion independent it suffices to show that Zjoil P(A;) = co. The number of points
(t,z,v) € w such that ¢t € [5,1], [[#] € [2771,27) and logv > 497! is a Poisson
random variable with mean

Aj = %de(l — 279 A(fexp(47T1), 00)).

Hence we have P(4;) = 1 — e~ and we simply need to show that 3>, A; = oo.
But this is a direct consequence of our assumption f[l O(J)(log 0)¥2\(dv) = oo since

0o exp(4j+2 _ 9 00
(logv)*2\(dv) < / @HH2)\(dv) € ——=—41) "\, O

/[mo) ; exp(49+1) 127 ;
5.2. Proor or Prorosition 2.12. — Since the use of the size-biased measure is at the

heart of our proof we are going first to assume that p := f[l,oo) vA(v)dv < oo, in order
to be able to use Lemma 3.7. At the end of the proof we explain how to deal with the
case {1 = 00.

Note that ng "* converges almost surely, as a consequence of the martingale prop-
erty: we only need to prove that it converges to zero in probability. Since ?g’a =
6’5“9,"6‘” "* is a positive variable with mean 1 it is sufficient to identify a sequence of
events J, such that

iig(l)E[?‘;’“ha] =0 and limP(J,) =1,
as it implies that ?Z’al J, and thus Q”B‘” "* converge to zero in probability. This is
equivalent to proving that the total variation distance between the two measures P
and ﬁ)g goes to 1. That is, according to Lemma 3.7, we need to prove that

(5.1) lim [[P(we) - QRERE, (@ ¢- L.
a—

)HTV -
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Our proof’s strategy relies on finding a statistic that helps to distinguish between w
and @ for most realizations of the Brownian trajectory. More precisely, we use the
second moment method. We are going to define a functional Y, (w) which satisfies

(Q®E®E, [Ya@) ~E[Y.w))’

(5:2) a0 Varp (Y, (w)) + Varqersee, (Ya(w)) a

The above implies that asymptotically Y, (&) and Y, (w) concentrate around different
values and thus that (5.1) holds (see [42, Prop. 7.12] for a quantitative statement and
its proof). We treat separately the cases d > 3, d = 1 and d = 2, in that order.

5.21. Thecase d > 3. — We assume that f(o 1 v1+2/4)\(dv) = +o00. In order to find
a statistic that allows us to distinguish between P and ]I~”a, the idea here is to find a

region of R x R% x R, where Iﬁ’% displays significantly more points than P. We consider
a sequence R, going (slowly) to infinity (we set its value later on) and we set

Ya(w) = #{(t.2.0) € w ¢ alloe < RavE, u> (av197%) ).

Under P, Y, is a Poisson variable with mean given by

1

E [V, (w)] := (2Ra)d/ 42X\ (Ja v 1772, 00)) dt.
0

Note that our assumption on A readily implies that fol t42)\(JaVt?? o0))dt and hence

E [Ya(w)] go to infinity as a | 0. On the other hand, conditionally on (B;):e[o,1), under

P ® P/, we have that Y, (@) is a Poisson random variable with mean

(5.3) E @ E. [Y,(@)] = (2R,)* /01 2\ ([a v t42,00))dt + B L,

where we have set

1
Za ::/ 1 / vA(dv)dt.
o UBSRavi} (avt4/2 o0)

Before averaging with respect to the Brownian motion, since R, tends to infin-
ity, notice that we can almost replace 148, 1<r.vi} by 1, so Z, is close to m, =
fol Jiaviarz ooy VA(dv)dt. With this in mind (and the fact that the variance of a Pois-
son variable is equal to its expectation), the important part that has to be checked
for (5.2) to hold is that

2
(5.4) lim T Tq = 0.
a0 (Ry)? [ t42X([a Vv t4/2, 00))dt
Since
1 1
Mg = / / vA(dv)dt > / t72X(Ja v 192, 00)) dt
0 J[aVvti/2 00) 0
and

1
/ t2\([t¥2, 00)) dt = 400
0
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by assumption, the condition (5.4) is satisfied as long as R, diverges slowly enough.
We can choose for instance

R, = </1 t72\([a v Y2, oo))dt>

0

1/2d

Now that all the notation have been set, let us complete the proof of (5.2). Setting
da := Q (|B1| € R,), we have by that Brownian scaling that

- - o / /Wm A(dv)dt = gama,
Varq (Za) = Q(Z, 35”)2 (1—g2)ymj.
As a consequence, recalling (5.3), we have that
QE®E, [Yo(®)] - E[Ya(w)] = Bga ma.
We also have

VarQ®]p>®P; [Ya (@)] =Q (Val‘]p@pwu (Ya (@)) + BQVarQ (%a)
1
< (2Ra)d/ 172X ([a v #972, 00))dt + Bgama + (1 — g2)m?.
0

Now we can conclude that (5.2) holds, simply by using (5.4) and the fact that ¢,
tends to 1 as a | 0 (using also that m, = o(m?2) since m, goes to o). O

5.2.2. The case d =1. — We assume that f(o 1 v2\(dv) = oco. In this case we set
Yo(w) := Z Ul{ue[a 1), t€[0,1], ||z]lco <Ra}
(t,z,v)Ew

where again R, is a sequence going to infinity sufficiently slowly (it is chosen below).
Then, we have

E[Y,(w)] = 2R, vA(dv),  Var(Y,(w)) = 2R, V2 (dv).
la,1) la,1)
Additionally, setting this time ¢, := fol Q (|B:| < R,) dt we have
QRE®E,[Y,(@)] = 2R, / vA(dv) + By, / v2\(dv),
la,1) la,1)
and using a variant of the argument used in (5.5)
VarQ®]p®M [Ya(c’\u)}

< 2R, /[a,l) VI (dv) + Bqa/ V3A(dv) + B2(1 — ¢2) (/[a,1> UB/\(dU))2

[a;1)

< (2Ra + Ba) /

[a,1)

V2A(dv) + B2(1 — qi)(/[a ) UQ)\(dU)>27

where we simply used that v < 1 for the second inequality. Now, since ¢, goes to 1
as a } 0, to conclude that (5.2) holds it is sufficient to have R, = o(f[a 1 v\ (dv))

which can be obtained by setting R, = (f[a 1 U2A(dv))1/2. O
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5.2.3. The case d = 2. — We assume that f(O,l) v?]log v|A(dv) = oco. In this case we
define
v
Y, = —1
a) 2 tV o {velan), te0,1], 2] <RavE}’

(t,z,v)Ew

where R, goes to infinity slowly enough (it is chosen below). In that case, we have

E[Y,(w)] = (2R,) /al/—dt/\dv)

Var(Ya(w))—(2Ra)2/[ 1)/0 mdt)\(dv).

Now with ¢, := Q (| B1]| < R,) we have,

QOE®E,[Y,(®)] == (2R.) / /—dt/\dv +qaﬁ/[ )/
al a,l

Using again a variant of (5.5) to bound the variance from above we obtain
V / (2R,) 5 dtA(d
arqerer, [Yal /[ ) / T A A

1 2 2
2 2 v
+qaﬂ/[a71)/0 mdt}\(dv)"_ﬁ (1 —(Ia) /[a71)/0 Vo th(d’U)) .

To conclude we need to check that (5.2) holds. It is not difficult to show that the
second and third term appearing in the variance of Y, (@) can be neglected (recall
that ¢, goes to 1) and hence to conclude one only needs to ensure that

(f[a 1) f Vo dt)‘ dU))

)-

lim b = 00.

o fa 1) fo (t\/U)2 dt A(dv)
Now this can be done by setting R, = (f[a 1 v?|log v|dv)/* since both integrals in
the numerator and the denominator are comparable to f[a 1 v?|log v|dv. ]

5.2.4. Conclusion of the proof of Proposition 2.12. — When f[l,oc) vA(v)dv < oo,
we have shown that if (2.14) is not satisfied, then lim, g %w’a = 0 almost surely.
If f € B, simply using that | 257 (f)] < || flleo 25" gives us lim,—0 257(f) = 0.

Let us now turn to the case f[l,oo) vA(v)dv = oo,. For f € %, we can replace
the noise fﬁ,a) by a truncated one &[f’b) (recall (2.26)), like in the proof of Proposi-
tion 3.1, using that f has a bounded support. We therefore conclude that we also
have lim,—0 257%(f) = 0.

It remains to show that if (2.9) holds, then we also have lim,—o 23" = 0 as.
We set

f”(B) = l{maxte[ovl] |B|<n} and ?n =1- fa
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We have for any n lim,_ g;’a(fn) = 0 a.s. and we can thus conclude if we prove
that

(5.6) lim sup Qfé‘ja(?n) =0

n— oo ae(071]

Using Doob’s maximal inequality for the super-martingale (%w’[a’b) (f.) A €)ac(0,1]>
we get

w,|a,b) /7 1 w,[1,0) ¢

P(sup 2510 (F,) > ¢) < EE[% LOF Y el
a€(0,1]

Taking b to infinity on both sides we get

P( sup 25°(F,) > ) <
a€(0,1]

M| =

E[25 (f,) Ael,
which proves (5.6) by dominated convergence, thanks to Proposition 2.5. O

6. PROPERTIES OF THE CONTINUUM DIRECTED POLYMER IN IﬂfVY NOISE

In this section, we prove various properties of the measure Qg constructed in
Theorem 2.8. We always suppose that Assumptions (2.9)—(2.10) are satisfied.

6.1. Proor or Prorosrrion 2.16. The proof is based on the following technical
result.

Lemma 6.1. — For any fized f € 2B we have almost surely

(6.1) Q75(f) = lim Q75(f).

Let us briefly comment on the result above before we present its proof. Lemma 4.3
and Proposition 4.4 ensure that Q;%( f) converges a.s. as a quotient: for any f € %,
we have almost surely

gw
(5:2) tin Q5 = 522

What requires a proof is that for a fixed f € Z we almost surely have

(6.3) 2r5(f) = 275Q7 5(f) = Z7 5(f)-

This is a non trivial statement since the two terms correspond to different definitions:
Q‘{,iﬁ(f) is the expectation of f with respect to the weak limit of Q;‘é The definition
of weak convergence only implies that (6.3) holds when f € .

Note also here that the position of quantifiers is important. The convergence (6.1)
holds with probability one, simultaneously for every f € €, but not necessarily simul-
taneously for all bounded measurable functions. The latter statement would corre-
spond to convergence in total variation and does not hold when f(O,l) vA(dv) = oo
(see Remark 2.19).
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Proof. To prove (6.1), we only need to verify that for any fixed measurable bounded
set A, we almost surely have
(6.4) lim Q°(4) = Q5(A).

Indeed, (6.4) implies that (6.1) is satisfied for non-negative simple functions with
bounded support. Then given a non-negative f € %, consider a non-negative sequence
of simple functions with bounded support (fy,)n>1 which is such that f,, 1 f. Using
monotone convergence, we have for every m > 1

Po) i Q() = tim Tim QS(f) > lim Q3 (i) = Q).

QO,IUJ)B a—0 a—0 n—o0

Letting m — oo and using monotone convergence again, we get Zp4(f) >
27 5Q5(f). Since we also have (for the same reason) Z75(g9) > 27 ;Q%(g) for
9= (Ilfllco = f), we obtain the equality (6.1).

Let us now prove (6.4). Since Q is a regular measure, one can find an increasing
sequence of closed set (AS))@l and a decreasing sequence of bounded open sets
(Ag))n>1 such that
(6.5) vn>1, AV cAcA®, and lim QAP < AM)=0.

n—oo
The inclusions implies that
. w,a (1) . w,a . w,a (2)
ili% Qﬁ (A7) < gg% Q,@ (A) < ili% ng (A7)

Now, by the Portmanteau theorem, we have for every n > 1
lim Q*(ALY) < QE(ALY) < QF(4) < Q5(AP) < lim Q3" (41).
Hence to conclude that lim,—0 Q5“(A) = Q¥ (A), it is sufficient prove that

:0’

(6.6) lim lim QZ’Q(A%Z) <AWM) = (Z5)™ nh_}rrgo 25 (1 4m)

n—o00 a—0

where the first equality is just a consequence of the definitions (see (6.2)). If we assume
that p := f[l 00) vA(dv) < oo, then using successively Fatou’s lemma, Corollary 4.2

and (6.5), we obtain that

B[im 25 (1)) < Jim B[ 25 (L)

n—roo
= lim QAP \ A) =0,

n—oo

proving (6.6). Now if f[l 00) vA(dv) = oo, the previous argument yields that for any b,

lim 250" (1

n—o0 AE?)\ASS)) = 0

Since Ag? ) ~ AS} ) C AgQ) for all n with A§2) bounded, we have that for b sufficiently
large,

22 (Lo u0) = 25710 (1,0 40)

for every n. This allows to conclude that %‘“ (1 goes to 0 also in that case. [

A£?>\A5}))
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Proof'of Proposition 2.16. Given A such that Q(A) =0, we have a.s. Q5“(A4)=0,
for any @ € (0,1]. If 4 < oo, this follows from (3.3). If p = oo, one has a.s.
%;’[“’b)(lA):o, for any b>1: by monotonicity 23"(1.4)=1limp 0 yg’[“’b)(lA):o.
Thus Lemma 6.1 applied to 14 implies that Qg(A) = 0 for almost every w, giving
that P x Q(A) = 0. O

6.2. Proor or Prorosition 2.18. — Let us start with item (i), Q(Hempty(w)) = 1,
which is the easiest statement. For any ¢t > 0 and z € R? we have Q(B; = z) = 0,

hence,
Qo) < Y, QBi=1)=0,
(t,z,v)Ew

Now, to prove item (ii), we notice that when rq := f(o 1 vA(dv) < oo then almost
surely the Qf-probability of an event A is given by

(6.7) QA = 5 O woslor1a),
B oep(w)
where wg g(0,14) is defined as in (3.6) with a = 0. Note that we have wg g(o, f) =
lim,—,0 wq g(0, f) provided that kg < +oo (otherwise lim, o wq g(o, f) = 0). Notice
that the sum in the r.h.s. of (6.7) is finite since, by monotone convergence (note that
ePraw, 5(0,14) is non-increasing in a),
efro wo 3(0,14) = lim eP"e wq 5(0,14) = lim %« 29%(1
U;ﬁ;(w) 0,5(0,14) = lim U;g;(w) a,8(0,14) = lim 5 (1a)
= eﬂﬁogéu(l,q%
the last term being finite thanks to Lemma 4.3. We can then conclude that (6.7) holds
using Lemma 6.1. In particular, from (6.7) we have
e—[fﬁo
7z

For o7, the same argument as in item (i) shows that wg (0,14 ) = 0, since o/
requires that the trajectory visits at least one point outside of o (recall that o is
finite), and hence Qg (%) = 0.

Let us now turn to the more delicate item (iii). Our idea is to find a sequence A,
of sets in Cy([0,1]) which are such that

(6.8) li_>m Q‘g(AE) =0 as. and limsup4,:= () U Am C Hdense-

n=z0mzn

QF (Fempry) = € (0,1).

We will then get that almost surely
Qf (Haense) = Tim Q“g’( U An) =1.

m>=n

By (6.1) the first requirement in (6.8) is equivalent to lim,_,c limg_0o QZ’G(AEL) =0
and thus to

(6.9) lim lim ffﬁw’a(lAE) =0,

n—o0 a—0
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since f»’f@w’a converges to a positive limit and is thus bounded away from 0. The obvious

way to bound Q‘oﬁw (ALY is via the computation of its expectation. For this reason

we first assume that p = f[ 00) vA(dv) < oo. Let us denote z(a, p,w) the maximal

1,
spacing in the times of visit to points in w(®, i.e.,
z(a, p,w) :==sup{s: It € [0,1 — s], Alp,w ) N[t t+ 5] = &},
where we recall that A(p,w) ={t € [0,1] : v > 0, (¢, 0(t),v) € w} (see (2.16)). Let
us also set
an, :=sup{a: kg = n},
which goes to 0 as n tends to infinity. To lighten notation, let us set Ky, 1= K4, = n
and Ry, = p + Kq, - We then define
Ay = {p: 2(an, p,w) < n;l/g}.

and notice that @gense is satisfied as soon as infinitely many A,,’s are satisfied. Now,
from Lemma 3.5 we have that (%w’a(AEL))ae(o,an] is a martingale which is uniformly
integrable: we can therefore extend it at 0. By Markov’s inequality we have

P (lim 257°(4) > n7!) < nE[ 25 (48)].
The 1.h.s. can be computed explicitly: we have (recall to = 0, /541 = 1)
25 (A7) = > Wa, 5(0).
ceP(wlan)), 3ie[0,|o], tit1—t;>rn />

Hence we have

B2 (A%)] < e S (m)* [

71/2}dt.
k=0 x

k& 1{3 i€[0, k] tiv1—ti>ky,

Now, by symmetry (the roles of ¢;11 — t; can be exchanged), we have for any k > 1

— k
(k+1)(1 = ke '/?)
/%,}{az‘e[[o,ku,tmfti><1ogn>2/n}dt S (k+1) /x,}{tkgl,n;”?}dt = i :

Thus, bounding k£ + 1 < 2k for k > 1, we have,
E[ 2% (AD)] < e % (1 4 28R, e () < e 4 28R, e <,

where the last inequality holds for n sufficiently large. We therefore get that for n
sufficiently large

. w( A0 -1 -2
> <
P(il_r&)i‘%(/ln)/n >\n ,

which is summable, so we conclude that (6.9) holds a.s. by Borel-Cantelli lemma.
When f[1 00) vA(dv) = oo, in order to prove (6.9) (for the same A, ), we observe that

w,a; 40 w,a w,[a,b w,[a,b) C
2 (A%) < (25 - 2100) + 25710 (AD),

The second term goes to zero by the above proof and the first one can be made
arbitrarily small by choosing b large, thanks to Proposition 2.5 which ensures that
25" < +oo. O
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6.3. Proor or Prorostrion 2.21. Recall that (see (2.20))
Z5[(t1, 1), (t2, 22)] := lim sup Q‘” “I(t1, z1), (t2, z2)].

a—0

We use a limsup so that the quantity is defined everywhere (which is necessary for
integration). However, as a consequence of Proposition 2.20 (proved in Section 4) and
of translation invariance, for a fixed choice of end points, the lim sup can almost surely
be replaced by a limit, and hence for any fixed 0 < t; < --- <t = 1 and (z1,...,x)

]P(E"L S [[].,k]], D@pﬁw[(tifl,xifl), (tl,xl)] > lltrln_}glf Qfé‘”“[(tiq,xwl), (tl,xl)]> = 0.

Thus, as a consequence of Fubini’s theorem, the set
{1, me) s e[ k], 25 (i1, xima), (ti, )] >li£n_361f 25 (i1, wi1), (tis i)}

has almost surely zero Lebesgue measure. Now, let g be a bounded continuous func-
tion of k variables in R?, satisfying 0 < ¢ < 1. Applying (2.13) with g(p) :=
g(p(t1),...,o(tx)), we have

Qg(g(Btn ceey Btk)) = [11_1’)% Qg’a(g(Btu R Btk))a a.s.
For any a > 0 we have
1 k
Q5“(9(Biy, .., By,)) = W /(Rd)k g(x) H 25 (i1, wio), (Liy )] da.
i=1
To conclude, we only need to show that almost surely
k
6.10 li F tio1,Ti—1), (ts, 5 dz;
6100 Jim [ o(e) [125° (s, () lda
k
= P (tio, i), (b, 2;)]de.
) ) B CRRETE
In particular, taking g = 1, this will give that (recall (3.10))

(6.11) zy —/ d)kHQPB i1, Ti—1), (ts, v5)]da;.
R -

Let us first treat the case f[l 00) vA(dv) < co. In that case we have

k

E “ /(Rd)k g(x) };[1 Qfﬁwva[(ti_l, xi_?’ (ti, z;)] dee
_ / @) _H Z (b1, w01), (b 7)) dm”

k
g/ UHQ"”“ i1, Ti—1), (ti, )] Hfféj i 17%‘—1),(15@,50@)}”(115-
(R‘i)’C
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Now, thanks to Proposition 2.20 and the fact that the product of independent vari-
ables converging in LL; also converges in L1, we have for every z1,...,z; € R?

(6.12) hm]EUnga i1, Ti—1), (ti, )] Hgﬁ i— 1,$i—1)’(ti7$i)]’:| =0.

Moreover, we have (recall (3.4))

(6.13) UHQW“ i—1, Ti—1), (i, 23] Hffﬁ ti 1»$i1),(ti,$i)]u
<26ﬂug(tam)

and thus the convergence (6.10) holds in IL; by dominated convergence. The fact that
the convergence is also almost sure comes from the fact that the Lh.s. in (6.10) is a
martingale.

In the case f[l’oo) vA(dv) = oo, we can apply (6.10) for the truncated environment
and obtain that almost surely

k
lim 9@ [[ 251V o1, wic), (t,20))dae

a0 ) (ra)k i=1

k
= [ o T 25w

Bounding above Qpﬁw’[a’b) by Qfﬁw’a in the L.h.s. and using monotone convergence for
the r.h.s., we obtain that

k
lim g(@) [] 25 ((tir, wim1), (ti, )] deo

a—0 (Re)k pale} k
g Zg'[(ti- y&i—1), (L, T dex.
/(]Rd)k g(x) Z_I:Il B [( i—1;Tq 1) ( i l'z)] T

Since the same inequality is also valid for 1 — g, to conclude it is sufficient to check
that we have equality when g = 1. This corresponds to checking that

k
6.14 / %y ti_ s Li—1), ti,.’Bi d:vlsz‘”
(6.14) o LT 25101 0m0) 0 ) = 25

But thanks to (6.10) (see in particular (6.11)), we have

/ Hff OOty i 1), (b)) = 250,
Ré)k

for all b, so (6.14) follows by monotone convergence. O

7. STOCHASTIC HEAT EQUATION WITH LLEVY NOISE: PROOF OF ProrosiTioN 2.26

Recall that Proposition 2.24 has been proved in Section 4 (see Remark 4.16).
It remains to show that for fixed ¢ € [0,1] and = € R?, we have
lim [ 257[(0,y), (£, )] uo(dy) = /d Z5°[(0,9), (¢, x)] uo(dy)
R

a—0 Rd
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and that the right-hand-side is finite. For simplicity, we assume that ug is a posi-
tive measure, since otherwise we simply treat the positive and negative parts of ug
separately.

In the case f[l,oo) vA(dv) < 0o, we can repeat the proof of Proposition 2.21. We have

E[|251(0.y), (4 )] = 210, (t.2)]|| wo(dy).

Using (6.12)-(6.13) with k = 1 together with the fact that [, pi(y — z)uo(dy) < oo
thanks to our assumption (2.25), we conclude by dominated convergence that

EHu“(t,x) —u(t,x)H é/

Rd

il_>mou (t,z) = u(t,x)

in IL; and almost surely (since (u®(t,))qc(0,1] is a martingale).
Let us now turn to the case f[l 00) vA(dv) = co. Recall the definition (2.27) of ul®?)

and notice that for all a € (0,1] and b > 1 we have ul®®) (¢, 2) < u®(t,z) < oo almost
surely. Applying the L; and a.s. convergence with the truncated environment, we get
that

lim ul®? (¢, ) = ul®Y) (¢, 2) := Q”g”[o’b)[(o,y), (t, )] uo(dy), a.s.

a—0 Rd

To conclude, we need to show that we can take the limit & — oo uniformly for
a € (0,1]. More precisely, similarly to (4.40), we show that for any e > 0 we have

: a . ]a,b) _
(7.1) bhﬁl&l?’(azt(l(&] (u®(t, ) — ul®? (¢, 2)) > s) =0.

Indeed, for any ' > b > 1, considering the super-martingale
e A (@) (1, 2) — ul*D (7)) 0c 0.1

and applying Doob’s inequality, we get

IP’( sup (u[“’b/)(t,x) —ul*® (¢, z)) > E) < }]E[a A (u[l’bl)(t,x) — ulb®) (t,x))}
a€(0,1] €

Sending o' to infinity we therefore get by monotone convergence (analogously
to (4.43))

P( sup (u®(t,z) — ul®?) (t,z)) > 6) <
a€(0,1]

m | =

E[e A (u'(t,z) — u[l’b)(t,x))}.

Then, since u!(¢,z) < oo, the limit (7.1) follows by dominated convergence. As a
by-product, this shows that u(t,x) < oo a.s. O

AppenDIX A. ON LEvVY NOISES

Recall that we consider a Poisson process w on R x R? x R, with intensity
dt ® dz ® A(dv), where A is a positive measure on (0, 00) with A([1,00)) < oo. Recall
the definition (2.5) of the truncated and centered measure &E,a) on R x R4,
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Prorosition A.1. — If X satisfies f )UQ)\(dU) < o0, then f‘(f) converges in
H 5(R x RY) with s > (d+1)/2, i.e., there exists a distribution &w € HP(R x RY)
such that for any non-negative smooth compactly supported

i (a) _ =
lim [14(€8 €)1 = 0.

Remark A.2. — The optimality of the criterion above on A can be checked by com-
puting the characteristic function of the random variable f Hd&(fb) for a smooth 6 with
compact support. We have

X (0) = E[e 79

= exp </ (eive(t@) —1- z‘vtﬁ)(t,x)l[ml)(v)> dtdx)\(dv)) .
RxR9 X [a,00)

When f(o 1 v2\(dv) = oo, we have lim, o x(® (uf) = 140y (u) for any non-trivial 0,

and hence [ 9d§£a) does not converge (even in distribution).

Proof. — Let 1 be non-negative, C>° and compactly supported. Let us show that
(v f&a))ae(al] is a Cauchy sequence in H~*(R'*9). In this proof only, we denote
d=1+d, and z,y will denote elements of RA.

First, we observe that 1/155,&) belongs to H~*(R'*9) almost surely because its
Fourier transform is smaller than |§£,a)|(z/J) < +o0, and (1 + |2]?)7% is integrable
as 2s > d. Now, to show that (fﬁ,a)) is a Cauchy sequence, we need to prove that

lim up 9 (&) — €D |- = 0.

a—0 be( .a

We have (recall the definition (1.7))

2

() =€ = [ =P dz

and hence by Fatou’s lemma

(A1) sup [ — M3
be(0,a]
< [P s
]Rd

be(0,a]

e mp(z) (€L — ) (dx)
Rd

2
dz.

| e mi@e) - ) ian)

Now, as ([ @ _ &b))(dm)eiz'mw(x)dx)be(o o 15 a (complex valued) time reversed
martingale with cadlag path, Doob’s maximal inequality yields

et -eyan | <apme|| [ esvwier -]

E [ sup
be(0,a]

The right-hand side is then straightforward to compute. Expanding the square and
using the fact that the off-diagonal integral

/R o V@V L™ TS — € (da) (65 — €5 (dy)
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has zero mean, we obtain that for any a > b >0

. 2
|| [ e -] | =5 ¥ tepapvo?]
R (z,v)Ew
We can compute the last expression using the formula for Poisson point process (see
Proposition 3.8): we obtain

B S tcnan@?] <B] Totucoape?] = [ v /(M;Mdv).

(z,v)Ew (z,v)Ew

Hence we obtain from (A.1)
| s [9(E - €| < [Py [ vras [ i),
be(0,a] R4 Rd (0,a)

which is sufficient to conclude that lim,— oo SUPye (g qp [|%( (&) _ go(f’))”? _. =0 as,
by Fatou’s lemma. 0

AprPENDIX B. PROOFS OF SOME PROPERTIES OF Qpﬁw’a

B.1. ALTERNATIVE REPRESENTATION OF Qi;”’a: proor oF Lemma 3.3. — For 0 € P (w),
we let &% (o) denote the collection of k space-time points which include (t;, z;) ‘11‘1 and

no other space-points of the Poisson process, that is
E*(0) = {(t, ) € ¥ x R)* : {(ts, 20) Yoy N7(w) = 7(0)},

where 7 denote the projection on the first two coordinates. The following technical
result, which immediately implies Lemma 3.3, establishes that w, g(o, f) (recall its
definition (3.6)) corresponds to the contribution to the partition function of the inte-
gral over the disjoint unions of &¥(c), k > |o|. The idea is that the integration over
&*(0) decouples the Poisson and the Lebesgue parts of £2, i.e., the contribution of
points respectively inside and outside of o.

Lemma B.1. For any f € & and any given o € P(w) we have

lo|

wa,5(07 f) = e_BﬁaﬂIUIQ(tv T, f) H uil{ui>a}
i=1
k

=2 ﬁk/ o(t,@, f) [ [ €4 (i, das).

k2lo]  TEN@) i=1

When o = & the term k = 0 in the sum is by convention equal to Q(f).

In order to lighten notations, we write the proof only in the case of a function
f = 1. We assume that f[l)oo) vA(dv) < oo so that all the integrals below are well
defined (recall Proposition 3.1). The general case with a function f € %, (for which
all terms are well defined assuming that A([a, 00)) < oo, thanks to Proposition 3.1) is
a mere adaptation of notation.
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w

Proofof Lemma B.1. — Let o be a fixed set of points with |o| = £ > 1 (the case 0 = @
can be checked separately) and let (¢;, x;,u;)¢_, denote the (time ordered) points in o.
Given i € [0,€], and (s,y) € &%(0), we let S;l), y]( ), j < k; denote the space time
points of (s,y) in the time interval (¢;,¢;11) (note that k; here is a function of (s, y)).
Then by splitting the integrals according the the value of the k;’s, grouping the terms
and factorizing, we obtain that >, -, Bk fgk(g) o(t, x) Hle ﬁ,a)(dti, dz;) is equal to

5 Hu1+11{u1+1>a} Z B’fa

ki+1
(2)
X Pa s ( y ds dy
/ti<s§i)<~--<ss_)<t7‘,+1 /(]Rd)ki (H A4 J ) H J
7 ©) ) 3,,()
o S PR (01 GRS ) EREE

ke=0 te<si? <o) <1 J(
with the convention A;s(?) = gi) sgi)l, — s,(~C )+1 = t;4+1 and analogously

for y . When k; = 0 resp. ky = 0, the value of the above integrals are by convention

ki+1
/ (i) (i / <H Pt (Agy ?) ) H ds( )dy = Pipa—t:(Tiv1 — 23)
ti<sp <--<sp <tiy1

and

©y) TT as{”a
~/tz<s()< <s‘) /(Rd)’“/ (1:[ Pa; o0 (A5 )H g yj

Now, one can check that

(e’ ki+1

. k; (z i) i)
Z( Ba) /<é(>< <sD <ty /Rd)k (H N s (Ajy )Hds dy;

k;=0 t

00 ki )
= Ptig1—t; (xiJrl - 1‘1) (1 + Z (_ﬂﬁa)ki / G G H d8§1)>

P ti<s{) <<l <tinn ;15
—Braltit1—ts
= Ptosr—t, (Tig1 — @g)e el =t
and similarly

oo

ke 4,0
> o [ o S (Tossot) Tat0g
k[:O 4 S S
is equal to e P#re(1=0) wwhich concludes the proof. O

Proofof (3.9). — The proof of (3.9) works exactly as above when f[l 00) vA(dv) < oo
For the general case, one needs first to have an identity for a positive integral so
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that we have no trouble with our definition. Truncating the environment and using
monotone convergence we have

[%s) k
pe(x) + Z e / / o(t, @) pi—, (x — x1) H 1€ |(dt;, da;)
k=1 0<ty <---<tp<t J(RI)k i—1
=X N w, (o, (t,2)).

Po,4 (W)

This ensures that the sum and integrals in (2.17) are convergent if and only if we
have ZQ[M (w)w(o, (t,z)) < oo. Then, repeating the proof above, we obtain that
(3.9) holds. O

B.2. Tur size-Biasep MEASURE: PROOF oF Lemma 3.7. — Let us recall here, for the
sake of clarity, the content of Lemma 3.7. The size-biased measure @g is defined
as I@%(J) = E[?Z’alj]. Then Lemma 3.7 states that for all bounded measurable
function f,

Pilf(w)] = Po P, ® Q[f([@(w,w;, B))],
where &(w,w),, B) = wU{(t, B, u) : (t,u) € w,}, with Q the distribution of a standard
Brownian motion B, P/, the distribution of a Poisson point process w/, on [0,1] x RT

with intensity dt ® Bavl,>.3A(du) and P the distribution of the Poisson point pro-
cess w introduced in (1.5). Recall that we assume that u := f[ vA(dv) < 0.

1,00)

Proofof Lemma 3.7. — Tt is sufficient to check that the distributions of the two point
processes in Equation (3.12) coincide when restricted to [0,1] x R? x [a, o0), since
their distributions outside of this set are unaltered by the size-biasing and remain
independent of the rest.

Given a bounded measurable subset A of [0,1] x R? x [a, 00), we define

N = H#(wNA).

Our proof starts with the observation that the distribution of simple point processes
is completely characterized by P (44 = 0) for all bounded and measurable set A, see
[41, Th.6.11], and hence a fortiori by the distribution of A}.

Hence, setting Ny = #(wN A), it is sufficient for us to prove that for every set A
and any k > 0
1 1
k! k!
and that the quantities above do not grow faster than exponentially, so that the
distributions of .44 and JQ are indeed characterized by their moments.

Let us define f = fia: ([0,1] x R x [a,00))" = R by

(B.1) B[N —1) - (Sa—K)] = PO, @Q[Aa(Aa— 1) (Fa— k)]

k

Fioa (i wiui) i) o= 1 ctyectyy H 1a(ts, w4, u).
=1
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Since almost surely, there are no two points in w with the same time coordinate we
have almost-surely

Z froa((ti o ui)i;) = %%(M—l)-“(ﬂﬁ—k%-l)

(ts,miyug)k_ € wh

and the analogous identity is valid for JT/,Z . Hence we can check that the identity (3.12)
holds simply by applying Mecke’s formula (Proposition 3.8) to each side in (B.1).
Let us start with the (easier) case of @, i.e., the right-hand side of (B.1). We set

Aj = { t“x“uz) Ak t <to<- - < tk}
and we obtain (recalling the definition of )

P@Pg[ > fk,A((fiazian)Li)]

(ti zi,ug ) 16Wk

/ H (dt; daM(dug) 4+ Bdt;dp, (dz;)uA(du,)).
A

k=1

Now expanding the product and averaging with respect to the Brownian motion B
we obtain that the right-hand side in (B.1) is equal to

(B.2) / Z ﬁululp] t,x) Hdt dz; A(du;),
A

k IC[1,k]

where ur = [];,c;ui and pr(t,x) = H] 1Pty —ty, (g, — xj,_,) with (4 )I _‘1 the
ordered indices of I (by convention ig = 0 and g = O xo = 0).

Now let us move to the left-hand side of (B.1), that is the expectation with respect
to the size-biased measure. Recalling the definition (3.11) of ]INDg and the representa-
tion (3.8) of 2, it is equal to

(B.3) ]E%[ Z fk,A((ti,UCi,Ui)f_i)]
(ti,zi,ui);‘:iG @
= eﬁ“E[ Z Wa,a(0) Z Sroa((tiy iy ui)izy) |-
€D (w) (tiyziui)b_, € wh

We are going to decompose the sum above according to how ¢ intersects with the
points (t;, z;,u;)¥_; that are arguments of fj 4. For any given I C [1,k] with |I| =m
and £ = (£;)"%1 we set

Pre= {a € Pw): (o’ N (ti,xi,ui)le) = (ti, Ti Ui )icr
and Vj € [1,m+1], #{(t,z,u) €0, t€ (&, ,, “)}_z}

where (4 )] 1 are the ordered elements of I, with iy = 0 and 4,41 = k+1 (and ¢ = 0,
tx+1 = 1) by convention. For this computation we introduce

Ra = / VA(dV) = Kg + .
[a,00)
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Using again Mecke’s formula and recalling the definition (3.5) of w, g(o), we have,
for any such I and /,

IE[ > wap(o) > fio,a((ti, @i, ui)fi):|

cEP (ti,miui)k_ € wh
m

k
= 6_6’/”‘1 Hg(timawimagm) H G%(tij,lytij s Li; 15 xij,fj),é’ll‘uf H dt; dxz)\(duz),

Ak j=1 i=1

where we set

£+1
G(t.t @2 ) == p* / / / (H pas(Diy ) Hds dy;v;A(dv;)
t<sy<-<sp<t' J (R4 J(a,00)*

o (¥ — t)e

= (BFa) o Pr- i’ — =),

with A;s =8, — 821 (so = t, sg01 =) and Ayy = y; —yi—1 (Yo = , yer1 = 2') by
convention; and we also set

HE(t, x,0) := 5@/ / / (HpA s(Asy) ) Hdsldylvl (dv;)
t<s1<-<sp<1J(R?)¢ J(a,00)*

1—1t)*
- (5’%0,) ( Z' )

Replacing G and Hf by their value we obtain (recall that ¢,,11 = 1 by convention)

E[ D> waple) Y fk,A((tm%Ui)f—i)}

cEPr . (tirmiui)b_, €wh
m+1 £ k
tj —ti—1)” I |
/ %ﬁ‘”u;m(t,w) dt; da; A (du;).
Ak j=1 A i=1

Summing over all the possible £; just results in a factor e?fe = e efre and thus after
summing over I we obtain

k
]E%|: Z fk7,4((ti,a:i,ui)f_i)] :em‘ Z Bulqu[(t,m)Hdti dxz)\(duz)
(tiyziui)b_, € @F IC[1,k] A i=1
All together, we find that (B.3) is equal to (B.2). This proves (B.1), which concludes
the proof of Lemma 3.7. ]
ArpreENDIX C. STOCHASTIC COMPARISONS

We provide here two results enabling us to compare some integrals with respect to
the measure A to integrals with respect to the Lebesgue measure. In particular, they
establish the two claims (4.21)—-(4.22).

Prorosrrion C.1. Assume that

W= / vA(dv) < oo and also / vPA(dv) < o0
[1,00) (0,1)
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for some p € (1,2). Then for ¢ > 1 there is a constant cq, satisfying hm cqq' P =0,

such that for every m > 1 and any non-decreasing function g : R™ —> R+, i.e., mon-
decreasing in every coordinate, with Support(g) C (g,00)™ for some € > 0, we have

(u1,...,u wA(du;) < ()™ / g(uy,...,u u; Pdu,.
/(qu)*” H 0,29)™ H

Proof. — Let us begin with a few observations. First, we only need to treat the
case m = 1 since applying the result successively to the functions u; — f(u1, ..., Um)
concludes the proof. Second, we can work with a differentiable and bounded function g,
the general case being obtained by monotone convergence.

By an integration by part, defining 7z, (u f(u o) vA(dv), we get that

(1) /( g = /H gu)ur(du) = /H o (W), (w)du.

Now, an important observation is that under our assumptions we have that
(C.2) Tig(u) ::/( )’U/\(d’l)) <cqu'™?, Yu € (0,q),
u,q

for a constant ¢, satisfying limg_, cqqlfp = 0. Let us postpone the proof of (C.2),
but we can already see that plugged in (C.1) and using that ¢'(u) > 0, it implies that

/ g(uyu(du) < ¢q / g (wu'"Pdu = cu9(q)q" P + (p — 1)eg / g(u)u~Pdu,
(0,9) [e,9) [e,9)

where we have used another integration by parts in the last identity. Using again
that g is non-decreasing, we get that

1
/ g(w)u Pdu > —— (1 —2'"P)g(q)q" 7,
[4,2q) 1

and we therefore end up with

/ g(u)ur(du) < ¢p cq/ g(uw)u"Pdu,
(0,9) (0,29)
where the constant ¢, only depends on p. This concludes the proof.
It remains to see why (C.2) is true. We consider the cases v < 1 and u > 1

separately. If u < 1, we use the fact that c;, := f(o 1 vPA(dv) < 400 to get that

Ay (u) < / v TPYP \(dv) +/ vA(dv) < c;u1 P+p<cu 1=
(u,1) [1,00)
since p > 1. If uw > 1, we simply use that

g (u) < cJu'™"  with ¢ :== sup T, (u)/u'"?
u€[l,q)

and notice that since ﬁq(u) is non-increasing and goes to 0 as u — oo this implies
that limg_,o ¢' ~?¢) = 0. Combining the above estimates gives (C.2). O
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Prorosirion C.2. Assume that f(o 1 vPA(dv) < oo for some p € (1,2). Then for
any q = 1 there is a constant Cy, such that for every m > 1 and any non-increasing
function g : R™ — R, we have

/ g(ul,...,um)Huf)\(dui) < (Cq)m/ g(ul,...,um)Hu}ﬂ’dui.
(0,¢)™ i=1 (0,9)™ i=1
Proof. — The proof is similar to that of Proposition C.1 above. Again, we only have

to treat the case m = 1 and of a bounded and differentiable function g, with ||g|lcc < 1
to simplify.

Setting F'(u) := f(O,u] v?A(dv) (which is finite for any u > 0), an integration by
parts gives that

| stwead) =gF@ - [ gwrwds
(0,9) (0,9)
Now, notice that there is a constant Cj, := f(o d vPA(dv) < oo such that
F(u) = / VPP A (dv) < Cyu? P, Vu € (0,q].
(0,u]
Using that ¢’(u) < 0, we therefore get that

[, awnrwn < Cuatari =, [ gt rau= 20, [ gyt v,
0,q

(0,9) (0,9)
where we used another integration by parts for the last identity. |
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