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HEAT KERNEL OF SUPERCRITICAL NONLOCAL

OPERATORS WITH UNBOUNDED DRIFTS

Stéphane Menozzi & Xicheng Zhang

Abstract. — Let α ∈ (0, 2) and d ∈ N. Consider the following stochastic differential equation
(SDE) in Rd:

dXt = b(t,Xt) dt+ a(t,Xt−) dL
(α)
t , X0 = x,

where L(α) is a d-dimensional rotationally invariant α-stable process, b : R+ × Rd → Rd
and a : R+ × Rd → Rd ⊗ Rd are Hölder continuous functions in space, with respective order
β, γ ∈ (0, 1) such that (β ∧ γ) + α > 1, uniformly in t. Here b may be unbounded. When a

is bounded and uniformly elliptic, we show that the unique solution Xt(x) of the above SDE
admits a continuous density, which enjoys sharp two-sided estimates. We also establish sharp
upper-bound for the logarithmic derivative. In particular, we cover the whole supercritical range
α ∈ (0, 1). Our proof is based on ad hoc parametrix expansions and probabilistic techniques.

Résumé (Noyau de la chaleur pour des EDS surcritiques à dérive non bornée)
Soit α ∈ (0, 2) et d ∈ N. Considérons l’équation différentielle stochastique (EDS) suivante

dans Rd :
dXt = b(t,Xt) dt+ a(t,Xt−) dL

(α)
t , X0 = x,

où L(α) est un processus α-stable isotrope de dimension d, b : R+×Rd → Rd et a : R+×Rd →
Rd⊗Rd sont des fonctions Hölder continues en espace, d’indices respectifs β, γ ∈ (0, 1) tels que
(β∧γ)+α > 1, uniformément en t. En particulier b peut être non bornée. Lorsque a est bornée
et uniformément elliptique, nous montrons que la solution Xt(x) de l’EDS admet une densité
continue, que l’on peut encadrer, à constante multiplicative près, par une même quantité. Nous
obtenons également une borne supérieure précise pour la dérivée logarithmique de la densité.
En particulier, nous traitons complètement le régime surcritique α ∈ (0, 1). Notre approche se
base sur des développements parametrix ad hoc et des techniques probabilistes.
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1. Introduction

Throughout this paper we fix α ∈ (0, 2). Let L(α) be a d-dimensional rotationally
invariant α-stable process. We consider the following stochastic differential equation:

(1.1) dXt = b(t,Xt) dt+ a(t,Xt−) dL
(α)
t ,

where b : R+ ×Rd → Rd and a : R+ ×Rd → Rd ⊗Rd are Borel measurable functions
and satisfy that for some β ∈ ((1− α)+, 1] and κ0 > 1,

(Hβ
b ) |b(t, 0)| 6 κ0, |b(t, x)− b(t, y)| 6 κ0(|x− y|β ∨ |x− y|),

and for some γ ∈ ((1− α)+, 1] and κ1 > 1,

(Hγ
a) κ−1

1 I 6 (aa∗)(t, x) 6 κ1I, |a(t, x)− a(t, y)| 6 κ1|x− y|γ ,

where a∗ stands for the transpose of a and I is the identity matrix. Under (Hβ
b )

and (Hγ
a), it is well known that for each (s, x) ∈ R+ × Rd, there is a unique weak

solution Xs,t(x) to SDE (1.1) starting from x at time s (see e.g. [12, Th. 1.1]), and
the generator of SDE (1.1) writes as

Lsf(x) := 1
2Lsf(x) + b(s, x) · ∇f(x),

where Ls is given by

(1.2) Lsf(x) =

∫
Rd
δ

(2)
f (x; a(s, x)z)

dz

|z|d+α
=

∫
Rd
δ

(2)
f (x; z)

κ(s, x, z)

|z|d+α
dz

with
(1.3) δ

(2)
f (x; z) := f(x+ z) + f(x− z)− 2f(x)

and
(1.4) κ(s, x, z) := det(a−1(s, x))(|z|/|a−1(s, x)z|)d+α.

Clearly, by (Hγ
a) we have for some κ1 > 1,

(1.5) κ−1
1 6 κ(s, x, z) 6 κ1, |κ(s, x, z)− κ(s, y, z)| 6 κ1|x− y|γ .

The operator Ls is called supercritical for α ∈ (0, 1) since in this case, the drift
term plays a dominant role. Namely, from the self-similarity properties of the driving
process L(α) in (1.1), it holds that for any s > 0, L(α)

s
(law)
= s1/αL

(α)
1 and for s ∈

(0, 1), α ∈ (0, 1), s1/α < s. This precisely means that the fluctuations induced by
the noise are smaller than the typical order of the drift term in (1.1). For α ∈ (1, 2),
the converse phenomenon happens. Since for s ∈ (0, 1), s1/α > s, the fluctuations of
the noise prevail in the SDE. From the operator viewpoint, Ls plays a dominant role
and we say that Ls is subcritical. For the remaining case α = 1, the noise and drift
both have the same typical order and the operator Ls is called critical. Note that for
α ∈ (0, 1), since z 7→ κ(s, x, z) is symmetric, we have

Lsf(x) = 2

∫
Rd
δ

(1)
f (x; z)

κ(s, x, z) dz

|z|d+α
,

where
δ

(1)
f (x; z) := f(x+ z)− f(x).

J.É.P. — M., 2022, tome 9



Heat kernel of supercritical SDEs with unbounded drifts 539

Let us now indicate that there is a quite large literature concerning stable driven
SDEs. We can first mention the seminal work of Kolokoltsov [22] from which one
can derive that for an SDE driven by a symmetric stable process with smooth non-
degenerate spectral measure, Lipschitz non-degenerate diffusion coefficient and non
trivial Lipschitz bounded drifts when α > 1, two sided estimates for the density of
the type:

(1.6) p(s, x, t, y) �C (t− s)−d/α
(

1 +
|x− y|

(t− s)1/α

)−(d+α)

,

where C > 1 depends on the non-degeneracy and Lipschitz constants of the coefficients
and the final considered time horizon T . Here and below, Q1 �C Q2 means that
C−1Q2 6 Q1 6 CQ2.

Going to weaker regularity of the coefficients in (1.1) then first leads to investigate
the well-posedness of the martingale problem associated with the formal generator
associated with the dynamics (1.1). In [2], Bass and Chen showed the weak well-
posedness for SDE (1.1) when a is only continuous and uniformly elliptic, b is Lipschitz
and L

(α)
t is cylindrical α-stable process. In the subcritical case we can mention the

work by Mikulevicius and Pragarauskas [35] who derived that weak uniqueness holds
for equation (1.1) for bounded Hölder coefficients when α > 1 and a non degenerate a.
The martingale problem was in their framework studied from some related Schauder
estimates established on the associated Integro Partial Differential Equation (IPDE).
We can also refer to [6] for parabolic Schauder estimates in the super-critical stable
case and to the work by Kühn [24] for interior elliptic Schauder estimates for a larger
class of Lévy operators satisfying the Hartman-Wintner growth condition and suitable
L1 gradient estimates for the corresponding heat kernel.

In the super-critical case, the well-posedness of the martingale problem was recently
investigated by Kulik et al. [19], [28] (see also [12]). In [28], the authors consider
SDEs of type (1.1) with bounded Hölder drift and non-degenerate scalar diffusion
coefficients under the natural condition α + β > 1(1) and obtain the existence of the
heat kernel, a corresponding two-sided estimate of the form (1.6) as well as some
estimates corresponding to the time derivative through parametrix type expansions.
Let us emphasize that in the super-critical regime, the time derivative of the heat
kernel roughly typically behaves as t−1 at time t whereas the spatial gradient is then
more singular, as it is expected to have typical behavior of order t−1/α > t−1 for
t ∈ (0, 1].

Concerning other results related to stable heat kernel estimates we can refer e.g. for
driftless operators of the form (1.2) to [9] [11] in which the authors consider non-
symmetric functions κ with possible unbounded dependence in the jump variable in
the second paper. Therein, two-sided heat kernel and gradient estimates are derived,
and for a bounded, even κ := κ(x) the gradient estimate has been shown to be sharp

(1)It is indeed well known from the seminal work of Tanaka et al. [36] that weak uniqueness may
fail if this condition is not met.

J.É.P. — M., 2022, tome 9



540 S. Menozzi & X. Zhang

in [15]. We can also quote [8] for similar results when the operator also has a diffusion
part, or [10] for more general absolutely continuous Lévy measures satisfying suitable
scaling properties.

We insist that, beyond the symmetry and the absolute continuity condition of the
Lévy measure with respect to the one of the isotropic stable process, the behavior
of the stable densities or stable driven SDEs can be very different from the above
description. This can be already seen from the seminal work of Watanabe [38] for
stable processes and from the recent work [20] for SDEs, see Section 4 therein, and
in particular Example 4.2 which relates to a cylindrically stable driven SDE whose
density turns out to be unbounded.

For non zero drifts and rather general, possibly non-symmetric, stable Lévy mea-
sures, estimates of the heat kernel in Besov norms were obtained in [13]. We also
refer to the work [29] and [7] for gradient estimates on the semigroup associated with
additive and multiplicative cylindrical noises in (1.1) respectively, for α ∈ (0, 2) and
appropriate assumptions on the drift. Still in the cylindrical case, we can quote the
papers by Kulczycki, Ryznar et al. [27] for semigroup estimates in the stable super-
critical case, [26], [25] for semigroup and diagonal estimates on the density for more
general driving processes whose characteristic exponents satisfy upper and lower scal-
ing conditions.

In the current work, we stick to operators of the form (1.2), but anyhow face two
difficulties: we want to establish density and gradient estimates for all α ∈ (0, 2) and
for unbounded drifts. It is known, and somehow intuitive, that for unbounded drifts
the heat kernel bounds must reflect somehow the transport induced by the drift. This
was for instance observed for a Lipschitz drift in [14] for degenerate Kolmogorov SDEs
which can be viewed as ODEs perturbed on some components by a Brownian noise
propagating through the whole chain thanks to a weak type Hörmander condition
on the drift. Before going further let us also mention the work by Huang [17] which
establishes two-sided estimates for stable driven SDE with unbounded Lipschitz drift
and α ∈ (1, 2), which then read as: for s < t and x, y ∈ Rd,

(1.7) p(s, x, t, y) �C (t− s)−d/α
(

1 +
|θs,t(x)− y|
(t− s)1/α

)−(d+α)

,

where θs,t(x) denotes the flow associated to the drift in (1.1). Namely,

θ̇s,t(x) = b(t, θs,t(x)), θs,s(x) = x.

In the non-degenerate Brownian case, the type of heat kernel estimate in [14] has
recently been extended to drifts satisfying a linear-growth without a priori smooth-
ness assumptions on the drift, see [34]. In the quoted work, under additional Hölder
continuity of the drift for the second derivatives, the estimates also extend to the
derivatives up to order two with the corresponding additional parabolic singularity.

All the previously quoted works use the parametrix method. Initiated by E.E. Levi
[30], it has become a classical tool for the study of heat kernels of operators with non
constant coefficients, see e.g. [16], [33] in the diffusive case or [21] in a much larger

J.É.P. — M., 2022, tome 9
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framework. The idea of the method is that, in small time, assuming that the heat
kernel of the operator with variable coefficients exists, it should somehow behave as
a well understood one corresponding to an operator with constant coefficient. The
difference between the two densities is then controlled through a Duhamel type for-
mula. In its usual formulation this approach is designed for operators with spatially
bounded coefficients. Assume for a while that, additionally to the stated assumptions,
the coefficients in (1.1) are smooth and bounded. It is then known that the density of
(Xt)t>s exists for t > s. Denote it by p(s, x, t, ·) for the starting point x at time s. The
parametrix is a zero order approximation of the density p(s, x, t, ·) to be estimated
and for which one precisely knows the behavior, e.g. Gaussian in [16], stable isotropic
with possible shift in [22]. The most common choice consists in considering, for a fixed
terminal point y, as parametrix the density of the process with dynamics

(1.8) dX̃y
t = b(t, y) dt+ a(t, y) dL

(α)
t , t > s, X̃y

s = x.

From the uniform ellipticity of a and the specific form (1.2) it is possible to derive
that X̃y

t admits a density for t > s and that for any k ∈ N, w ∈ Rd,

|∇kxp̃y(s, x, t, w)| 6 C(t− s)−(k+d)/α
(

1 +
|w − (x+

∫ t
s
b(r, y) dr)|

(t− s)1/α

)−(d+α+k)

,(1.9)

see e.g. [3], [4] and Section 2.4 below. The difference between the density of the
SDE and the proxy one is then investigated through the Duhamel formula which
formally follows from the Kolmogorov equations satisfied by the initial density and
the parametrix in (1.8). Namely, p̃y(·, ·, t, w) is a classical solution of:

(1.10) ∂sp̃
y(s, x, t, w) + L̃ y

s p̃
y(s, ·, t, w)(x) = 0, (s, x) ∈ [0, t)× Rd,

where

L̃ y
s f(x) := 1

2 L̃
y
sf(x) + b(s, y) · ∇f(x), L̃ysf(x) =

∫
Rd
δ

(2)
f (x; z)

κ(s, y, z)

|z|d+α
dz

with

κ(s, y, z) :=
det(a−1(s, y)|z|d+α

|a−1(s, y)z|d+α
.

And p̃y(s, ·, t, w) −→
s↑t

δw(·), weakly identifying the density with the induced measure.

Equation (1.10) is the backward Kolmogorov equation. If the density of the SDE is
now a classical solution of the forward Kolmogorov equation

(1.11)
∂tp(s, x, t, w)− (Lt)

∗p(s, x, t, ·)(w) = 0, (t, w) ∈ (s,+∞]× Rd,
p(s, x, t, w) −→

t↓s
δx(·),

J.É.P. — M., 2022, tome 9
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where (Lt)
∗ denotes the adjoint of Lt, it formally follows that

(1.12)

(p− p̃y)(s, x, t, y) =

∫ t

s

dr∂r

(∫
Rd
p(s, x, r, w)p̃y(r, w, t, y) dw

)
=

∫ t

s

dr

∫
Rd
∂rp(s, x, r, w)p̃y(r, w, t, y) dw

+

∫ t

s

dr

∫
Rd
p(s, x, r, w)∂rp̃

y(r, w, t, y) dw

=
(1.10),(1.11)

∫ t

s

dr

∫
Rd
p(s, x, r, w)(Lr − L̃ y

r )p̃y(r, ·, t, y)(w) dw,

provided all the previous computations can be justified, which can be delicate for
the density of the SDE. The idea is then to repeat the approximation procedure in
the integral of (1.12), i.e., approximate p(s, x, r, w) at order 0 with p̃w(s, x, r, w) and
control again the difference through the associate integral. Iterating infinitely many
times leads to the so-called parametrix series. To obtain some quantitative bounds
from this procedure it is clear that one has to understand the behavior of the so-called
parametrix kernel:

q0(r, w, t, y) := (Lr − L̃ y
r )p̃y(r, ·, t, y)(w)

= [ 1
2 (L̃r − L̃yr) + (b(r, w)− b(r, y)) · ∇]p̃y(r, ·, t, y)(w),

and its smoothing properties. Let us here focus on the drift term. For a bounded
Lipschitz drift and α ∈ [1, 2), it is seen from (1.9) that

(1.13)

|b(r, w)− b(r, y)||∇wp̃y(r, w, t, y)|

6 C|w − y|(t− r)−(1+d)/α
(

1 +
|y − (w +

∫ t
r
b(u, y) du)|

(t− r)1/α

)−(d+α+1)

6 C̃(t− r)−d/α
(

1 +
|y − w|

(t− r)1/α

)−(d+α)

,

where for the last inequality we also used that, in small time and for a bounded
drift b and α > 1, the frozen drift

∫ t
r
b(u, y) du is negligible with respect to to the

characteristic time scale, i.e., |
∫ t
r
b(u, y) du| 6 ‖b‖∞(t− r) 6 ‖b‖∞(t− r)1/α so that,

up to a modification of C,(
1 +
|y − (w +

∫ t
r
b(u, y) du)|

(t− r)1/α

)−(d+α+1)

6 C
(

1 +
|y − w|

(t− r)1/α

)−(d+α+1)

.

We have thus bounded in (1.13) the drift part of the parametrix kernel by a quantity
which serves as upper and lower bound for the isotropic stable density, see again (1.6).
Hence, the regularity of the drift allowed to absorb the time singularity induced by
the spatial derivative of the parametrix. Observe that if α ∈ (1, 2) and since the
drift is bounded, we could even have taken a driftless parametrix. In that case, the
contribution associated with the difference of the drifts, between the generator of the

J.É.P. — M., 2022, tome 9



Heat kernel of supercritical SDEs with unbounded drifts 543

SDE and the one of the frozen process would write:

(1.14)
|b(r, w)||∇wp̃y(r, w, t, y)| 6 C‖b‖∞(t− r)−(1+d)/α

(
1 +

|y − w|
(t− r)1/α

)−(d+α+1)

6 C̃(t− r)−(d+1)/α
(

1 +
|y − w|

(t− r)1/α

)−(d+α)

,

which is homogeneous to an isotropic stable density multiplied by a time integrable
singularity. Having in mind that in (1.12) the parametrix kernel is integrated in time,
this is sufficient to provide a smoothing effect in small time, i.e., the integral term in
(1.12) will be negligible with respect to to the first order approximation, provided we
manage to control the series expansion deriving from the iteration of the procedure.
This requires to control convolutions of the density of the parametrix and iterated
convolutions of the parametrix kernel.

Turning now to the case α ∈ (0, 1), even if b is bounded, the last inequality of
(1.13) fails precisely because t1/α 6 t, t 6 1, i.e., the drift prevails with respect to
characteristic time of the noise in small time. Thus, freezing at the terminal point
does not provide a good parametrix. On the other hand, taking a driftless proxy is
not an option either, since the associated bound for the drift part of the parametrix
kernel would yield a non-integrable singularity in (1.14). We thus need to consider a
proxy which can absorb the time singularity of the gradient through the difference of
the drift coefficients in the operators. If b is Lipschitz, this can e.g. be done through
the backward flow associated with the differential system. Namely, introducing for
fixed final point y ∈ Rd and final time t,

(1.15) θ̇t,r(y) = b(r, θt,r(y)), r ∈ [0, t], θt,t(y) = y,

and considering as parametrix the density of the process with dynamics

(1.16) dX̃(t,y)
r = b(r, θt,r(y)) dt+ a(r, θt,r(y)) dL

(α)
t , r > s, X̃(t,y)

s = x,

one derives similarly to (1.9)

|∇kwp̃(t,y)(r, w, t, y)| 6 C(t− r)−(k+d)/α
(

1 +
|y − (w +

∫ t
r
b(u, θt,u(y)) du)|

(t− r)1/α

)−(d+α+k)

6 C(t− r)−(k+d)/α
(

1 +
|θt,r(y)− w)|

(t− r)1/α

)−(d+α+k)

,

exploiting the differential dynamics (1.15) in backward time for the last inequality.
Writing now the difference of the drift parts of the generators applied to the frozen
density p̃(t,y)(·, ·, t, y) yields:

|b(r, w)− b(r, θt,r(y))||∇wp̃y(r, w, t, y)|

6 C|w − θt,r(y)|(t− r)−(1+d)/α
(

1 +
|θt,r(y)− w|
(t− r)1/α

)−(d+α+1)

6 C̃(t− r)−d/α
(

1 +
|θt,r(y)− w|
(t− r)1/α

)−(d+α)

,

J.É.P. — M., 2022, tome 9
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and this choice then allows to absorb the time singularity similarly to the previously
considered sub-critical case α ∈ [1, 2), see (1.13). For parametrix expansions and
density estimates, this idea of using the backward flow associated with the first order
term was already used in the diffusive setting in [23], [14] and for stable driven SDE
in [17] for Lipschitz drifts with linear growth in the subcritical case and [19] for
bounded Lipschitz drifts in the supercritical case. In this last setting, an underlying
flow was also used in [28] where the author addresses the case of a bounded, time-
homogeneous Hölder drift coefficient(2). In this framework, there is no uniqueness to
(1.15) but only existence (thanks to the Peano theorem). Anyhow, for a β Hölder
drift, bounded or not, and a given associated Peano flow θr,t(y) solving (1.15),

(1.17)

|b(r, w)− b(r, θt,r(y))||∇wp̃y(r, w, t, y)|

6 C|w − θt,r(y)|β(t− r)−(1+d)/α
(

1 +
|θt,r(y)− w|
(t− r)1/α

)−(d+α+1)

6 C̃(t− r)−(d/α+(1−β)/α)
(

1 +
|θt,r(y)− w|
(t− r)1/α

)−(d+α)

,

which yields an integrable singularity provided α + β > 1 (which is the natural
condition we assumed and already discussed above). This type of estimate is crucial
for the parametrix approach to work in our framework.

In the following, in order to benefit from Lipschitz properties of an associate flow,
which is e.g. needed to make convolutions of terms which have the form of the r.h.s.
of (1.17) and which will naturally appear from the parametrix expansion, we will not
use exactly (1.16) as zero order approximation but replace therein b by a suitable
mollification observed along the associated backward (Lipschitz) flow. Rather natu-
rally, the mollification parameter is chosen to correspond to the characteristic scaling
time, see equation (1.21) below

With respect to the various previously described steps, let us indicate that some
properties of mollified flows, that appear in our main results, will be stated at the
end of the section. The bounds on the frozen densities and the related convolution
estimates, which will appear when iterating the first order expansion in (1.12) will be
discussed in Section 2.

We will here somehow follow the main line of [34] but are faced with many addi-
tional difficulties. In particular, a common feature to both the Gaussian SDEs consid-
ered in [34] and the stable driven here is that we first need to establish the density and
gradient estimates for smooth coefficients and a bounded drift, in order to justify that
the previous expansions can indeed be performed (see in particular Lemma 3.1). In the
current strictly stable framework we cannot rely on the Malliavin calculus arguments
of [34] because of integrability issues. We thus establish here some direct bounds on
the associated semi-group and its derivatives when the coefficients are smooth and the

(2)Let us mention that the boundedness of the drift coefficient in [28] follows from the specific
chosen zero order approximation. Namely the diffusion coefficient therein is not frozen along the flow
but at the final spatial point, see e.g. the proof of Lemma 4.1 in that reference.
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drift bounded which serve as a starting point to derive the estimates of Theorem 1.1.
This part is crucial and quite intricate (see Theorems 3.5 and 4.1 below). Since the
two-sided and gradient estimates hold independently of the smoothness of the coeffi-
cients and the boundedness of the drift, we eventually conclude through compactness
arguments (see Section 5).

To state our main result, we introduce the regularized flow associated with drift b.
For ε > 0, let bε(t, x) := b(t, ·) ∗ ρε(x), where ρε(x) = ε−dρ(x/ε) and ρ is a smooth
density function with support in the unit ball B(0, 1). Note that under (Hβ

b ),

(1.18)
|bε(t, x)− b(t, x)| =

∣∣∣∣∫
Rd

(
b(t, x− y)− b(t, x)

)
ρε(y) dy

∣∣∣∣
6 κ0

∫
B(0,ε)

(|y|β + |y|)ρε(y) dy 6 κ0(εβ + ε),

since
∫
B(0,ε)

ρε(y) dy = 1. Recalling now that ∇x
∫
Rd
ρε(x− y) dy︸ ︷︷ ︸

=1

= 0,

(1.19)

|∇bε(t, x)| =
∣∣∣∣∫

Rd
(b(t, y)− b(t, x))∇ρε(x− y) dy

∣∣∣∣
6 κ0

∫
B(x,ε)

(|x− y|β + |x− y|)ε−(d+1)|∇ρ(z)|z=(x−y)/ε dy

6 κ0(εβ−1 + 1)‖∇ρ‖L1 .

In particular, since α + β > 1, for any T > 0, there is a C > 0 such that for any
0 6 s < t 6 T ,

(1.20)
∫ t

s

‖∇b|r−s|1/α(r, ·)‖∞ dr 6 C
∫ t

s

(
|r−s|(β−1)/α+1

)
dr 6 C(t−s)(α+β−1)/α.

Thus, for fixed s > 0, the following ODE admits a unique solution θs,t(x):

(1.21) θ̇s,t = b|t−s|1/α(t, θs,t), θs,s = x, t > 0.

Note that for t > s, θs,t(x) denotes the forward solution of the above ODE, while for
t < s, it denotes the backward solution. We carefully mention that our main results
will be stated with respect to to the flow θ in (1.21) which is precisely associated
with a mollified drift with parameter corresponding to the typical scale of the driving
process of the SDE (1.1) at the current considered time.

For notational simplicity, we introduce the following parameter set

(1.22) Θ := (κ0, κ1, d, α, β, γ).

We also denote for T ∈ (0,∞],

DT := {(s, x, t, y) : 0 6 s < t < T, x, y ∈ Rd}.

We will frequently use from now on the notation .. For two quantities Q1 and Q2,
we mean by Q1 . Q2 that there exists C := C(T,Θ) such that Q1 6 CQ2. Other
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possible dependencies for the constants will be explicitly specified. Moreover, we also
use the following notation

(1.23) |D(α)f |(x) :=

∫
Rd

|δ(2)
f (x; z)|
|z|d+α

dz.

The aim of this paper is to show the following result.

Theorem 1.1. — Under (Hβ
b ) and (Hγ

a), for each 0 6 s < t <∞ and x ∈ Rd, Xs,t(x)

admits a density p(s, x, t, y) (called heat kernel of Ls) that is continuous as a function
of x, y, and such that for each t > 0 and x, y ∈ Rd and Lebesgue almost all s ∈ [0, t),

∂sp(s, x, t, y) = Lsp(s, ·, t, y)(x), p(s, x, t, ·)→ δ{x}(·) weakly as s ↑ t,

where δ{x}(dy) denotes the Dirac measure concentrated at x. Moreover, we have
(i) (Two-sides estimate) For any T > 0, there is a constant C1 = C1(T,Θ) > 1

such that for all (s, x, t, y) ∈ DT ,

(1.24) p(s, x, t, y) �C1
(t− s)((t− s)1/α + |θs,t(x)− y|)−d−α,

where θs,t(x) is defined by ODE (1.21).
(ii) (Fractional derivative estimate) For any T > 0, there is a constant C2 =

C2(T,Θ) > 0 such that for all (s, x, t, y) ∈ DT ,

|D(α)p(s, ·, t, y)|(x) 6 C2((t− s)1/α + |θs,t(x)− y|)−d−α.

(iii) (Gradient estimate in x) For any T > 0, there is a constant C3 = C3(T,Θ) > 0

such that for all (s, x, t, y) ∈ DT ,

(1.25) |∇x log p(s, x, t, y)| 6 C3(t− s)−1/α.

Remark 1.2. — If |b(t, x)− b(t, y)| 6 κ0|x−y|β for any x, y ∈ Rd with |x−y| 6 1 and
|b(0, t)| 6 κ0 for all t > 0, then (Hβ

b ) holds. In particular, for c(x) being a bounded
β-Hölder continuous function, b(x) := x+ c(x) satisfies (Hβ

b ).

Remark 1.3. — For α ∈ [1, 2), we can replace θs,t(x) in (1.24) by any regularized flow
θ

(ε)
s,t (x) defined in (2.1) below. When α ∈ (0, 1), we choose the regularizing parameter
ε = (t − s)1/α since we need to use ε to compensate the time singularity in the
supercritical case. For α ∈ (0, 1], since b is continuous in x, we can replace θs,t(x) in
(1.24) by any measurable Peano flow ϑs,t(x) of the ODE ϑ̇s,t(x) = b(t, ϑs,t(x)).

Remark 1.4. — When b ≡ 0 and L(α) is a general α-stable-like generator of the form
(1.2), it was proved in [31] that the gradient estimate (1.25) holds for α ∈ (1/2, 2).
See also [10] for more general absolutely continuous Lévy measures enjoying suitable
scaling properties. It seems that our gradient estimate (1.25) is the first result for
SDEs of the form (1.1) driven by a rotationally invariant α-stable process with α ∈
(0, 1/2].
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The paper is organized as follows. We give in Section 2 some preliminary estimates
needed for the main analysis. This concerns the mollified flow, some exit probabilities,
convolution inequalities and the density of the proxy process involved in the parametrix
(which has a dynamic similar to (1.1) with coefficient frozen along a suitable deter-
ministic flow). Section 3 is then devoted to the derivation of the two-sided bound and
the fractional derivative estimate under (Hβ

b ) and (Hγ
a) when the coefficients are ad-

ditionally supposed to be smooth and the drift bounded. We specifically address the
gradient estimate under those same assumptions in Section 4. We eventually present
in Section 5 some compactness arguments to derive the results of Theorem 1.1 under
the sole conditions (Hβ

b ), (Hγ
a).

Acknowledgements. — The authors would like to thank the referee for his/her very
useful comments.

2. Preliminaries

2.1. ODE flow. — We first present some basic properties about the solution θs,t(x)

of the ODE (1.21). Since the drift coefficient therein depends on the initial time s,
the following flow property does no longer hold:

θr,t ◦ θs,r(x) = θs,t(x), s < r < t.

However, the above flow property holds for the following regularized ODE:

θ̇
(ε)
s,t (x) = bε(t, θ

(ε)
s,t (x)), θ(ε)

s,s(x) = x,(2.1)

for any fixed regularizing parameter ε > 0. Below we fix α ∈ (0, 2) and always
assume (Hβ

b ). The following lemma is easy.

Lemma 2.1

(i) For each ε > 0 and s, t > 0, x 7→ θ
(ε)
s,t (x) is a C1-diffeomorphism and

(2.2) (θ
(ε)
s,t )
−1(y) = θ

(ε)
t,s (y).

Moreover, for all s, r, t > 0, it holds that

(2.3) θ
(ε)
s,t (x) = θ

(ε)
r,t ◦ θ(ε)

s,r(x).

(ii) For all ε, ε′ > 0 and s, t > 0, x ∈ Rd, it holds that

(2.4) |θ(ε′)
s,t (x)− θ(ε)

s,t (x)| 6 2κ0(ε ∨ ε′)β |t− s|eκ0‖∇ρ‖L1 ((ε∨ε′)β−1+1)|t−s|,

(iii) For any T > 0, there is a constant C = C(T, d, κ0) > 0 such that for all
s, t ∈ [0, T ], x, y ∈ Rd and ε = |t− s|1/α,

(2.5) |θ(ε)
s,t (x)− y| �C |x− θ(ε)

t,s (y)|, |θ(ε)
s,t (x)− θ(ε)

s,t (y)| �C |x− y|.

Proof

J.É.P. — M., 2022, tome 9



548 S. Menozzi & X. Zhang

(i) Note that by (2.1), for 0 6 s < t:

θ
(ε)
s,t (x) = x+

∫ t

s

bε(r, θ
(ε)
s,r(x)) dr, θ

(ε)
t,s (y) = y −

∫ t

s

bε(r, θ
(ε)
t,r (y)) dr.

Let y = θ
(ε)
s,t (x). By the flow property, we have

y =
(
θ

(ε)
s,t

)−1
(y) +

∫ t

s

bε(r, θ
(ε)
s,r ◦

(
θ

(ε)
s,t

)−1
(y)) dr

= (θ
(ε)
s,t )
−1(y) +

∫ t

s

bε(r,
(
θ

(ε)
r,t

)−1
(y)) dr.

Since the ODE has a unique solution, we immediately have
(
θ

(ε)
s,t

)−1
(y) = θ

(ε)
t,s (y).

As for (2.3), it follows from (2.2) and the flow property.
(ii) Without loss of generality, we assume ε′ < ε. Since by (1.18) and (1.19),

(2.6) |bε(t, x)− bε′(t, x)| 6 2κ0ε
β , ‖∇bε‖∞ 6 κ0‖∇ρ‖L1(εβ−1 + 1),

by definition we have

|θ(ε′)
s,t (x)− θ(ε)

s,t (x)| 6
∫ t

s

|bε′(r, θ(ε′)
s,r (x))− bε(r, θ(ε′)

s,r (x))|dr

+

∫ t

s

|bε(r, θ(ε′)
s,r (x)− bε(r, θ(ε)

s,r(x)|dr

6 2κ0ε
β(t− s) + κ0‖∇ρ‖L1(εβ−1 + 1)

∫ t

s

|θ(ε′)
s,r (x)− θ(ε)

s,r(x)|dr.

Using Gronwall’s inequality, we obtain (2.4).
(iii) Without loss of generality, we assume 0 6 s < t 6 T . Note that for u ∈ [s, t],

|θ(ε)
s,u(x)− θ(ε)

s,u(y)| 6 |x− y|+
∫ u

s

‖∇bε(r, ·)‖∞|θ(ε)
s,r(x)− θ(ε)

s,r(y)|dr.

For ε = |t− s|1/α, it follows from the Gronwall inequality and (1.19) that

|θ(ε)
s,t (x)− θ(ε)

s,t (y)| 6 eκ0‖∇ρ‖L1 (|t−s|(β−1)/α+1)|t−s||x− y|.

Similarly, from the backwards dynamics, one can derive that for x′, y′ ∈ Rd,

|θ(ε)
t,s (x′)− θ(ε)

t,s (y′)| 6 eκ0‖∇ρ‖L1 (|t−s|(β−1)/α+1)|t−s||x′ − y′|.

Thus, by (2.2) (inverse flow property) and putting x′ = θ
(ε)
s,t (x) and y′ = θ

(ε)
s,t (y)

we obtain the second equivalence in (2.5). The first equivalence follows from the
second one replacing therein y by θεt,s(y) and using (2.2). �

The following result is a consequence of the above lemma, which plays a crucial
role below.

Lemma 2.2
(i) For each s, t > 0, the map x 7→ θs,t(x), where (θs,u(x))u∈[s,t] solves (1.21), is a

C1-diffeomorphism and there is a constant C0 = C0(T,Θ) > 0 such that

|det(∇θ−1
s,t (x))− 1| 6 C0|t− s|(α+β−1)/α.
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(ii) For any T > 0, there is a constant C1 = C1(T,Θ) > 1 such that for all
s, t ∈ [0, T ] and x, y ∈ Rd,

(2.7) |t− s|1/α + |θs,t(x)− y| �C1
|t− s|1/α + |x− θt,s(y)|.

(iii) For any T > 0, there is a constant C2 = C2(T,Θ) > 0 such that for all
s, r, t ∈ [0, T ] and x ∈ Rd,

(2.8) |θs,t(x)− θr,t ◦ θs,r(x)| 6 C2|(r ∨ s ∨ t)− (r ∧ s ∧ t)|1/α.

Proof

(i) It is well known that (cf. [32, Prop. 1.2])

det(∇θs,t(x)) = 1 +

∫ t

s

div b|r−s|1/α(r, θs,r(x)) det(∇θs,r(x)) dr.

Thus
det(∇θs,t(x)) = exp

{∫ t

s

div b|r−s|1/α(r, θs,r(x)) dr

}
.

The desired estimate follows by (1.20) and ∇θ−1
s,t (x) = (∇θs,t)−1(θ−1

s,t (x)).
(ii) Fix s < t. For u ∈ [s, t], by definition we have

θs,u(x) = x+

∫ u

s

b|r−s|1/α(r, θs,r(x)) dr,

and for ε = |t− s|1/α,

θ(ε)
s,u(x) = x+

∫ u

s

bε(r, θ
(ε)
s,r(x)) dr.

By (2.6) with ε′ = |r − s|1/α and ε = |t− s|1/α, we have for all u > s,

|θs,u(x)− θ(ε)
s,u(x)| 6

∫ u

s

∣∣∣b|r−s|1/α(r, θs,r(x))− bε(r, θ(ε)
s,r(x))

∣∣∣dr
. |t− s|β/α+1 + (t− s)(β−1)/α

∫ u

s

|θs,r(x)− θ(ε)
s,r(x)|dr,

which yields by Gronwall’s inequality that

(2.9) |θs,t(x)− θ(ε)
s,t (x)| . e(t−s)(β−1)/α+1

|t− s|β/α+1 . |t− s|1/α,

where the second inequality is due to α+ β > 1. Thus, by (2.5) and (2.9), we have

|θs,t(x)− y| 6 |θ(ε)
s,t (x)− y|+ |θs,t(x)− θ(ε)

s,t (x)|

. |x− θ(ε)
s,t (y)|+ |t− s|1/α . |x− θt,s(y)|+ |t− s|1/α.

The right hand side inequality of (2.7) follows. By symmetry, we also have the left
hand side inequality.

(iii) Let s, r, t > 0 and ε := |r ∨ s ∨ t− r ∧ s ∧ t|1/α. By (2.3) we have

|θs,t(x)− θr,t ◦ θs,r(x)| 6 |θs,t(x)− θ(ε)
s,t (x)|+ |θ(ε)

r,t ◦ θ(ε)
s,r(x)− θ(ε)

r,t ◦ θs,r(x)|

+ |θ(ε)
r,t ◦ θs,r(x)− θr,t ◦ θs,r(x)|.

The desired estimate (2.8) again follows by (2.5) and (2.9). �
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Remark 2.3. — By (2.8), we have

|x− θt,s ◦ θs,t(x)| .C2
|t− s|1/α,

and by (2.7),

(2.10) |t− s|1/α + |x− y| �C1 |t− s|1/α + |θs,t(x)− θt,s(y)|.

Put it differently, we have an approximate flow property for the ODE (1.21). Namely,
the flow property holds up to an additive time factor which has the same magnitude
as the current typical time (self-similarity index of the driving process).

2.2. Probability estimates. — We need the following master formula.

Lemma 2.4 (Lévy system). — Let Xt := X0,t be any solution of SDE (1.1). For any
nonnegative measurable function f : R+ ×Rd ×Rd → R+ and finite stopping time τ ,

E
∑

r∈(0,τ ]

f(r,Xr−,∆Xr) = E
∫ τ

0

∫
Rd
f(r,Xr−, z)

κ(r,Xr−, z)

|z|d+α
dz dr,

where ∆Xr := Xr −Xr− and κ(r, x, z) is defined in (1.4).

Let us emphasize that the Lévy system is well known for a time-homogeneous
process, we can e.g. refer to Chapter 2.4 in [5] and references therein. The extension
to the current framework under the uniform ellipticity condition is rather natural.
We provide a proof for the sake of completeness.

Proof. — Let N(dt, dz) be the counting measure associated with L(α)
t , i.e.,

N((0, t]× E) :=
∑
s∈[0,t]

1E(∆L(α)
s ), E ∈ B(Rd).

Noting that
∆Xt = a(t,Xt−)∆L

(α)
t ,

we have for any ε > 0,∑
r∈(0,τ ]

f(r,Xr−,∆Xr)1|∆Xr|>ε =

∫ τ

0

∫
|a(r,Xr−)z|>ε

f(r,Xr−, a(r,Xr−)z)N(dr, dz).

Since the compensated measure ofN(dt,dz) is dz dt/|z|d+α, by the change of variable,
we have

E
∑

r∈(0,τ ]

f(r,Xr−,∆Xr)1|∆Xr|>ε = E
∫ τ

0

∫
|a(r,Xr−)z|>ε

f(r,Xr−, a(r,Xr−)z)
dz dr

|z|d+α

= E
∫ τ

0

∫
|z|>ε

f(r,Xr−, z)
κ(r,Xr−, z)

|z|d+α
dz dr,

where κ(r, x, z) is given in (1.4), which in turn gives the desired formula by the
monotone convergence theorem. �
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Fix (s, x) ∈ R+ × Rd. For η > 0, define the stopping time

(2.11) τηs,x := inf
{
t > s : |Xs,t(x)− θs,t(x)| > η

}
,

which corresponds to the exit time of the diffusion from a tube around the determin-
istic ODE introduced in (1.21). We now give a tube estimate which roughly says that,
for a given spatial threshold η, the probability that the difference between the pro-
cess Xs,•(x) and the deterministic regularized flow θs,·(x) leaves the tube of radius η
before a certain fraction εηα of the corresponding typical time scale ηα is somehow
small.

Lemma 2.5. — Under (Hβ
b ) and (H0

a), for any T > 0, there is an ε ∈ (0, 1) only
depending on T,Θ such that for all (s, x) ∈ R+ × Rd and η ∈ (0, T 1/α],

P(τηs,x < s+ εηα) 6 1/2.

Proof. — Without loss of generality, we assume (s, x) = (0, 0), and for simplicity
write

Xt := X0,t(0), θt := θ0,t(0), τ := τη0,0.

Let f ∈ C2
b (Rd) with f(0) = 0 and f(x) = 1 for |x| > 1. For η > 0, set

fη(x) := f(x/η), u := εηα.

Note that

Yt := Xt − θt =

∫ t

0

(b(r,Xr)− br1/α(r, θr)) dr +

∫ t

0

a(r,Xr−) dL(α)
r .

By Itô’s formula, we have

Efη(Yu∧τ ) = E
∫ u∧τ

0

[
(b(r,Xr)− br1/α(r, θr)) · ∇fη(Yr) + 1

2Lrfη(Yr)
]

dr.

Note that

|b(r,Xr)− br1/α(r, θr)| 6 |b(r,Xr)− b(r, θr)|+ |b(r, θr)− br1/α(r, θr)|
6

(Hβ
b ),(2.6)

κ0(|Xr − θr|β + |Xr − θr|) + κ0r
β/α.

Also, with align the notation of (1.3),

|δ(2)
fη

(x; z)| 6 (|z|2‖∇2fη‖∞) ∧ (4‖fη‖∞) . (|z|2/η2) ∧ 1.

Hence,

Efη(Yu∧τ ) . E
∫ u

0

[
(|Yr|β + |Yr|+ rβ/α) ·

1|Yr|6η

η
+

∫
Rd

(|z|2/η2) ∧ 1

|z|d+α
dz

]
dr

.
∫ u

0

(ηβ−1 + 1 + rβ/αη−1 + η−α) dr

.
u = εηα

ε(ηα+β−1 + ηα + εβ/αηα+β−1 + 1) . ε(T 1+(β−1)/α + T + 1),
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where the last inequality is due to α+ β > 1 and η 6 T 1/α. Importantly, the implicit
constant is independent of ε. Note that

P(τ < u) = E1τ<u 6 Efη
(
Yu∧τ

)
. ε(T 1+(β−1)/α + T + 1).

The desired estimate follows by choosing ε small enough. �

The following lemma will be used to show the lower bound estimate of the heat
kernel. It gives a lower bound estimate for the probability that, considered two points
x, y in the off-diagonal regime between times s and t, namely such that |x−θt,s(y)| >
K(t − s)1/α, after a time ε(t − s) with ε as in Lemma 2.5, the stochastic forward
transport of x by the SDE, i.e., Xs,s+ε(t−s)(x) and the backward deterministic trans-
port of y by the regularized flow θt,s+ε(t−s)(y) belong to a diagonal tube, with radius
K(t− s)1/α, where again (t− s)1/α corresponds to the current typical scale between
times s and t.

Lemma 2.6. — Suppose that (Hβ
b ) and (H0

a) hold. Let ε ∈ (0, 1) be as in Lemma 2.5.
For any T > 0, there are constants c0 ∈ (0, 1),K > 1 depending only on T,Θ such
that for all 0 6 s < t 6 T and |x− θt,s(y)| > K(t− s)1/α,

P
(
|Xs,s+ε(t−s)(x)− θt,s+ε(t−s)(y)| 6 K(t− s)1/α

)
>

c0(t− s)1+d/α

|x− θt,s(y)|d+α
.

This lemma will be crucial for the lower bound estimate of the heat kernel, since
it precisely gives the control needed for a chaining argument, see Theorem 3.5 below.
As opposed to the continuous case, for SDEs driven by pure jump processes, a single
intermediate time, associated with a large jump, is needed for the chaining. Roughly
speaking between times s+ε(t−s) and t we will use the global diagonal bound of order
(t − s)−d/α, since ε is meant to be small enough, and the above lemma controls the
probability that the process enters a good neighborhood of the backward flow to do so.
The lower bound is the sought one in the sense that when multiplying it by (t−s)−d/α
exactly makes the expression in (1.24), (t − s)((t − s)1/α + |θs,t(x) − y|)−(d+α) �C
(t−s)|θs,t(x)−y|−(d+α) appear since |x−θs,t(y)| > K(t−s)1/α (off-diagonal regime).

Proof of Lemma 2.6. — Without loss of generality, we assume s = 0 and for simplicity,
we write

η := t1/α, u := εηα = εt, Xr(x) := X0,r(x).

Define a stopping time

σ := inf
{
r > 0 : |Xr(x)− θt,r(y)| 6 η

}
.

By the right continuity of r 7→ Xr(x)− θt,r(y), one sees that

|Xσ(x)− θt,σ(y)| 6 η, a.s.
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In particular, for σ 6 u, by (2.10) and (2.8), there is a constant C0 = C0(Θ) > 1 such
that

|Xu(x)− θt,u(y)| 6 |Xσ,u(Xσ(x))− θσ,u(Xσ(x))|+ |θσ,u(Xσ(x))− θσ,u(θt,σ(y))|
+ |θσ,u(θt,σ(y))− θt,u(y)|

6 |Xσ,u(Xσ(x))− θσ,u(Xσ(x))|+ C0η.

Let K > C0 + 1. Then{
|Xσ,u(Xσ(x))− θσ,u(Xσ(x))| < η

}
⊂
{
|Xu(x)− θt,u(y)| 6 Kη

}
.

Thus, by the strong Markov property, we have

P(|Xu(x)− θt,u(y)| 6 Kη) > P(σ 6 u; |Xu(x)− θt,u(y)| 6 Kη)

> P(σ 6 u; |Xσ,u(Xσ(x))− θσ,u(Xσ(x))| < η)

> P(σ 6 u) inf
(s,z)∈[0,u]×Rd

P(|Xs,u(z)− θs,u(z)| < η).

Let τηs,z be defined by (2.11). By Lemma 2.5 we have

(2.12) P (|Xs,u(z)− θs,u(z)| > η) 6 P(τηs,z 6 u) 6 P(τηs,z 6 s+ εηα) 6 1/2,

which implies that

inf
(s,z)∈[0,u]×Rd

P (|Xs,u(z)− θs,u(z)| < η) > 1/2

and

(2.13) P(|Xu(x)− θt,u(y)| 6 Kη) > P(σ 6 u)/2.

Next we need to obtain a lower bound estimate for P(σ 6 u). Let τ := τη0,x. For
r < u ∧ τ , by (2.7), there are constants c0, C1 > 0 such that

|Xr(x)− θt,r(y)| > |θ0,r(x)− θt,r(y)| − |Xr(x)− θ0,r(x)|

> c0|x− θt,0(y)| − C1t
1/α − η.

In particular, if we choose K > (C0 + 1) ∨ ((C1 + 2)/c0), then since by assumption

|x− θt,0(y)| > Kη,

it holds that for r < u ∧ τ ,

|Xr(x)− θt,r(y)| > c0Kη − (C1 + 1)η > η.

Thus we have

1{|Xu∧τ (x)−θt,u∧τ (y)|6η} =
∑

r∈(0,u∧τ ]

1{|Xr(x)−θt,r(y)|6η},

i.e., we have at most one term in the above summand. We then derive from Lemma 2.4,

P{|Xu∧τ (x)− θt,u∧τ (y)| 6 η} = E
∑

r∈(0,u∧τ ]

1{|Xr(x)−θt,r(y)|6η}

= E
∫ u∧τ

0

∫
|z−θt,r(y)|6η

κ(r,Xr−(x), z −Xr−(x))

|z −Xr−(x)|d+α
dz dr.
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On the other hand, noting that for r < u ∧ τ and |z − θt,r(y)| 6 η, we get

|z −Xr−(x)| 6 |z − θt,r(y)|+ |θt,r(y)− θ0,r(x)|+ |θ0,r(x)−Xr−(x)|

6 η + C2|x− θt,0(y)|+ C2t
1/α + η 6 C2|x− θt,0(y)|+ C3η,

using as well (2.7) for the last but one inequality. Since

{|Xu∧τ (x)− θt,u∧τ (y)| 6 η} ⊂ {σ 6 u},

we further have

(2.14)

P{σ 6 u} > P{|Xu∧τ (x)− θt,u∧τ (y)| 6 η}

> E
∫ u∧τ

0

∫
|z−θt,r(y)|6η

κ−1
1

(C2|x− θt,0(y)|+ C3η)d+α
dz dr

=
E(u ∧ τ)κ−1

1 ηd ·Vol(B1)

(C2|x− θt,0(y)|+ C3η)d+α
>

c0t
1+d/α

|x− θt,0(y)|d+α
,

where the last step is due to |x− θt,0(y)| > Kη and

E(u ∧ τ) > uP(τ > u)
(2.12)
> u/2 = εt/2.

Combining (2.13) and (2.14), we obtain the desired estimate. �

2.3. Convolution inequalities. — This Section is dedicated to some useful convo-
lution controls associated with functions that are known to be upper-bounds of the
isotropic stable density and its gradient, see e.g. [22], [4]. Though a bit technical,
these results will turn out to be crucial in order to control the parametrix series rep-
resentation of the density and its gradient (see e.g. equation (3.12), Lemma 3.3 and
Theorem 3.5 below).

For η ∈ (0, 2) and (t, x) ∈ R+ × Rd, let

%(η)(x) := (1 + |x|)−d−η, %(η)(t, x) := t−d/α%(η)(t−1/αx).

For β > 0 and γ ∈ R, we introduce the following functions for later use

(2.15) %
(η)
β,γ(t, x) := (1 ∧ (t1/α + |x|))βt(γ−η)/α%(η)(t, x)

and for 0 6 s < t,

(2.16) φ
(η)
β,γ(s, x, t, y) := %

(η)
β,γ(t− s, x− θt,s(y)).

Note that

%
(η)
β,γ(t, x) =

(1 ∧ (t1/α + |x|))βtγ/α

(t1/α + |x|)d+η
.

For T > 0, by (2.7) we have for (s, x, t, y) ∈ DT ,

(2.17) φ
(η)
β,γ(s, x, t, y) � %(η)

β,γ(t− s, θs,t(x)− y),

and for β ∈ [0, η],

(2.18)
∫
Rd
φ

(η)
β,γ(s, x, t, y) dy .

∫
Rd
%

(η)
β,γ(t− s, y) dy . (t− s)(β+γ−η)/α.
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Observe as well importantly that, from (2.15), for 0 6 β′ 6 β, 0 6 γ′ 6 γ and
(s, x, t, y) ∈ DT ,
(2.19) φ

(η)
β,γ(s, x, t, y) . φ(η)

β′,γ′(s, x, t, y).

For two functions f, g on D∞, we write

(f � g)r(s, x, t, y) :=

∫
Rd
f(s, x, r, z)g(r, z, t, y) dz

and
(f ⊗ g)(s, x, t, y) :=

∫ t

s

(f � g)r(s, x, t, y) dr.

The following lemma is the same as in [9, Lem. 2.1].

Lemma 2.7. — Fix α ∈ (0, 2). For any β1, β2 ∈ [0, α/4] and T > 0, there is a C =

C(T,Θ, β1, β2) > 0 such that for all γ1 > −β1 and γ2 > −β2, r ∈ [s, t] and x, y ∈ Rd,

(2.20)
(
φ

(α)
β1,0
�φ(α)

β2,0

)
r
(s, x, t, y) .C

(
(r−s)(β1−α)/α+(t−r)(β2−α)/α

)
φ

(α)
β1∧β2,0

(s, x, t, y)

and
(2.21) φ

(α)
β1,γ1

⊗ φ(α)
β2,γ2

(s, x, t, y) .C B(β1+γ1
α , β2+γ2

α )φ
(α)
β1∧β2,β1+β2+γ1+γ2

(s, x, t, y),

where B(γ, β) is the usual Beta function defined by

B(γ, β) :=

∫ 1

0

(1− s)γ−1sβ−1 ds, γ, β > 0.

Proof. — We follow the proof in [10]. Let `(u) := ud+α/1 ∧ uβ . It is easy to see that,
as soon as d+ α > β, ` is increasing on R+ and for any λ > 1,

(2.22) `(λu) 6 λd+α`(u).

Hence,
(2.23) `(u+ w) 6 `(2(u ∨ w)) 6 2d+α`(u ∨ w) 6 2d+α(`(u) + `(w)).

Now for r ∈ [s, t] and x, y ∈ Rd, since

|t+ s|1/α + |x+ y| 6 21/α
(
|s|1/α + |x|+ |t|1/α + |y|

)
,

by (2.22) and (2.23), we have

`(|t+ s|1/α + |x+ y|) .C `(|s|1/α + |x|) + `(|t|1/α + |y|).

In particular,
((t+ s)1/α + |x+ y|)d+α

1 ∧ ((t+ s)1/α + |x+ y|)β1∧β2
.

(s1/α + |x|)d+α

1 ∧ (s1/α + |x|)β1
+

(t1/α + |y|)d+α

1 ∧ (t1/α + |y|)β2
.

Hence,
1 ∧ (s1/α + |x|)β1

(s1/α + |x|)d+α
× 1 ∧ (t1/α + |y|)β2

(t1/α + |y|)d+α

.C

[
1 ∧ (s1/α + |x|)β1

(s1/α + |x|)d+α
+

1 ∧ (t1/α + |y|)β2

(t1/α + |y|)d+α

]
· 1 ∧ ((t+ s)1/α + |x+ y|)β1∧β2

((t+ s)1/α + |x+ y|)d+α
.

By this, the desired estimates follow by (2.17), (2.18) and (2.8). �
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2.4. Density estimate. — Let a : R+ → Rd⊗Rd be a measurable d×d-matrix-valued
function satisfying the non-degeneracy condition

(2.24) κ−1
1 |ξ|2 6 |a(s)ξ|2 6 κ1|ξ|2.

Fix α ∈ (0, 2) and consider the following jump process

(2.25) Xa
s,t :=

∫ t

s

a(r) dWSr ,

where W is a d-dimensional Brownian motion and S is an α/2-stable subordinator
independent of W , both defined on some probability space (Ω,F,P). Note that

Xa
s,t

(law)
= (t− s)1/αX ã

0,1,

where
ã(r) := a(s+ r(t− s)).

We have the following lemma that can be derived from the approach initially used
in [3] (see also [4]). We provide below a proof for completeness.

Lemma 2.8. — For any 0 6 s < t < ∞, Xa
s,t has a smooth density pas,t(x) with the

scaling property

(2.26) pas,t(x) = (t− s)−d/αpã0,1((t− s)−1/αx),

which enjoys the following estimates:

(2.27) pas,t(x) �C0
%

(α)
0,α(t− s, x),

and for any j ∈ N,

(2.28) |∇jpas,t(x)| .Cj %
(α+j)
0,α (t− s, x),

where the constants only depend on κ1, d, α. Moreover, suppose that the integrand in
(2.25) writes as aξ(r) and smoothly depends on the parameter ξ ∈ Rd so that (2.24)
holds uniformly and supr,ξ |∇kξaξ(r)| < ∞ for any k ∈ N. Let paξs,t be the density of
the integral in (2.25) associated with aξ. Then we have for k ∈ N and j ∈ N0,

(2.29) |∇kξ∇jxp
aξ
s,t(x)| .Cj,k %

(α+j)
0,α (t− s, x).

Importantly, this last bound means that, the differentiation with respect to the pa-
rameter ξ appearing in the diffusion coefficient aξ does not yield an additional time
singularity.

Proof. — The two sided estimate (2.27) is well known (see e.g. [11]). We show (2.28).
Without loss of generality, we assume s = 0 and write

Xt :=

∫ t

0

a(r) dWSr .

Fix a càdlàg path `s. Consider the following Gaussian random variable:

X`
t :=

∫ t

0

a(r) dW`r .
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It has a density

ga,`t (x) = (2π)−d/2
√

det
(
(Ca,`t )−1

)
exp{−〈

(
C
a,`
t

)−1
x, x〉/2},

where
C
a,`
t :=

∫ t

0

(aa∗)(r) d`r.

From the non-degeneracy assumption (2.24), we have

〈
(
C
a,`
t

)−1
x, x〉 � |x|2/`t, det

(
(Ca,`t )−1

)
� `−dt ,

and
|∇ga,`t (x)| . |x|/`t exp{−λ|x|2/`t}.

The density pa0,t(x) =: pat (x) of Xt is given by

(2.30) pat (x) = Ega,St (x).

The bound of (2.28) is direct from the Fourier representation of the density when
|x| 6 t1/α. On the other hand, for |x| > t1/α, from the global bound on the law of the
subordinator

µSt(dr) := P ◦ S−1
t (dr) . t r−α/2−1 dr,

it readily follows that

|∇pat (x)| 6 E|∇ga,St (x)| . |x|E(S
−d/2−1
t exp{−λ|x|2/St}) < +∞.

Hence, from the bounded convergence theorem it holds that

|∇pat (x)| . |x|
∫ ∞

0

r−(d+2)/2e−λ|x|
2/rµSt(dr),

and the integral expression in the r.h.s. precisely corresponds to the stable heat kernel
in dimension d+ 2 at time t and point x̃ ∈ Rd+2 s.t. |x̃| =

√
λ|x|. Thus, from (2.27),

|∇pat (x)| . |x|t−(d+2)/α 1

(1 + t−1/α|x̃|)d+2+α

. t(t1/α + |x|)−d−α−1 = %
(α+1)
0,α (t, x).

The approach is similar for higher order derivatives. This is also the case for (2.29)
recalling that differentiating a Gaussian density with respect to the variance does not
induce additional singularities. The proof is complete. �

Remark 2.9. — We would like to emphasize that the gradient estimate (2.28) plays
a crucial role for two-sided estimates due to the fact that for any β ∈ [0, 1],

|x|β%(α+1)
0,α (t, x) =

t|x|β

(t1/α + |x|)d+α+1
6

t(α+β−1)/α

(t1/α + |x|)d+α
= %

(α)
0,β+α−1(t, x).

In particular, for any β ∈ [0, 1],

(2.31) |x− θt,s(x)|βφ(α+1)
0,α (s, x, t, y) 6 φ(α)

0,β+α−1(s, x, t, y).

We carefully point out that the Gradient estimate (2.28), which remarkably empha-
sizes a concentration gain, does not hold for a general α-stable like process [15]. This
is also why, for the driving process in (1.1), we limit ourselves to the rotationally
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invariant, and thus symmetric, α-stable process and do not handle general α-stable
like processes.

The following lemma is taken from [11, Lem. 3.2 & 3.3].

Lemma 2.10. — Under (2.24), there is a constant C = C(d, α, κ1) > 0 such that

(2.32) |∇pas,t −∇pas,t|(x) .C ‖a− a‖∞%(α+1)
0,α (t− s, x).

Also,

(2.33) |D(α)pas,t|(x) .C %
(α)
0,0 (t− s, x),

and

(2.34) |D(α)(pas,t − pas,t)|(x) .C ‖a− a‖∞%(α)
0,0 (t− s, x).

Moreover, we also have

(2.35)
∫
Rd
|δ(2)
pas,t

(x1; z)− δ(2)
pas,t

(x2; z)| dz

|z|d+α

.C
( |x1 − x2|

(t− s)1/α
∧ 1
)(∑

i=1,2

%
(α)
0,0 (t− s, xi)

)
.

Proof. — From the scaling property (2.26), it suffices to consider s = 0 and t = 1.
Note that

|δ(2)
pa1

(x; z)| = |pa1(x+ z) + pa1(x− z)− 2pa1(x)|

. (|z|2 ∧ 1)(%(α)(x+ z) + %(α)(x− z) + %(α)(x)).

By elementary calculations, one sees that

(2.36)
∫
Rd
%(α)(x+ z)

(|z|2 ∧ 1) dz

|z|d+α
.C %(α)(x).

Thus (2.33) follows. As for (2.34) and (2.35), they can be derived similarly to
[10, Lem. 2.7 & 2.8]. The statement (2.32) can also be derived from the arguments
developed therein. We omit the details. �

3. Heat kernel of nonlocal operators with smooth coefficients

In this section we assume that (Hβ
b ) and (Hγ

a) hold and additionally that

(3.1) ‖∇jb‖∞ + ‖∇ja‖∞ <∞, j ∈ {0} ∪ N.

We again emphasize that we here assume that the coefficients are smooth and the drift
is bounded. This last point precisely allows to derive that Duhamel like expansions
holds for the semigroup (see equations (3.2) and (3.3) below). We will then first remove
the smoothness assumption in Section 5.1 and the boundedness assumption on the
drift in Section 5.2.

We shall denote

C :=
{

(b, a) satisfying (Hβ
b ), (H

γ
a) with common bounds κ0, κ1 and (3.1)

}
.

J.É.P. — M., 2022, tome 9



Heat kernel of supercritical SDEs with unbounded drifts 559

Under (Hγ
a) and (3.1), for each (s, x) ∈ R+×Rd, it is well known that there is a unique

solution (Xs,t(x))t>s to SDE (1.1), and Xs,t(x) has for t > s a density p(s, x, t, y) so
that (cf. [13, 7])

Ps,tf(x) := Ef(Xs,t(x)) =

∫
Rd
f(y)p(s, x, t, y) dy, f ∈ L∞(Rd).

The density is also a mild solution of the Kolmogorov equation in the sense that for
all ϕ ∈ C2

0 (Rd)

(3.2) Ps,tϕ(x) = ϕ(x) +

∫ t

s

Ps,rLrϕ(x) dr.

Moreover, by Schauder’s estimate for nonlocal parabolic equations [39, Th. 3.5],
we also have Ps,tϕ ∈ C∞b (Rd), and Ps,tϕ solves the following backward Kolmogorov
equation

(3.3) Ps,tϕ(x) = ϕ(x) +

∫ t

s

LrPr,tϕ(x) dr.

Fix (τ, ξ) ∈ [s, t]× Rd. Consider the following freezing process

X
(τ,ξ)
s,t := x+

∫ t

s

b|r−τ |1/α(r, θτ,r(ξ)) dr +

∫ t

s

a(r, θτ,r(ξ)) dL(α)
r .

By Lemma 2.8, the density of X(τ,ξ)
s,t is given by

(3.4) p̃(τ,ξ)(s, x, t, y) = pa
(τ,ξ)

s,t

(
x− y +

∫ t

s

b|r−τ |1/α(r, θτ,r(ξ)) dr

)
,

where a(τ,ξ)(r) := a(r, θτ,r(ξ)) and pa(τ,ξ)s,t is the density of
∫ t
s
a(τ,ξ)(r) dL

(α)
r given in

Lemma 2.8. In particular,

(3.5) ∂sp̃
(τ,ξ)(s, x, t, y) + L̃ (τ,ξ)

s p̃(τ,ξ)(s, ·, t, y)(x) = 0,

where

L̃ (τ,ξ)
s f(x) := 1

2 L̃
(τ,ξ)
s f(x) + b|s−τ |1/α(s, θτ,s(ξ)) · ∇f(x)

L̃(τ,ξ)
s f(x) =

∫
Rd
δ

(2)
f (x; z)

κ(s, θτ,s(ξ), z)

|z|d+α
dz,and

κ(s, θs,τ (ξ), z) :=
det(a−1(s, θτ,s(ξ))|z|d+α

|a−1(s, θτ,s(ξ))z|d+α
.with

For simplicity, we shall write

A (τ,ξ)
s f(x) := (Ls − L̃ (τ,ξ)

s )f(x) = K (τ,ξ)
s f(x) + B(τ,ξ)

s f(x),

where

(3.6) K (τ,ξ)
s f(x) := 1

2 (Ls − L̃(τ,ξ)
s )f(x),

and

(3.7) B(τ,ξ)
s f(x) :=

(
b(s, x)− b|s−τ |1/α(s, θτ,s(ξ))

)
· ∇f(x).

Let us introduce the corresponding frozen semi-group:

(3.8) P̃
(τ,ξ)
s,t f(x) := Ef(X

(τ,ξ)
s,t (x)).
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We have the following Duhamel type representation formula:

Lemma 3.1. — For any f ∈ C∞b (Rd) and (τ, ξ) ∈ [s, t]× Rd, it holds that

Ps,tf = P̃
(τ,ξ)
s,t f +

∫ t

s

Ps,rA
(τ,ξ)
r P̃

(τ,ξ)
r,t f dr = P̃

(τ,ξ)
s,t f +

∫ t

s

P̃ (τ,ξ)
s,r A (τ,ξ)

r Pr,tf dr.

Proof. — We drop for the proof the superscript (τ, ξ) for notational simplicity.
From (3.2) and (3.5),

∂tPs,tf = Ps,tLtf, ∂sP̃s,tf = −L̃sP̃s,tf.

Note that f ∈ C∞b , ∂rP̃r,tf ∈ C∞b . This indeed follows from the smoothness of f and
equation (3.5) through integration by parts and using the self-adjoint property of the
frozen non-local operator. We thus have by the chain rule,

∂r(Ps,rP̃r,tf) = Ps,rLrP̃r,tf − Ps,rL̃rP̃r,tf = Ps,rArP̃r,tf.

Integrating both sides from s to t with respect to r yields

Ps,tf = P̃s,tf +

∫ t

s

Ps,rArP̃r,tf dr.

Similarly, by (3.3), one can show that

P̃s,tf = Ps,tf −
∫ t

s

P̃s,rArPr,tf dr.

The proof is complete. �

By Lemma 3.1, we have for each (τ, ξ) ∈ [s, t]× Rd and x, y ∈ Rd,

p(s, x, t, y) = p̃(τ,ξ)(s, x, t, y) +

∫ t

s

∫
Rd
p(s, x, r, z)A (τ,ξ)

r p̃(τ,ξ)(r, ·, t, y)(z) dz dr.

In particular, if we take (τ, ξ) = (t, y) and define

(3.9) p0(s, x, t, y) := p̃(t,y)(s, x, t, y) = pa
(t,y)

s,t (x− θt,s(y)),

then we obtain the forward representation,

(3.10) p(s, x, t, y) = p0(s, x, t, y) +

∫ t

s

∫
Rd
p(s, x, r, z)A (t,y)

r p0(r, ·, t, y)(z) dz dr.

Let
q0(s, x, t, y) := A (t,y)

s p0(s, ·, t, y)(x),

and define recursively for n > 1,

(3.11) qn := q0 ⊗ qn−1, q =

∞∑
n=0

qn.

By iteration, we formally obtain from (3.10) and (3.11),

p = p0 + p⊗ q0 = p0 +

∞∑
n=0

p0 ⊗ qn = p0 + p0 ⊗ q.(3.12)

The following lemma is a direct consequence of (3.9), (2.33) and (2.28).

J.É.P. — M., 2022, tome 9



Heat kernel of supercritical SDEs with unbounded drifts 561

Lemma 3.2. — For any α ∈ (0, 2) and j = 0, 1, · · · , we have

(3.13) |∇jp0(s, ·, t, y)|(x) . φ(α+j)
0,α (s, x, t, y)

and

(3.14) |D(α)p0(s, ·, t, y)|(x) . φ(α)
0,0 (s, x, t, y).

The following lemma corresponds to [9, Th. 3.1].

Lemma 3.3. — The series q =
∑∞
n=0 qn is absolutely convergent, and for each s < t,

(x, y) 7→ q(s, x, t, y) is equi-continuous in (b, a) ∈ C . Moreover, for any T > 0, there
is a constant C = C(T,Θ) > 0 such that for all (s, x, t, y) ∈ DT ,

(3.15) |q(s, x, t, y)| .C
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y),

where γ0 := (α+ β − 1) ∧ γ, and for any γ1 ∈ (0, γ0),

(3.16) |q(s, x, t, y)− q(s, x′, t, y)| .C (|x− x′|γ1 ∧ 1)

×
((
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x′, t, y)

)
.

Proof

(i) First of all, note that by (1.5),

|κ(s, x, z)− κ(s, θt,s(y), z)| . (|x− θt,s(y)|γ ∧ 1)

and by (Hβ
b ),

|b(s, x)− b|s−t|1/α(s, θt,s(y))| . |x− θt,s(y)|β + |x− θt,s(y)|+ |t− s|β/α.

Thus, we have by (3.14),

|K (t,y)
s p0(s, ·, t, y)(x)| . φ(α)

γ,0(s, x, t, y),

and by (3.13) and (2.31),

|B(t,y)
s p0(s, ·, t, y)(x)| . φ(α)

0,α+β−1(s, x, t, y).

So, for γ0 = γ ∧ (α+ β − 1),

|q0(s, x, t, y)| .
(
φ

(α)
γ,0 + φ

(α)
0,α+β−1

)
(s, x, t, y) .

(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y),

recalling (2.19) for the last inequality. Suppose now that for some k ∈ N,

|qk−1(s, x, t, y)| 6 Ck
(
φ

(α)
γ0,(k−1)γ0

+ φ
(α)
0,kγ0

)
(s, x, t, y).

By Lemma 2.7, we have

|qk(s, x, t, y)| 6 CCk
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
⊗
(
φ

(α)
γ0,(k−1)γ0

+ φ
(α)
0,kγ0

)
(s, x, t, y)

6 C0CkB(γ0α ,
kγ0
α )
(
φ

(α)
γ0,kγ0

+ φ
(α)
0,(k+1)γ0

)
(s, x, t, y).

Hence,
Ck+1 = C0CkB(γ0α ,

kγ0
α ).
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From the relation B(γ, β) = Γ(γ)Γ(β)/Γ(γ + β), where Γ is the usual Gamma func-
tion, we obtain

Ck = Ck0

k−1∏
i=1

B(γ0α ,
(k−1)γ0

α ) =
(C0Γ(γ0/α))k

Γ(kγ0/α)
,

with the usual convention that
∏0
i=1 = 1. Thus

∞∑
k=0

|qk(s, x, t, y)| 6
∞∑
k=0

(C0Γ(γ0/α))k

Γ(kγ0/α)

(
φ

(α)
γ0,kγ0

+ φ
(α)
0,(k+1)γ0

)
(s, x, t, y)

6
∞∑
k=0

(C0Γ(γ0/α))k

Γ(kγ0/α)

(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y).

This gives (3.15).
(ii) For fixed s < t, by Lemma 2.8 and the definition of q0, one sees that (x, y) 7→

q0(s, x, t, y) is equi-continuous in (b, a) ∈ C . Furthermore, it follows by induction
that, for each k ∈ N, (x, y) 7→ qk(s, x, t, y) is also equi-continuous in (b, a) ∈ C .
Hence, (x, y) 7→ q(s, x, t, y) is equi-continuous in (b, a) ∈ C .

(iii) If |x− x′| > (t− s)1/α, then we have

|q0(s, x, t, y)| . (|x− x′|γ1 ∧ 1)(t− s)−γ1/α
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

= (|x− x′|γ1 ∧ 1)
(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y).

Next we assume |x−x′| 6 (t− s)1/α. In this case, it is easy to see from (2.15)–(2.16),
that

(3.17) φ
(η)
0,0(s, x, t, y) � φ(η)

0,0(s, x′, t, y), η > 0.

By (2.33), (2.35) and (3.17), we have

|K (t,y)
s p0(s, ·, t, y)(x)−K (t,y)

s p0(s, ·, t, y)(x′)|

6 ‖κ(·, x, ·)− κ(·, x′, ·)‖∞
∫
Rd
|δ(2)
p0(s,·,t,y)(x; z)| dz

|z|d+α

+ ‖κ(·, x, ·)− κ(·, θt,s(y), ·)‖∞

×
∫
Rd
|δ(2)
p0(s,·,t,y)(x; z)− δ(2)

p0(s,·,t,y)(x
′; z)| dz

|z|d+α

6 (|x− x′|γ ∧ 1)φ
(α)
0,0 (s, x, t, y) + (|x− θt,s(y)|γ ∧ 1)

×
( |x− x′|

(t− s)1/α
∧ 1
)(
φ

(α)
0,0 (s, x, t, y) + φ

(α)
0,0 (s, x′, t, y)

)
. (|x− x′|γ1 ∧ 1)

(
φ

(α)
0,γ−γ1(s, x, t, y) + φ

(α)
γ,−γ1(s, x, t, y)

)
.
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Moreover, by (3.13), (3.17) and (2.31), we also have

|B(t,y)
s p0(s, ·, t, y)(x)−B(t,y)

s p0(s, ·, t, y)(x′)|
6 |b(s, x)− b(s, x′)| · |∇p0(s, ·, t, y)|(x′)

+
∣∣b(s, x)− b|s−t|1/α(s, θt,s(y))

∣∣ · |∇p0(s, ·, t, y)(x′)−∇p0(s, ·, t, y)(x)|

. |x− x′|βφ(α+1)
0,α (s, x, t, y) + (|x− θt,s(y)|β + |t− s|β/α)|x− x′|φ(α+2)

0,α (s, x, t, y)

. (|x− x′|γ1 ∧ 1)φ
(α)
0,α+β−1−γ1(s, x, t, y).

Combining the above calculations and recalling γ0 = γ ∧ (α+ β − 1), we obtain

|q0(s, x, t, y)− q0(s, x′, t, y)| .C (|x− x′|γ1 ∧ 1)

×
((
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x′, t, y)

)
.

Using this last estimate, equation (3.16) follows from the same iterative argument as
in (i). �

Remark 3.4. — This lemma allows to iterate the representation (3.10) which leads
to the representation (3.12) of the density.

We now aim at proving the following a priori estimate about p(s, x, t, y).

Theorem 3.5. — Under (Hγ
a), (Hβ

b ) and (3.1), for each 0 6 s < t < ∞, Xs,t(x)

admits a density p(s, x, t, y) that is equi-continuous in (b, a) ∈ C as a function of
x, y ∈ Rd, and there is a constant C = C(T,Θ) > 0 so that for all (s, x, t, y) ∈ DT ,

p(s, x, t, y) �C φ
(α)
0,α(s, x, t, y).

Proof. — Note that by (3.9), (2.27) and (2.7),

p0(s, x, t, y) �C φ
(α)
0,α(s, x, t, y).

By Lemma 2.7, we have

|p0 ⊗ q|(s, x, t, y) .C (φ
(α)
0,α+γ0

+ φ(α)
γ0,α)(s, x, t, y).

The upper bound follows from (3.12).
Next we use Lemma 2.6 to show the lower bound estimate. Let K be as in Lem-

ma 2.6. Suppose that |x− θt,s(y)| 6 2K(t− s)1/α (diagonal regime). Then we have

p(s, x, t, y) > p0(s, x, t, y)− |p0 ⊗ q(s, x, t, y)|

> c0φ
(α)
0,α(s, x, t, y)− (φ

(α)
0,α+γ0

+ φ(α)
γ0,α)(s, x, t, y)

> (c0 − C1(t− s)γ0/α)φ
(α)
0,α(s, x, t, y),

recalling from (2.16) and (2.15) that, in the current diagonal regime,

(φ
(α)
0,α+γ0

+ φ(α)
γ0,α)(s, x, t, y) 6 C1(t− s)γ0/αφ(α)

0,α(s, x, t, y)
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for the last inequality. In particular, if t−s 6 ` with ` small enough and |x−θt,s(y)| 6
2K(t− s)1/α, then

(3.18) p(s, x, t, y) >
c0
2
φ

(α)
0,α(s, x, t, y) > c1(t− s)−d/α.

Next we prove the above estimate still holds for

|x− θt,s(y)| > 2K(t− s)1/α.

Let ε ∈ (0, 1/2) be as in Lemma 2.6 and small enough so that 2(1− ε)1/α > 1. Let

r := s+ ε(t− s), B := {z : |z − θt,r(y)| 6 2K(t− r)1/α}.

Since 2(1− ε)1/α > 1, we clearly have

B ⊃ {z : |z − θt,r(y)| 6 K(t− s)1/α} =: B′.

Now from the Chapman-Kolmogorov equation, we have for t− s 6 `,

p(s, x, t, y) =

∫
Rd
p(s, x, r, z)p(r, z, t, y) dz >

∫
B

p(s, x, r, z)p(r, z, t, y) dz

> inf
z∈B

p(r, z, t, y)

∫
B

p(s, x, r, z) dz
(3.18)
> c1(t− r)−d/αP(Xs,r(x) ∈ B)

> c2(t− s)−d/αP(Xs,r(x) ∈ B′) > c3(t− s)|x− θt,s(y)|−d−α,

where the last step is due to Lemma 2.6. Thus we obtain that for some c4 > 0 and
all s, t ∈ [0, T ],

p(s, x, t, y) > c4φ
(α)
0,α(s, x, t, y), t− s 6 `, x, y ∈ Rd.

For t− s > `, the bound follows iteratively from the Chapman-Kolmogorov equation.
The proof is complete. �

For the fractional derivative estimates, we need the following lemma.

Lemma 3.6. — For s < t, let hs,t(x) :=
∫
Rd p0(s, x, t, y) dy. We have for some C > 0,

|D(α)hs,t|(x) .C (t− s)γ0/α−1, γ0 := γ ∧ (α+ β − 1).

Proof. — By definition we have

|D(α)hs,t|(x) =

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

p̃(t,y)(s,·,t,y)
(x; z) dy

∣∣∣∣ dz

|z|d+α

=

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(t,y)
s,t

(x− θt,s(y); z) dy

∣∣∣∣ dz

|z|d+α

6
∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(t,y)
s,t −pa(s,x)s,t

(x− θt,s(y); z) dy

∣∣∣∣ dz

|z|d+α

+

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− θt,s(y); z) dy

∣∣∣∣ dz

|z|d+α
=: I1 + I2.

For I1, noting that by (Hγ
a) and Lemma 2.2,

|a(r, θs,r(x))− a(r, θt,r(y))| . 1 ∧ |x− θt,s(y)|γ + |t− s|γ/α,
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we have

I1 6
∫
Rd
|D(α)(pa

(t,y)

s,t − pa
(s,x)

s,t )|(x− θt,s(y)) dy

(2.34)
.
∫
Rd

(
φ

(α)
γ,0 + φ

(α)
0,γ

)
(s, x, t, y) dy

(2.18)
. (t− s)γ/α−1.

For I2, by the change of variable we have

I2 =

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− y; z) det(∇θ−1
s,t (y)) dy

∣∣∣∣ dz

|z|d+α

=

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− y; z)
(

det(∇θ−1
s,t (y))− 1

)
dy

∣∣∣∣ dz

|z|d+α
,

where we have used that∫
Rd
pa

(s,x)

s,t (x− y) dy = 1 =⇒
∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− y) dy = 0.

Thus by (i) of Lemma 2.2 and (2.33), we have

I2 . (t− s)(β+α−1)/α

∫
Rd
|D(α)pa

(s,x)

s,t |(x− y) dy

. (t− s)(β+α−1)/α

∫
Rd
%

(α)
0,0 (t− s, x− y) dy

. (t− s)(β−1)/α = (t− s)−1+(α+β−1)/α.

The proof is complete. �

Lemma 3.7 (Fractional derivative estimate). — For any T > 0, we have for some
C = C(T,Θ) > 0,

|D(α)p(s, ·, t, y)|(x) .C φ
(α)
0,0 (s, x, t, y).

Proof. — Let u = (s+ t)/2. By (3.12) and the definition of δ(2), we have

δ
(2)
p(s,·,t,y)(x; z) = δ

(2)
p0(s,·,t,y)(x; z) +

∫ t

s

∫
Rd
δ

(2)
p0(s,·,r,z)(x; z)q(r, z, t, y) dz dr

= δ
(2)
p0(s,·,t,y)(x; z) +

∫ u

s

(∫
Rd
δ

(2)
p0(s,·,r,z)(x; z) dz

)
q(r, θs,r(x), t, y) dr

+

∫ u

s

∫
Rd
δ

(2)
p0(s,·,r,z)(x; z)(q(r, z, t, y)− q(r, θs,r(x), t, y)) dz dr

+

∫ t

u

∫
Rd
δ

(2)
p0(s,·,r,z)(x; z)q(r, z, t, y) dz dr.
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With the notations of Lemma 3.6, set hs,r(x) =
∫
Rd p0(s, x, r, z) dz. By (1.23) and the

Fubini theorem, we have

|D(α)p(s, ·, t, y)|(x) 6 |D(α)p0(s, ·, t, y)|(x) +

∫ u

s

|D(α)hs,r|(x)|q(r, θs,r(x), t, y)|dr

+

∫ u

s

∫
Rd
|D(α)p0(s, ·, r, z)|(x)|q(r, z, t, y)− q(r, θs,r(x), t, y)|dz dr

+

∫ t

u

∫
Rd
|D(α)p0(s, ·, r, z)|(x)|q(r, z, t, y)|dz dr

=: I1(x) + I2(x) + I3(x) + I4(x).

For I1, by (3.14) we have
I1(x) . φ(α)

0,0 (s, x, t, y).

Recall
γ0=(α+ β − 1) ∧ γ, γ1 ∈ (0, γ0).

For I2, by Lemma 3.6, (3.15), (2.17) and (2.8), we have

I2(x) .
∫ u

s

(r − s)(γ0/α)−1
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(r, θs,r(x), t, y) dr

.

(∫ u

s

(r − s)(γ0/α)−1 dr

)(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

.
(
φ(α)
γ0,γ0 + φ

(α)
0,2γ0

)
(s, x, t, y).

For I3, by (3.14), (3.16) and (2.21), we have

I3(x) .
∫ u

s

∫
Rd
φ

(α)
γ1,0

(s, x, r, z)
(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, z, t, y) dz dr

+

∫ u

s

∫
Rd
φ

(α)
γ1,0

(s, x, r, z) dz
(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y) dr

.
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y).

For I4, by (3.14), (3.15) and (2.20), we have

I4(x) .
∫ t

u

(
φ

(α)
0,0 � (φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
)
r
(s, x, t, y) dr . φ(α)

0,0 (s, x, t, y).

Combining the above estimates, we complete the proof. �

4. A priori gradient estimates

The aim of this section is to show the following a priori gradient estimate.

Theorem 4.1. — Under (Hβ
b ), (Hγ

a) and (3.1), for any T > 0, there is a constant
C = C(T,Θ) > 0 such that for all f ∈ Bb(Rd), 0 6 s < t 6 T and x ∈ Rd,

(4.1) |∇Ps,tf(x)| .C (t− s)−1/αPs,t|f |(x).

Moreover, x 7→ ∇Ps,tf(x) is equi-continuous in (b, a) ∈ C .
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We again emphasize that Theorem 4.1 gives that the constants in the gradient
estimates actually do not depend on the smoothness of the coefficients, neither on the
boundedness of the drift assumed in (3.1).

We shall prove this theorem for α ∈ [1, 2) and α ∈ (0, 1) separately by different
methods.

4.1. Critical and Subcritical cases: α ∈ [1, 2). — In this subsection we start from
the series expansion (3.12) for the density to derive the estimate

(4.2) |∇xp(s, x, t, y)| .C3 φ
(α)
0,α−1(s, x, t, y),

when (Hβ
b ), (Hγ

a) and (3.1) are in force and α ∈ [1, 2). This precisely gives (4.1).
We recall that, with the notations of Section 3:

p(s, x, t, y) = p0(s, x, t, y) + (p0 ⊗ q)(s, x, t, y).

We will first assume that α ∈ (1, 2) and handle the critical case α = 1 afterward
through a domination argument. Now, for α ∈ (1, 2), u = (s+ t)/2 and ξ = θs,r(x),

(4.3)

∇xp(s, x, t, y) = ∇xp0(s, x, t, y) +

∫ t

u

∫
Rd
∇xp0(s, x, r, z)q(r, z, t, y) dz dr

+

∫ u

s

∫
Rd

(∇xp0 −∇xp̃(r,ξ))(s, x, r, z)q(r, z, t, y) dz dr

+

∫ u

s

∫
Rd
∇xp̃(r,ξ)(s, x, r, z)(q(r, z, t, y)− q(r, ξ, t, y)) dz dr

=: G1(s, x, t, y) +G2(s, x, t, y) +G3(s, x, t, y) +G4(s, x, t, y),

where for the last term, we have used precisely the cancellation property∫
Rd
∇xp̃(r,ξ)(s, x, r, z) dz = 0.

For G1, by (3.13) we clearly have

|G1(s, x, t, y)| . φ(α+1)
0,α (s, x, t, y) 6 φ(α)

0,α−1(s, x, t, y),

using Remark 2.9, equation (2.31), for the last inequality. For G2, by (3.13), (3.15)
and (2.21), we have

|G2(s, x, t, y)| 6
∫ t

u

∫
Rd
φ

(α+1)
0,α (s, x, r, z)|q(r, z, t, y)|dz dr

. (t− s)−1/αφ
(α)
0,α ⊗

(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

. (t− s)−1/αφ
(α)
0,α+γ0

(s, x, t, y) = φ
(α)
0,α+γ0−1(s, x, t, y).

For G3, noting that by (3.4),

∇xp0(s, x, r, z) = ∇xpa
(r,z)

s,r

(
x− z +

∫ r

s

b|r′−r|1/α(r′, θr,r′(z)) dr′
)
,

∇xp̃(r,ξ)(s, x, r, z) = ∇xpa
(r,ξ)

s,r

(
x− z +

∫ r

s

b|r′−r|1/α(r′, θr,r′(ξ)) dr′
)
,
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by (2.32), (2.28), (1.20) and (2.5), one finds that

|∇xp0 −∇xp̃(r,ξ)|(s, x, r, z) . φ(α+1)
0,α (s, x, r, z)(1 ∧ |z − θs,r(x)|γ)

+ φ
(α+2)
0,α (s, x, r, z)

(
|z − θs,r(x)|β + (r − s)β/α

)
(r − s)

.
(2.31)

(
φ

(α)
0,α+γ−1 + φ

(α)
0,2α+β−2

)
(s, x, r, z)

. φ(α)
0,α−1+γ0

(s, x, r, z),

where γ0 = γ ∧ (α+ β − 1). Therefore, due to α ∈ [1, 2), by (2.21),

(4.4)
|G3(s, x, t, y)| . φ(α)

0,α−1+γ0
⊗
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

. φ(α)
0,α−1+2γ0

(s, x, t, y) 6 φ(α)
0,α−1(s, x, t, y).

For G4, by (3.4), (2.28) and (3.16) we have for γ1 ∈ (0, γ0),

|G4(s, x, t, y)| 6
∫ u

s

∫
Rd
|∇xp̃(r,ξ)(s, x, r, z)| |(q(r, z, t, y)− q(r, ξ, t, y))|dz dr

.
∫ u

s

dr

∫
Rd

dzφ
(α)
0,α−1(s, x, r, z)(1 ∧ |z − ξ|γ1)

×
[(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, z, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, ξ, t, y)

]
.

Since t− r � t− s for r ∈ [s, u] and ξ = θs,r(x), from (2.7) in Lemma 2.2, it holds(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, ξ, t, y) .

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y).

Thus by (2.21), we eventually have

|G4(s, x, t, y)| .
∫ u

s

dr

∫
Rd

dzφ
(α)
0,α+γ1−1(s, x, r, z)

×
[(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, z, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y)

]
.
(
φ

(α)
0,γ0−γ1 + φ

(α)
γ0,α−1

)
(s, x, t, y).

Combining the above calculations, we obtain (4.2) in the case α ∈ (1, 2).
We mention that in the critical case α = 1, the previous terms G1 and G2 in (4.3)

are well-defined (no time singularity) and controlled similarly. However, some care is
needed to justify that

(4.5) ∇x
∫ u

s

∫
Rd
p0(s, x, r, z)q(r, z, t, y) dz dr =

∫ u

s

∫
Rd
∇xp0(s, x, r, z)q(r, z, t, y) dz dr.

The previous controls on G3, G4 can be used to prove that setting∫ u

s+ε

∫
Rd
∇xp0(s, x, r, z)q(r, z, t, y) dz dr =:

∫ u

s+ε

Γs,x,t,y(r) dr,

the function r 7→ Γs,x,t,y(r) is integrable. Hence, a domination argument yields (4.5)
which in turns establishes that (4.3) still holds, as well as the associated estimates,
in the critical case α = 1.
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Let us now turn to the equicontinuity part of the theorem. From the dominated
convergence theorem and the above calculations, it is easy to see that

lim
x→x0

sup
(b,a)∈C

|Gb,ai (s, x, t, y)−Gb,ai (s, x0, t, y)| = 0, i = 1, 2, 3, 4,

where Gb,ai are defined as above through the coefficients b, a. For instance,

lim
x→x0

sup
(b,a)∈C

|Gb,a2 (s, x, t, y)−Gb,a2 (s, x0, t, y)|

6
∫ t

u

lim
x→x0

sup
(b,a)∈C

∫
Rd
|∇xp0(s, x, r, z)−∇xp0(s, x0, r, z)| |q(r, z, t, y)|dz dr,

and for each r ∈ (u, t), by (3.15) and (3.13),

lim
x→x0

sup
(b,a)∈C

∫
Rd
|∇xp0(s, x, r, z)−∇xp0(s, x0, r, z)| |q(r, z, t, y)|dz

.
∫
Rd

lim
x→x0

sup
(b,a)∈C

|∇xp0(s, x, r, z)−∇xp0(s, x0, r, z)|φ(α)
0,0 (r, z, t, y) dz = 0.

In particular, Theorem 4.1 holds for α ∈ [1, 2).

Remark 4.2. — We remark that for α ∈ (0, 1), under α+β > 1, the second inequality
in (4.4) may not hold since α+ γ0 − 1 may be less than zero. This is also the reason
that we have to make a different treatment for supercritical case. Let us mention
that this proof anyhow works even in the super-critical case under the most stringent
condition α+β/2 > 1. Eventually, we also point out that the previous arguments can
be simplified if α ∈ (1, 2) for which the full parametrix expansion (3.12) of the density
can actually be directly differentiated since the induced singularity in time remains
integrable.

4.2. Supercritical case α ∈ (0, 1). — The following gradient estimate comes in [37].

Theorem 4.3. — (Gradient estimate) Under (Hβ
b ), (Hγ

a) and (3.1), for any T > 0,
there is a constant C > 0 such that for all f ∈ Cb(Rd) and 0 6 s < t 6 T ,

|∇Ps,tf(x)| .C (t− s)−1/α‖f‖∞,

where the constant C may depend on ‖∇b‖∞ and ‖∇a‖∞.

Theorem 4.3 is important since it will precisely allow to justify that the Gronwall-
Volterra lemma applies in the procedure below (see Step 5). It is used as a prior
estimate. The analysis we now develop actually aims at proving that the constants
in the gradient estimate are indeed independent of the smoothness of the coefficients
and the boundedness of the drift. This is the main achievement of Theorem 4.1 which
we here prove for the supercritical case α ∈ (0, 1).

Below we fix s < t and x ∈ Rd and assume f ∈ C∞b (Rd). We divide the proof into
six steps.
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Step 1. — For notational simplicity, we shall write for r ∈ [s, t],
Ãr := A (s,x)

r = K (s,x)
r + B(s,x)

r =: K̃r + B̃r,

with K
(s,x)
r , B

(s,x)
r introduced in (3.6) and (3.7), and

(4.6) h(s, x, t, y) :=
(
∇p̃(τ,ξ)(s, ·, t, y)(x)

)
(τ,ξ)=(s,x)

(3.4)
= −∇yg(s,x)

s,t (θs,t(x)− y),

and for a function f ,

Hs,tf(x) :=

∫
Rd
h(s, x, t, y)f(y) dy.

By Lemma 3.1 we have

∇Ps,tf(x) = ∇P̃ (τ,ξ)
s,t f(x) +

∫ t

s

∇P̃ (τ,ξ)
s,r A (τ,ξ)

r Pr,tf(x) dr.

Taking (τ, ξ) = (s, x) and using the above notations, we can write

(4.7) ∇Ps,tf(x) = Hs,tf(x) +

∫ t

s

Hs,rÃrPr,tf(x) dr = Hs,tf(x) +

4∑
i=1

I
(i)
s,tf(x),

where for u := (s+ t)/2,

I
(1)
s,t f(x) :=

∫ u

s

Hs,rK̃rPr,tf(x) dr, I
(2)
s,t f(x) :=

∫ u

s

Hs,rB̃rPr,tf(x) dr,

I
(3)
s,t f(x) :=

∫ t

u

Hs,rK̃rPr,tf(x) dr, I
(4)
s,t f(x) :=

∫ t

u

Hs,rB̃rPr,tf(x) dr.

Step 2. — Note that for j ∈ N,

(4.8) |∇jyh(s, x, t, y)| (4.6)
= |∇j+1

y g
(s,x)
s,t (θs,t(x)− y)|

(2.28)
. φ

(α+j+1)
0,α (s, x, t, y).

Thus we have

|Hs,tf(x)| .
∫
Rd
φ

(α+1)
0,α (s, x, t, y)|f(y)|dy

6 (t− s)−1/α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy.

For I(1)
s,t f(x), noting that by Lemma 3.7,

|K̃rPr,tf(z)| . (1 ∧ |z − θs,r(x)|γ)|D(α)Pr,tf |(z)

. (1 ∧ |z − θs,r(x)|γ)

∫
Rd
φ

(α)
0,0 (r, z, t, y)|f(y)|dy,

and using (2.31) and Lemma 2.7, we have

|I(1)
s,t f(x)|

(4.8)
.
∫ u

s

∫
Rd
φ(α+1)
γ,α (s, x, r, z)

∫
Rd
φ

(α)
0,0 (r, z, t, y)|f(y)|dy dz dr

(2.31)
.

∫ u

s

∫
Rd

(
φ

(α)
0,α+γ−1 � φ

(α)
0,0

)
r
(s, x, t, y)|f(y)|dy dr

(2.20)
.

∫
Rd
φ

(α)
0,α+γ−1(s, x, t, y)|f(y)|dy.

J.É.P. — M., 2022, tome 9



Heat kernel of supercritical SDEs with unbounded drifts 571

For I(2)
s,t f(x), noting that

|B̃rPr,tf(z)| . (|θs,r(x)− z|β + |θs,r(x)− z|+ (r − s)β/α)|∇Pr,tf(z)|,

using (4.8) and (2.31), we have

|I(2)
s,t f(x)| .

∫ u

s

∫
Rd
φ

(α)
0,α+β−1(s, x, r, z)|∇Pr,tf(z)|dz dr

. (t− s)−1/α

∫ t

s

∫
Rd
φ

(α)
0,α+β−1(s, x, r, z)(t− r)1/α|∇Pr,tf(z)|dz dr.

Step 3. — In this step we treat the hard term I
(3)
s,t f(x). Let ε := (t− r)1/α and

κε(r, z, z
′) := κ(r, ·, z′) ∗ ρε(z), κε(r, z, z

′) := κε(r, z, z
′)− κε(r, θr,s(x), z′)

and
K̃ (ε)
r f(z) = 2

∫
Rd
δ

(1)
f (z; z′)

κε(r, z, z
′)

|z′|d+α
dz′.

Let us write

I
(3)
s,t f(x) =

∫ t

u

(
Hs,r(K̃r − K̃ (ε)

r )Pr,tf(x) +Hs,rK̃
(ε)
r Pr,tf(x)

)
dr

=:

∫ t

u

(
J

(ε)
1,r (s, x, t) + J

(ε)
2,r (s, x, t)

)
dr.

Let γ1 ∈ (0, γ). Noting that

|(κ− κε)(r, z, z′)− (κ− κε)(r, θr,s(x), z′)| .C (|z − θr,s(x)|γ1 ∧ 1)εγ−γ1 ,

by definition and Lemma 3.7, we have

|(K̃r − K̃ (ε)
r )Pr,tf(z)| . (|z − θr,s(x)|γ1 ∧ 1)εγ−γ1 |D(α)Pr,tf |(z)

. (|z − θr,s(x)|γ1 ∧ 1)εγ−γ1
∫
Rd
φ

(α)
0,0 (r, z, t, y)|f(y)|dy.

For J (ε)
1,r , recalling ε = (t− r)1/α, we have∫ t

u

|J (ε)
1,r (s, x, t)|dr

(4.8)
.
∫ t

u

∫
Rd

(
φ

(α)
0,α+γ1−1 � φ

(α)
0,γ−γ1

)
r
(s, x, t, y)|f(y)|dy dr

(2.20)
.
∫
Rd
φ

(α)
0,α+γ−1(s, x, t, y)|f(y)|dy.

For J (ε)
2,r , by the change of variables and Fubini’s theorem, we have

J
(ε)
2,r (s, x, t) =

∫
Rd
h(s, x, r, z)

∫
Rd
δ

(1)
Pr,tf

(z; z′)
κε(r, z, z

′)

|z′|d+α
dz′ dz

=

∫
Rd

∫
Rd
δ

(1)
h(s,x,r,·)κε(r,·,z′)(z; z

′)
dz′

|z′|d+α
Pr,tf(z) dz

=

∫
Rd
h(s, x, r, z)

∫
Rd
δ

(1)
κε(r,·,z′)(z; z

′)
dz′

|z′|d+α
Pr,tf(z) dz

+

∫
Rd

∫
Rd
δ

(1)
h(s,x,r,·)(z; z

′)κε(r, z + z′, z′)
dz′

|z′|d+α
Pr,tf(z) dz.
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Noting that by (Hγ
a), ∣∣δ(1)

κε(r,·,z′)(z; z
′)
∣∣ . (εγ−1|z′|) ∧ |z′|γ ∧ 1,

we have∫
Rd

∣∣δ(1)
κε(r,·,z′)(z; z

′)
∣∣ dz′

|z′|d+α
.
∫
Rd

((εγ−1|z′|) ∧ |z′|γ ∧ 1)
dz′

|z′|d+α
. ε(γ−α)∧0.

On the other hand, by (4.6) and (2.28),∣∣δ(1)
h(s,x,r,·)(z; z

′)
∣∣ . (((r − s)−1/α|z′|) ∧ 1

)(
φ

(α)
0,α−1(s, x, r, z + z′) + φ

(α)
0,α−1(s, x, r, z)

)
.

Thus, as in (2.36) we have∫
Rd

∣∣δ(1)
h(s,x,r,·)(z; z

′)
∣∣dz′

|z′|d+α
.
∫
Rd

(
((r − s)−1/α|z′|) ∧ 1

)
φ

(α)
0,α−1(s, x, r, z + z′)

dz′

|z′|d+α

+ φ
(α)
0,α−1(s, x, r, z)

∫
Rd

(
((r − s)−1/α|z′|) ∧ 1

) dz′

|z′|d+α

. φ(α)
0,α−1(s, x, r, z)(r − s)−1 = φ

(α)
0,−1(s, x, r, z).

Therefore,

|J (ε)
2,r (s, x, t)| .

∫
Rd

[
ε(γ−α)∧0φ

(α)
0,α−1(s, x, r, z) + φ

(α)
0,−1(s, x, r, z)

]
Pr,t|f |(z) dz.

Recall ε = (t− r)1/α. By (2.31), we obtain∫ t

u

|J (ε)
2,r (s, x, t)|dr . (t− s)−1/α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy.

Step 4. — For ε = (t− r)1/α, we define

bε(r, z) := (b ∗ ρε)(r, z)− (b ∗ ρε ∗ ρ|r−s|1/α)(r, θr,s(x))

and
B̃(ε)
r f(z) := bε(r, z) · ∇f(z).

For I(4)
s,t , we similarly write

I
(4)
s,t f(x) =

∫ t

u

(
Hs,r(B̃r − B̃(ε)

r )Pr,tf(x) +Hs,rB̃
(ε)
r Pr,tf(x)

)
dr

=:

∫ t

u

(
J

(ε)
3,r (s, x, t) + J

(ε)
4,r (s, x, t)

)
dr.

For J (ε)
3,r , since

|b0 − bε|(r, z) 6 κ0ε
β = κ0(t− s)β/α,

by (4.8) we have

|J (ε)
3,r (s, x, t)| =

∣∣∣∣∫
Rd
h(s, x, r, z)(b0(r, z)− bε(r, z)) · ∇Pr,tf(z) dz

∣∣∣∣
.
∫
Rd
φ

(α+1)
0,α (s, x, r, z)(t− r)β/α|∇Pr,tf(z)|dz,

and∫ t

u

|J (ε)
3,r (s, x, t)|dr . (t− s)−1/α

∫ t

s

∫
Rd
φ

(α)
0,α(s, x, r, z)(t− r)β/α|∇Pr,tf(z)|dz dr.
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For J (ε)
4,r , we derive integrating by parts that

|J (ε)
4,r (s, x, t)| =

∣∣∣∣∫
Rd
h(s, x, r, z) bε(r, z) · ∇zPr,tf(z) dz

∣∣∣∣
6

∣∣∣∣∫
Rd
h(s, x, r, z) div bε(r, z)Pr,tf(z) dz

∣∣∣∣
+

∣∣∣∣∫
Rd
bε(r, z) · ∇zh(s, x, r, z)Pr,tf(z) dz

∣∣∣∣.
Since

|div bε(r, z)| = |div bε(r, z)| 6 κ0ε
β−1 = κ0(t− r)(β−1)/α

and
|bε|(r, z) . |z − θr,s(x)|β + (r − s)β/α,

by (4.8) and (2.31) we have

|J (ε)
4,r (s, x, t)| .

∫
Rd
φ

(α)
0,α−1(s, x, r, z)(t− r)(β−1)/α|Pr,tf(z)|dz

+

∫
Rd
φ

(α)
0,α+β−2(s, x, r, z)|Pr,tf(z)|dz.

Thus,∫ t

u

|J (ε)
4,r (s, x, t)|dr .

∫ t

u

∫
Rd

(
φ

(α)
0,α−1 � φ

(α)
0,α+β−1

)
r
(s, x, t, y)|f(y)|dy dr

+

∫ t

u

∫
Rd

(
φ

(α)
0,α+β−2 � φ

(α)
0,α

)
r
(s, x, t, y)|f(y)|dy dr

(2.20)
.
∫ t

u

[
(r − s)(α−1)/α(t− r)(α+β−1)/α + (r − s)(α+β−2)/α(t− r)

]
×
[
(r − s)−1 + (t− r)−1

]
dr

∫
Rd
φ

(α)
0,0 (s, x, t, y)|f(y)|dy

.
∫
Rd
φ

(α)
0,2α+β−2(s, x, t, y)|f(y)|dy

. (t− s)−1/α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy,

recalling that α+ β > 1 for the last inequality. Hence,

|I(4)
s,t f(x)| . (t− s)−1/α

(∫ t

s

∫
Rd
φ

(α)
0,α(s, x, r, z)(t− r)β/α|∇Pr,tf(z)|dz dr

+

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy

)
.

Step 5. — Combining the above calculations, we obtain

|∇Ps,tf(x)| . (t− s)−1/α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy

+ (t− s)−1/α

∫ t

s

∫
Rd
φ

(α)
0,α(s, x, r, z)(t− r)β/α|∇Pr,tf(z)|dz dr

+ (t− s)−1/α

∫ t

s

∫
Rd
φ

(α)
0,α+β−1(s, x, r, z)(t− r)1/α|∇Pr,tf(z)|dz dr.
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By the lower bound estimate, we further have

(4.9) (t− s)1/α|∇Ps,tf(x)| . Ps,t|f |(x) +

∫ t

s

(t− r)β/αPs,r|∇Pr,tf |(x) dr

+

∫ t

s

(r − s)(β−1)/α(t− r)1/αPs,r|∇Pr,tf |(x) dr.

For fixed 0 6 u < t 6 T and s ∈ (u, t), we let

Γtu(s, x) := (t− s)1/αPu,s|∇Ps,tf |(x).

Using Pu,s act on both sides of (4.9) and by Pu,sPs,r = Pu,r, we derive that

Γtu(s, x) . Pu,t|f |(x) +

∫ t

s

[
(r − s)(β−1)/α + (t− r)(β−1)/α

]
Γtu(r, x) dr.

Note that by Theorem 4.3,

sup
s∈[u,t]

‖Γtu(s, ·)‖∞ <∞.

Since α+β > 1, from the Volterra-Gronwall inequality, we obtain that for all s ∈ (u, t),

Γtu(s, x) . Pu,t|f |(x).

Taking limit u ↑ s, we obtain

(t− s)1/α|∇Ps,tf |(x) . Ps,t|f |(x),

which eventually yields the desired gradient estimate.

Step 6. — Finally, by (4.7) and the dominated convergence theorem, one can show
that

lim
x→x0

sup
(b,a)∈C

∣∣∇P b,as,t f(x)−∇P b,as,t f(x0)
∣∣ = 0.

Indeed, from the above proof, it suffices to show that

lim
x→x0

sup
(b,a)∈C

∣∣Hb,a
s,t f(x)−Hb,a

s,t f(x0)
∣∣ = 0.

This follows by Lemma 2.8.

5. Proof of Theorem 1.1

The point is here to prove Theorem 1.1. Namely, we want to extend the bounds of
Theorem 3.5, Lemma 3.7 and Theorem 4.1 under the sole assumptions (Hγ

a), (Hβ
b ).

In Section 5.1 we consider bounded drift b (without additional smoothness than in
(Hγ

a), (Hβ
b )). In Section 5.2 we drop the bounded assumption on b by a truncation

argument.
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5.1. Bounded drift b. — In this subsection we assume (Hγ
a), (Hβ

b ) and b is bounded.
Let aε and bε be the smooth approximations of a and b, respectively. Hence, assump-
tions (Hγ

a), (Hβ
b ) and (3.1) are met by aε, bε for the SDE

(5.1) dXε
t = bε(t,X

ε
t ) dt+ aε(t,X

ε
t−) dL

(α)
t .

The following convergence in law result was established in [7], see Theorem 1.1 therein.

Theorem 5.1. — Let Xε
s,t(x) be the unique solution of SDE (5.1) starting from x at

time s. Then Xε
s,t(x) weakly converges to Xs,t(x).

Proof. — For fixed (s, x) ∈ R+ × Rd, since the coefficients b, a have linear growth,
it is by now standard to show that the law of Xε

s,·(x) is tight in the space of all càdlàg
functions (see e.g. the Aldous criterion in the monographs [18, Ch.VI, Th. 4.5], [1]).
Through the martingale problem formulation, one can show as well that any weak
accumulation point of the law of Xε

s,·(x) is a weak solution of SDE (1.1). Finally,
by the weak uniqueness, one sees that Xε

s,t(x) weakly converges to Xs,t(x). �

Denoting by pε the associated density, it therefore holds from Theorem 3.5, Lem-
ma 3.7 and Theorem 4.1 that

(i) (Two-sides estimate) For any T > 0, there is a constant C1 = C1(T,Θ) > 0

such that for all 0 6 s < t 6 T and x, y ∈ Rd,

(5.2) pε(s, x, t, y) �C1 φ
(α)
0,α(s, x, t, y).

(ii) (Fractional derivative estimate) For any T > 0, there is a constant C2 =

C2(T,Θ) > 0 such that for all 0 6 s < t 6 T and x, y ∈ Rd,

(5.3) |D(α)pε(s, ·, t, y)|(x) .C2
φ

(α)
0,0 (s, x, t, y).

(iii) (Gradient estimate in x) For any T > 0, there is a constant C3 = C3(T,Θ) > 0

such that for all 0 6 s < t 6 T and x, y ∈ Rd,

(5.4) |∇P εs,tf(x)| .C3
(t− s)−1/αP εs,t|f |(x),

where the constants in the above controls only depend on (Hγ
a), (Hβ

b ) through Θ (see
precisely (1.22)).

By Theorem 5.1, we have for any f ∈ Cb(Rd),

(5.5) lim
ε→0

P εs,tf(x) := lim
ε→0

Ef(Xε
s,t(x)) = Ef(Xs,t(x)) =: Ps,tf(x).

(i) (Two-sided estimates) For nonnegative measurable function f , we get from (5.2)

C−1
1

∫
Rd
φ

(α)
0,α(s, x, t, y)f(y) dy 6 Ef(Xs,t(x)) 6 C1

∫
Rd
φ

(α)
0,α(s, x, t, y)f(y) dy,

which implies that Xs,t(x) has a density p(s, x, t, y) having lower and upper bound as
in (1.24). On the other hand, for fixed s < t, by Theorem 3.5 we have

(x, y) 7−→ pε(s, x, t, y) is equi-continuous in ε ∈ (0, 1).
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From the Ascoli-Arzelà theorem, there are a subsequence εk and a continuous function
p(s, x, t, y) as a function of x, y ∈ Rd such that

(5.6) pεk(s, x, t, y) −→ p(s, x, t, y) locally uniformly in x, y ∈ Rd,

which together with (5.5) yields that

(5.7) p(s, x, t, y) = p(s, x, t, y) is continuous as a function of x, y ∈ Rd.

(ii) (Fractional derivative estimates) It follows by (5.3), (5.6), (5.7) and Fatou’s
lemma that

|D(α)p(s, ·, t, y)|(x) =

∫
Rd

lim
k→∞

∣∣δ(2)
pεk (s,·,t,y)(x; z)

∣∣ dz

|z|d+α

6 lim
k→∞

∫
Rd

∣∣δ(2)
pεk (s,·,t,y)(x; z)

∣∣ dz

|z|d+α

= lim
k→∞

|D(α)pεk(s, ·, t, y)|(x) .C2
φ

(α)
0,0 (s, x, t, y).

(iii) (Gradient estimates) For fixed f ∈ Cb(Rd), by (5.4),

x 7−→ ∇P εs,tf(x) is equi-continuous in ε,

which together with (5.5) implies that x 7→ Ps,tf(x) is continuous differentiable.
By taking limits along a subsequence εk for (5.4), we obtain

|∇Ps,tf(x)| .C3
(t− s)−1/αPs,t|f |(x).

Finally, for fixed t′ > t and y ∈ Rd, we let f(x) := p(t, x, t′, y), then by the Chapman-
Kolmogorov equation, we obtain

|∇p(s, ·, t′, y)(x)| .C3 (t− s)−1/αp(s, x, t′, y).

This then readily gives estimate (4.2) (logarithmic derivative) of Theorem 1.1.

5.2. Unbounded drift b. — In this subsection we assume (Hγ
a) and (Hβ

b ). For n ∈ N,
define

bn(t, x) := (−n) ∨ b(t, x) ∧ n.
With the κ0 as in (Hβ

b ), we have

(5.8) |bn(t, 0)| 6 κ0, |bn(t, x)− bn(t, y)| 6 κ0(|x− y|β ∨ |x− y|).

Consider the following SDE

(5.9) dXn
t = bn(t,Xn

t ) dt+ a(t,Xn
t−) dL

(α)
t .

The following result is the very similar to Theorem 5.1.

Theorem 5.2. — Let Xn
s,t(x) be the unique solution of SDE (5.9) starting from x at

time s. Then Xn
s,t(x) weakly converges to Xs,t(x).

Moreover, for fixed s > 0, consider the following ODE:

(5.10) θ̇ns,t = bn|t−s|1/α(t, θns,t), θns,s = x, t > 0.

We have the following convergence.
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Lemma 5.3. — For each s, t > 0 and x ∈ Rd, it holds that

lim
n→∞

|θns,t(x)− θs,t(x)| = 0.

Proof. — We drop the starting point x and assume t > s. From dynamics (1.21)
and (5.10),

|θns,t − θs,t| 6
∫ t

s

‖∇bn|r−s|1/α(r, ·)‖∞|θns,r − θs,r|dr

+

∫ t

s

∣∣bn|r−s|1/α(r, θs,r)− b|r−s|1/α(r, θs,r)
∣∣dr.

By (5.8), (1.20) and Gronwall’s inequality, we have

|θns,t − θs,t| 6 C
∫ t

s

∣∣bn|r−s|1/α(r, θs,r)− b|r−s|1/α(r, θs,r)
∣∣dr,

which gives the desired limit by the dominated convergence theorem. �

Now by Theorem 5.2 and Lemma 5.3, using exactly the same argument as in
Section 5.1, we can show Theorem 1.1.
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