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ON THE BERTINI REGULARITY THEOREM FOR
ARITHMETIC VARIETIES

BY XIAOZONG WANG

Asstract. — Let 2 be a regular projective arithmetic variety equipped with an ample Hermit-
ian line bundle .£. We prove that the proportion of global sections o with ||o||, < 1 of .£®4
whose divisor does not have a singular point on the fiber £}, over any prime p < e“? tends to
Cax(1+dim2) ! as d — oo.

Résumié (Autour du théoréme de Bertini sur la régularité pour les variétés arithmétiques)

Soit 2" une variété arithmétique projective réguliere munie d’un fibré en droites hermitien
ample .Z. On montre que la proportion des sections globales o avec ||o||, < 1 de Z®¢ dont le
diviseur n’a pas de point singulier sur la fibre 2}, pour tout nombre premier p < e=? tend vers
Co (1 +dim 2)~! quand d — oo.
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1. INnTRODUCTION

The main result of this article is Theorem 1.1. The classical Bertini theorem states
that if X is a smooth quasi-projective variety of dimension m over an infinite field k
embedded into some projective space P}, the intersection of X with a general hyper-
plane of P} is smooth of dimension m — 1. Here general means that the set of hyper-
planes satisfying this property is the set of k-points of an open subscheme U of the
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602 X. Wana

dual projective space (P})Y of Py. This open subscheme U of the dual projective
space exists regardless of the conditions on the base field, but it’s the infiniteness of
the field k& that guarantees the existence of infinitely many k-points in U. We have
similar theorems on reducedness, irreducibility, connectedness, etc. A good reference
for these results is [Jou83].

When k is a finite field, this theorem still gives us an open subscheme of (P})Y
parametrizing hyperplanes whose intersection with X is smooth, but may fail to
give such a hyperplane as the open subscheme may have no k-point. In [Poo04],
Poonen proved that if we consider the proportion of hypersurfaces of degree d whose
intersection with X is smooth of dimension m—1 among all the degree d hypersurfaces,
this proportion tends to (x (1 +m)~! = [Toeix (1 - #r(x)~(1+™)) when d tends to
infinity. Here | X | denotes the underlying topological space of X consisting of its closed
points. In [CP16], Charles and Poonen also considered hypersurfaces of degree d of P}
whose intersection with an irreducible subscheme X of dimension at least 2 is still
irreducible, and proved that the proportion of such hypersurfaces tends to 1 when d
tends to infinity.

It is also of interest to have a good analogue of Bertini smoothness theorem for
quasi-projective schemes over SpecZ. But as Poonen explained in [Poo04, §5.7],
smoothness condition is too strong in the arithmetic situation. We need to con-
sider regularity instead. In the same article, Poonen established a density for subsets
of U0 HO(P%, 0(d)) and showed that for a regular subscheme 2~ of P%, assum-
ing the abc conjecture and an auxiliary conjecture, the density of sections f €
Uaso HO(P2, 0(d)) such that div f N 2 is regular is (o (dim 2™ + 1)~!. Poonen’s
result depends on the embedding of 2" into P, and the choice of a coordinate system
in IP%. It would be better to have a more general result without an explicit choice of
an embedding into some projective space. This leads us to look for a similar result in
the setting of Arakelov geometry.

1.1. MAIN THEOREMS. Let 2 be a projective arithmetic variety, i.e., an integral
separated scheme which is flat, projective of finite type over SpecZ. If 2" is regular
and that .Z is an ample line bundle on 2", we want to define a good density for
a subset & C ;5 HO(2°, £%%) so that the density of the subset of sections o €
U 430 HY(2", £%9) whose divisor is regular is positive. This will imply the existence
of global sections ¢ with regular divisor div o for sufficiently large d.

In the arithmetic case, we use the word “singular” as “not regular”. If we say that 2
is singular at a closed point x, we mean that 2 is not regular at x, which means that

2
X x

m
dimm(m) e # dim 2,
m
where m 9  is the maximal ideal of the stalk &9 , of the structure sheaf of scheme 2
on z and dim 2" is the dimension of 2" as a scheme.
In order to get good positivity properties of the ample line bundles on arithmetic

varieties, we add on them a Hermitian structure and consider the notion of arithmetic
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ON THE BERTINI REGULARITY THEOREM FOR ARITHMETIC VARIETIES 603

ampleness for Hermitian line bundles on projective arithmetic varieties developed by
Gillet and Soulé in [GS92] and by Zhang in [Zha92] (for arithmetic surfaces) and
[Zha95]. Assume that 2 is a projective arithmetic variety. An ample Hermitian line
bundles .Z = (Z,]-||) on 2 is an ample line bundle .# equipped with a Hermit-
ian metric ||-|] on the restriction .%¢ to the fiber 2°(C) with additional positivity
conditions. For such .Z on 2", we consider the set of strictly effective sections

Hp (2, 2) = {o e B2, 2); |lofl, <1}

as an analogue of H(X,.%) for an ample line bundle .# on a projective variety X
defined over a field, and

hae (2, 2) = log (#HJ(2,.2))
as an analogue of h°(X,.%). Here

ol = sup [lo(2)]-
2€%(C)

We will give a precise definition of an ample Hermitian line bundle and discuss
some of its properties in Section 2.

For a fixed ample Hermitian line bundle .Z, we say that a subset & of
Uaso HO(2, Z%9) has Arakelov density p for some 0 < p < 1 if

# (2 NHY (27, 2%%)
11m —
dmoo HHR (2, 297

We define the upper density and lower density in the same way. We denote the density,
the upper density and the lower density of &, when exist, by ua.(Z), iar (<) and
tar (), respectively.

Our main result is the following:

Tarorem 1.1. — Let 2" be a regqular projective arithmetic variety of dimension n,
and let L be an ample Hermitian line bundle on 2 . There exists a constant €9 > 0
such that for any € with 0 < € < g9 by denoting

Pipeesi= {0 € B2, 2%

_divo has no singular point of residual }
' characteristic smaller than or equal to e=®

and P e =Uys0 Pap<ea, we have
par(Pae) = Cor(L+n)"1,

where Cq (8) is the zeta function

Cr(s)= ] (- #r@))™

ze|Z|

Here () is the residual field of z, and the residual characteristic of a closed point x
in 2 is the characteristic of its residue field.

JIEP. — M., 2022, tome g



604 X. Wane

Tueorem 1.2. Let & be a regular projective arithmetic variety of dimension n,
and let £ be an ample Hermitian line bundle on 2 . Set

Py={o€ HO(2, 2%%); divo is reqular}
and P =59 Pa. We have

Tar(P) < Car(14+n)71,

where Tiay () is the upper density of L.

Proof. — If asection o € HQ, (27, Z®%) is such that div o is regular, then in particu-
lar it has no singular point of residual characteristic smaller than or equal to e¢ with
constant ¢ as in Theorem 1.1. So naturally £y C &y <cca and & C P4 .. Therefore
we have

Tar(2) < par(Pae) =Ca(1+n)" L U

Cororrary 1.3. — Let Z be a reqular projective arithmetic variety of dimension n,
and let L be an ample Hermitian line bundle on 2 . There exists a constant ¢ > 1
such that for any R > 1 we have

— R?, Sing(div o) has no point of residual
HO(2 . Z®d)y . HUHOO < )
i #{U € A&, ); characteristic smaller than or equal to (cR)/? }
im

i # {0 € HO(2, Z%); o]l < R4}

=Cax(1+ n)’l.

Charles used this notion of density in [Cha21] to prove the analogous Bertini ir-
reducibility theorem for arithmetic varieties, which says that if 2" is an irreducible
arithmetic variety of dimension at least 2 and £ an ample Hermitian line bundle
on 2", then the set of global sections in [ ;- HO(2", £%%) whose divisor is irreducible
has density 1. The result of Charles can also be compared to the result of Breuillard
and Varju in [BV19] for polynomials only with coefficients in 0 and 1. Breuillard and
Varju showed that if we admit the Riemann hypothesis for the Dedekind zeta func-
tion (i for all number fields of the form K = Q(a) for some root a of a polynomial
with 0, 1 coefficients, the density of the subset of irreducible polynomials in the set
of polynomials P(X) of 1 variable with 0, 1 coefficients such that P(0) # 0 is 1. (In
each degree d, such polynomials are finite in number, so the density can be defined
by the limit of proportion when d tends to infinity.)

1.2. COMPARISON WITH EARLIER RESULTS. We compare our result with some existing
results.

We first recall the result of Poonen that we already mentioned. In [Poo04] Poo-
nen established a density for |J 5, H°(PZ, €(d)) on the projective space Py. Let
P = Ugso Pa be a subset of |5, H (P, 6(d)), where 4 C H(P%, 0(d)). For
any d, we have a natural Z-basis of H°(P%, &'(d)) which is composed of all monomi-
als of degree d. For simplicity of notations we denote them by fa1,..., fin,, Where

JE.P.— M., 2022, tome g



ON THE BERTINI REGULARITY THEOREM FOR ARITHMETIC VARIETIES 6ob

ha = h(Pg, 0(d)). Any section f € H°(P2, 6(d)) can be written as f = S fa
with some a; € Z for each i. Poonen defines the upper density of &, as

fip (&) = max limsup --- limsup
TEGhd BT(D—)OO B.,.(hd)—>oo

#(Pan {0 aifa; € HOBE, 6(d)); ;| < By, Vi})
{0 4, fas € HO(PL, 6(d)); |as| < By, Vi}

Here &j,, is the symmetric group of hg symbols. The upper density of & is then
defined by

Ap(Z) = limsupfip 4(Zq).

d—o0
The lower density of & is defined similarly and the density of &2 exists if its upper
and lower density coincide. Using this density, Poonen proved the following theorem:

Tueorem 1.4 (Poonen, [Poo04, Th.5.1]). When 2 is a regular subscheme of
dimension m of Py, assuming the abc conjecture and a supplementary conjecture
which holds at least when Z~ is projective, the density of the set of sections f €
Uaso B (P, O(d)) such that div(f)NZ" is regular of dimension m—1 is (o (m+1)~".

Remark. — In Poonen’s proof, the abc conjecture is used to show that for any fixed d,
the upper density of global sections whose divisor has a singular point on a fiber over
a prime number p > M with M > 0 tends to 0 when M tends to infinity. The proof of
this follows the idea of Granville in [Gra98] that for a polynomial f(z) € Z[z] we can
get an asymptotic control of the prime squarefactors of f(n) by the norm of n € Z.
Poonen generalized this idea to the case of multivariable polynomials in [Poo03].

Essentially, in each degree d, we get the density 11, by taking the limit of coefficients
one by one. The action of symmetric group adds the condition that the order of
coefficients can be arbitrary. This theorem permits us to find global sections f €
HO(PZ, &(d)) such that div(f)N2" is regular of dimension m—1 for sufficiently high d.

The density defined by Poonen depends on a choice of coordinates of P7;. These
coordinates determine which global sections are monomials in each H°(P%, &(d)). His
method is hard to be applied to a more general case, for example when we consider an
arithmetic variety other than P equipped with an ample line bundle which may not
be very ample. Moreover, the size of the global sections with regular divisor cannot
be controlled using this method. The global sections having regular divisor may have
very large coefficients as polynomials. Finally, the abc conjecture is powerfully used
in his proof. Without it, the proof can give control of sections whose divisor does not
have singular points of finitely many fixed residual characteristics, but cannot give
the limit of the proportion of global sections of &'(d) whose divisor has no singular
point of residual characteristic smaller than or equal to e? for a constant € as we do.

In [BSW16], Bhargava, Shankar and Wang proved that monic integer polynomials
of one variable f(z) = 2% + a;29! + -+ + a4 € VP°U(Z) such that Z[z]/(f(z)) is

JIEP. — M., 2022, tome g



606 X. Wane

the ring of integers of the field Q[z]/(f(x)) has density ((2)~!. Here the density is
constructed using the size of the coefficients of polynomials.

This result can be viewed as a version of Bertini regularity theorem for . In fact,
the condition that Z[z]/(f(z)) is the ring of integers of the field Q[z]/(f(z)) means
exactly that SpecZ[z]/(f(z)) is regular. When we homogenize f to the global section

F(X,Y) =X+ a; XY + - +agYe € HY(PL, 0(d)),
this means that div(F) is a regular divisor of P}.
In their paper, fixing the degree d > 1, they order the monic integer polynomials
f(x) =2 +ar2®t +-- +ay
by a height function
H(f) := max{]a;|"/'},
and calculate the density of a subset &2y C V"°"(Z) by
. Pan{fevir™(Z); H(f) <R
il Pe) = 1 FPIOL VPP @) H ) < RY)
Rooo  #{f € VU(Z); H(f) < R}
Identifying V"°"(Z) with the set {F € H(P%, 0(d)); div F N ooz = @} by homoge-
nization, the density of &; can be understood as
. #(Pan{F € H' (P}, O(d)); div F Nooz = @, H(F) < R})
pr,d(Pa) = lim 0[Pl T -
R—o0 #{F € HY(P},0(d)); div F Nooz = @, H(F) < R}
We can then reformulate [BSW16, Th. 1.2] as follows:

Tueorem 1.5 ((BSW16, Th.1.2]). — For a fized d > 1, set
Py :={F e H(P}, 0(d)); div F Noog = @, div F is regular of dimension 1}.
Then we have

pma(Pa) = ¢(2)7 "

Remark. — This result is similar to Poonen’s theorem. In fact, if we note that ¢(2)~!
can be expressed by values of the zeta function of the affine line over SpecZ

Car(s) = HCA%F =11 1%})1_3,
p p

which is,

@' =Tla-p?) =B,
P
then the theorem tells us that, for any d > 1, the density of the subset & of

{F e H(P}, 0(d)); div F Noog = @}
consisting of sections with regular divisor is equal to
. -1 _
(p1 oo, (1 +dim(Pg —00z)) = Car(3)7
This is a statement similar to Theorem 1.4. But as we only consider global sections

whose divisor is disjoint of ooz, we can not recover Poonen’s theorem for 2~ = Al
ool
in P;.

JE.P.— M., 2022, tome g



ON THE BERTINI REGULARITY THEOREM FOR ARITHMETIC VARIETIES 607

The result of Bhargava, Shankar and Wang surpasses our results for P} in the
sense that for any d > 1, they can actually find global sections of H(PL, &(d)) whose
divisor is regular without auxiliary assumptions. Neither can we get such a strong
statement using Poonen’s method. But the method of Bhargava, Shankar and Wang
is hard to be generalized to other situations. Their proof depends on the monogenicity
of the finite Z-algebra Z[z]/(f(x)). They constructed a map from the moduli space
of monogenic finite Z-algebras of length d to the space of symmetric n X n matrices
quotient by the action of group SO(Ag), where Ay is the n x n anti-diagonal matrix.
This map is then used in the article to turn the counting of monic polynomials to
the counting of special orbits in this quotient space. Due to the construction of this
map, it is difficult to release the monic condition in their theorem so as to get a result
for all polynomials with coefficients in Z. It is even more difficult to generalize this
method to regular arithmetic varieties other than PL.

In [Aut01], Autissier showed another arithmetic analogue of the Bertini theorems.
He proved as a particular case that if 2 is an arithmetic variety of dimension n
over an integer ring O (where K here is a number field), and Z a very ample
Hermitian line bundle on 2", then there exists a finite extension L of K and a section
o € H(Z2,,-Z) such that by writing g : Spec 61, — Spec Ok the morphism induced
by Ok — Oy, for any closed point b € Spec O, the fiber (div o), of the divisor div o
is smooth if 27y is smooth. Moreover, we can bound the height of divo (defined
by .Z) in terms of the height of 27, deg 2z Zo, n and an effective constant which is
only dependent of .Z and n.

This result is stronger than ours in the sense where the divisor that he gives comes
from a global section of the sheaf .Z but not .Z%®¢ for a large d, and moreover the
divisor satisfies the smoothness condition rather that the regularity condition. The
disadvantage of this result is that it need to pass to finite base changes to find such
a global section. In particular, if 2" is defined over SpecZ, there’s little chance that
we can find a divisor satisfying the smoothness condition in the statement which is
defined over SpecZ by Autissier’s method. Our result, on the other hand, provides
divisors which are defined over SpecZ if so is the arithmetic variety that we consider.

As we can see, the densities in the above results are not defined in a natural way.
We construct them using additional information on polynomials. In particular, the
coordinate system on projective spaces are often needed for these constructions. Our
objective is to construct a density for arithmetic varieties in a more natural way and
get rid of this choice of coordinates. It is well-known that when we study arithmetic
varieties, it is usually better to consider vector bundles with Hermitian metric on
the complex fiber. In particular, we get good properties as arithmetic ampleness,
arithmetic Riemann-Roch theorem, and the set of effective sections behaves well in
the Hilbert-Samuel formula. Our construction of the Arakelov density via the set of
effective sections of Hermitian line bundles should be a better approach for a more
natural notion of density for arithmetic varieties.

1.3. METHOD OF PROOF. The proof of Theorem 1.1 relies on an effective estimate
of proportion of global sections whose divisor has no singular point on one single

JIEP. — M., 2022, tome g



608 X. Wane

fiber. This estimate can be reduced to computing, for a projective arithmetic vari-
ety 2 of dimension n with an ample Hermitian line bundle .Z, the proportion of o €
HO(%pz, $®d|ggp2) such that for any closed point z € div o, dim ;) maiv o/ M3y o =
n — 1, where

Ppz = X Xspecz Spec Z/p* L.

In fact, for any closed point x of Z on the fiber %), and any global section o¢ €
HO(2°, £%), the divisor div oy is singular at x if and only if the restriction of o on
the first order infinitesimal neighbourhood z’ of z is 0. Note that z’ is defined by the
square of the maximal ideal of z in 27, it is actually a closed subscheme of 2> (but
not of Z,), and the condition to test whether divoy is singular at = depends only
on the restriction 00|%p2. As the proportion in the group H%(.2,2, $®d|ggp2) is easier
to compute than in the set HQ (27, £%%), we first estimate the above proportion,
and then lift it to the proportion of sections in HQ (2", Z®?) whose divisor has no
singular point on the fiber 2, via a proportion-lifting result about HQ (%", £®9) —
(250, 25 2.

We first generalize Poonen’s Bertini smoothness theorem over finite fields in the
appendix, replacing the very ample condition by ampleness. Then the generalized
proof can be applied to get the estimate on one single fiber. With a choice of positive
integers r, 4, N(p), where r, 4 depends on p,d and N(p) depends only on p, we give
estimates of proportion of sections o € H° (22, L ®d| X ) whose divisor has a singular
point of degree smaller than or equal to rp, 4, between r,, 4 and d/nN (p) and larger than
d/nN(p), respectively. Then we conclude by putting together these three estimates.

The estimate on one single fiber can be easily extended to finitely many fibers. The
effective estimates permit us to show that we can gather all fibers over p such that
p < dV/(™*1 without ruining the convergence of the proportion of o € HY, (2, 2%9)
such that div o has no singular point on all these fibers.

Then we use a different method to show that there exists a constant ¢ > 0 such that
for any prime p < e°? with constant ¢ satisfying the condition in Theorem 1.1 such
that the fiber over p is smooth and irreducible (these two conditions are satisfied by all
but finitely many p), the proportion of strictly effective global sections whose divisor
has singular points on this fiber is smaller than or equal to cp~2. Consequently the
proportion of o € H (27, £%®4) such that div o has singular points on the fiber 2,
for some dY/ (1) < p < ¢ is bounded above by

> w7

dl/(n+1) gpgeed

131

which tends to 0 when d tends to infinity. This together with the above estimate for
p < dY D proves Theorem 1.1.

1.4. ORrGANIZATION OF THE PAPER. — In Section 2 we recall the definition of arithmetic
ampleness introduced by Zhang in [Zha92] and [Zha95] as well as some properties
of ample Hermitian line bundles such as the arithmetic Hilbert-Samuel formula and
present some results on restrictions to a subscheme. In Section 3 we gather two results
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on estimates of the convergences of special values of zeta functions. In Section 4 we
estimate how fast the proportion of strictly effective global sections whose divisor has
no singular point on a given special fiber over p € SpecZ tends to (g, (1 + n)~L.
In Section 5 we use the results of the previous sections to show that the proportion
of strictly effective global sections whose divisor has no singular point of residual
characteristic smaller than or equal to d'/ ("1 tends to ¢ (14+n)~! when d tends to
infinity. In Section 6, we prove that the proposition of sections in H (2, £%%) whose
divisor has singular points on a special fiber over p can be bounded above by cp—2
with some positive constant ¢ independent of p and d when d and p are large. We use
these results to prove Theorem 1.1 and Corollary 1.3 in the same section. In the
appendix, we give a proof of a generalized Poonen’s Bertini smoothness theorem over
finite fields where we allow the sheaf to be ample instead of very ample. This theorem
is not directly used in the main part of this paper, but some results in the appendix
are used in Section 4 and 6.

1.5. Norarron

(1) For a finite set S, we denote by #S its cardinality.
(2) For a positive real number z, we define

|z] = max{n € Z; n < z}, [z] =min{n € Z; n > x}.

(3) Let f,g: R>o — R be two real continuous functions such that f(0) = ¢g(0) = 0.
We say f = O(g) if there exist ¢ > 0 and € > 0 such that for any x such that 0 < z < ¢
we have

f(@) <c-g(@).

Wesay f ~gif f=0(g) and g = O(f).

(4) For an arithmetic variety 2" and a positive integer N, we write 2y for the
closed subscheme 2 Xgpecz Spec(Z/NZ).

(5) For an arithmetic variety 2~ equipped with an ample Hermitian line bundle .,
if Y is a subscheme of 2~ such that Yy # @, we set HO(Y,.Z) := HO(Y, Z|y); if Y is
a subscheme of 2" such that Yo = &, we set H(Y, %) := HO(Y, L]y ).

Acknowledgements. The author is very grateful to Frangois Charles for introducing
him to the subject, for the various discussions they had and for the helpful guidance
the author has received. The author thanks Yang Cao, Etienne Fouvry, Salim Tayou
for their useful conversations.

2. ARITHMETIC AMPLENESS

In this section, we discuss arithmetic ampleness for arithmetic varieties, i.e., inte-
gral separated schemes which are flat and of finite type over SpecZ. This notion is
established in [Zha92] and [Zha95].
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610 X. Wanc

2.1. BASIC PROPERTIES

Derivition. — Let M be a complex analytic space. Let L = (L, |-||) be a Hermitian
line bundle on M, where |-|| is a continuous Hermitian metric on L. Then L is said
to be semipositive if for any section o of L on any open subset U of M such that s
does not vanish on any point of U, the function —log ||o|| is plurisubharmonic on U.

Revark. — If M is a complex manifold and the Hermitian metric [|-|| on L is of
differentiability class C2, then saying that L is semipositive is equivalent to saying
that for any section s on any open subset U of M such that s does not vanish on any
point of U, we have that

V=199 (—log||s]))

is a non-negative (1, 1)-form.

In this article, we always demands that the Hermitian metric on a Hermitian line
bundle is smooth.

Derinition. — Let 27 be a projective arithmetic variety, which means an arithmetic
variety projective over Spec Z. We say that .2 = (&, ||-||) is a Hermitian line bundle
on 2 if £ is a line bundle on 2" and ||-|| is a smooth Hermitian metric on .Z| 4 (C)
which makes 2|2 (c) = (Z| 2 (c), |I-|]) a Hermitian line bundle as defined above. We
say that .Z is ample on 2" if it satisfies the following three conditions:

(i) £ is ample over SpecZ;

(ii) & is semipositive on the complex analytic space 2 (C);

(iii) for any d > 1, HY(2", £®%) is generated by sections of norm strictly smaller
than 1.

For any Hermitian line bundle . = (%, ||-||) and any real number §, we note .Z(9)
the Hermitian line bundle (.Z, ||-|| e~?). If Z is ample, it is easy to see that Z(6) is
also ample for any § > 0.

A useful result concerning ample Hermitian line bundles is the following proposi-
tion, which is a simple version of [Cha21, Prop. 2.4]:

Prorosition 2.1. Let 2 be a projective arithmetic variety, and let £ be an
ample Hermitian line bundle on 2 and A4 o Hermitian vector bundle of rank r
on Z. There exists a positive constant ¢ such that for any large enough integer d,
HY( 2, Z%Y® M) has a basis consisting of sections with norm smaller than e~

Now we recall the arithmetic Hilbert-Samuel theorem for ample Hermitian line
bundles on projective arithmetic varieties, which is proved by Gillet and Soulé in
[GS92] using arithmetic Riemann-Roch theorem for arithmetic varieties with smooth
generic fiber and generalized by Zhang in [Zha95] for arithmetic varieties whose generic
fiber may be singular. There is also a proof given by Abbes and Bouche in [AB95]
without the application of the arithmetic Riemann-Roch theorem.
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Tarorem 2.2 Let 2 be a projective arithmetic variety of absolute dimension n,
£ an ample Hermitian line bundle on 2 and .# a Hermitian vector bundle of rank r
on Z . As d tends to oo, we have

W (2, 2% @ ) = %?nd” + o(d™).

Proof. — The statement can be found in [Yua08, Cor.2.7 (1)]. We get this by
combining two results. The first one is the arithmetic Riemann-Roch formula esti-
mating Ysup(-Z®¢ ® .#), which is the logarithm of the covolume of the lattice
HY(2, %Y ® #) for the sup norm. This result is proved by Gillet-Soulé in [GS92)]
by combining the Gromov inequality (see for example [Yua08, Cor.2.7 (2)]), as

Xoun (L2 @ ) = = Z7d" + o(d"),

when the generic fiber of the arithmetic variety is smooth. A generalization to the
case where we drop the smoothness condition on the generic fiber is given by Shouwu
Zhang in [Zha95, Th. (1.4)].
The second result, which says that
|h?&r(%7§®d ® ]) - XSHP(§®d ® %” = O(dnil log d)a

is a consequence of [GS91, Th. 2], together with a Theorem of Zhang ([Zha95, Th. 4.2]),
which implies that h} (2, Z%? ® #) = 0 when d is large enough. |

2.2. ResTricTION MODULO N OF SECTIONS

Lemva 2.3. — Let & be a projective arithmetic variety, and let £ be an ample
Hermitian line bundle on 2 . There is a positive integer dy such that when d > dy,
we have

HY( 2y, 2% ~ (2, 2% /(N -HO(2,.2%%)

for any positive integer N.

Proof. — By the definition of 2, we have Og, ~ O /(N -0 g). Therefore we have
that on 2",

LR Oy, ~ L2 (N - L%,
which induces an exact sequence of sheaves on Z~
0—>$®dl>$®d—>$®d®ﬁg@v — 0.

Since HO( 2, £%4) = HY( 2, %% ® 04, ), we may choose dy > 0 so that for any
d > dy, HY(Z , £%) = 0. For such d, we have the following exact sequence:

0 —s HO(2", 2% N 109, 294 s qO(2y, 29%) — 0,
and the lemma follows from this exact sequence. O

We have two results concerning the restriction modulo N map.
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Prorosition 2.4. Let 2 be a projective arithmetic variety, and let £ be an ample
Hermitian line bundle on 2. Let 0 < ay < 1 be a real number. There exists a positive
constant 1 such that for any d € Z~q large enough, if N € Z~gq is bounded above by
exp(d®), then the following holds:

(i) the restriction morphism
wd,N : HOAr(,%,y(gd) — HO(%N,QE/p@d)

18 surjective;

(ii) for any two sections s, s in HO( 2y, L%?), we have

1 _
|#¢d,N(5) - #@[’d,}v(slﬂ < o
#v (5) h

This proposition is a reformulation of [Cha2l, Prop.2.15]. Here the constant g

can be any real number between 0 and 1.

Prorosition 2.5. Let 2 be a projective arithmetic variety, and let £ be an ample
Hermitian line bundle on 2. Let g be a constant as in Proposition 2.1. For a positive
integer N, let

wd,N : HOAr(,%,y(gd) — HO(%N,QE/ﬂ@d)
be the restriction map. When d is large enough, for any § < €y, any odd integer
N < e and any subset E C HY( 2, £®%), we have

#an(E) #E
#HQ, (27, Z2d) © #H(Zy, £80)

Proof. — Note that H*(2", . Z®) is a free Z-module for any d. For simplicity of no-
tation, we write h = rk(H?(2", Z®?)). We may assume that d is large enough so that
for any positive integer N we have HY( 2, 2%%) ~ H)(2", £®%) /(N -H (%", 2%%)
by Lemma 2.3. Let (04, ...,05) be a Z-basis of H(2", Z®?) such that

ol < e =, Vje{l,...,h}.
For an odd integer N such that 0 < N < e?d with a fixed § < &g, we set

Dyn ={o =31 Noj; NI < N/2, A R} CHO(Z, 2% @ R.

Then we have
Dy NH(Z, 2% = {0 =3 Njoj; =(N=1)/2< )\ < (N —1)/2, \; € Z},
and
HO(2, 2% @, R=N-H (2, 2% + Dy n.
Moreover, for any o € Dy n, we have a bound for the norm of o
ol < (AN /2) e~

The existence of such a basis is guaranteed by Proposition 2.1. In particular, when d
is large enough, as N < €% with ¢ < g¢, any o € Dy n satisfies

o]l < (h/2)el®==0) < 1.
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Note that by the expression of Dg y NH(2", £%?), we have a 1-1 correspondence
between elements in Dy xy NHO(2", Z®9) and elements in H*( 2y, £%?) induced by
the restriction modulo N map. So the map

wd,N : H%r(%7§®d) — HO(%N,,g@d)

is surjective for such N.
For any R € R, we set

By(R) = {0 e B2, 2% @2 R; ||o|| < R}.
Then in particular, we have
Bd(l) N HO(%7§®(Z) = H%r(%7§®d)'

For any element o € H*(2", Z%9) @z R, we can find a ¢/ € N -H(.2", Z%%) such
that 0 — ¢’ € Dy n. If moreover o € By(1), we have

lo"Il < lloll + llo — o'l < 1+ (hN/2) e~
Thus we have two inclusions
By(1) C (Ba(1 + (Nh/2)e )N N -HY(2", . Z%%)) + Dy n;
HY, (27, 2% C (Ba(1 + (Nh/2)e )N N -HY (2, Z%%)) + Dy ny NHO(Z, Z2%).

Note that any element in HO(Zy, #®?) has exactly one preimage in Dgn N
HO(2, £®4). The number of sections o € Dy yNH (2", £®4) such that 14 n(0) € E
is equal to #FE. Then by the above inclusion, we have

#Uy N (E) = #{o € H} (2, 2%); dan(0) € E}
< # (Ba(1+ (Nh/2)e =) NN -H (2, Z%)) - #E.
Now we bound
# (Ba(1 + (Nh/2)e =y N -HY (2", Z%%).
If 0 € By(1+ (Nh/2)e ) NN -HY (2, £L%Y), any 0’ € 0 + Dy y satisfies
lo'|| < llo|| + |jo = &'|| < 1+ (Nh/2)e 0% 4 (Nh/2)e 0% =1 4 Nhe~c0?,
Hence
(Ba(1 + (Nh/2)e YN N -H(2, Z%%)) + Dy n C Ba(l + Nhe =0%),
and in particular, we have
Vol ((Ba(1 + (Nh/2)e =) N N -H(2, %)) + Da,n) < Vol (Bq(1 + Nhe™=0%))..

If 01,09 are two distinct elements in By(1 + (Nh/2)e~%04) N N - HO(2Z", Z%%), the
intersection (o1 +Dgn)N(02+ Dy n) is either empty or a subset in H*(2", £®4) @, R
of dimension smaller than h. In particular, the intersection always has volume 0.
Therefore we have

Vol ((Ba(1+ (Nh/2)e =) n N -H (2, Z%%)) + Dy n)
=# (Ba(1 + (Nh/2)e =) N N - HY(2", . Z%%)) - Vol(Dy,n).
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From this equality, we can bound # (Bq(1 4+ (Nh/2)e =) N N -H°(Z", £%%)) as
#(Ba(l+ (Nh/2)e ) N N - HO(2, 2%))
Vol ((Ba(1 + (Nh/2)e=0%) 1 N - HO(2', Z%4)) + Dy )
N Vol(Da,n)

Vol (B4(1 4+ Nhe==04))
VO](Dd’N)

X

Now set
Dgi={o =30 Noj; [N <1/2, Aj € R} C HY(2, Z%0) @z R.
We get similarly that for any o € Dg1, |of < (h/2)e~%04. If ¢ € HY(27, Z®%) @z R
satisfies |o|| < 1—(h/2)e~%°¢ then we can find a section o/ € H°(2", Z®%) such that
o € o' + Dy 1; moreover, we get
lo"[l < llof| + llo = o'l < 1 = (h/2)e™= + (h/2)e™=" = 1.
Thus we have
Bd(l - (h/2)e_60d) C HOAr('%vy(X)d) + Dd71-
So similarly we have
Vol (Ba(1 — (h/2)e=*09)) < #HY, (2", Z%) - Vol(Dy,).
Note that for any R > 0,
Vol (B4(R)) = R"Vol (B4(1)), and Vol(Dgx) = N"Vol(Dg ).
Hence
Vol (Bq(1 4+ Nhe~¢0?)) ( 1 + Nhe=sod )h Vol(Bg4(1 — (h/2)e~c0%))
Vol(Dg ) 1—(h/2)e=0d NP -Vol(Dg1)
1 + Nhe==od )h #HQ (X, L94) - Vol(Dga1)

1— (h/2)e—%0d Nh .- Vol(Dg 1)
1 + Nhe#0d —

h HO ®d )

=N (1—(h/26 8od) #Ha (2, 27)

Since N < e’¢, we have
(14 Nhe =" = exp (Nthfeod + O(Nzhse’%od))
= 14 Nh?e =0 4 O(N?hte~2%07)
<14 h2e0—e0)d | O(h462(5—50)d)_

As 0 < ¢ and that the rank h = rk(H°(.2", £®%)) grows polynomially with d, when d
is sufficiently large,

(1 + Nhe—&od)h < 1+ 2h26(5—50)d g 2.
Similarly, we have when d is sufficiently large,

(1 _ (h/?)eisod)h (h2/2) —eod 4 O(h4 72sod) h2 —eod > 1/2
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Hence we have

1+ Nhe=0d \h 14 2h2e(0—c0)d
(1 - (h/2)e*€0d) =1 — h2e—eod

for any N <e’@. Therefore, we can bound # (Bg(1+(Nh/2)e~*4)NN-HY (2", Z%%))
by

Vol (Bq(1 4+ Nhe=¢0?))

Vol(Dg n)
_n( 1+ Nhe=0d

<N (e
AN #HL(2, 25,

#(Ba(1+ (Nh/2)e™ ) N N -H(2,.2%)) <

) s, (2, 75

So finally we have
#Ug N (E) < # (Ba(l+ (Nh/2)e )N N -HY(2', Z%%) - #E

AN~ (#HQ (27, 2%7)) - #E.

NN

Note that by Lemma 2.3, when d is large enough,
HY( 2y, 2% ~H (2, 2% /(N -H)(2,2%%).
So for such d we have #H%( 2y, £%%) = N". Hence

#Ug N (E) <4 4E
#HQ (2, 22d) ~  #H( 2y, L%9)

and we conclude. O

Remark. — When d is large enough, H(2", Z%®9) is a free Z-module such that
h=rk(H(2,2%) = dimg H"(24,.2%%) = x(24,2%%)

as . is ample.
The asymptotic Riemann-Roch Theorem tells us then that

((ZL]2)")

h= (n—1)!

dn—l + O(dn—2>7
where ((£|2;,)""") is the intersection number of n — 1 copies of .Z| 4, where as
W2, 2% o ) = %?nd” +0(d" 'log d)

by Theorem 2.2.

3. CONVERGENCE OF SPECIAL VALUES OF ZETA FUNCTIONS

Let 2 be a separated scheme of finite type and flat over Z of absolute dimension n.
We fix from now on a constant ¢y > 0 such that for any prime integer p and any
e € Zsyg,

#HX (Fpe) = #2p(Fpe) < cop™ Ve,
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where n is the absolute dimension of % (so %, is of dimension n — 1). Such a
constant exists by the Lang-Weil estimates in [LW54]. A good introduction to the
function # 2 (F,-) and its properties is Serre’s book [Ser12].

We know that the zeta function

Co(s)= ] (01— #n(@))"
€| X |

is absolutely convergent for any s € C satisfying Re(s) > n. Moreover, the zeta
function of 2" is the product of the zeta function of all its fibers, i.e., we have

CIOEN | RYAC!
p prime
For later use, we calculate in this section the speed of convergence of
[T - #r@ )
z€|Zp|, dega<r
to (o, (n+ 1)~ when r — oo, and that of [<rCz (n+ 1)"t to (o (n+ 1)~ when
R — .

Lemva 3.1. — For any prime number p and any positive integer ¢ > 1, we have
—log(l—p~°) < 2p~°.

In particular, for any closed point x on an arithmetic variety Z and any integer
e > 1, we have

—log(1 — #r(z)™°) < 2- #r(x)™".

Proof. — For any real number 0 < t < (v/5 — 1)/2, we have — log(1—t) < 2log(1+t).
Indeed, when 0 < t < (vV/5 — 1)/2, we have
~l<t*+t—1=(t+1/2)>-5/4<0.
Then
A+t)?A—t)=1— (B +2—t)=1—t{t* +t—1) > 1,
which implies
1

—— < (1+1),

T S+
i.e.,

—log(1 —1t) < 2log(1 +¢t).

Since for any ¢ > 0, log(1 +t) < ¢, we have for 0 < t < (v/5 —1)/2,

—log(1 —t) < 2t.

As (v/5 —1)/2 > 1/2, any prime p and positive integer r > 1 satisfy p=" < (v/5 — 1) /2.
Hence we conclude. U
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Lemma 3.2 Let Z be an arithmetic scheme of absolute dimension n. For any

prime number p and any positive integer r > 1, we have

H (1 _p—(n+1)degw) _ C%p(n_’_ 1)—1 < 400p—2(r+1).

z€|Zp|
degz<r

Proof. By Lemma 3.1, for any closed point = of 2,

“log(1 — #k(z) D) < 2. fr(z)(+D)

We have
Z (_ log(l _p—(n—i-l)degw)) <92 Z p—(7z+1)degz <2 Z #%(Fpe)p—(n-i-l)e
€| Xyl €| Xp| e=r+1
deg x> deg x>r
0 ) L 0 ) p—2(r+1) ) .
<2 Z cop("_ Je -p_("+ Je — 2¢o Z p~ ¢ =2c 1_72)_2 < dcop~ (r+1),
e=r+1 e=r+1
On the other hand, for any = € |%Z}|,
(1 _ p—(n+1)deg3c) < 1.
Hence
H (1 _pf(nJrl) dcgm) _ C%p(n + 1)71
€| Zp|
deg x<r
— H (1 _ pf(nJrl) degm) . (1 _ H (1 _ pf(nJrl) degx))
z€| Xp| €| 2|
deg x<r degz>r
<1-— H (1 fpf(nﬂ)deg”:) =1- exp< Z log(1 p(”H)degw)).
€| Zpl €| Zpl
degz>r degz>r

By the above computation, we have

<1- exp(—4cop_2(r+1)) < degp2r D)

H (1 _p—(n+1)degx) _ C./”?fp(n + 1)—1

€[yl

degz<r
as for any ¢t > 0, e~ > 1 — t. Therefore we conclude. O
Lemva 3.3. — Let 2 be an arithmetic scheme of absolute dimension n. For any

prime number p, we have

0 < log(a,(n+1) < dcop™>.
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Proof. — In fact, we have

O<10g§ggp(n+1)zlog( H(l—#ﬁ;( )~ ()= ): Zlogl #r(x ”'H)

z€|Zp| z€|Zp|

< ( > 2#%(:@‘(”*”) <2y H# 2 (Fye) -pm Y,
e=1

€| Zp|
where the second line uses Lemma 3.1. By the choice of ¢y at the beginning of this
section, for any e,

HX (Fpe) = #2,(Fpe) < cop™ Ve,
Then we have

- — - — Cop _
Z#%(Fp*f)'P e(nt1) <COZZ) Ze g — < 2cop~2

e=1

Hence we conclude. O

Lemvia 3.4. — When R € Z~g is large enough, we have

[I¢otn+ )™ = Ca(n+ 1)—1’ <8l (n+1)"" - RL.
p<R

Proof. — Since (o (s) =[], (=, (s), for a positive integer R we have

[[¢o,n+ 1) =Cotn+ 1) =Catn+ 1) | ][] Cop(n+1 ‘
p<R p>R
=Co(n+1)7 " exp(Zlogngp(n—i—l)) — 1’.
p>R

Since by Lemma 3.3, 0 < log (2, (n + 1) < 4cop™2, we have

o0
0< Z log (o, (n+ 1) < 4co Z p~? < 4eo Z k2 < 400/ z72dx = 4egR™ .
p>R p>R k>R R

When ¢ € R is sufficiently small, we have et — 1 < 2t. Therefore when R is sufficiently
large,

[[¢o,n+D) =Catn+1)™

p<R

= Crlnt )7 [exp(S,  log (o, (n + 1)) — 1]

<(lo(n+1)" |exp (4COR ) - 1|
<8COR7 (%(n+1)

4. EFFECTIVE COMPUTATIONS ON A SINGLE FIBER

In this section, for a regular projective arithmetic variety 2 of dimension n
equipped with an ample Hermitian line bundle .Z, we calculate the density of the
set of global sections in H (2", £®¢) whose divisor has no singular point lying on a
fiber %), for a fixed prime integer p when d — oco. Note that this density differs from

JE.P.— M., 2022, tome g



ON THE BERTINI REGULARITY THEOREM FOR ARITHMETIC VARIETIES 61()

the density of sections in H(.2}, £®?) whose divisor is smooth over F,. This is be-
cause when a global section o € HO(2", Z®?) is such that div o has no singular point
on %, it is still possible that its image by restriction map ¢q, : HO(2", £%%) —
HO(Z,, £%) is such that div ¢4, (o) is singular.

Indeed, let = be a closed point on the fiber 2}, with maximal ideal m, as a closed
subscheme of 2. We may assume that 2}, is smooth over F,. The maximal ideal
of z as a closed point of 2, is mg, , = m,/(p- O,). For any 0 € HO(Z', Z%®%), its
divisor div o is singular at z if and only if ¢ is contained in H%(.2", Z®?®m?), where
we identify HY(2", Z®¢ ® m2) with a sub-Z-module of H*(.2", Z®%) by regarding
Z%4 @ m? as a subsheaf of Z®9. This is equivalent to the condition that, denoting
by 2’ the closed subscheme of 2~ defined by the ideal sheaf m2, the image of o by
the restriction map H(2", Z®%) — HO(2/, £®?) is 0. Similarly, denoting by 2" the
closed subscheme of .2, defined by m?%p?w, div ¢4,(0) is singular at z if and only if
the image of o by the restriction map H?(2", Z®?) — HY(z", £%%) is 0. Note that
as x is a regular point of 2",

#HO (2!, £27) = #HO(/, O,) = (#r(2)) "

Similarly, since &£, is smooth,

#RO(2", 2% = #H0(", 0,) = (#n(2)) T = (#(2)) "
Moreover, by the definition of z’ and z”, the restriction map H°(2 , %) —
HO(z", £%4) factors through

#H (2, 2% — HO (2", £®9).
Therefore we have a strict inclusion
Ker(H°(2, 2% — H(2', £%")) C Ker(H°(27, 2% — H (2", £%%)),

which implies that it is possible that div ¢4, (o) is singular at  while div o is regular
at .

Exawrere. — Consider PZ together with the ample line bundle ¢(1) on it. Then
X?2+5Y2— 7?2 is a global section in HY(PZ, &(2)). The restriction ¢g 5(X?+5Y2 —Z?)
in HO(PF_, 0(2)) is equal to X? — Z2. So div(¢2,5(X? + 5Y? — Z?)) has a singular
point P =10,1,0] € IP]%S. But P is not a singular point of div(X?2+5Y?2 — Z2). Indeed,
consider the open affine neighbourhood A% = P2 \ div(Y’) of P. The ideal sheaf myz p
of P in AZ is generated by X/Y,Z/Y,5 € H(AZ, Opz). Then mX%P is generated
by X2/Y2 Z2)Y?% 25, XZ/Y? 5X/Y,5Z]Y. Let P’ be the first order infinitesimal
neighbourhood of P in PZ. Then P’ can be regarded as a closed subscheme of A2
defined by mii’ p- Note that

X2 45Y?2 - 7% = (X?)Y?2 - Z2)Y? + 5)Y2,

The image of X2 + 5Y2 — Z2 in HY(P',0(2)) is 5 - Y2, which is non-zero. So P
is a singular point of div(¢e5(X? + 5Y2 — Z?2)), but it is not a singular point of
div(X2 + 5Y2 — 72).
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The above argument shows that for a section o € H(2", £%®4), the condition that
the divisor div o has a singular point on the fiber 2}, is stronger than that div ¢q (o)
is singular. However, we can test whether div o has a singular point on the fiber 2,
through the restriction ¢, ,2(c), where ¢g 2 : HO(2, Z294) — HY( 2,2, £%%) is the
restriction morphism to %2. In fact, for a closed point x on the fiber 2, as p- 0,
is contained in m,, we have naturally p? - €, € m2 and that 2’ is a closed subscheme
of Zp2. This implies that the image of o in HO(z', . £%%) is the same as the image of
Gap2(0) via HO(Zp2, £ — HO(2/, £®?), and also that when z € divo,

. 2
mdlv¢d,p2(0)az _ mdivo'7:v/p ﬁw ~ Mdiv o,z

2 - 2 2 - 2 .
Myiv By, p2 (0),x Miiv a,a:/p ﬁf My o,

So when x € divo, dive is regular at z if and only if the image of ¢4,2(0) in
HO(2', £%%) is not 0, and this condition is equivalent to the condition that

Mdiy ¢d,p2 (o), . Mdiv o,z
o =dime)
mdiv ¢d,p2 (o), div o,z

=n-—1.

dimm(w)

Therefore we may study whether div o has a singular point on the fiber 2, via the
study of div ¢4 ,2(c), although the latter is not regular itself.

4.1. Mai~x resurts. — We write
Pap:={0o¢c H°(2", Z%%); div o has no singular point on 2}

Taeorewm 4.1. Let 2 be a regular projective arithmetic variety of absolute dimen-
sion n, and let £ be an ample Hermitian line bundle on 2. There exists a constant
C > 1 such that for any large enough integer d and any prime number p satisfying
Cnp™ < d, we have

#(Pap NH(Z, 2%9))

TN i AR R (RN

where the constant involved in big O is independent of d, p.
To prove this result, it suffices to prove the following proposition:

Prorosition 4.2. — Define
P =10 € HY (2o, £%%); Va € |divo’|, dimyu(y) Maivor,a/Miiy o =1 — 1}

Then there exists a constant C > 1 such that for any prime number p satisfying
Cnp™ < d, we have

H#P 2

(7 7 ~ )| = 0l ),

where the constant involved in big O is independent of d, p.
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Proofof Theorem 4.1. Assuming this proposition, by Proposition 2.4 for any ag
such that 0 < g < 1 we can find a constant 1 > 0 such that when d is large enough,
for any prime number p such that p* < exp(d®®) and any o}, 0% € H(2,2,.2%9),
[#(0712(01) N HOL(27, Z59) — 4 (6711 (08) N HY, (27, Z9))|
# (07,0 (01) NHR(27,.2%7))

_nd

)

<e

where ¢q,2 : HO(2', Z299) — HO(2,2,.2%9) is the restriction map. When we take
the sum over all o} € H0(2,2,.2%9%), as

U ($ape(oh) NHR(2,29%) = HY, (2, 2%,
oL E€HO(Z, 2, 2®4)

we get
[# (604 (01) NHR (2, Z9) - (#H (230, 25)) - #HL (2. 27|
<Y Rk nEYL (2, Z5)
o4 EHO (2,0, 21) R mng(%y@d))‘

< > e H (00 (07) NHA(Z, Z290))
oh€HO(X, 2, L ®4)

— e (71, (o)) MHL (2, Z90)) - #H(2;, 29,

Dividing both side of the inequality by #HO(%pz, Z94) we get
_ #HR(2, 2%
#HO(Zp2, £99)
< e (67ha(oh) NHAL(2, 259).

# (0 (01) NHYL (27, 25))

Note that for any o € H(2", Z9%), 0 € P, if and only if for any closed point
z € dive N 2, we have dimy(z) Mdivo,2/MG;y 5, = 7 — 1. This is equivalent to the
condition that for any closed point = € div ¢y 2 (0), we have

my; ,
dim,, gy —a P2t _
dive, 2(0),x

ie., ¢pgp2(0) € Z) 2+ Hence Py, NHQ (X, L%1) is exactly the preimage of 2! 2
in HY (27, Z®4). Summing up over all o] € Py s We get

_#HL(2, 2%
HHO (2,2, £24)

‘#(!@d7p N H%r(%a§®d)) : #'@(/17]72

_ #HA(2, 2%9)
#HO(Z 2, L24)

- ‘# U (65h(0}) NES, (27, 25%))

ole’
\p

BT
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622 X. Wana

#HY, (2, L)

< 29; ‘#@d;xoimH?\r(%,z@d))— e
< Y e M # (o .(01) NHY (2, 2%
e,

= e M (Pap NHA(Z, L5) < e #HQ (2, 297,
Dividing this inequality by #H%, (27, Z%%), we get

# (@d,p N H%r(fa§®d)) . #‘@é,pz < efnd.
#HL, (2, Z£%4) #HO(Z 2, £99)
Therefore assuming Proposition 4.2, we have
# ydpmH (%7§®d)) -1
: - +1
0 (2, 7 SO
# (Pap NHY(2, 2%9)) HP)
#HO (4, ?@d) #HO(Z)2, £99)
/
d,p? . -1
#HO L, L) G (n+1)
=0(e™) + O((d/p)~*/™) = O((d/p)~¥™). 0

The proof of Proposition 4.2 follows the method of Poonen for his proof of the
Bertini theorem over finite fields in [Poo04]. We will prove Proposition 4.2 through
the following steps.

(1) In Section 4.2 we will calculate the proportion of o € H( 2,2, £®%) such that
dimy, ;) Maiv U,z/mﬁiv »o = — 1 for any closed point = of degree < r for an integer r.
This proportion equals to

II = #n@)~0*)

€| X |
deg x<r

for r not too big. We will give a bound r4 for r depending on d where this proportion
is valid for any r such that 0 < r < rq.

(2) Then in Section 4.3, we will show that for some integer constant N, the propor-
tion of o € HY( 2,2, £®%) such that there exists a closed point z of degree between 74
and d/nN where the condition dim,,,) maiy J,E/m?jiv sz =N — 1isnot satisfied tends
to 0 when d tends to infinity.

(3) In Section 4.4, we will show the following: there exists a constant N (p) depend-
ing on p such that the proportion of o € HO(%pz,,Sf@d) which satisfy the condition
that there exists a closed point = of degree strictly larger than d/nN(p) where we
have dim,, ;) Mdiv a,m/mﬁiv o # n — 1 tends to 0 when d tends to infinity.

(4) In Section 4.5, we will put these three estimates together to get an effective
estimate of proportion of global sections whose divisor has no singular point on one
single fiber.
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In the following, we need a relative version of Lemma A.2:

Lemva 4.3, — Let £ be an ample line bundle on a projective scheme % flat over an
open subscheme . = Spec R of SpecZ. Then there exists a positive integer N such
that

(i) £®4 is very ample for alld > N;
(ii) for any a,b > N, the natural morphism of R-modules
HO<9/,$®(I) ®H0(gy’$®b) . HO(@’$®(a+b)>

s surjective.

Proof. — Tt suffices to take the integer N such that Lemma A.2 holds for the generic
fiber % and that HO(%, #®?) is torsion free for any d > N. O

4.2. SINGULAR POINTS OF SMALL DEGREE. — We need a lemma:

Lemma 4.4. Let Z be a closed subscheme of 2,2 of dimension 0, and let N be a
positive integer such that L®N is very ample. The restriction morphism

HY( 2,2, %% — HO(Z, 2%%)
is surjective when d > Nhz, where hz = dimg, (HO(Z, Oz) ®z)p2z Fp).

Proof. — Let Cq be the cokernel of the restriction map. Then Cq ®z/,27 F) is the
cokernel of

H(2,, 2% — H°(Z,, 2%") = H*(Z, £%%) @727 Fp.
When d > Nhz, by Lemma A.3, we have Cyq ®z/,27 F, = 0. Then by the short exact
sequence
0—pCy — Cqy — Cy ®z/p2z F, — 0,
we get pCy = Cy. Applying Nakayama’s lemma to Cy, considered as a Z/p?Z-module,

we get Cy = 0. Thus the surjectivity of the restriction map in the lemma holds when
d> Nhy. O

Lemva 4.5. — Set

Pigpiar 1= {0 B2, 200 o € i)
degz < r = dimy(y) Maivor o /My g0 = N — 1}.

(n—1)r

For any positive integer r satisfying 2co Nnrp < d, we have

/
f@d@z,gr@d _ H (1_p7(n+1)degw)'
#HO( 2,2, £9) el 2|
degx<r

JIEP. — M., 2022, tome g



624 X. Wang

Proof. For any closed point x € %2, let 2’ be the closed subscheme of %2
defined by the square of the maximal ideal of z. Then 2’ is the first order infinitesimal
neighborhood of z in Z2,2. We have 2’ ~ Spec(ﬁ%pzy’m/m?%p%x). A section o’ €
HO(2,2, £%%) is such that divo’ contains z and that dimy(g) Mdivero/M3y o o = 1
if and only if the restriction map

HY( %, 2%%) — HO (2, £®%)

sends ¢’ to 0. For a positive integer r, let %p’ be the disjoint union

2
KT

I _ /

‘%‘pQ,g'r‘ = H xX .
€| Z 2]
degx<r

Then we have a natural isomorphism

(2 o, 2% ~ ] H@!,.2%%.
€| X2 ]
degx<r

A section o/ € H%(Z,2,.2%) is such that divo’ is regular at all closed points = of
degree < r if and only if its image in H°( 17’27<T,$®d) lies in the subset which by
the above natural isomorphism corresponds to

I (@22 —{0}).
:EG\%IQ |
degz<r

To get the result, we need to study the surjectivity of the restriction map
HO( 2,2, 2%%) — HY( 2 (., L% ~ H) (2,2, O, ® Lo,

When n = 1, the number of closed points of |Z,2| is bounded above by #.2(C).
We have

dimFP HO(‘%;DE,QW ﬁgfézwgr) ®Z/P2Z FP = dimFP HO (‘%PQ’ Hdeg T<T ﬁx/) ®Z/PQZ IFP

= Z dim]}i‘p HO (l‘/, ﬁxl) ®Z/pZZ }FP

degx<r
= Z (1-1)+1)degz < Z degz < o0
deg x<r ze\ﬁ?fpg\

for any r > 0. So the restriction map is always surjective when d is sufficiently large
by Lemma 4.4. When n > 1, we have

dimFP HO(‘%'/Q,gﬂ ﬁvﬁf/z ) ®Z/PQZ IFP = dime HO('%Z)2’ Hdeg z<r ﬁa?') ®Z/P22 FP

p pe,<r

= Z dimp, HO (2, O,) ®z/p2z Fp = Z (n=1)+1)degx

degz<r degx<r

T r r
<Y #Zp(Fpele<nd cop" Ve <negr- Y plnHe
e=1 e=1 e=1

(n—=1)(r+1) _ 1

< negr
B 0 pn_l_l
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By Lemma 4.4, when d > N - (ncor(p®= D+ —1)/(p"~' — 1)) with N as in the
lemma, the restriction map
HO(%27$®d) — HO(%pz, ﬁgggg%gr ® 2%

is surjective. In particular, since we have

neor p(’Lp:L)_(Z*_l)l—l < neor W = 2ncrp™ VT,
the surjectivity of the restriction holds for r, d satisfying
ZCONm“p("_l)T <d.
For such r,d, we have
#'@c/l p>Sr H (1 _ p—(n-i-l)degr). 0
A7, 25~ 4
deg x<r
4.3. SINGULAR POINTS OF MEDIUM DEGREE. — Let N be an integer satisfying Lem-
ma 4.3. Set
aped = {0' € HY( 2,2, £%%); 3z € |diva’|,

r <degx < d/nN and dim,, mdi\,(,/736/111(21“‘]U,,gC = n}

Note that a section o € H(2", £%®9) is such that divo has a singular point x on
the fiber 2, of degree such that r < degz < d/nN if and only if for such an z,
dimy, (z) Maiv /M3 sz = N, and hence if and only if ¢g ;2 (o) € ng;gim.
Lemma 4.6. — We have forr > 1,
#2055
#HO (232, £9)

where the constant cq is as defined in Section 3.

—2(7‘+1),

< 2¢op

Proof. — For any closed point z in 2,2, applying Lemma 4.4 to the first order infin-
itesimal neighborhood " of & in %2, we get that the restriction morphism

HY( %2, 297 — H( 2,2, Op @ L%7)

is surjective when
N(ndegz) < d,

which is when degz < d/Nn. We can then estimate the proportion of elements in

238 by
P < g FKer (U2, L5 o (e, O © 251))
0 Qdy o =
#HO(Z,2, L9) r<dog o\ d/Nn) #HO(Z,2, 2%d)
ld/Nn| -
< Y HZ(Fpe)p™ e Y copnTHep (e
e=r+1 e=r+1
> cap—2(r+1) -
< ¢ Z p i Olp_ﬁ < 2cop 2(r+1) 0
e=r+1
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4.4. SINGULAR POINTS OF LARGE DEGREE

Prorosition 4.7. — Fizx a constant 0 < a < 1. There exist positive integers Ny, Ny
only depending on 2 and £ such that for any p < d*, denoting

N(p) = (No+1)(N1 +p—1) +p,
and
Q;igl = {U’ € HY( 2,2, 2% ; 3z € |dive’|,
degz > d/nN(p) and dim, ;) maiy gl,x/mﬁiv ol = n},

we have
" o@high
#H(Z, «i” @d)
where ¢1 and the constant mvolved in big O are independent of d,p and «.
In particular, we have

_ O(dnpfcld/p),

#c@high
lim =0.
d—oo #HO(Z 2 , L®d)

Remark. — When d is large enough, for any p < d?%,
dnp—cld/p < dnd—cladl @ dn—clozdlfo‘
~X - .

As a < 1, dr—e12d’ ™" tends to 0 when d tends to infinity. So the above proportion

ng? / #HO( 2, 94 is always near 0 for any p < d® when d is large enough.

When 2 is regular, so is its generic fiber Zg, which is equivalent to say that
Zo is smooth over Q. This implies that we can find an open subset .7 of SpecZ

such that Z's is smooth over .. We will give a uniform control of the proportion
of o@glg? for primes p € .# such that 2coN(p)np"~! < d. As SpecZ . . is a finite

scheme, the set of primes p where the proportion of c@glgz is not controlled is finite in

number. We then give independent control of the proportion of 2 dﬁ‘ for each fiber
with constants possibly depending on p. The finiteness of such p permits us to get a
uniform control for all primes p satisfying 2coN (p)np™ ! < d.

Thus Proposition 4.7 is implied by the following two propositions:

Prorosition 4.8. Fiz a constant 0 < a < 1. For any prime p < d* such that Z,
is smooth over F,, we have
high
d,p? =0 dn—l —c1d/p
#H0( 2, 2%9) (@ "p ),
where ¢1 and the constant mvolved in big O are independent of d,p and a.
Prorosition 4.9. — Fiz a constant 0 < o < 1. For any prime number p < d* with
possibly singular Z,, we have
high
#e@d,p _ O(dnp—c/ld/p)
#HO(Z 2, £24) ’
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where ¢| and the constant involved in big O are independent of d, ., but may depend
on p.

We prove first the smooth case. Before proving Proposition 4.8, we need some
preparation.

Lemva 4.10. Let . be an open subscheme of SpecZ such that Z& is smooth
over .. We can find a finite cover of L& by open subschemes U satisfying the
following conditions:

(1) we can find tq,...tn—1 € HY(U, Oy) such that
n—1
QIlj/y ~ @ ﬁUdti;

(2) for any positive integer M, we can choose a constant Ng > M satisfying Lemma
4.3 such that there exists a 7o € HO(Z s, LEWNotDY such that o ~ divry = U;
(3) with the same Ny as above, there exwist T1,...7, € HY(Zp, L9N0) such that

U=U,¢jr(Zo ~divr).

Proof. — As Q}%y/y is a locally free sheaf of rank n — 1, we can find a finite open
covering {Ug} of 2 and sections tg1,...tg,,—1 € H'(Ug, Oy, ) such that

n—1
Qlljﬁ/y ~ @ ﬁUﬁdtﬂJ.

Hence we may assume the condition (1) for U. Moreover, if the condition (1) is satisfied
by U, then it is also satisfied by any open subscheme of U.

If U is an open subscheme of 25 satisfying the condition (1), we will show that
it can be covered by finitely many open subschemes {U,} of U which satisfy the
conditions (2) and (3). This will complete the proof of the lemma.

Since . is ample, we may take a positive integer N} > 0 satisfying Lemma 4.3
such that for any d > N, the sheaf S, v ® fﬁ%d is globally generated, where
S o, is the ideal sheaf of Z» \ U with the induced reduced structure. We may
then choose non-zero sections

1 e HY (X, Io, v @ LEN0) C HY (X, LEN0),

generating S, v ® L ®No_ This means that set theoretically, we have Zo» N\ U =
; div(7/). In other words, we get a finite cover of U:

U=U (2 ~div(r))),

where £ \ div(7]) are open subschemes of Z’s. Note that for each i, Z» \ div(7/)
satisfies the condition (1) of the lemma. Without loss of generality, we may replace U
by one of the subschemes 2 \ div(7/), i.e., we assume that there is a section 7 €
HY(2 .y, 2®No) such that U = Y ~ div(7}). We denote div(7}) by D.

Now set Ny = rN} — 1 for some positive integer r such that No > M and that
the sheaf .#p ® Z®No is globally generated. Then in particular we can find sections
T, € HY 2y, Ip © £9N0) € HY(Z L, £¥N0) such that D = (\;_, div(r;) set
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theoretically. This means exactly U = |, ¢ ;< (Z» \div ;). We also set 7o = (75)" €
HO(Z 5, 2®WMo+t1) In this situation we still have D = div(7y) set theoretically. The

section 7y and sections 7y, ..., 7 are then what we need for conditions (2) and (3) in
the lemma. ]
Lemma 4.11. — For an open subscheme U of Z.&, set

QSE)}‘U = {a € Ho(ﬁ”p,f@d) ; div o has a singular point in U Ndiv o

d
d > .
of degree "N ) }

Then Proposition 4.7 holds if we have
high
#Qd, U _ O(dn_lp_cU’ld/p)
3,5,51_10(0/10,1%7 g@d) ’

for allU satisfying the conditions in Lemma 4.10, where the constant cy,1 only depends

on X',% and U.

Proof. — Let {Uy} be a finite cover of Z» where all the U, are open subschemes
of Z'& satisfying the conditions in Lemma 4.10. Then for any p € ., we get a finite
open cover {Uy, p2} of Zp2. For an open set U of Z» flat over .7, set

= {of B2, %) T € Jdive N,
degm > d/nN(p) and dlmR(T) Mdiv 0/»T/m(2iiv olx — n}

To bound e@;‘iﬁ? , it suffices to bound Q}jg? p.. for all U, in the covering.

Note that for any o € H%(2,2,.2%?) and any = € |divo|, we have an exact
sequence

Mdiv o, Mdiv 7,
pﬁdiva 21vow 21v<7 T 0
div o,z divo,x

where &@ = o mod p is the restriction in H(2,, £®¢) and div is the divisor in 2.
Therefore

Mdive,z . Maiv o,z
2 2 dimy(y) —

divo,z div o,z

dim,g(l.) -1

In particular, if dim, ;) Maiy o,0/M3;, so =1 =dim 2, then as

Mdiv o,z . Mdiv 7,z
s Isdimg) g

div o,z divo,x

dimy, () <dimZ, =n—1,

we have dim(,) Maiv Eym/mfﬁvax =n—1, which means that x is a singular point of div 7.
Then for a section o € H(2,2, £%%), o € QSE;U implies 7 € ngghU. Thus
#2080 _HoeHAZe, 29 7 2 #2000
HHO (2, £57) S HHO(2,, 754 T (2, 250)
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It suffices then to bound #Q?Igjh{]a for U, in the covering. Here all U, satisfies the
conditions in Lemma 4.10. Such a finite covering exists by Lemma 4.10. If for any «,
the estimate

high
#QdPU _ O(dnflpcha,ld/p)
(2, 257)
holds, then setting ¢; = mma{cUml} > 0, we have
high hlgh
#Qd,zﬂ Z #e@ d,p,U, _ O(dn 1])_"1(1/1)). O
#HO( 2,0, £®d) = L= #HO(Z, $®d)

Now for an open subscheme U as in Lemma 4.10, we get morphisms

®; : HY( 2y, 2% — AU, Oy)
o—0o- T;l/’rg
for any d € Z~p and 1 < j < k.

On the other hand, Lemma A.16 tells us that there exists a positive integer Ny
such that for any o € H%(%,, £®%), any i such that 1 < i < n — 1, the section
(0:®;(0))- 6”6 extends to a global section in HO(.Z,,, Z®Wot1(d+)) for any § > N,
Here 79, is the restriction of 7o modulo p in HO(Z,,, £®WNo+1)),

In fact, we may choose Ny to be Ny = N + dp + 1 where Nj is such that when
0> N7, for any i such that 1 < i < n the section

0; -7y € HO(U, Home, (N, 1o, O, ) @ LN0F0)
can be extended to a global section in
H° (%5’7 %Omﬁgry (Qéyy/y’a Oxy,)® i”(NOH)‘S) ~ Hom(ley/y, $®(N°+1)5),
and where dy is such that for any d > dy, the restriction morphism
HO(P(H( 2y, 22PN t)), 6(d)) — HY(Zp, L@t
is surjective. So N; is again independent of d and p.
We enlarge Ny if necessary so that it satisfies the following conditions:

(1) Ny + 1 is a power of a prime number;
(2) for any d > Ny, (£, )%? is very ample;
(3) for any a,b > Ny, we have a surjective morphism

HY (29, 2% @no(z.0,) H( Xy, L) — HY( 2.y, 2800+,
We prove the following result:
Lemma 4.12. — For any prime p € &, take
N(p) = No+1)(N1+p—1)+p=p{No +2)+ (No+1)(N1 — 1).

With notation as in Proposition 4.7, if p and N(p) satisfy 2coN (p)np™~* < d, then

we have
high
d,p,U o n—1,—ci1d/p
__"T=dpU (4 1
#H0(Z,, 29) (d""p ):

where ¢1 and the constant involved in big O are independent of d, p.
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By Lemma 4.11, this implies Proposition 4.8.

Proofof Lemma 4.12. — For each p € ., if d > N(p), d has a unique decomposition
d= pkp’d + (NO + 1)€p’d

with Ny < 4,4 < Ny + p. We have a surjective map
n—1
HO(%p,.,g@d) % (H HO(%”g@kp,d)) % HO(%mth)kp,d) — HO(%pwg@d)
i=1
which sends (00, (81, --,Bn-1),7) to

n—1

o =00+ Z 5?7517'&, + “YpTé],dp,
i=1
where 7y, is the restriction of 7o modulo p in H(2;,, £®Wet+1)) Thus
n—1
B,(0) = D1 (00) + 3 5 (B 1R(0)" 3 (170,
3,o\0 4,p\00 3,p\Pi) L% p\T0,p 3.p\7V)" ®34,p\T0,p
i=1

in HY(UN Z,, Ouna,), where @, = ®;|yn2;,. As 79, is nowhere zero on U, we have
Sing(dive) N (U N div 7j,) = Sing(div @, ,(0)) N (U N div T, p)

and hence 5
Sing(dive) NU C |J Sing(div ®; ,(0)).
j=1
Since
0:[®;(B:)Pti®; p(70,5) ]
= (I)j,p(ﬁi)pq)j,p(mm)zd + Edq)j,p(Bi)ptiq)jw(TO,p)ed_l ) aiq)j,p(TO,p)v
and for any i’ # i,
0:[@p(Bi )Pt ®; p(10,5) ] = €a®; p(Bir )Pt @ (70.5) 4" - 0P p(T0.),

we have

n—1
0i®j,(0) = 0;%;,(00) + Z i [(I)j’p(ﬁi’)pti"I)j,p(TO,pyd] +0i [(bj:p('y)pq)j,p(TO,p)ed]
n—1 v
N {Z édq’j,p(ﬁi’)pti"bjm(m,p)edil + Ed(bj,p(’Y)p(I)j7p(7'0,p)ed71 0i®;p(70,p)

i/ =1

+ 0;®;,(00) + (Pj,p(ﬁi)pq)j,p(m,p)éd

Ed(q)j,P(U) - ij,P(UO)) 31'@]',;;(70,;;) + (I)j,p(ﬁi)pcbj,p(TO,p)Zd

= 0i®;p(00) +

¢’j7p(70,p)
Now set
9p3(00 Bi) = Bilip(0) = W 00, (o) + @i p(Bi)P @ (10.)",
J,p\70,p
and
Wyii=2pNUN{gpj1="""=gpji=0}
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Then for any o = o + Z;:ll ﬂlptﬂ'g’dp +'yp7'§f;9, comparing the expressions of g, ;; and
0;®;,, we have
_ ta®jp(0)

gp,j,i(o—o,/}i) :8¢®j7p(0) 5y (7_0 )
7P sP

0i®; (10,

and hence

9p.3.i(00, Bi)laiv @, (0) = 0i®j p(0)|aive, , (o)
Moreover, any section g, ; ; (0o, ﬁi)'Tg’;‘; € HY(2,nU, £®Wot1(d+9)) can be extended
to a global section in H(.Z,, Z®Wot1(d+d)) for any § > N; + 1. In fact, we know
already that the section 9;®; , (o) ~7'61;6 € H°(2,NU, £®Wot1(d+9)) can be extended
to a global section in HO(.Z,, £®WNo+1)(d+3)) for any § > N;. On 2, NU we have

L +d . No+1 . d—Nop—1
la®jp(0) ‘ 9 Tip (T Tj.p ) v 0 7 Tip
, - d No+1 = d—No _°
®;p(70.0) 70,p 70,p 70,p
. No+1)+6
By Lemma A.16, for any ¢ > Ny, the section 0;®; ,(70.p) - Témﬁ )9 can be extended

to a global section in H0(.2;,, £@WNotD((No+1)+0)) g5 the section

La®;p(0) ars _ (La®ip(o) 4N (No+1)+(5—1)

: 0,0 (10.) - TET :(7“) T, “)-(8@)- Top) " Top. )
(Dj,p(TO,p) ]71?( 0717) 0,p CI)j,p(TO,p) 0,p i LP( 0710) 0,p

extends to a global section of Z®@No+1)(d+9) for any § > N +1. Therefore the section

6ch> (0’)

95400, 8:) - 717 = (9,;(0) — ~2

’ ! ®;(7)
can be extended to a global section in H(.2;,, £@WNot1(d+9)) for any § > Ny + 1.

3i@j(7)) s HO(U, $®(N0+1)(d+5))

Lemva 4.13. — When d is sufficiently large, the proportion of
n—1

(00, (Bu, -+ Bu-1),7) € H (25, 2% (H H%%,z@’w) x HO(2;, 2%
i=1

such that for o = o9 + 2?2—11 5?751‘7'5;, + VPngdp,

divo N Wy o1, N{z € |2,|; degz > d/nN(p)} = 2,
is
1— O(dn_lp_cld/p),

with a constant ¢y depending only on Ny, N1 and the dimension n.

Proof. — Apply Lemma A.17 to the case Y = 2}, and X = U N Z,,. We obtain that
for 0 < ¢ < n—2, with a fixed choice of 0g, f1,...,8; such that dim W, ; ; <n—1—1,
the proportion of B;+1 in H(Z,, £®*»¢) such that dim W, ;11,; < n—2 — i is
1- O(di -])2_“”(]\70“‘1)N“")7 where the constant involved depends only on the degree
of 2, when embedded in P(H° (,,%p@(NOH))V) (this degree is independent of p), hence
is independent of d,p. In particular, the proportion of (oo, (B1,...,8,-1)) such that
Wp.n—1,; is finite is

n—2
H (1 o O(dz . p2—d/(N0+1)N1p>) —1— O(dn—2 . p2—d/(N0+1)N1p)‘
=0
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And then Lemma A.18 tells us that for fixed (00, (B1y- -y Bne 1)) making an 1]
ﬁnite the proportion of v € H%(2,, £®kr.a) such that for 0 = o9 + > 1, ! BPtiTe
7p 0 p7
dive "Wy o1, N{z € |2p]; degz > d/nN(p)} = 2,
is
1— O(dn—lp—d/nN(p)),

where the constant involved is independent of d, p.

Therefore for large enough d, the proportion of

n—1

(007(ﬁ17~--55n—1);7) c HO(%7$®d) % <H HO(%)Z@IG@J)) X HO(%7$®kp,d)

i=1
such that
diveNW, —1,;N {.%‘ € |%| ; dega > d/nN(p)} =4,
where o = 0o+ Y10, BtiTe, + 4P T, i

(T1 (1 ot g2 #0xerm) ) 1 oty

i=0 _ (1 —o(d? ,p2_d/(N0+1)N1P)) ) (1 _ O(dn—lp—d/nN(p)))
- (1 —o(d? .p2—d/(N0+1)N1P)) : ( — O(drtpd/nN ))
—1- 0(max(dnﬁp%d/(ml)mp’ dnflpfd/nzv(p)))

As N(p) = p(No + 2) + (Np + 1)(N1 — 1), when d is sufficiently large, we have
d d

nN()  n[p(No+2) + (No+ 1)(Ny — 1)]
d d

=
n[(No+2)(N1 +p—1)] = n(No+2)Nip’

and
d d

-2 .
(No 4+ 1)N1p 2n(No + 2)N1p
Therefore when d tends to infinity,

-2
(h (1 _O(di_pQ—d/(No-‘rl)Nl;D))) ( (dn 1 —d/nN(p)))
i=0 _1-0 ( X(dn72p27d/(No+1)N1p7 dnflpfd/nN(p)))

-1 O(dn lp—d/Zn(N0+2)N1p)

=1- O(dn—lp—cld/p)

with constant ¢; = 1/2n(Ng + 2)N; which then depends only on Ny, N; and the
dimension n. O
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On the other hand, for such ¢ = op + Y7~} ﬂftﬂg_fip + ’y”ngo € HY(2,, %),
we have

k
Sing(divo) NU € {J Sing(div ®;,(0))

j=1
and
Sing(div @, ,(0)) = div®; ,(o) N {1 P p(0) =+ = 0p,—1®, ,(0) = 0}
=div®; ,(0) N {gp5,1(00,81) = -+ = gp,jn-1(00, Bn—1) = 0}
= div @j,p(a) n Wp,nfl,j
=diveNWpn_1,;
as

9p.5.i(00, Bi)laiv e, (o) = 0i®jp(0)|dive, (o)
Since the homomorphism of groups

n—1

HY (2, 2%7) x <H H(](%7$®kp’d)> x HY(25, LE0rd) — HO(25, £%7)
i=1
sending (00, (B1y.eey Br1), 7) too = UO+Z?:—11 Bftﬁgfp +7p7'§3) is surjective, Lemma,

4.13 implies that

# {0 € H(Z,, £%%); Sing(dive) N\U N {z € |2,|; degz > d/nN(p)} = @}
#H0(Z,, £o9)

=1-0(d" 'p~ 7).

which means that the proportion of o € H(2},.% ®d) guch that div o has no singu-
lar point of degree strictly larger than d/nN(p), that is, elements not contained in
QSE}IU, is1—0 (d"_lp_cld/p) with a constant ¢; depending only on Ny, N7 and n.
We therefore conclude that
#2ipu
#HO(Z,, £®4)
with a possibly smaller c;.

Now that we have proved Lemma 4.12 except for the only prime number pg dividing
No + 1, we can run the same process with another constant Nj > Ny such that
(N)+1,Ng+ 1) = 1. We get a control for the proportion of ngg:’(] with different
constants as we have

— O(dn—lp—cld/p)

Lapov C {0/ € H(2,2, £%%); 3x € |divo'],
degz > d/nN'(po) and dimy(z) Mdivo'0/ MGy o 5 = n},
where
N'(po) = (N} + 1)(N1 +po — 1) +po > (No + 1)(N1 4+ po — 1) + po = N(po).

So by modifying the constant ¢; and the constant involved in the big O, this case can
be included in the uniform control. Therefore we proved Lemma 4.12. |
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Now we proceed to prove Proposition 4.9.

Proof of Proposition 4.9. — The main problem for controlling the proportion of Qgif)?
for p ¢ .7 is that 2, over p might be singular. We decompose .2}, into regular and

singular part:
2, =U,UZ,

where Z, = Sing(Z,) is the singular locus of 2, and U, = 2, \ Z,. As 2 is regular,
for a closed point z in 2,
—if € U, dimyy) mggp@/m%{mm =n-1
—if w € Z,, dim,(y) mggp@/m%{p’m = dimy(q) Mo o /Mm%, = n.
Set
22%}; = {a c HY(Z,, 2% ; 3 € |dive N T,
degz > d/nN(p) and dim,(,) Maiy o0/ M3, o =M — 1}7

24 = {a € HO(2,, 2%%); 3z € |divo N Z,),

degz > d/nN(p) and dim,(,) Maiy oz/M3;, o = n}
For a section o € H%(2},.#®%), assume that divo contains a closed point z with
dim,, () Maiy o,z /M3, s.x = N Let @ = o mod p be its image in HY(Z,, £%). Then if
x € Up, x is also a singular point of dive N Uy, i.e., dimy(q) Maive,e/Miy 5, =1 — 1;
if z € Z,,, we have then dim, ;) Maiv& m/mﬁiva » = n. So we have

{7:0¢ gh’gh} C ,@hlgh u ,0231;’“,

hence . ) .
#2,% _ #2455 . #2E
HO(Z,2, 290) S FHO(Z,, 280) '~ #HO(Z,, £54)
We can bound the first term #Qh‘gh #HO(2,, £®%) by exactly the same method as
in the proof of Lemma 4.12. The second term can be bounded by a slightly different

way.
As now (Q}% /Fp)| z, is locally free of rank n, we cover an open neighbourhood of Z,
by open subschemes Vz, o where we can find to1,...,tamn € H(Vz, o, Ov,, ) such

that the image dt; of dt; in (Q%/zp.a/Fp)’VzP,aﬂZp

satisfies
1 ~ i@
(QVZP,Q/]F;D)|VZP,QQZP - z@ ﬁVZp»amZPdtz'
Then choosing convenient constants Nj > Ny, Ni > Nj and setting
N'(p) = (Ng+1)(N{ +p—1) +p,

the same process as in the proof of Lemma 4.12 gives us that the proportion of Q(}iﬂ%};
being a subset of

{0 € HY(Z,, 2%); 3z € |dive N Z,)|,
degz > d/nN'(p) and dim,,) mdiva,x/mﬁivmx = n}
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is bounded by
1— <H(1 — O(di.de/(N6+1)N{p))) . (1 — O(d"p*d/”N'(p))>
i=0
—1— (1 —O(d" .p2—d/(Né+1)N{p)> . (1 _ O(dnp—d/nN’(p)))
_ O(dnpfclld/p> )
Thus Proposition 4.9 is proved. |

4.5. Proor or ProrosiTioN 4.2

Proof. — As in the previous section, let Ny be an integer satisfying the following
conditions:

(1) No + 1 is a power of a prime number;
(2) for any d > Ny, (L], )®? is relatively very ample;
(3) for any a,b > Ny, we have a surjective morphism

HY (20, Z°) @no(7.0,) B Zp, LE°) — HY( Xy, L2000,
Let N7 be as in Proposition 4.7. For each p € ., take
N(p) = (No+1)(N1+p—1)+p=p(No+2)+ (No+1)(N1 — 1).

In particular, N(p) also satisfies the conditions (2) and (3) above. By Lemma 4.5, for
any positive integer r which satisfies 2coN (p)nrp™ D" < d, we have

#z@épa,grd _ H <l_p7(n+1)dcgz).
®
#2299  da,

deg x<r

Let 7, 4 be the largest r satisfying this condition. In order to have r, 4 > 1, we need
2¢coN (p)np"~! < d.

Set C' = 2¢o(Ng + 3). When d is larger than 2con(No + 3)(No + 1) (Ny — 1)™, if p
satisfies Cnp™ < d, then either p < (Ny + 1)(N; — 1), in which case we have

2coN (p)np™ " = 2¢o [p(No +2) + (No + 1)(N1 — 1) |np" ™"

< 2¢9|(No +2)(No + 1)(Ny = 1) + (No + 1)(Ny = 1) |mp" ™!

= 2¢o(No + 3)(No + 1)(Ny — D)np"™ "

< 2con(No + 3)(No + 1)"(N1 — 1)" < d;

or (No+1)(N1 —1) < p < Cnp™ < d, so that
2¢oN (p)np™ " = 2¢[p(No +2) + (No + 1)(Ny — 1)Jnp" !

< 2¢o(No + 3)pnp™ ™"
= Cnp"™ < d.

So the above condition is satisfied, hence 7, 4 > 1.
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Since
me: high
gz(/i,pz c ‘@c,i,pzérp.d C ‘gzél,zﬂ U Qd,pgmp,d U Qdﬁ?’
we have
/
#(@é,pz — C% (TL + 1)71‘ < ‘ #yc/lvpz _ #yd p27<TPyd ‘
#HO (22, £94) ’ CHHO (2, .2%0)  #HO(252, L9
#yé 2, <rp d
P75 Tp, _ 1 71‘
+| g g~ (n o+ )
m high
ot N #2,0
h #HO(%%g@d) #HO(%27$®d)
+ ‘Cf&”p(n + 1)—1 _ H (1 _p—(n-‘rl)degx) )
m€|3{p2|
deg x<rp.q
By Lemma 4.6,
med
#Qd,p%p,d 2(rp,a+1)

RO, 257) = 2P |

By the choice of r, 4, we have
2¢coN (p)n(rp,a + 1) -p("*l)(rp,dﬂ) > d
So

—(r n(r —1/n n—1)(r —1/n
preatl) = (prleatD) TV () 4 1)p D et ) T

—1/n
() o)

Therefore we have
# Qmed

d,p?,7p.a — —-2/n
2, 2o~ LD

where the coefficient involved in is independent of d, p.
By Proposition 4.7, we have
#2)
#HO(Z 2, L24)

_ O(dnpfcld/p),

where again the coefficient involved in is independent of d, p.
Note that Lemma 3.2 shows

H (1 *pi(nﬂ)degz) —Car,(n+ 1) < degp 2t = O((d/p)~2™).

€| Zp|
deg x<rp q
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Finally, by putting together all these three inequalities, we get
et D W DO o o PR o -
_ n <
HHO( 2,0, Z20) %7 HHO( 2,2, 2%0) T #HO(Z,,, L24)

+ ’C%p(n+ 1)~ — H (1= p~ (w1 degay

€| X2
deg x<7p 4

= O((d/p)"2/") + O(d"p= ) + O((d/p)”*'")
=0((d/p)~*'"),

where the coefficient involved in is independent of d,p, which is what we need to
show. 0

5. SINGULAR POINTS OF SMALL RESIDUAL CHARACTERISTIC
In this section, we will show the following result:
Prorosition 5.1. — Let 2 be a regular projective arithmetic variety of absolute di-
mension n, and let £ be an ample Hermitian line bundle on 2 . Set

— div o has no singular point of residual char-
Papeaions = {o € HO(2, 7%, gular point of !

-acteristic smaller than or equal to d*/ ("1
When d is sufficiently large, we have
‘# ('gzd,pgdl/("+1) N H%r(%‘7§®d))
#HR (2, 257

Here the constant involved in the big O depends only on Z .
In particular, denoting Zp = U ¢ Py p<dr/n+n) , we have

par(Pp) = Ca(n+1)""

—Ca(n+1)7 =0(d~ V),

5.1. UNION OF A FINITE NUMBER OF FIBERS. Let p, ¢ be two different prime numbers.
We have
Pp2gr = X Xspeez Spec(Z/p*¢* L) ~ X 11 Xo.

For any d > 0, we have an isomorphism
Mp2ge  HY( 2200, £2) 5 HO( 20, 229 x HO( %, £29).
For any o € H} (2, Z%%), 0 € 2, 4N P, q if and only if the restriction map
’(/)d7p2q2 : H%r(%7§®d) — HO(%p2q2,$®d)

sends o to an element in the set )\;222@921’727 a4 X 3”(’127 4)- Therefore, applying Proposi-
tion 2.4, we have

I #(e@nd N @q,d n H%r(gbr,?@d))
1m —
d—ro0 #HR, (2, Z2%4)

= (o, (n+1)""Ca,(n+1)"".

JIEP. — M., 2022, tome g



638 X. Wane

More generally, for any finite set I of prime numbers p, we have

lim #(ﬂpel f@p,d N HOAr(‘%/.5§®d))

d—oc #HS, (2, 297 =[[¢om+1)7"

pel

By Lemma 2.3, we may only consider d > 0 such that for any positive integer N,
we have

HY( 2y, 2% ~HY(2, 2% /(N -H (2, 2%%).

Fix a positive constant «g such that 3/4 < oy < 1. By Proposition 2.4, when d is
large enough, for any N < e4"°, the map

Yan HY(2, 2% — HY (2N, 297
is surjective and there exists a positive constant 1 with

[#07(0) = #7 ) _
#~1(0)
for any two sections o, 0’ in HO( 2, £%9).
For a positive integer r, take N,. = Hpgr 2.

Levma 5.2. Let C be the constant in Theorem 4.1. For any large enough integer d,
and for any integer r satisfying Cnr™ < d with n = dim 2 and N, < e®"°, we have

# (np<r ‘@dxp N HOAr('%vy(g)d))
- = ~ ¢+ 1) = 0((Z,e, p/™)/d*).
R R SR
Proof. — The Chinese remainder theorem implies that

H(Z,, 2% ~ Y2, £%%) @4 Z/N, 7

~HY(2, 2% @y (H Z/p2Z>
pP<T
~ [[ HO(2,2,.2%%).

PST

Moreover we have 2, =[] , Zp2. Set

pST
Eq, = {0 € H(Z,, L% ; Vo € |divol|, dim,) Mdivez/Miyee =1 — 1}

Then a section o € HY( 2y, , £®9) is contained in Eg, if and only if for any p < 7,
its restriction o|g , is contained in &), ;. In particular, a section o € HO(2, 2%)
satisfies Yq,n, (0) € Eq,r if and only if 1gp2(0) € P, 4, for all p < r, which means

exactly that this o is contained in [ ... Z4,. On the other hand, still by the Chinese

p<T
remainder theorem,

#Eq, _ H H#P o a
#HO(Zy,, L99) plr #HO( 22, L2%94)
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As said above, with some positive constant 7, we have

[#Y~ (o) — #¢ (o)
#¢~(0)

with 0,0 in HY( 2, , £%). Fixing one o, we can sum up for all ¢’ € Ey, and get

—nd
<e™

)

‘#Ed 3 #(p<r Pap)| | (#Ear - #0"(0)) — #¢ " (Ea,)|
" #1~1(0) #1~'(0)
[#Y~ (o) — #y ()] —nd
< UIEZEd’T #1/}_1(0') < #Ed,r € ;

where the last inequality follows from Proposition 2.4. This can also be written as

‘#( N %,pmH&M,z@d))  (#Ea, - #07(0))] < (#Eay - 0N (0)) .

PST

Now we take the sum for all o € HY( 2}, ,-£%%) and get

‘ (#( m ‘@d,p N ng(%wj’ﬂ@d))) : #HO(‘%/Nryo‘Z@d)
pPST
— (#Fay - #H&(%,ﬂd))‘

> (#(n 20z zon) - #8407 0)

€Y ( Xy, , L®4) PST
cEHO (X, , L81)

> (#Ea, - #¢~"(0)) e

c€HO(ZXN,., L ®d)
= (#Eq, - #H, (2, L%%)) e
< (#H (X, , 2% - #HQ (2, 29 e,

N

#( 0 2ap VIR 2 - ($Ea - #07(0))

pP<T

N

Dividing both side by #H°( 2y, , Z®%) - #H) (2, Z®%), we get

#(yer Pan OHLZ T gm, |,
#HQ,(27,.2%7) #HO( 2y, 22| =
Since we already know that
#FEq, _ H #P 4
#O(Z,, 250~ UL gm0 2., 250y
the inequality can be written as
#(mp<7’ '@dm N ng(%7§®d)) #‘@;/;2 d —nd
= — - : <e "
#HY, (2, 250) U %02, 757

Thus to finish the proof, it suffices to show the following lemma:
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Lemwva 5.3, Under the condition of Lemma 5.2, we have
I i ~ LG = O, 7/ a1)
P<r p<r

Proof. — By the Lemma 4.2, for any prime number p satisfying Cnp™ < d, we have
#P 2.
#HO(Z 2, £99)

with the constant involved in big O independent of p and d. Therefore we can calculate

= ¢, (L+ )" +O((d/p) ")

the product as

H# P
H L AHO (2 jgﬂ@d) = H (C%p(l +n)"t 4 O((d/p)*Q/n)>
P2 p<r
_HCEK 14+n)” +ZO p/d2/”)
= HC%p(lJrn)—l +O<(Zp<rp2/”)/d2/"). 0
p<T

The above lemma shows the result, as

# (M Pap NHYL (2, 25Y))
‘ #HS, (27,75

[l ¢e(n+ 1)

pPET
’# (No<r Zap R (2. 250) 4o,
= HHQ (2, .i”@d) o #HO(22, £99)
H#H Qf g@d HC% (L+n)~
pP<T P
=0 (e7") + O((Zpe, #7/M)/d*'") = O((3,, /M) /d?/"). O
5.2. Bouxp ox NUMBER oF FIBERS. — Now we prove that we can choose r=d/ ("1 As
Pap<ar/on = (1 Pap,
p<dl/ (n+1)
we will in fact prove the following:
Lemva 5.4. — For large enough integer d, we have

# (‘@d,pgdl/(nﬂ) N H%r(%’y(@d)) ~ H

A o, (n+1)7H = 0@~ YD)y,
#HQ (2, Z94) ot L) ( )

p<dl/ (n+1)

Proof. — Note that

N, Hp <Hk2
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and that r! < " = exp(rlogr). If 2rlogr < d*, we get N, < exp(d®®). Then by
Proposition 2.4 the restriction morphism

Yan,  HY, (2, 2% — HY (2w, 2%9)

is surjective. If moreover r satisfies Cnr™ < d as in Theorem 4.1, then by Lemma 5.2,
we have

#* (npér ‘gzd,P N ng(%7§®d))
‘ #H}, (2, 2%

I ¢z, (n+ 1)

pP<T

= O0((Z,<, p*/")/d'™).

Now as above,

T

Zp2/n < Zk2/n <r- T2/n — r(n+2)/n.
k=1

psrT

Thus for r = d¥/(+1) we have

Z p2/n < d(n+2)/n(n+1) — O(d(n+2)/n(n+1))

p<dl/ (n+1)

It’s easy to see that r = d'/ (1) also satisfies conditions 2rlogr < d®, Cnr" < d for
large d. For this r, we have

- JI <¢etn+n)!

pédl/(n«kl)

‘ # (ﬂp<d1/<n+1> PapN H%r(%7§®d))
#HSQ (27, 2%4)

_ O((Zp<d1/(n+1) p2/n)/d2/n) — O(d(n+2)/n(n+1)—2/n) — O(d_l/(n+1)).

O
Proof of Proposition 5.1. — Apply Lemma 3.4 and take R = d*/("*1). We get
II ¢xtn+D) ' =Can+1)7t =0(@ /).
p<dl/ (nt1)
Combining this with Lemma 5.4, we get
#HR, (2, 297)
P wy NHS (27, 24
[Pt VT
#HA (2, £99) p<dl/ (nt1)
+ I ¢+ =Catn+1)
p<d1/<"+1)
— O(dfl/(rrkl)) + O(dfl/(TH»l)) — O(dfl/(n+l))’
which proves Proposition 5.1. |
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6. FINAL STEP

In this section, we prove Theorem 1.1. The main step is to show the following
proposition:

Prorosirion 6.1. Let X be a regular projective arithmetic variety of dimension n,
and let £ be an ample line bundle on Z . Then there exists a constant ¢ > 0 such
that for any d > 1 and any prime number p such that Z, is smooth and irreducible,
denoting

Qd’pz = {0’ S HO(%pz,.iﬂ@d) ;dx e |%p2|, dimn(z) mdivmw/mﬁiva’w = TL},
we have

#gdp2 -2
A L eep2
#HO (22, L)

61 DIVIS()RS WITH HIGHER DIMENSIONAL SINGULAR LOCUS

Lemva 6.2, — Let 2 be an irreducible projective scheme of dimension n over Spec Z.
Let £ be an ample line bundle on Z . For any large enough d and any prime number p
such that 2, is smooth over F,, if o € HY(%,, £®%) is such that Sing(div o) is finite,
then

#Sing(dive) = O(d" 1),

where the constant involved does not depend on d or p.

Proof. — We take the construction in Section 4.4. Let .% be the maximal open sub-
scheme of SpecZ such that Z» = 2~ Xgpecz - is smooth over .. So . contains
all prime numbers p such that %, is smooth of dimension n — 1 over F,. Applying
Lemma 4.10, we may assume that there exists a positive integer N and an open cover
of Z» by Z» =|J,ea Ua making the following conditions valid:

(1) the sheaf .#®? is very ample for any d > N;

(2) there exists 7, € HY(2, Z®WN+1) such that

X N divr, = Ug;
(3) there exist T 1, ., Tak, € H(Zy, L®N) such that
U= U (Zo~divry);

1<i<ka

(4) for any o € A, there exist tq1,...,tan-1 € H°(U,, Oy.) such that
1 n—1
QU,,/j’ >~ @ ﬁUadta,i-
i=1

We denote by 0q,; € Derg., (Ou,, Ovu, ) ~ Hom(Qllja/y, Oy,,) the dual of dt, ;.

Now we take one arbitrary U among the U,’s in the open cover, and we drop the
subscript « for simplicity of notation. For any j such that 1 < j < k, we have a
morphism

@, H)( 2y, 2% — H(U, Oy)
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sending o to o7'/7%. Then for any o € H'(Zy, £%), 9;®;(0) is a section in
HO(U, Oy). For any p € ., ®; induces

;5 : H(2p, £%7) — HO(U,, O,
such that for any o' € HY(Z,, £%%), 0;%,,(0') is a section in HO(U,, Oy,). Here
Up, =UNZp. Then Lemma A.16 tells that we can find a positive integer N; such that
for any > Ny, any p € .7 and any o € H(2,, £®9), the section (0;®, ;(0)) - 7¢+°
extends to a global section in HO(Z,, Z®WN+D(d+9) Since #2N+1) is very ample,
(0;®,,j(0)) - 749 can also be regarded as a global section of

H (P(H (2, 22N FV)Y), 0(d +6)).
Then since 7 is nowhere 0 on U D (Z» \ div 74, ;), for any o € HO(2,,, £®?), we have

(Z» \ divr,,;) N Sing(dive) C Sing(div ®;(0))
n—1
N div (0:,(0)) )
i=1

— div®;(0) N <l_
rjll div (8, (0) - Td+N1)>.

1=

= (Zy ~divr,,;) Ndiv(eV ) N <

On the other hand, we have
oNH € HO(P(HO(2,, 25N HD)Y), 6(d).

Denote the degree of 2, as a closed subscheme of P(H%(Z,, Z®WN+D)V) by
deg pon+1(2y,). If o € HO(Z,,£%?) is such that Sing(dive) is finite, then
(Zs N divr,,;) N Sing(dive) is finite and we can find n — 1 divisors among
the n ones appeared in the above intersection such that the intersection of these
n — 1 divisors and Z» \ div7,; is finite. Obviously this intersection contains
(Z» ~\ divT,, ;) N Sing(dive). Applying refined Bézout’s theorem [Ful84, Th.12.3],
we get

# (Sing(dive) N (Zy N divTa;)) < (deggow+n (Zp))(d+ Ny)" 1 =0(d" ™),

where coefficients involved in O(d) is independent of p when d is large enough
(deg yov+1) (Zp) is independent of p). Therefore we have

ko
#Sing(div o) < Z Z # (Sing(div o) N (Zy N div7,,;)) = O(d™™),

a€cA j=1

with coefficients involved in O(d"~!) independent of p when d is large enough. ]

The following lemma is a generalization of Lemma 5.9 in [Poo04], where Poo-
nen shows that for an integral quasi-projective scheme X generically smooth over Z
equipped with a very ample line bundle inducing an immersion X < P for some
n > 0, if the generic fiber X of the Zariski closure X of X in P} has at most isolated
singular points, then there exists ¢ > 0 such that if d, p are sufficiently large, then

#{o e HO(P}, 0(d)) ; dim(Sing(divo|x,)) > 0} _c
#I0(Py, 0(d) P
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We prove the same conclusion for the case when X is projective and equipped with
an ample line bundle, in place of a very ample line bundle.

Lemya 6.5. Let 2 be a integral scheme of dimension n which is projective and
generically smooth over SpecZ, and let £ be an ample line bundle on & . Then there
exists a constant cg > 0 such that for any d > 1 and any prime number p such
that Z, is smooth and irreducible, we have

# {0 € HY(Z,, £®%); dim (Sing(divo)) > 0}
#H0(Z,, £o9)

<cy-p 2

Remark. — If the prime p is fixed, Corollary A.19 tells us that there exists a constant
¢ > 0 such that
# {0 € HY(2,, £%%); dim (Sing(divo)) > 0}
#HO(Z,, £®4)
When d is sufficiently large, we deduce from it that
# {0 € H'(2,, 2%?); dim (Sing(divo)) > 0} -
H#HO(Z,, Z57) ~r
So Corollary A.19 gives a better bound on the proportion of sections whose divisor
has positive dimensional singular locus. But this bound is well-behaved only when d

O(dn71 . pfcd/p)'

is much larger than the prime p. In this lemma, the bound we give is independent of
the choice of p. In particular, it is valid even when p is much bigger than d.

Proof. — We choose a constant N € Z~ satisfying Lemma 4.3. If 2" is of dimension
1, then dim(%},) = 0 for any prime p and the conclusion holds automatically. When
Z is of dimension 2, for p such that 2, is smooth and irreducible of dimension
1 (which is satisfied for all but finitely many p), if o € H%(2,, £®?) is such that
dim (Sing(div o)) > 0, then Sing(div o) = 27, which is impossible unless o = 0. This
means in the case of dimension 2, when d is large enough we always have
# {0 € H'(2,, £%%); dim (Sing(divo)) > 0} 1

#HO(‘%Pa$®d) B #HO(%Pa$®d)

— pfho(f{Q,;’f‘@d) <p2

So the lemma is true when dim 2~ < 2. We prove the higher dimensional case by
induction. Assume that for any scheme % of dimension smaller than n which is pro-
jective over Spec Z with #,, irreducible and smooth over some open subscheme .7
of SpecZ, and which is equipped with an ample line bundle .Z, there exists a con-
stant ca_» > 0 such that for any d > 1 and any prime p such that %}, is smooth and
irreducible of dimension dim %" — 1, we have

# {0 € HY(%,, .#®?); dim (Sing(divo)) > 0} < L
H#HO( ) Sy

By the classical Bertini theorem over Q, we can find a section oy € H%(2g,-% N

whose divisor % is a smooth and irreducible divisor of Zg. By possibly replacing oo
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by a multiple of it, we may assume that o4 is in fact a section of H*(.2", ). Then
the divisor ¥ = divog on £ has no singular point on the generic fiber Zg. Let ./
be an open subscheme of SpecZ such that %2 & is smooth over .% and irreducible of
dimension n. By restricting to a smaller . we may assume that 2’ does not contain
any vertical component of 2, and that P = 2 N Z.» is smooth over .. We may
assume moreover that for any p € ., Z, and ¥, are both smooth and irreducible
such that dim Z, = n — 1 and dim %, = n — 2. For the rest of the proof, we fix
the divisor 2. Note that Z together with the open subscheme . of SpecZ and the
restriction sheaf Z|4 also satisfies the assumption of the lemma.
For any prime p € SpecZ\.# such that %, is smooth and irreducible of dimension
n — 1, we can find a constant ¢ by Corollary A.19, such that
# {0 € H'(2,, 2%?); dim (Sing(divo)) > 0}
#HO( %pv g@d) -

So when d is sufficiently large, the right side can be bounded above by p~2. Since
SpecZ ~\ & is a finite scheme, when d is sufficiently large, for any p € SpecZ \ %
such that %, is smooth and irreducible, we have
# {0 € H(2,, £%?); dim (Sing(divo)) > 0}
#HO(Z,, £®4)
Hence it suffices to prove the lemma for primes p € ..
Now let p € .. If a section o € HO(2,,, £®?) is such that

dim (Sing(dive)) > 0,

O(dn—l . p_Cd/p).

< p_2.

/

then as &), is irreducible and projective by the assumption on .#, we have
Sing(dive) N 2, # @.
By induction hypothesis, we know that there exists a constant cy > 0 such that if d
is sufficiently large, then for any p € ., we have
# {0 € H*(Z,, £%%); dim (Sing(dive)) > 0} .
X Co-
#H0(9,, Z%7) 2P
As Z is ample on Z, when d is large enough, the restriction map

HY(2, 2%Y) — H°(2, 2%%)

—2

is surjective. So for such d, the morphism
HO(2,, 259 — HO(2,, 2°%)
is surjective for any p € ., and hence
# {0 € HY(2,,.2%%); dim (Sing(dive N Z,)) > 0} <o .
#HO(Z,, £%9)
We need to bound sections o € H%(2,, £®%) such that Sing(div o) N 2, is finite

and non-empty. Since 2 is of dimension n — 1, let ¢, > 0 be a constant such that

#D(Fpe) < cop™2°
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for any prime number p and any integer e > 1. For any closed point « € |Z,| of degree
< d/Nn, we have by Lemma A.5 that the proportion of o € H%(2,, £%) such
that div o is singular at x is p~™¢. Then we have

# {0 € H'(Z,, £%%); 3z € |Sing(divo) N Z,|, degz < |d/Nn]}
#HO (2, 297)

ld/Nn| ld/Nn] y » 9
< § pfndega: < § #@ —neg § ¢ q(n 2)e | 7ne _ - 0 < 20/ 72.
p-
€| Dp|
degx<|d/Nn]

If a section o € H(.2,,, £®?) whose divisor has positive dimensional singular locus
is not included in the above two cases, then it satisfies the two following conditions
at the same time:

— Sing(dive N Zp) is a finite set;

— if x is a closed point of Sing(div o) N %, C Sing(divo N %), then degx > d/Nn.
Then to finish the proof, it suffices to show that we can find a constant c¢3 > 0 such
that when d is large enough, for any p € %

# {0 € H*(2,, £%%); Sing(div o N ) finite, 3z € Sing(div o) N Z,, degz>d/Nn}
#H0(2,, £97)

< 03p_2.

For large enough d, consider the surjective morphism
HO(%ZN"%@d) X HO(%ag(@(d_N)) — HO(’%/Z)"’%@CI)

which sends (o9, 01) € H(Z,, L% x HO(Z,, £®(4~N)) to the section 0 =0¢+01-09.
For any o = 09+01-05 in H(%,, £®4) the singular locus of div 0N, is independent
of o1, i.e.,

Sing(diveo N Z,) = Sing(divog N Z,).

If (09, 01) € HY(Z,, £%) x HY(Z,, £®4=N)) is such that Sing(div oo N 2,) is finite,
we assume that Sing(diveoN2,) = {x1,...,z,}. Applying Lemma 6.2 to 2, we have
¢ = O(d"?) with coefficients depending on .# and 2 but not on p. For a fixed oy
and any z; € Sing(divog N %)), let  be the first order infinitesimal neighbourhood
of z; in Z,. If div (00 + alo@p) is singular at z;, then the image of o9 + 0109, in
HO (2}, £%%) by the natural restriction morphism is 0. Let m;, ,, be the ideal sheaf
of z; in Z,. We have a natural exact sequence of sheaves on %,

00— LOUEN) _, god__, ¢8dg g, 0,

where the morphism Z®(@—N) — #®d jg the multiplication by og. Restricting this
exact sequence of sheaves to the closed subscheme }, we get a right exact sequence

T2 g gy, 9% g e, 0%

: g%,
m%p7wz m%p7wz + ]@
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where .Zy is the ideal sheaf of 2. Note that the sheaf (mgpzl/m%{pm) ® ¢®(d=-N)
is contained in the kernel of the first morphism as z; € 2. So the above right exact
sequence induces the following right exact sequence

ﬁ%p ® POE-N) __ f%p @2 ﬁ%ij
17

5 ® L% — 0.
ma,,z; m%p,xi m%}n,xi

Since Z is nonsingular at x;, the multiplication by 04 morphism
05, o) _y O o
m%p,xi m%p;a:i

is not a zero map. This implies that the induced morphism
% ®$®(d_N) — % ®$®d
m‘%P7zi m%paf'i
is also non-zero. As the left term is a k() linear space of dimension 1, this morphism
is in fact injective and hence we have the following short exact sequence

1% 1% 7
0— —22 gg®d-N _, “% good_, 7% g ool
M,z m.f?fp,a:i m%p,wi + j@

Now, with the same notation as above, z; € Sing(divoyN%,) means that the image
of the restriction of g in (6’5519/(11125@$ + I9)) 0 L% is 0. If z; € Sing(divog) N D),
then ¢ + 0104 has image 0 by the restriction to (02, /m?%p’mi) ® .£%. By the above
exact sequence, this is a condition on oy (x;) € HO(z;, £®@=N)). By the exactness
of the sequence, there is only one value of oy (x;) € HO(x;, £®@~N)) which makes
div(og + 0109) singular at x;. If moreover we have degx; > d/Nn, then for any
B € HO(z;, £®@N)) by Lemma A.8 the number of sections in HO(Z,, Z®@~N))
whose image in H%(z;, % ®(d-N )) by the restriction map is g is bounded above by

I'. min(|d/N],degz;) . #HO(%Ng@(d—N)) < p—d/Nn . #H0<%7$®(d_N)).

Therefore, we have
 Sing (dive N Z,) finite, }
" Jz € Sing(dive) N %, degz > d/Nn
#HO(%p,f(@d)
~ Sing (div(og + 0109) N Z,,) finite,
#{(00’01)’ Jz € Sing(div(og + 0109)) N D, degx > d/Nn}
#HO(Z,, £%1) . #HO(Z,, L2[@-N))
_ #HO(%7$®(1> . [O(d"_2)p_d/N"#Ho(<9fp,$®(d_N))]
= #HO(2,, L24d) - #H0(Z,, L2d=N))
_ O(dn—2)p—d/Nn.

#{U € HO(%pwg@d)

Obviously, the last term is bounded above by p~2 when d is large enough. Hence we

finish the proof. (|
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6.2. BOoUND ON THE PROPORTION OF BAD SECTIONS. Now we can prove Proposi-
tion 6.1.

Proof. We fix a positive integer N that satisfies Lemma 4.3. Let p be a prime such
that 2, is smooth and irreducible. By Lemma 4.4, for any closed point = € |%2}]
satisfying d > N(ndegx), i.e., degz < d/Nn, the restriction morphism
Op2z HO(%p2,$®d) — H (2!, %Y,
is surjective, where z’ is the first order infinitesimal neighbourhood of z in 2 .
Therefore the proportion of global sections in HO(%pz,f ®d) whose divisor satisfies
dim . (z) Mdiv 0,2/ MGy 4. = 7 15 equal to
# Ker ©p2 _ p—(n—i—l) degw.
#HO (22, L97)

Then with the constant ¢y defined in Section 3, we have

#{a € HY( 252, £%%); 3w € | 22|, dega < d/Nn, dimy Mdiv o0/ My 50 = n}
#HO (22, £94)

ld/Nn]
< Z p—(n—i-l) degz < Z #%‘;)2 (Fpe)p—(n—&-l)e
€| X 2] e=1
degax<d/Nn
ld/Nn] 00 00
< Z cop™ Ve pm (e < Zcopfze =cop 2+ Zcopﬁe < 2c0p~ 2.
e=1 e=1 e=2

Note that Lemma 6.3 tells us that in H%(2,2, £%?), the proportion of sections

whose divisor has positive dimensional singular locus is bounded above by cgyp~2.

Consequently, as the restriction
Pdp HO(%p2>$®d) — HO(%an(@d)
is surjective, the proportion of sections o € H( 2,2, £®%) such that
dim Sing( div(a|2,)) > 0

is also bounded above by cgp~2. To finish the proof, it suffices to bound the proportion
of sections in the set

{0 € H(Z,2, £%%); Sing(divo| o) finite, Iz € | 22|,
degz > d/Nn and dim,(;) Mdiv 0,0/ MGy 5.0 = n}

Now we take a subset Eq, C HO(Zp2,£®%) such that the restriction map ¢q,,
induces a bijection from E,, to H%(2,, £%%). For example, if we choose a Z/p*Z-
basis of HO(2,2,.£%%), we can take E,, to be the set of sections having coefficients
in {0,1,...,p — 1} C Z/p*Z when written as linear combination of sections in this
basis. Then any section o € HO(%pz, £®4) can be written uniquely as

0 =01 + po2
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for some 01,09 € Eq,. Then Sing(div(o|g,)) = Sing(div(c1]2;,)). Now let o be a
section in HO(2,2, £®%) such that Sing(div(c|4;,)) is finite. We may assume that as
a set, [Sing(div(o|2;,))| = {z1,...,2¢}. Then by Lemma 6.2, we have

¢=o0(@d" ).

Moreover, for i € {1,...,¢}, div(o1 + poz) is singular at z; if and only if the image of
o1 + pog in HO (2}, £®4) is 0, where z, is the first order infinitesimal neighbourhood
of z; in Z,2. Let m,, be the ideal sheaf of x; in 22. Then 2} is defined by the ideal
sheaf mi Now we have a right exact sequence of sheaves

Cx O O
;‘2 R —2"2 QL% — ——— e ® L% 0,
mzi mxi mIi + pﬁ:%‘pQ

where the first morphism is the multiplication by p. Note that

My, ®d ﬁggp? ®d
mT L C - L

is contained in the kernel of the second morphism, we obtain an exact sequence

%y QL% — ﬁ? QL% — ——— Oy @ L% 0.

Note that 2 is regular. The multiplication by p map

Ox , O,
210 ® sz@d 2;1 ® $®d
mg, T

cannot be zero, so is (O, /my, ) ® L% — (O, Jm2 )@ £®4. But if this morphism
is not zero, it must be injective as (04, /m,,) ® £9 is in fact a sheaf supported
on z;, where its stalk is a k(z;)-vector space of dimension 1. Hence we get a short
exact sequence

O O . O
0—s p2®$®d—>—2pz®$®d—>27”2®f®d—>0.
my, mg my. + pﬁgypz

Since these sheaves are all supported on z;, this sequence induces the following exact
sequence of groups

0 — 0z, %) — H(z}, £2%%) — H (2} N Z,, £®%) — 0.
It tells us that there is only one value of H(z;, #®?) for oy(x;) which makes
dimy () Maiy mm/m?ﬁv ox =N for 0 = o1 + pos. Note that Lemma A.8 tells us that

when d is large enough, for any x € |22 satisfying degxz > d/Nn and any value
s € H(z, £%%), we have

#{o € H;(H%’(’g?édj(x) = s} < prlA/NI ¢ pl=a/N|
Dy

Since ¢4, induces a bijection between E and H°(Z,, £%), we have

#{o € Eyp; o(x) = s} <p~ YN . #H(Z,, 2%7).
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Therefore, when d is large enough, we have

_ Sing(div(o|g;,)) finite, 3z € | 22|, }
" degx > d/Nn, dim,) mgiy mm/mﬁiva,x =n
#HO(Z 2, L99)
Sing(div(o1|g;,)) finite, 3o € [ £}z, degx > d/Nn,}
dimy(g) Maiv 0,2/ M3jy 5, = 7, With 0 = o1 + poy
#HO(%z , g@d)
_ #Ed,p . [O(dnfl)plfd/N#HO(Q/fp’g@d)]

#{a € HO(Z,2, 224

#{(01,02) € Eqp X Eq,p;

— O(dnfl)plfd/N < p72.

h #HO (22, L)
This finishes the proof. a
6.3. Proor or Turorem 1.1. — Note that in Section 5 we have shown that the pro-

portion of sections in H}, (2", £%?) whose divisor has no singular point of resid-
ual characteristic smaller than or equal to d*/("*1) tends to Ca-(n + 1)~! already.
Choose ¢¢ so that 2e( satisfies Proposition 2.1, i.e., for d > 1, H*(Z", Z%%) has a
basis consisting of sections with norm smaller than e~2¢°¢. Then Theorem 1.1 can be
reduced to the following:

Prorosition 6.4. — Let 2 be a regular projective arithmetic variety of absolute di-
mension n, and let £ be an ample Hermitian line bundle on 2 . For any € such that
0<e<eg, set

2 = HO(2, 2%
¢ {0 cHI(Z, )i characteristic between d*/ ("1 and e

_dive has a singular point of residual }

When d is sufficiently large, we have

# (24 NHR, (2, 2%7))
#HY (2, 27

_ O(dfl/(nJrl))'

Here the constant involved in the big O depends only on 2" and L.
In particular, denoting 2™ = ;- 24", we have

NAr(Qm) = 0.

Proof. — For any o € HO(Z', £®4), if divo has a singular point on the fiber 2,
then o mod p? € 2 ,2. So we have

# (25 NHA(2, Z2%7))

Z < Z #{o € HQ (2", Z®?); 0 mod p? € o@d’pz}.
#HQ (2, 2%9)

#HZ,(2, 297

dl/(n+1) gpgeEd

As p > dY(+D) implies that p? is odd, we can apply Proposition 2.5 to the case
N =p? and E = 2,2, and obtain that for any ¢ such that 0 < § < 22y (note that
we assume that 2¢( satisfies Proposition 2.1), when d is large enough and p? < e%¢,
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we have
#{oc € HQ, (2, Z%?); 0 mod p* € 24,2}
#HQ, (2, 299)

< 4p~ KA, Z9D) #9,2

o #2uy
#HO(Zy2, L)

Since & is a regular arithmetic variety, it is irreducible and generically smooth. So if d
is large enough, for any prime number p > d'/("*1 27 is irreducible and smooth
over IF,,. Then Proposition 6.1 tells us that there exists a constant ¢ > 0 such that

#H2q p2 9
: <cep C.
#HO (L2, £%9)

Note that if € > 0 satisfies € < gg, then 2¢ satisfies the condition on §. Therefore we
conclude with
# (20 NHA(2, Z5)) _ 3 #{o € Hy (2, Z%%); o mod p? € 24,2}
#HR, (27, 297) #H}, (2, 297

Z 4 ?'%'ée@d,p2
#HO (22, £94)

d1/(n+1) <p<e£d

< Z dep™2 = 4c< Z p2> < ded™ VD)

dl/(n+1) LpLesd dl/(n+1) <p<Loo

dl/(n+1)<p<esd

<

which is the statement of the proposition. O
Proofof Theorem 1.1. — Since P4 . C P C P4 U 2™, we get that

lpar(Pae) — par(PB)| < par(2™) = 0.

Therefore we have

par(Pac) = pac(Pp) = Ca(L+n)" L.

This finishes the proof. (|
Proof of Corollary 1.3. — 2 be a regular projective arithmetic variety of dimension

n, and let £ be an ample Hermitian line bundle on 2. Let £}, > 0 be a constant such
that 2¢) satisfies Proposition 2.1, i.e., for d > 1, H*(2", £%®%) has a basis consisting
of sections with norm smaller than e~250%. Choose the constant ¢ to be a real number
satisfying 1 < ¢ < €29, For any R > 1, set .2’ = (&, |-|I') where ||| = ||-||R~*. Since
(Z, |I-lle~?) is ample for any § > 0, the Hermitian line bundle .#” is also ample. Then
by construction, for any large enough integer d, H°(2", £'®?) has a basis consisting
of sections with norm smaller than R~%e~2c0d = ¢~ (eotlog R)d_ Set ¢ = f) + 1logR
and € = %log(cR) = %(logc +log R) < g¢. Then we can apply Theorem 1.1 to &’
with constant €y and € chosen as above. Then the density result is exactly what we
need to prove. O

JIEP. — M., 2022, tome g



652 X. Wane

APpPENDIX. BERTINI SMOOTHNESS THEOREM OVER FINITE FIELDS

In the appendix, we prove a slightly generalized version of Poonen’s Bertini theorem
over finite fields. The precise statement is the following:

Tueorem A.1. — Let Fy be a finite field of characteristic p. Let Y be a projective
scheme of dimension n over F,, and X a smooth subscheme of Y of dimension m.
Let £ be an ample line bundle on Y. Assume that there exists a smooth open sub-
scheme U in'Y containing X . Set

Py = {0 € H' (Y, £%%); divo N X is smooth of dimension m — 1}
and P =459 Pa. We have

Z

Here (x is the zeta function

Cx(s)= T (1 —#(x)™) .

z€|X|

Remark. — If we take Y =Py , £ = 0(1), we get Poonen’s theorem.

Note that for a ¢ € HO(Y, . £®9), divonX is smooth if and only if it is non-singular
at every closed point of divoNX. To prove this theorem, we classify the closed points
of X by their degree, so that for each degree there exist only finitely many closed
points. In Poonen’s proof, he classifies the closed points into three parts for each
£®4 which are the following: closed points of degree smaller than or equal to a
chosen positive integer r, closed points of degree between r and d/(m + 1), and closed
points of degree bigger than d/(m + 1). Then he estimates the number of sections in
HO(Y, £®4) whose divisor has singular points in these parts, respectively.

Our proof follows his method in a faithful way. But we need more explicit bounds
for bad sections, so as to get the speed of convergence for the final limit. For technical
reasons, we need the following result:

Lemva A2, — Let £ be an ample line bundle on a projective schemeY over a field k.
Then there exists a positive integer N such that

(i) £®4 is very ample for alld > N;
(ii) for any a,b > N, the natural morphism

HO(Y, j@a) ® HO(Y, $®b) N HO(Y, f@(aer))
18 surjective.

Proof. — This is a classical result. The first statement is part of [Laz04, Th.1.2.6],
and the second statement can be deduced directly from [Laz04, Th.1.8.3]. O
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We choose a positive integer r, an integer N satisfying this lemma and depending
possibly on ¢, and set

Py<r={0cH(Y,2%); Vo € X, degx <7,
divo N X is smooth of dimension m — 1 at x},

279 = {oc e HY(Y,£%%); Jr € X, r <degz < d/(m+1)N,

divo N X is singular at z},
9NN — (5 c HO(Y,.2%); 3z € X, degz > d/(m+ 1)N,

dive N X is singular at z}.

Then clearly
Py C Py C PgU 250 U 25"

We give bound for the proportion of these three sets.

A.1. SINGULAR POINTS OF SMALL DEGREE
LeMyma A3, — LetY be a projective scheme over Fy, Z an ample line bundle overY .
Let Z be a finite subscheme of Y. Let N be a positive integer satisfying Lemma A.2.
Then the restriction morphism

¢a,z : HO(Y, 2% — H(Z,2%7)
is surjective for all d > Nhz, where hy = dimp, HY(Z,07).

Proof. — If £ is very ample, by [Poo04, Lem. 2.1], ¢4 7 is surjective when d > hz —1,
and this lemma is also true. When L is only ample, for any dy > N, .£% is very
ample and ¢4s5,,7 is surjective for any d > hz — 1. Now for any d > Nhz, we can find
8q = hyz —1and N < rgy < 2N such that d = s4N + ry. By Lemma A.2, we have a
surjection
HO(Y, 2%%N) @ HO(Y, 2%") — HO(Y, 2%9).
Moreover, since Z is finite, for all d > 0, we have H°(Z, £®%) ~ H°(Z, 07). These
isomorphisms are not canonical, but can give us an isomorphism
HY(Z, 2%°Y) @no(z,0,) HO(Z, 2°7) — H(Z,.2%7)

which makes the following diagram commutative:

HO(Y, g@st) ® HO(Y, D‘Z@’I"d) —_ HO(Y, g@d)

| |

HO(Z7 .,g@st) ®H0(Z,ﬁz) HO(Z, Qg@”) SEEAEN HO(Z7 .,g@d).

Thus it suffices to show that the left vertical morphism is surjective. Since Y is
projective, HO(Y, £®"¢) is of finite F,-dimension. Let HO(Y, . £®") = @, Fyt;. As £
is very ample, it is globally generated. So for each z € |Z], we can find one ¢; in the
set of generators such that ¢;(z) # 0. Since surjectivity is stable under field base
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change, replacing IF, by a finite field extension, we can assume that there exists a
linear combination ¢t = ). a;t; such that ¢(z) # 0 for any z € |Z|. Then we have

HO(Y, #®54N) @ Fjt ———— HO(Y, £®%aN) @ HO(Y, £%")

| J

HO(Z, f®st) X th|z — HO(Z7 .,g@st) ®HO(2,67) HO(Z, .,?@Td).

By our construction, the section ¢ trivializes H°(Z, £®"). So the bottom morphism
is an isomorphism. Hence the right vertical morphism is surjective. By the commuta-
tivity of the first diagram, the morphism

HO(Y, %) — HY(Z, 2%%)
is also surjective, which is what we need to show. |
With this lemma, we can control the proportion of Pg «,.

Prorosition A.4. Let Y be a projective scheme of dimension n over F, equipped
with an ample line bundle £. Let X be a subscheme smooth over Fy of dimension m
of Y. Set

Pa<r =10 € HY(Y, 2% Vz € X, degz <,
divo N X is smooth of dimension m — 1 at x},

and P<r = Ugso P, <r- We have

. #HPg <r —(m+1)degx
MPsr) = hmﬁ: H (1—q ¢ )
d—o0 #H (Y;f ) deg 2<r
In fact, with a positive integer N satisfying Lemma A.2, for any
d> N( Z (1+m)degz),
degz<r
we have

#yd,\r —(m egx
iy e = L1 (=g 0moes),

degx<r

Proof. — For any closed point = of X, let 2’ be the closed subscheme in X defined
by m2, where m, is the ideal sheaf of x in X. Then 2’ is the first order infinitesimal
neighbourhood of = in X. Let X /gr be the union of the closed subschemes z’ for all
x € X with degz < r. Note that the number of closed points of X with degree smaller
than or equal to r is finite. This union is a disjoint finite union. So X’@ is a finite
subscheme of X defined by the ideal sheaf ] dog 2<r m2. Hence

HO(XL,, Ox, ) =H(XL,, [ 60)= [] B(Y,0x/m3).

degz<r degz<r

Since X is smooth over Iy, for any closed point x, we have

dim, () H*(X, m, /m2) = m.
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Hence
dimg, H*(X, Ox /m2) = (1 +m) deg z,
and we have
dimg, H(XL,, Ox, )= Y (1+m)dega.
deg z<r
Apply Lemma A.3 to the case Z = X’@. We get that the morphism

HO(Y, g@d) N HO(X%T,D%@d)

is surjective if d > N(Zdegxgr(l + m)deg ).

Note that for a section o € HO(Y, £®4), the intersection diveo N X is singular at
a closed point 2 € X if and only if the image of o in HO(2/, #®%) by the restriction
map

HO(Y, 2%4) —s HO(a!, 2%4)

is zero. So divo N X has no singular point of degree smaller than or equal to r if and
only if its restriction to HY(XZ,, Ox: ) = [[4epac, H'(2/,£®9) lies in the subset
[Taeg e<r (HO(2/, 2®?) — {0}). So for any d > N (P gog acr (1 +m) deg z),

#'gzd,gr o #Hdegmér (HO(X7 ﬁx/mi) - {0})

#HO (Y7 °§/ﬂ®d) B # Hdeg r<r HO (Xa ﬁX/m%)
(m+1)degz __
_ Hdegrgr (q & 1) _ H (1 _ qf(m+1) degz).
Hdeg TLT q(m+1) degr degz<r
This shows the result. g

A.2. SINGULAR POINTS OF MEDIUM DEGREE

Lemva A5, — LetY be a projective scheme over Fy of dimension n and X a smooth
subscheme of Y of dimension m. Let £ be an ample line bundle of Y. Let N be a
positive integer satisfying Lemma A.2. For a fized d, let x € X be a closed point of X
of degree e such that

d
< |-
¢ LN(m + 1)J
Then the proportion of o € HO(Y, %) such that div cNX is not smooth of dimension

m—1 at x is ¢~ (e,

Proof. — Let x’ be the first order infinitesimal neighbourhood of = in X. Apply
Lemma A.3 to the case Z = 2’. We obtain that the restriction map
HO(K f@d) N Ho(x’,.f@d)
is surjective when
NRO(2', £%%) = N(m + 1) degx < d,

that is, when

degz < {LJ

XS I Nm+ 1)
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Since a section o € HY(Y, £%®4) is such that dive N X is singular at = if and only if
the image of o in H (2, #®9) is 0. Hence when the degree condition for z is satisfied,
the proportion of such sections is equal to

1 — qf(m+1)e

#Ho(x’,.f@d) ’
Thus we get the result. O
Prorosition A.6. Let Y be a projective scheme over F, of dimension n and X a

smooth subscheme of Y of dimension m. Let £ be an ample line bundle of Y. Let N
be a positive integer satisfying Lemma A.2. Set

27, = {0 e H'(Y, £%"); 3w € X, r <degz < d/(m+1)N,
dive N X is singular at :1:}
Then there exists a constant cy such that
H2%
#HO(Y, 29

T

< 2c0q "

In particular,

(29 < 2c007".
Proof. Identifying Y to a closed subscheme of a projective space, we can see X as
a subscheme of the same projective space. By [LW54], we can find a constant ¢y > 0
such that for any e > 1,

#X(Fye) < cog™.
Let N be the positive integer as in the previous lemma. Then the lemma tells us that
if € X is a closed point of degree e < |d/(m + 1)N|, the proportion of sections
o € HO(Y, £%%) such that divo N X is singular at = is ¢~ "+, Therefore we have

#Qmed ld/(m+1)N]

#HO(Yd;@)d)< Y #X(Fge)-qm e

e=r+1
9] 9] oo Coq,,,,
< S HXETEY g =Y gt =
e=r e=r e=r

Since ¢ > 2, we have 1 — ¢~ ! > 1/2 and coq™"/(1 — ¢~ ') < 2c0q™". Hence we get
ﬁ(e@g";dr) < 2¢gq~". This implies our result. O

Ag SI\’GULAR POINTS OF HIGH DEGREE

Lemva A7, — LetY be a projective scheme over F, of dimension n. Let Z be a finite
closed subscheme of Y whose support is included in the smooth locus of Y. Let £ be
an ample line bundle over Y and let N be a positive integer satisfying Lemma A.2.
After replacing F, by a finite extension of Fy if needed, we can find a linear subspace
V C HO(Y, £YN) of dimension n + 1 such that the rational map

0:Y---5P(VY),

with V'V the dual space of V , is dominant, and that ¢ induces a closed embedding of Z
in P(VV).
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Proof. — We may assume that |Z| = {z1,...,2}. It suffices to find a linear subspace
V C HO(Y, #%) of dimension n + 1 such that the induced rational map
Y- P(VY)

is defined and étale on a neighbourhood of Z in Y, and satisfies the condition that
©(2z;) # @(z;) for any z; # z; € |Z].

Since .Z®¥ is very ample on Y, we can first embeds Y in PX = P(HO(Y, £%N)V).
Replacing F, by a larger finite field if needed, we can find a section s € HO(Y, Z®V)
which is non-zero at any point of | Z|. Write U; := Y \.div s. The embedding of Y in P¥
induces an embedding of U; in AX. The hyperplane PX < AX is defined by the section
s € HY(PE, 0(1)) = HO(Y, £®N). Moreover, the scheme Z, being a closed subscheme
of Uy, is also embedded in A¥. To finish the proof, we only need to find a projection
AKX — A™ which is étale when restricted to a neighbourhood of Z in U; and injective
when restricted to Z. In fact, we show that a general projection satisfies these two
conditions. Here general means all projections AX — A™ contained in a non-empty
open subscheme of Gr(n, K), which is the moduli space of such projections.

For a general projection AX — A", the composition ¢ : U; — AF — A" is étale
on a neighbourhood of Z in U;. To see this, we show that for a general projection
AKX — A" U — AF — A" is étale at any point of Z. For z; € Z, the exact
sequence

0 — Cy,jax 2y — U oy — Quy 2y — 0

splits, and Qy, ., is free of rank n by hypothesis. Therefore for any projection AK S A™
the composition ¢ : U; — AX — A™ induces a morphism on differential sheaves

Qpn y — QAK,Zi — QUl,zlw

(2

By the Jacobian criterion, a general projection A¥ — A™ induces an isomorphism
QA77‘7LP(ZZ') — QU1,ZZ-'

As Z is a finite scheme, a general projection AKX — A™ is étale at any point of Z.
Moreover, if a AX — A" sends two different points z;, z; of Z to the same point, then
it contracts the A! containing z;,z;. Projections contracting a certain fixed line is
contained in a strictly closed subscheme of the moduli space of projections AX — A",
Thus a general projection do not contract this line. Since Z is finite, there are only
finitely many lines in AX joining two of the points in Z. Therefore a general projection
AK — A™ sends the set of points | Z| injectively to A”, hence injective when restricted
to Z. Such a projection induces a rational map P¥ --» P*, which shows our result. [J

Lemva A8, — LetY,Z, 2, N be as in the above lemma. Set hz = dimp, HY(Z,07).
Then for any d > 2N the proportion of global sections o € HO(Y, %) which are sent
to 0 by the restriction morphism

HO(Y.2%%) — H°(Z, £%)
is at most ¢~ ™in(ld/N].hz)
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Proof. By the previous lemma, we can find a finite extension IF of I, and a subspace
V C HO(Yg, £®V) of dimension n + 1 which induces a dominant rational map

@ :Yp -+ P(VY)
such that ¢|z, is injective. Now we use this rational map to show that
dimy Im (H°(Yg, .2%%) — H(Zp, .£%%)) > min(|d/N], hz).
As the dimension of the image is invariant under field base change, we then get
dimy, Im (HO(Y,.2%%) — H(Z,.2%%)) > min(|d/N], hz).

Let (00,...,0,) be a base of V and Hy = divog in Yg. The sections o; can also be
regarded as global sections of (1) on P(V'). This way we can identify P(V"Y)\ div oq
with A" with coordinates 1 = o1 /0y,...,2, = 0n/0p. Then the rational map ¢ can
be represented by a morphism

w:Yp N Hy — A™
Moreover, we can assume that Zg is a closed subscheme of Yg \ Hp.

For all 7> 0 with (r+1)N <d, the sheaf 2@ 0 (—rHy) ~ £®@="N) is very ample
on Y. So we can find a section o, € HO(Yy, £®4) which vanishes of order r along Hy
but does not vanish identically on Yr. Let P € F[z1,...,z,] be a polynomial of total
order smaller than or equal to 7. Then the section ¢*(P) - oy, € HO(Yr \ Hy, £%?)
extends to a global section on Yy. As ¢ is dominant, linearly independent polyno-
mials of degree smaller than or equal to 7 induce linearly independent sections in
HO(Yr \ Hp, £%?), hence in H(Yy, £®?). Thus we get a injective homomorphism

Flzy,...,2,])S" — HO(Yg, £99).
Moreover, we can choose an isomorphism H°(Zy, £®4) = H®(Zp, 0z,) so that the
following diagram commutes:
Flzy,...,2,]S" s HO(Yf, £%9)

! !

H(o(Z5), Oy () HO(Zg, £°7)
HO(Zp, Oz,).
Then we have
dimy Im (H°(Ye, .2%%) — HO(Zp, £97))
> dimp Im (IF[xl, o] ST = HO(p(Zr), ﬁsa(Zm)))
> min(hz,r + 1),

where the last inequality follows from [Poo04, Lem. 2.5]. Now choose r=|d/N]|—1,
which is possible as (r + 1)N = |d/N | - N < d. Then the above inequality becomes

dimy Im (H°(Ye, . 2%%) — H(Zp, .£%%)) > min(hz, [d/N)).
This induces, as said above, that

dimy, Im (HO(Y, . 2%%) — H(Z, £%%)) > min(|d/N], hz).
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Therefore the proportion of global sections o € HY(Y, #®%) which are sent to 0 by
the restriction morphism HO(Y..2®4) — HO(Z, £®9) is at most ¢~ ™n(l4/Nlhz)

Prorosirion A9. — Let Fy be a finite field of characteristic p. Let Y be a projective
scheme of dimension n over Fy, and X a smooth subscheme of Y of dimension m.
Assume that there exists a smooth open subscheme U in'Y containing X. Let £ be
an ample line bundle on'Y , and let N be a sufficiently large integer. Set
e@gigh ={o e HO(Y,#%); 3xeX, degz>d/(m + 1)N, divo N X is singular at x}
and 2heh — Ud>0 o@gigh. There exists a constant ¢ > 0 only depending on X,U and
the choice of N, independent of d, such that
#Q;ﬁgh

#HO(Y, 2%4)

Here the constant involved in the big O only depends on the sheaf £, and the schemes

— O(dm . qfcd/p).

X=X XSpecF, SpecE, Y=Y XSpecF, SpecE, where E is any algebraic closure
of Fy, hence is independent of d,q. In particular,

high
— highy _ 1; #Qd
P = i iy o

We need some reduction before proving this proposition.

=0.

Lemva A 10. Let {Uy }aer be a finite open covering of U. If the proposition is true
for all X NU,, then it is also true for X.

Proof. — Tf {Us}acr is a finite open covering of U, then X = (J (X NUy). If we
write
208 = {6 e H'(Y, %) ; 3z € X N Uy, degz > d/(m+ 1)N,
dive N X NU, is singular at x},

then we have hioh _—

2% c U 2%

ael ’

Hence if the proposition is true for all X NU,, we can find constants ¢y, for each U,

such that .
#2i5

#HO(Y, £%4)
Then setting ¢ = min,{cy, }, we get

4. hieh #
O, 7o) ~ 2 FY, 757)

= O(d™ - g Ve d/p),

= O(d™ . g—°d/P). 0

Therefore we may replace X by one of the X N U,. In particular, we have the
following:

Cororrary A.11. We may assume that the smooth open subscheme U containing X
in the statement satisfies the following condition: there exist ty,...,t, € HO(U, Oy)
such that X is defined by t;,41 = -+ =1t, =0, and that

Q%]/]Fq = @1 ﬁUdtia QAIX/]FQ = Q ﬁxdtl
1= 1=
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Proof. As the two condition in the corollary is satisfied locally at any point of X,
the corollary follows from Lemma A.10 as U is quasi-compact. g

Lemva A 12. — For any positive integer M, with a choice of an integer Nog > M, we
can cover U by finitely many open subschemes U’ satisfying the condition that we can
find a section T € HO(Y, L®WotD) and sections 11, ..., 7, € HO(Y, Z®No) such that

U'=Y ~div(r) = _Ql (Y N div(r;)) .

Proof. — First, take an integer N, > 0 satisfying Lemma A.2 and that .y p ® Z®¢
is globally generated for all d > N{. Here %y y is the ideal sheaf of the closed
subscheme Y \ U with the reduced induced structure. We may then choose non-zero
sections
o1 € HOY, Sy p @ 28Ny ¢ HO(Y, £%M0),
generating Sy ® Z®No. This means that set theoretically, we have Y ~ U =
M; div(7;). In other words,
U =U (¥~ div(r),
7

where Y ~ div(7/) are open subschemes of Y. Without loss of generality, we may
assume that U itself is one of such open subschemes, i.e., there exists a section 7’ €
HO(Y, 2®No) such that U = Y ~ div(7’). We denote div(7’) by D.

Now set Ny = rN} — 1 for some positive integer r such that Ny > M and that
the sheaf .#p ® .%o is globally generated. Then in particular we can find sections
T, Ts € HY(Y, 7p @ £%N0) < HO(Y, £9%°) such that D = (;_, div(7;) set
theoretically. This suggests that

U= (Y ~div(ry)).
j=1
We also set 7 = (7/)" € HO(Y, 2®Wo+1) In this situation we still have D = div(7)
set theoretically. The section 7 and sections 74, ...,7s are then what we need in the
lemma. g

Cororrary A.13. — We may assume that the smooth open subscheme U containing X
in the statement satisfies the condition in Corollary A.11 and the condition that we
can find a section T € HO(Y, L®WNotD)) and sections T4,...,7, € HO(Y, L%No) such
that .
U=Y ~div(r) = U (Y \div(ry)).
j=1

Proof. — This is a direct consequence of Lemma A.10 and Lemma A.12. O

For any d > 0 and any j such that 1 < j < s, consider the morphism
®; : H(Y, 2%%) — H(U, 0y)

o— O"TJd/Td.
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For simplicity of notations, we don’t distinguish morphisms ®; for different d. This
will not cause any confusion as the source of ®; will be clear by the context. Then
for any o € H(Y, . £%%), we have
divenU= U (U;ndiv®;(0)),
1<5<s

where U; := (Y \ div(7;)). Let 9; € Derg, (Oy,Oy) ~ HomﬁU(Qb/Fq,ﬁU) be the
dual of dt; € H(U, Qb/Fq). If a global section o € H(Y,.#%%) is such that dive N X
is singular at a closed point € X, then for a U; containing z, we have

®j(0)(x) = (0195(0)) (z) = -+ = (Om®;(0)) (x) = 0.
We want to show that there exists a positive integer Vi such that for each ¢,

(0:®;(0)) - 7M1 can be extended to a global section of Z®WNo+D(d+N1) To show
this, we need to study the derivation map

d:H(U, Oy) — H°(U, Qy g, )-

For any section f € H°(U, Oy ), we denote its image under the derivation by df €
HO(U, Q%,/Fq).

Lemva A 14. — In the setting of the above corollary, there exists a positive integer dg
such that when d > dy, for any f € HO(U, Oy), if f - 1% can be extended to a global
section in HO(Y, $®(N“+1)d), then df - 791 can be extended to a global section in
HO(Y, Q%//Fq ® g@(NO+1)(d+l))'

Proof. — By assumption, the sheaf .Z®MNo+1) is very ample. So it induces a closed
embedding
Y P(HO(Y,.2®Woth)y),

To simplify the notation, we denote the projective space P (HO(Y7 $®(N0+1))) by P&o
with homogeneous coordinates Ty, T, ..., Tk,. In particular, let Ty be the section
corresponding to 7 in H(PXe @(1)). Therefore the closed embedding Y < PXo
identifies U with a closed subscheme of AKo = PXo \ div Ty. Write z; = T;/Ty. Then
T1,..., 2K, form a system of coordinates of AKo. Let dy > 0 be an integer such that
for any d > dy, the restriction morphism

HO(PR0, 6(d)) — HO(Y, £ B0t 1)

is surjective. Take f € HY(U, Oy) and d > dy such that f - 7¢ can be extended to a
global section in H(Y, . B (N 0+1)d). The surjectivity of the above restriction morphism
suggests that we can find F' € HO(PX0, ¢(d)) whose restriction to HO(Y,.2®No+1)d)
is the chosen extension of f - 7%. Set

f=F/T¢ € BO(AK, Opcy ).

Then f has image f when restricted to U. So f = HO(AKe Opr,) is a section such
that f- T can be extended to a section in HO(PX°o, &(d)) and that f|y = f.
Now we consider the derivation

HO(AR, Gpry) — HO(AF, Qe )
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sending f to

Ko
af = ;(ail

The fact that f - T can be extended to a section in HO(PXo £(d)) means that fis
a polynomlal of total degree smaller than or equal to d in x1,...2k,. As for each 4,

di is of degree strictly smaller than f if non-zero, all ( f ) Td ! can be extended

to a global section in H?(PXc, & (d — 1)). Note that we have a short exact sequence
O — Q]}leO/]Fq — ﬁﬂmKo/Fq(fl)@(KoJ’»l) — ﬁPKO/]F — O

identifying O, /. with a locally free subsheaf of Opx, /]Fq(—l)69 (Ko+1)  Under this

identification, for each 1 < i < Ky we can write

dz; = d(Ti/To) = (1/To) e — (T;/TF) eo,
where eg, ..., €k, is a chosen basis of Opx, /Fq(—1)®(K0+1). Therefore for each i such
that 1 <i< Ko, do;-T§ can be extended to a global section in HO(P*0, Q1 /8, @0(2)).

As a consequence, df~ Té”l can be extended to a global section in the space
HO(PKo, Q%P,KO/FQ ® O(d+1)).
When restricted to Y, we have a natural morphism

(Q]%”KO/]F(Z ® ﬁ(d + 1)) }Y = (Q]:IL”KO/]F(Z) ‘Y ® $®(d+1) L) Q%’/]Fq & g@(d+1)7

which gives us a section r(df - &) € HO(Y, Q%,/Fq ® LWt 1)(d+1)) Ty finish the
proof, it suffices to show that

r(df - TgH) |, = df -7

But as r is induced by (Q]P,KO JF, )‘Y — Q%/ JEy it commutes with the multiplication by

To, 7. So the equality is clear. Therefore T(df- Tg“) is an extension of df - 7¥t! in

HO(Y Ql Y/, ®$®(N0+1)(d+1)>. 0

Lemva A15. — There exists a positive integer N which only depends on the sections
ti,...,tn € H(U, Oy) and 7 € HO(Y, $®(N°+1)) satisfying the following condition:
if a section f € H°(U, Oy) is such that df - 74 can be extended to a global section
in HO(Y, Q%//F ® .f@ (No+1)d) " then for any i such that 1 <i < m and any 6 > N1,

the section O;f - 7970 can be extended to a global section of $®(N0+1)(d+5). If this
condition is satisﬁed by Ny, it is also satisfied by any integer bigger than Ni.

Proof. — Note that for each 1 < i < n, the dual
6i S DE}I‘[E‘q(ﬁ)U7 ﬁU) ~ Homﬁu (Qllj/]Fq7 ﬁU)

of dt; € HO(U,Q%]/Fq) can be regarded as a section in HO(U, %omﬁy(ﬂ§,/mq7 Oy)).
Since Home, (Q%,/Fq,ﬁy) is coherent and that U is the complement of divrt
in Y, there exists an integer Nj, > 0 such that for any § > Nj,, the section
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9; - ° € H'(U, #Home, (Q%//qu Oy) ® £ WNo+t1)%) can be extended to a global section
in H°(Y, #ome, (Q%,/Fq, Oy) ® L WNot13) Get
Ny =max{Ny;; 1 <i<n}.
Then when 6 > Ny, for any ¢ such that 1 <4 < n the section
0; - 7° € HO(U, Homey, (g, , Oy) © LN0T1?)

can be extended to a global section in

HO (Y, #ome, (X jz,, Oy) @ LN0HD%) ~ Hom(Qy 5, , £ N01°),
Note that

Hom(Q%//qug(Noﬂ)é) ~ Hom(Q%//]Fq © LMo+ p(No+1)(d+9))

The global section
(9 -75)(df . Td) c H0<y, g(No+1)(d+6))
satisfies s 4 iis
((&wr )df -7 )) ’U: (0:f) - 740,
which means that (9;f) - 7%*° can be extended to a global section of Z(No+1)(d+9),
Hence we conclude. 0

Lemva A.16. — There exists a positive integer N1 which only depends on the sheaf L,
the sections t1,...,t, € HO(U, Oy) and 7 € HO(Y, L2WNo+V)) such that for any o €
HO(Y, 2%, any i such that 1 <i < m, 1 < j < s, the section (0;®;(0)) - 79%9 can
be extended to a global section of LEWNotVE+) for any § > Ny. If this condition is
satisfied by Ny, it is also satisfied by any integer bigger than Ni.

Proof. — For any o € HO(Y, £®%), as ®;(0) = o - TJ[-i/Td, evidently ®;(o) - 7% can be
extended to a global section in HO(Y, £®MNo+1d) Tet dy be the constant defined in
Lemma A.14. In particular, ®;(c) - 7474 can also be extended to a global section in
HO(Y, @ Wot1)(d+do)) Then by Lemma A.14 d®; (o) - 799+ can be extended to a
global section in H*(Y, Q5 5 ® L®Woth)(d+do+1)) Set N; = N} 4 dy + 1. So when
0> Ni,6—do— 12> Nj. Applying Lemma A.15, we obtain that for any § > Nj, the
section
(azq)J(J)) ~7‘d+6 _ (81(1)3(0')) . T(d+do+1)+(67d071)

can be extended to a global section in HO(Y, & (No+1)(d+0)), O

Now we assume that p is the characteristic of F, and that (Ny+1,p) = 1. We also
assume that Ny > Ny. Take N = (Ng + 1)(N1 +p — 1) + p. For any d > N, there
exists an {43 with N1 < £4 < N; + p such that

d mod p = (Ng + 1)£; mod p.

Set kg = (1/p)[d — (No + 1)€4]. Then for any d > N, fixing extensions of ¢;7% to
global sections for all ¢ such that 1 < ¢ < m, we can construct morphisms of groups
HO(Y, . 2®%) — HO(Y, £2%%)

B—s B tirte
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for any ¢ such that 1 <7 < m, and

HO(Y, . 2®%) — HO(Y, £2%7)
g APl

We construct a surjective morphism
HO<Y, g@d) % (H HO(Y, g@kd)) % HO(Y, g@kd) N HO(Y7 g@d)
i=1

which sends (o9, (61, --,8m),7) to

o =09+ Zﬁftﬂed + APl
i=1
Naturally, this morphism commutes with all ®;:
D;j(0) = ®;(00) + Y B;(B:) i (1) + B, ()", (7)".
i=1
Since
i@ (B:)Pti @ () ] = Dy (Bi)P @, ()% + La®;(Bi) P15 (7)™ - 0,@;(7),
and for ¢/ # 1,
i@ (Bir )Pt @5 (1) ] = La® (B )Pty @ (1) 47 - 0, (7),
the differential of ®;(0) can be written as
9;®;(0) = {Z Ca®;(Bir )Pty @5 () 71 + L@ ()P @5 () | - 0;0;(7)
i'=1
+8:®;(00) + @;(8:)P@;(r)"

La(®(0) = ®;(00))
®;(7)

= 0;%;(00) + 0;®;(7) + B, (Bi)P @ (7).

To prove Proposition A.9, for a section o € H(Y, £%%), we need to study the singular
locus of dive N X. Since

divenU= U (U;Ndiv®;(0)),

1<i<s
and X C U, we have
Sing(dive N X) C (U; N Sing(div(®;(0)) N X)).
1

SIS
Note that for a o € HO(Y, Oy), div(®;(0)) N X is singular at a point € X if and
only if
0j(0)(x) = h®j(0)(x) = -+ = ImP;(0)(z) =0,

by conditions on 0;, 1 < i < n. Therefore we have

Sing(div(®;(0)) N X) = div(®; (o)) Ndiv(1®;(0)) N--- N div(D,, @, (0))
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in U. Now for any

(00, (B, -+ Bin ) 7) € HO(Y,.29%) x (HHO $®kd)xH°(Y7$®’“d)7

set
0¥
34l ) = 02, (00) — L1 9., 7) 1 @51y, (',
®;(7)
and
Wii=XNU;N{gj1=-=gj:=0}

Then for any o = og + Z;:ll By ting) + v ng comparing the expressions of g;; and

0;®;, which give

ta®;(0)
D;(7)

g5,i(00, Bi) = 0;®;(0) — 0;®;(7),

we have

95,i(00, Bi)laiv e, (o) = 0i®5(0)div @, (o)-
Applying Lemma A.16 to the section o € H(Y, £®%), we know that (0;®;(0)) - 79+°
can be extended to a global section of Z®Wotl)(d+d) for any § > N;. By

the same lemma, the section 9;®;(7) - 7(NoFD+% extends to a global section of
ZO®WotD((No+1)+9) for any § > N;. Note that on U we have

(49 ;(0) e, o- T]d . (7. TJNDH)l ., o- T]d No—1
(1) Td 7No+1 7d=No ~
So the section
(4%, (o) £4®,(0)

9;®;(7) 0 = ( Td*No) . (@@j (1) .T(No+1)+(671))

@;(7) @;(7)

extends to a global section of Z®@No+1)(d+9) for any § > N +1. Therefore the section

gj.i(00, B;) - 790 = (@"I)j( ) — 6211)(1)(())

can be extended to a global section in HO(Y, £@WNo+1(d+0)) for any § > Ny + 1.

8%, ( )) 7+ ¢ HO(U, @ No+1)(d+9))

Lemva A17. — For 0 < i < m — 1, with a fized choice of og,B1,...,5; such that
dim W;,; < m — i, the proportion of Bir1 in HO(Y, L®%) such that dim W, ;11 <
m—i—1is1—0(d - g>¥NotDN1PY “where p is the characteristic of F, and the

constant involved is independent of d, q.

Proof. — Let Vi, ...V, be the (m—i)-dimensional F-irreducible components of the re-
duced scheme (W ;)rea. The closure of the V;’s in Y are contained in the set of (m—1)-
dimensional F-irreducible components of X Ndiv g; 1741+ ... Ndiv g; ;7N +L
Since the sections g; 79t N1*1 are global sections of HO(Y, £®WotD(d+Ni+1)) " and
that Z®MNot1) induces a closed embedding of Y~ into P(H?(Y, Z®Wo+1)V) the sec-

d+N1+1 can be extended uniquely to sections of

HO(B(HO (Y, 220 HD)Y) 6(d + Ny +1).

tions g; o7
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Applying refined Bézout’s theorem (see [Ful84, Th.12.3] for a precise statement),
we get

s < (deg X)(deg g 17N ) (deg g;, 7TV ) = (deg X)(d + Ny + 1) = O(d"),

where coefficients involved in O(d?) only depends on deg X. Since for 1 < e < s
we have dim V. > 1, so for each V. there exists a ¢; such that ¢;|y, is not constant.
We want to bound

Gt = {Bip1 € HO(Y, L") ; gji+1(00, Biy1) is identically 0 on V. }.
Note that if 811, 8;,, € G4 then B — Bi,1 is identically 0 on V,. In fact, as on V,

€.J
95,i+1(00, Bit1) = 93,4100, Bip1) = @j(Big1)P @y (1) " — ®;5(BLy )P @, (7)"
= ©;(Biv1 — Bi1)PP;(7)",
and ®;(7) is everywhere non-zero, we have that if Ggfjd # o, then it is a coset of
the subspace of sections of H(Y,.#®k4) which vanishes on V,. When d is large, we
can decompose kq by kq = kq,1(No + 1) + kg 2No with kq1,kq2 > 0 and kg2 minimal
among all the decompositions. Note that if kg2 > Ny + 1, we can replace kg2 by
ka2 — (No + 1) and kg1 by ka1 + No, which gives another decomposition of k.
So when kg2 is minimal, we have k42 < Ny and therefore

k- N2
kd,l = .
No+1
Then the sections
de*lTJ].cd’27tidevlT;.cdﬂ, e ,t}kd’l/NlJde’led’z € HO(Y, £®k)

restricting to V. are linearly independent. So the codimension of the subspace of
sections in HO(Y, £®*4) vanishing on V, is bigger than or equal to |kq1/N1] + 1.
As |kq1/N1] +1 > kq1 /N1, this implies that the probability that g; ;41 vanishes on
one of the V.’s is at most

5 q—Lkd,1/N1J—1 <s- q—kd,1/N1_
As k‘d71 > (k‘d — N02)/(N0 + 1), N1 > Ny and
ka = (1/p)[d — (No + 1){a] > (1/p)[d — (No + 1)(N1 + p)],

we get

—ka,1 /N1 —(ka—Ng)/((No+1)N1)

s-q <s8-q

5 - g(NG/(No+D)N1)—((d=(No+1) (N1+p))/(No+1) N1p)

s- q(No/Nl)+((N1+P)/N1P)—(d/(No+1)N1:0)

NN N

g- q2—d/(N0+1)N1p — O(dti—d/(No"rl)Nlp)’

where the constant involved in only depends on the degree of X as a closed subscheme
of P(HO(Y, £®Wo+1))V) hence is independent of d and ¢. Since dim W; ;11 < m—i—1
if and only if g; ;41 does not vanishing on any V., we get that the proportion of ;41
in HO(Y,.£®ka) such that dim W, ;41 <m —i —1is 1 — O(d" - g2~/ NotDNip) - [
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Levmva AL18. With a fized choice of 0o, B1, ..., Bm such that W; ,, is finite, we have
for d sufficiently large, the proportion of v in HO(Y, £%k4) such that

dive NWj,mN{z € |X|; degz > d/(m+1)N} =2
18
1— O(qufd/(erl)N)’
where 0 = 0o+ Y vy ﬁftﬂ'ld + 4?7t and the constant involved only depends on the
degree of X as a closed subscheme of P(HO(Y, L®Wot\V) " hence is independent
ofd,q.
Proof. — Applying once more Bézout’s theorem, we obtain that
#Wim = O(d™)
with constant involved independent of ¢q. For any z € W} ,,, the set H bad of gections
v € H(Y, £®*4) such that z is contained in divo with o = o¢+> -, BVt 7% +4Prle
is a coset of
Ker(ev, o @; : HO(Y, 2%%) — k(x)),
where k(x) is the residual field of z and ev, is the evaluation at x. If moreover
degx > d/(m + 1)N, Lemma A.8 tells us that
bad
#H < ¢~ min(lka/NoJ,d/(m+1)N)
#HO(Y, j@kd)
Thus when d tends to infinity, the proportion of sections v € H(Y, #®*4) such that
for o = oo+ Y10, Bt + APrha,

divo N Wjm N {z € |X|; dega > d/(m+ 1)N} # 2,

is bounded above by
#Wj - q7 min(|kq/No|,d/(m+1)N) _ O(qu7 min( Lkd/Noj,d/(m+1)N)),

where the constant involved is independent of d, q. Since kg = (1/p)[d — (No + 1)44]
with N1 < €g < N1 + p, we have kg > (1/p)[d — (No + 1)(IN1 + p)]. Then

{EJ S d=Wot+)Ni+p) | d=No+H(Ni+2p)  d
Nod = Nop - Nop ~ 2Nop
for large d. However, since N = (Ng + 1)(Ny + p — 1) + p, we have

d d d

— < .
(m+1N — (m+1)[(No+1)(Ni+p—1)+p] ~ 2(No+1) (N1 +p—1)
When d is large, clearly
d < d
2(No +1)(N1 +p—1) = 2Nop’

Therefore [kq/No| = d/(m + 1)N, and the proportion of sections v € HO(Y, £%k4)
m Bpt,de 4 APt

19; b 7T,

such that for 0 =09 + >,
dive "W, N{z € |X]|;degz > d/(m+1)N} =0

1=
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is
1 — O(qufd/(erl)N)’

where the constant involved is independent of d, g. O

Proof of Proposition A.9. — Choose
(00, (B1s- -, Bm),v) € HO(Y, . £%%) x (HHO Y, £®ka) ) x HO(Y, £ ®*a)
uniformly at random. Lemma A.17 and A.18 show that as d — oo, writing

m
o =0y + Z ﬁzptrﬂjd + ’YpTed,
i=1

the proportion of (og, (B1,- .., Bm),7y) such that
dmW;;, =m—1i, 0<i<m
and
dive "W, N{z € |X|; degz > d/(m+1)N} = o,

is

m—1
|:H (1 o O(dz . q2—d/(No+1)N1p)) . (1 o O(qu—d/(m-i-l)N))
=0

— (1 _ O(dm—l . q2—d/(N0+1)N1p)) . (1 _ O(qu—d/(m-&-l)N)).

Since for d sufficiently large,
d B d
(m+1N  (m+1)[(No+1)(N1 +p—1) +p]
d d

2 m DMt (N1 p-D] ~ (m+ DN + 2)Nip

and

d PSS d > d
(No +1)Nip 2(No +2)Nip = (m+1)(No +2)Nip
the probability above can be written as

(1 _ O(dmfl ,qfd/(m+1)(N0+2)N1p)) . (1 _ O(dm .qfd/(m+1)(No+2)N1p))
=1-0(d™- q*d/(m+1)(No+2)N1p).
On the other hand, for o = og + Y., BVt 7% + P71l as
95,i(00, Bi)laiv e, (o) = 0i®;(0)div @, (o)
we have
Sing(div(®;(0)) N X) N T, = div(®,(0)) NT; N {018;(0) = - -- = O, (0) = 0}

_dIV( ( ))ﬂU ﬂ{g_], (O-Oaﬁl) :gj,m(UOaﬁm) :O}
= le((I)J (0’)) N Wj,m~
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Since 0 = 0¢ + sz B t;7% 4+ yP7le defines a surjective homomorphism of groups
Y, %) x <H HO(Y, £ ®ka) ) x HO(Y, 2®%) — HO(Y, £®%),

we obtain that when d — oo, the proportion of o € HO(Y, .#®%) such that
Sing(div (®;(0)) N X)NU; N{z € |X|; degz > d/(m+1)N} =2
is
1— O(dm . q—d/(m+1)(No+2)N1p).
Since
Sing(dive N X) c U(U; N Sing(div(®;(0)) N X)),
J
setting ¢ = 1/(m + 1)(No + 2)N1, we have when d — oo, the proportion of o €
HO(Y, £%%) such that
Sing(div(e) N X)N{z € |X]|;degz 2 d/(m+1)N} =&
is
1—0(d™ - q*7),
which finishes the proof of Proposition A.9. ]
Cororrary A.19. — In the same setting as in Proposition A.9, there exists a constant
¢ > 0 independent of d,q such that
#{o € HO(Y, £%?); dim(Sing(dive N X)) > 0}
#HO(Y, 2%4)

the constant involved is independent of d, q.

= o™ g~),

Proof. — This follows directly from Proposition A.9 once we notice that

{o€ HO(Y, 2%9) ; dim(Sing(dive N X)) > 0} c Qgigh' 0

A.4. Proor or BERTINI SMOOTIHNESS THEOREM OVER FINITE FIELDS
Proofof Theorem A.1. — The zeta function (x(s) is convergent for s > dim X. So in
particular (x (m+1)"! = Hm6|X| (1—g~(m+1)deg ) ig convergent. By Proposition A.4,
lim @ Per) = Cxlm+ 1)1
T—00

On the other hand, by construction of 2, <, 2%, 258" we have

Py C Pacr C PgU 278 U 2",
Hence
P #Pasr | #2ES #2,""
HHO(Y, 2%d)  #HO(Y,.2%0)| S #HO(Y,.29d) = #HO(Y,.2%d)
When d — oo, by Proposition A.6 and A.9 we have
fops oy
HEO(Y, 2%d)  #HO(Y, Z%d)

= 0(g) +0(d™ /")
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Hence 7i(Z?) and p(27) differ from p(P<,) by at most ﬁ(e@g‘ﬁd)Jrﬁ(e@gigh) =0(qg ).
So letting r tend to oo, we get

. —1
WP) = I u(Pey) = Cxlm+1)7" o
T—>00
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