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HYPERBOLICITY OF SINGULAR SPACES
BY Benxoir Caporer, Erwan Rousseau & Benrouz Tan
Asstract. — We study the hyperbolicity of singular quotients of bounded symmetric domains.

We give effective criteria for such quotients to satisfy Green-Griffiths-Lang’s conjectures in both
analytic and algebraic settings. As an application, we show that Hilbert modular varieties,
except for a few possible exceptions, satisfy all expected conjectures.

Résumi (Hyperbolicité des espaces singuliers). — Nous étudions I’hyperbolicité des quotients
singuliers de domaines symétriques bornés. Nous donnons des critéres effectifs assurant que de
tels quotients vérifient les conjectures de Green-Griffiths-Lang, a la fois dans le cadre analytique
et algébrique. Comme application, nous établissons que les variétés modulaires de Hilbert, a
part quelques exceptions possibles, satisfont les conjectures attendues.
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1. INnTRODUCTION

As central objects in algebraic geometry, the geometry of quotients of bounded sym-
metric domains /T has been the object of many works. Classical results state that
there exist sufficiently small subgroups IV C T" such that /T has remarkable prop-
erties: it is of general type [Mum?77], it is hyperbolic modulo the boundary ([Nad89],
[Roul6]), all its subvarieties are of general type [Brul6).
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2 B. Caporer, E. Rousseau & B. Tan

Nevertheless, it turns out that these properties should be true in most cases with-
out having to take small subgroups IV C I'. As an example, Tsuyumine [Tsu85] has
shown in the Hilbert modular case (2 = $™ and I' the Hilbert modular group) that,
except finitely many cases, Hilbert modular varieties are of general type. The main
difficulty, if one wants to avoid the step of taking small subgroups, is to deal with
singularities. Indeed, it is well known that hyperbolicity properties may be completely
lost in singular quotients (see for example Keum’s singular ball quotient [Keu08]).

The above mentioned results can be seen as illustrations of the expected following
conjectures of Lang and Green-Griffiths (see [Lan86] and [GG80]).

Let Exc(X) C X denote the Zariski closure of the union of the images of all non-
constant holomorphic maps C — X.

Conyecture 1.1. — Let X be a complex projective manifold. Then X is of general
type if and only if Exc(X) # X.

In particular, if we denote Excaiq(X) the Zariski closure of the union of non general
type subvarieties then the conjecture implies Exc(X) = Excaig(X). This conjecture
is still largely open despite some very recent results for subvarieties in quotients of
bounded domains [BD18] or more generally in manifolds with negative holomorphic
sectional curvature [Guel8|.

The setting we consider in this article is the following: a quotient X = 2 / T of a
bounded symmetric domain by an arithmetic lattice whose action is fixed-point free
in codimension one.

Then (see [AMRT75]) taking a finite index congruence subgroup I'", we can consider
a compactification X = X’/G obtained as a quotient of a smooth compactification X’
by a finite group G = F/I‘/ and denote D = X \ X.

Denote by p : 2 — X the canonical projection. Let X = X be a resolution
with exceptional divisor F; corresponding to quotient singularities with local isotropy
groups G;. Let A = >, (1—=1/|Gi|) E;, E =3, E; and let D =7*D.

Let hperg be the Bergman metric on 2, which we normalize to have Ric(hperg) =
—hBerg. Let v € Q7 such that the holomorphic sectional curvature of Agerg is bounded
from above by —~.

The first result is a generalization of Nadel’s theorem [Nad89] to this singular
setting, both for the analytic and algebraic versions.

Turorem A. — Consider the Q-line bundle
~ 1 ~ ~
L:=n"Kx+D - ;(D + A).

Then Exc(X) and Excag(X) are contained in B+ (L) U D U E, where Bt (L) denotes
the augmented base locus. In particular, if L is big then the union of entire curves
and subvarieties not of general type is not Zariski dense.

JEP — M., 2019, lome 6



HYPERBOLICITY OF SINGULAR SPACES 3

Recall that the augmented base locus is defined as

BT (L) := (N Bs(mL — A)
m>0
for any ample line bundle A.
In the case of the ball and the polydisc, we can prove stronger statements, namely
the bigness of the cotangent bundle of subvarieties (which implies the bigness of the
canonical bundle by [CP15]).

Turorem B. — Let Q = B"™ be the unit ball. Consider the Q-line bundle
L=n"Kx+D—(n+1)[A+D].

Then for any subvariety V. C X such that V ¢ BT(L) U DU E, any resolution of
singularities V' has big cotangent bundle.

Turorem C. — When § is the polydisc, Theorem B holds with (n+1) in the definition
of L replaced by n.

One of the key point in these three statements (and their proofs) is to consider
the pairs (X, A+ 5) as orbifolds in the sense of Campana [Cam04]. In section 2, we
recall basics on orbifolds and study extension properties in the orbifold category of
the Bergman metric and symmetric differentials.

The proof of Theorems A and B is given in Section 3. They are obtained by using
negativity properties of the Bergman metric and its extension property as an orbifold
metric described in section 2, combined with the methods of [Cadl6] and [Guel8].
The common idea in both statements is to use sections of the line bundle L to twist
the Bergman metric and obtain in this way a singular metric on the compactification
with the required negative curvature properties.

Theorem C is proved in section 4. We use extension properties of orbifold symmetric
differential forms explained in section 2 and properties of the natural codimension one
holomorphic foliations living on these varieties. The idea is that in this setting, sections
of the line bundle L naturally induce symmetric differentials on the regular part of the
quotient. Then, extension properties of these differential forms as orbifold symmetric
differentials are used to construct global holomorphic symmetric differentials on the
compactification. They define (multi)-foliations whose properties enable to derive the
above statement.

As an application of the above results, we study in section 5 the case of Hilbert
modular varieties and obtain the following version of conjecture 1.1 in this case.

Turorem D. Let n > 2. Then, except finitely many possible exceptions, Hilbert
modular varieties of dimension n satisfy the following properties:

(1.1.1) Exc(X) # X.
(1.1.2) there is a proper subvariety Z such that all subvarieties not contained in Z
have big cotangent bundle, and in particular are of general type.

JE.P.— M., 2019, tome 6



4 B. Caporer, E. Rousseau & B. Tan

The first part of this theorem was already obtained by a different method in [RT18]
while the second part is a generalization of results of Tsuyumine [Tsu86] who treated
the case of codimension one subvarieties.

2. ORBIFOLDS

Our aim in the current section is to establish extension results for the Bergman
metric as an orbifold metric and for orbifold differential forms which will play a key
role in the proofs of our statements.

2.1. PreLiMINARIES ON ORBIFOLDS. — The notions we are about to introduce in the
current section originated in the works of Campana, cf. [Cam04]. For a more thorough
account of these preliminary constructions, including background and applications,
the reader could also consult [JK11], [Taj16], [CKT16] and [GT16].

Derinirion 2.1, — We define an orbifold pair (X, D) by a normal, algebraic variety X
and a divisor D = Zle d;-D;, with d; = (1—1/a;), where a; € NTU{oco} and each D;
is a prime divisor.

We follows the usual convention that, for a; = oo, we have (1 —1/a;) = 1. The pair
(X, D) in Definition 2.1 is sometimes referred to as a pair with standard coefficients
(or a classical or integral orbifold pair). We say that the orbifold (X, D) is smooth
if X is smooth and the support of D has normal crossing support. With Definition 2.1
at hand, given a pair (X, D), one can naturally associate a notion of multiplicity to
each irreducible component D; of D.

Derinrrion 2.2 Let (X, D) be an orbifold pair. We define the orbifold multiplicity
mp(D;) of each prime divisor D; as follows.

a; ifd; #1,

ma(Ds) = {oo if d; =1

Our aim in now to introduce morphisms sensitive to the orbifold structure of
(X, D), but to do so we first need to define a notion for pullbacks of Weil divisors
over normal varieties.

DeriNTion 2.3. Let f : Y — X be a finite morphism of normal, algebraic vari-
eties X and Y. Let D C X be a Weil divisor. We define f*(D) by the Zariski closure
of the Weil divisor defined by f*(D|x,.,)-

We now turn to morphisms adapted to (X, D). Such morphisms are guaranteed to
exist whenever X is smooth, thanks to Kawamata’s covering constructions, cf. [Laz04,
Prop.4.1.12].

Derinition 2.4. — Let (X, D) be an orbifold pair in Definition 2.1. We call a finite
morphism f: Y — X of algebraic varieties X and Y, strictly adapted (to D), if Y is
normal and f*(D;) = a; - D', for some reduced divisor D’ in Y.

JEP — M., 2019, lome 6



HYPERBOLICITY OF SINGULAR SPACES J

We can also consider collections of charts that are adapted to the orbifold structure
of a given pair (X, D).

Derinrrion 2.5 (Orbifold structures). — Given an orbifold pair (X, D), let {U,}o be
a Zariski open covering of X. We call a collection €, = {(Uq, fa, Xa)}a of triples
(Ua, fo, Xa) consisting of strictly adapted morphisms f, : Xo — (Us, Dy, ), an
orbifold structure (or strictly adapted orbifold structure) associated to (X, D).

Derinirion 2.6 (Orbifold (pseudo-)metric). Let (X,D) be a smooth orbifold
pair equipped with a smooth orbifold structure €, = {(Ua, fo, Xa)} a- An orbifold
(pseudo-)metric wp is a (pseudo-)metric on X \ Dyeq such that f*(wp) extends as a
(pseudo-)metric on X,.

Remark 2.7. — Let (X,D = Zle(l —1/a;) - D;). Assume that U, admits a coor-
dinate system (z1,...,2,) such that U, N D = {(21,...,2n) | Hle zi =0} Ifwp =
iy ik wj kdz; A dZ; then it extends as a an orbifold pseudo-metric if the function

B R

extends as a smooth function.

Notration 2.8. Given a coherent sheaf .%# on a normal algebraic variety X, by skl #
we denote the reflexive hull (S* %)V of symmetric powers S*.% of .%. Furthermore,
for a morphism of normal algebraic varieties f : Y — X, we set fIL.Z to denote

(f*g)vv.

We can now define a notion of sheaves of differential forms adapted to the orbifold
structure of (X, D). First, we need to fix some notations.

Noratron 2.9. — Let %, be an orbifold structure for the orbifold pair (X, D). Let
{DY _}i; be the collection of prime divisors in X,, verifying the equality (f*(D;)), , =

> Déga. Let X? denote the smooth locus of (X,, f&(D)) and US an open subset of
the smooth locus of (U,, D) such that f, : X5 — UJ is surjective.

Derinirion 2.10. — In the setting of Notation 2.9, we define the orbifold cotangent
1]
Xa,fa,D)
uniquely determined as the coherent extension of the kernel of the sheaf morphism

f20b (log("Dlug ) — @ O

naturally defined by the residue map.

sheaf Q%l by the collection of reflexive, Ox_-module, coherent sheaves QE

Remark 2.11. This is an instance of the notion of orbifold sheaves adapted to a
pair (X, D). These are G,-linearized, coherent sheaves on each X,, satisfying natural
compatibility conditions, cf. [GT16, §2.6].

Examrere 2.12. — Let (X, D:Zle(l—l/aZ-)Di) be an orbifold pair and f, : X, — U,
a single, strictly adapted chart in Definition 2.5. Assume that the branch locus of f,
is divisorial and has simple normal crossing support. With this assumption, it follows

JE.P.— M., 2019, tome 6



6 B. Caporer, E. Rousseau & B. Tan

that X, is smooth. Furthermore, let us assume that U, admits a coordinate system
(#1,...,2n) such that U, N D = {(21,...,2n) | Hle z; = 0}. Assume that wy, ..., w,
is a coordinate system on X, such that

(2.12.1) fo i (Wi, . wy) — (W ... ,w?’f,wéﬂl, . ,w?’;k,w“_k_,_l, ey Wh)s
for some by, ...,b; € N. Then, by definition, the sheaf Q%XQ fuuD) is the Ox_-module
generated by

<dw1, ..., dwy, (wzgl) ~dwey1,. .., (w?ﬁrzl) cdWps ke, AWpg a1y - - - dwn>.

Derinition 2.13. — Give any orbifold pair (X, D) together with an orbifold structure
6o = {(Us, fa; Xa)}a, we define the sheaf of symmetric orbifold differential forms
skl Q%l by the collection of reflexive sheaves {S!* le)]@ fo D)}a on each X,.
Norariox 2.14. — Let (X, D) be an orbifold pair. We shall denote by S*! Q[)l(] (#Dreq)
the sheaf of symmetric rational differential forms with poles of arbitrary order along
D\ed, which is defined by:

\%

lim ($105 @ Ox (m - Dyea)) ™.

Sometimes it is more convenient to work with a notion of symmetric differential

forms, adapted to (X, D), as a coherent sheaf on X instead of X,,. This is the purpose
of the following definition.

Derinition 2.15. — Let (X, D) be an orbifold pair equipped with an orbifold struc-
ture € = {(Un, fa, Xa) }o- We define the sheaf of €-differential forms S;] Q[)y log(D)
to be the reflexive, coherent subsheaf of Sl Q[)l(](*Dred), defined, at the level of
presheaves, by the following property:

o €T (U, SE 0l log(D)) «— ¢ e T(U,, S'IQY (+D,eq)) and

£ ° 1
(o) en(Xa, S QN .
Remark 2.16. — One can easily check that the notion of @-differential forms in Def-
inition 2.15 is independent of the choice of the orbifold structure %,.

Remark 2.17. — Local calculations show that over X,e; the sheaf S%] Q[)l(} log(D) is
locally free. More precisely, for every x € X,eg, there exists an open neighbourhood
Wy C Xyeg with Wo N D = {(21,...,2) | Hle z; = 0} such that S¥ Q&reg log(D|reg)
is the Oy -module freely generated by

dz{" dz)" "

1 4 me41 My, .
<2Lm1'dlj""’Ztmedd’d'zf‘*‘l yeoydz) >, E m; = N,
1 4 i

where d; = (1 —1/a;).

JEP — M., 2019, lome 6



HYPERBOLICITY OF SINGULAR SPACES 7

2.2. EXTENSION THEOREMS. We are now ready to prove extension results for metrics
and differential forms. In the case of differential forms, it can be interpreted as an
orbifold version of [GKK10, Prop. 3.1].

The setting of this section is the following. Let U C C™ be a normal, algebraic
subset. Assume that there is a smooth algebraic subset V' C C™ and a finite group G
acting freely in codimension one such that U = V/G. Let 7 : U — U be a strong
log-resolution of U with F C Exc(7) being the maximal reduced exceptional divisor
and D= (1-1/|G]|)- E.

Consider an invariant metric w on V which induces a metric wp on U~ E.

Provosition 2.18. — wp extends as an orbifold pseudo-metric on (U, D).

Proof. — Let f:V — U denote the finite map encoding the isomorphism U = V/G
and set V' to be the normalization of the fibre product V xy U with the resulting
commutative diagram:

7 f, finite i
dl |7
v J=7¢ 5

Note that fis a composition of the finite map V xy U— 17, which is of degree |G/,

and its normalization. Therefore deg(f) = |G|. Set {E;} to be the set of irreducible
components of F and let

B =3 (- 1/a) - E,
be the divisor with respect to which f: V > U is strictly adapted to the orbifold
pair (U, E') (cf. Definition 2.4).
From [Kol07, Th. 2.23], we know that V has quotient singularities. Therefore local
uniformizations for V give a smooth orbifold structure for (V, E'). As w pulls-back
to a pseudo-metric on these local uniformizations, wp extends as an orbifold pseudo-

metric for (V, E') and therefore on (U, D), since by construction, we have that for
each 7 the inequality a; < |G| holds. O

Now, we will prove an extension property for symmetric differential forms.

Prorosition 2.19. — For every m € N, the coherent sheaf
(2.19.1) @ .= m(sg%mg ((1-1/lG)) .E))
is reflexive.

JE.P.— M., 2019, tome 6



8 B. Caporer, E. Rousseau & B. Tan

Proof. The proof uses the same construction as in the previous proposition, so we
follow the same notations using the following commutative diagram:

7 f, finite i7
v =9 5

As the problem is local, to prove the reflexivity of the sheaf ¥ (2.19.1), it suffices
to show that the naturally defined map

(2.19.2) r(ﬁ, S QL log (1 - 1/|G]) - E)) — T(U ~ Exc(r),S™ QL)
is surjective. To this end, let o € rw,sm™ Qg]) be the section defined by & €
I'(U \ Exc(r),S™ Q%) Let oy = fFlo € T(V,S™Q1,). As oy is regular, we have
7 fH(0) = 7 (o) e D(V, M 1),
Viewing ¢ as an element of 1"((7 , S Qlﬁ(*E)), and thanks to the commutativity of
the diagram above, we have
(2.19.3) F(o) eT(v,8im ol
Set as above {E;} to be the set of irreducible components of E and let
E = Z(l —1/a;) - E;

be theN divisor with respect to which f: V > U is strictly adapted to the orbifold
pair (U, E’). Note that, by construction, we have:

(2.19.4) For each i, the inequality a; < |G| holds.

1 1

(219.5) oF) = QE%J—;’E,) (cf. Example 2.12).

Therefore, thanks to (2.19.3) we have, by the definition of symmetric €-differential
forms, that o € F(U, S Q% log(E’)). In particular, it follows that the map

(U, S Qp log(E')) — T(U ~ Exc(w),S™ Q)

is a surjection.
On the other hand, thanks to the inequality a; < |G| in 2.19.4, we have

S Qllj log(E") C SZ Qllj log (1 -1/|G|) - E).
The surjectivity of the map (2.19.2) now follows. O
We conclude this section by pointing out that one can easily verify that these
extension results hold for any resolution of U.
3. HYPERBOLICITY AND SINGULAR QUOTIENTS

This section will be devoted to the proof of Theorems A and B. The main ingredient
in both proofs is the use of singular metrics built from the Bergman metric.

JEP — M., 2019, lome 6



HYPERBOLICITY OF SINGULAR SPACES 9

3.1. SINGULAR METRICS. In the following, we will consider a quotient X = €2 / T of
a bounded symmetric domain by an arithmetic lattice whose action is fixed-point free
in codimension one, with local isotropy groups G; such that |G;| = m;.

We will deal with a particular compactification X of X, constructed as follows.
Since T is arithmetic, we can take a congruence subgroup IV which is neat, by [Bor69].
Thus, we can use [AMRT75] to construct a toroidal compactification X’ of the smooth
quotient X’ = 2 / T’ The action of the finite quotient group G = 1—‘/ I’ on X' extends
to X'. We then let X = X//G, and D = X ~ X. We also let p : X’ — X be
the canonical projection. We note that X has normal and Q-factorial, cf. [KMOS,
Lem. 5.16]. In particular the divisor D is Q-Cartier.

We choose a desingularization X — X such that (Exc(m) 4+ D) has simple normal
crossing support. Let D = 7*D. Denote by FE; the exceptional divisors supported over
Sing(X). We let A =3, (1 —1/m;) E;, and E =Y, E;.

We summarize this setting in the following diagram.

X

Jw
The Bergman metric induces natural singular metrics on each one of the three
varieties that appear above. Let us give more precise notations for these metrics.
Let U = X\ (Sing(X)UD), U =7~ Y(U) and U’ = p~}(U). Then U, U’/ and U
are all naturally biholomorphic. The Bergman metric hgerg is well defined on U’, and
is invariant under the action of G. Thus, hperg induces a metric

Il Il hpere
on the tangent bundle T, and hence defines a metric | - |
bundle K.

We first state a lemma showing that the norm of the sections of powers of
Ox(m* K + ZND) has logarithmic growth near the support of D. This follows from the
simple observation that, in our situation, the Q-Cartier divisors 7* (K+ + D) and
K~7+ D’ are identified. Thus, it suffices to show the required estimate for sections
of powers of O7(K~7+ D’). But this latter estimate is a classical result of Mumford
[Mum?77].

7+ det hyy,,, O the canonical

Lemwva 3.1, Let m € N be sufficiently divisible, and let
s € Ho(f,ﬁg(m(ﬂ'* y—kﬁ)))
Let || - || denote the norm || - ||+ det B OT Kg@m. Then ||s|5||* is locally bounded

near each point of E~ 5, and has at most logarithmic growth near the simple normal
crossing divisor D, in the sense of [Mum?77]|. This means that if w is a local equation
for D on some small open set, we have

k
IslzlI* < Clog Jw]|”,

for some C > 0 and some k > 1.

JEP. — M., 2019, tome 6



10 B. Caporer, E. Rousseau & B. Tan

Proof. Let Yreg be the smooth locus of X. By hypothesis, the group G does not
fix any subvariety of codimension 1 inside X’. Thus, any codimension 1 component of
the fixed locus of G must be a component of D’. This implies that the map p|p,1(ymg)
is a ramified cover, which can ramify only along D’ Np~!(X,eq). Consequently p*m.s
is a well-defined section of m(Kw7 + D’) on p~!(X,eg). The map p is finite, so the
complement of this last set has codimension higher than 2 in X’. This shows that
p*m.s extends as a section s’ of m(K<7+ D') on X'.

The lattice I'" is neat, so by [Mum?77] the Bergman metric on m(K~7+ D’) has
at most logarithmic growth near D’. This shows that, for some k > 0, we have
|ls'l| < C| log |w'||*. Here, w’ is a local equation for D, and || - || is the norm induced
by the Bergman metric on U’.

Lo on U, where the norms || - || are still

induced by the Bergman metric on the adequate powers of K ¢+ D and Kx7+D’. Now
note that on some suitable small open subset on X, we can find a local equation w’
for D’ such that [log|w’|| o p~! < Cy [log ", |w;|| + O(1), for some C; > 0, where
(w;); is a local set of generators for the ideal sheaf of D. The previous assertion follows
easily from the equality of ideals />, (p*w;) = (w’), valid in the local ring of any
point of D’.

Since s’ = p*m.s, we have ||s|| = ||s'|| op~

Besides, on X, we have log > lwi| om = Cylog |w| +u, where w is a local equation
for D, and u is some locally bounded function. Putting everything together, we obtain
the following inequality:

I'slg | < Csllog @] + O(1).

This glves the result, since the right-hand side has the required logarithmic grow
near D and is locally bounded away from D. (|

Next, we turn to the control of the singularities of the metric 7*hperg near D.

LeEmma 3.2. The metric m thrg has at most mized cone and cusp singularities
with respect to the divisor A + D. This means that on any small polydzsc D™ with
coordinates (21, ..., 2,) such that E;\D™ = {z; =0} fori=1,...,0 and DN D" =
{Zo4r - 2n = 0}, we have

l+r—1
|vz| 2 \v,|
(321)  |vl2p,.. < { + |vil* +
pers Zl ;[2(1=1/ma) l;l zg; 2] [log |z

Proof. — Let fo : Xo — U, be a strictly adapted chart for the smooth orbifold
pair (X, A). We can always choose f, so that f*(A + D) has simple normal crossing
support. Let D, be the reduced divisor associated to f*D. Let

T

(Xt = (Y )’

(XOL7fOL7A)

JEP — M., 2019, lome 6



HYPERBOLICITY OF SINGULAR SPACES 11

be the orbifold tangent bundle on X,. Assuming that f, has the expression (2.12.1)

(with a; = m;), then T, admits the local frame:

XorforB)
P o .. 0 e D P P
3.2.2 _— ., — Yo — L. kY. .
( ) <<9w1’ T Ow,’ (i) Qweqr’ (W) Owptr Owpspsr 3wn>

To prove the result, it suffices to show that X is covered by such charts (U, fo, Xa),
for which the metric fim*hperg on T, (Xou fo ) has Poincaré growth with respect to Dy,.
We can choose f, so that wyik4s---w, = 0 is a local equation for D,, with s > 1.
What we need to check is that for any local section v of T( Xo furBN) with coordinates v;
in the frame (3.2.2), we have

l+k+s—1 n

2
Vs
lo? < c[ )DINTIEREND L |
i=1 i=l+k+s [w;|? [log |w;]|
where || - || is the norm given by the metric fim*hgerg.

By Proposition 2.18, the metric f37*hger, is locally bounded on T(memz) |Xa\f>a'
Moreover, on its non-singular locus, this metric has negative sectional holomorphic
curvature and non-positive bisectional curvature. Then the argument of [BC18,
Prop.2.4] can be readily adapted to the orbifold case to show that the metric
fam*hBerg O T( Xo.f0R) has Poincaré growth near D,. Actually, the only additional

fact to check is that w;;;j 0/0wgy; has uniformly bounded norm for j = 1,...,k.
As in the non-orbifold case, this follows from the Ahlfors-Schwarz lemma, using
the fact that outside ﬁa, the metric fi7m*hperg is locally bounded and has negative
holomorphic sectional curvature. O

Remark 3.3. — Another way to prove the last two results would be to check that
the Bergman metric defines a singular Kéhler-Einstein metric on the normal vari-
ety X, belonging to the big class ¢1 (K~ + D). Then, [GP16, Prop. 2, Th. 3] permits
to conclude that the induced metric on X has mixed cone and cusp singularities.
This also implies that near a point of IN), the Bergman metric is equivalent to the
Poincaré metric. We can then use this fact to show that any section of mzn*(K++ D)

has bounded norm for (det hf,,, ).

The following lemma is the last step before the proofs of Theorems A, B and C.
It explains how to define a singular metric on T’y with suitable negative curvature
properties, using sections of an appropriate adjoint line bundle.

Lemva 3.4. — Let —B < 0 be an upper bound for the bisectional curvature of the
Bergman metric on Q2. Assume that the line bundle

* n 1~ A
L=n"Kg+D-4[D+4]

s big on X for some constant A > 0. Then for any x € X~ (BT (L)uU DU E), there

exists a singular hermitian metric h on T, such that

X
(3.4.1) h is smooth and non-degenerate near x;
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2 B. Caporer, E. Rousseau & B. Tan

(3.4.2) on its smooth locus, h has bisectional curvature bounded from above by
—B+ A, and holomorphic sectional curvature bounded from above by —v + A;
(3.4.3) h is locally bounded everywhere on X .

Proof. Bigness is an open property, so there exist rational numbers §; > 1 —1/m;
and A > 1 such that

U=n'Kg+ D5 [\D+ Y pis]

is still big. Moreover, since x ¢ B™ (L), we can choose the 8; and A so that z & Bs(L').

Consequently, we can find a section s € H°(X, L'®™) such that s(z) # 0, for some
m > 1 high enough. Consider the metric

(3.4.4) ho=||s|2A7™ - 1 hiperg,

where || - || is the norm induced by the Bergman metric on m(r* K+ + D). We will
show that h has all the required properties.

We first compute the curvature of h on its smooth locus. Using our normalization
assumptions, we find

~ A
i0(h) =i O (det Ao ") @ T+ 10 (hperg)
= —A?T*RiC(hBerg) (%9 I + Z'(_)(hBerg)
= A?T*WhBerg & I + iG(thrg)'

and the required bounds on the curvatures are then given by a simple computation
(see for example [Cad16]).

Now, let us prove that h is locally bounded everywhere. We see s as a section of
m(m* K+ + D). By construction, it vanishes at order at least mA/A along D. Thus,
by Lemma 3.1, the function ||s||24/™ vanishes on D at any order strictly smaller than
(24/m) - (mA/A) = 2X. Since A > 1, ||s||>4/™ vanishes at order 2 along D.

Besides, s vanishes at order m/3; /A along each F;. So, by Lemma 3.1 again, ||s|
vanishes at order (24/m) - (mpB;/A) =25, > 2(1 —1/m;) along any E;.

If we combine these two facts with (3.2.1), and if we recall that I has the expression
(3.4.4), we see that his locally bounded everywhere. a

‘2A/m

3.2. Proors. — Now, Lemma 3.4 can be used to prove our criteria for complex hyper-
bolicity.

Proof of Theorem A. — By contradiction, assume there exists an entire curve C =+ X
not included in B+ (L) U DUE. By our hypothesis, and since bigness is an open con-
dition, we can pick A < « in Lemma 3.4. This implies that there exists a singular
metric h on T, non-degenerate on j(C), locally bounded everywhere, and with holo-
morphic sectional curvature bounded from above by —y + A < 0.

Thus, j *h defines a smooth metric on C outside a discrete set of points. This metric
has negative curvature, bounded away from zero, and is locally bounded everywhere.
We can apply the usual extension theorem for plurisubharmonic functions, to obtain
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a singular metric on C, with negative curvature in the sense of currents, bounded
away from zero. This is absurd by Ahlfors-Schwarz lemma.

Now, let V — X, with V/ ¢ BT (L)UDUE, and let V be a resolution of the singu-
larities of V. The pull-back of hon V defines a smooth metric outside a divisor F with
negative holomorphic sectional curvature and locally bounded everywhere. Therefore
from [Guel8, Th. B|, we obtain that V is of general type. O

Proof of Theorem B. — Let V C X, with V ¢ BT(L)UDUE, and let V be a resolution

of the singularities of V. Then the induced holomorphic map VL X is generically
immersive.

In Lemma 3.4, we can take B = 1/(n+1), v = 2/(n+1). Then, choosing any
positive constant A < 1/(n + 1) will give a metric I such that j*h is locally bounded
everywhere on 7%, has negative bisectional curvature and negative holomorphic sec-
tional curvature bounded from above by A —1/(n + 1) < 0. By [Cad16], this implies
that 2y is big. O

4. (QUOTIENTS OF POLYDISCS

In this section, we consider the case where € is the polydisc D™, and consider the
same setting as above. Let I' C Aut(D)™ be a discrete subgroup, and X = D"/T a
quotient smooth in codimension 1, whose local isotropy groups have cardinal m;.

We follow the same notations as above and denote p : £ — X the canonical
projection, X %5 X a resolution with exceptional divisor E;, A= > (1 =1/my) E;,
E=Y,E;and D = 7*D.

4.1. SYMMETRIC DIFFERENTIALS. — We will first establish a weak version of Theorem C
giving a criteria for the bigness of the cotangent bundle.

Turorem 4.1. — If the Q-line bundle 7 K~ + D—n(A+ 5) is big, then Qg is big.

Proof. — Let w be a global section of m(r* K+ + D). Tt gives a section of KSm
invariant under I'. Now we consider it as a section of S™"Q(D") invariant under I'. It
gives a section of S™"Q(X"%9). Therefore from the extension property 2.19, we obtain
finally a section of Sm"Q()?, A+ 5) Starting with a section w of a multiple of

m*Kx+ D —n(A+ D) — A,

where A is an ample line bundle, one gets a section of Sm"Q()Z') ® A~!, which implies
that ¢ is big. |

ExamprLe 4.2, — Already in the case of surfaces, this statement provides interesting
examples of surfaces with ¢? < ¢z and big cotangent bundle (see [GRVR18]).
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4.2. HOLOMORPHIC FOLIATIONS. Let us suppose that I' is irreducible in the following
sense: the restriction of each of the n projections p; : Aut(D)” — Aut(D) to I’
is injective. Remark that in this setting, singularities of quotients X = D" /T are
automatically cyclic quotient.

Let .%; be the holomorphic codimension-one foliation on X induced by dz; = 0
on D", In the sequel, we will use properties of these foliations established in [RT18],
which we summarize in the following proposition.

Prorosition 4.3 ([RT18])

(4.3.1) Leaves of the foliations F;, not contained in the exceptional part E + IND,
do not contain algebraic varieties.

(4.3.2) Leaves of the foliations F;, not contained in the exceptional part E + ﬁ,
are Brody hyperbolic.

4.3. Proor or Tnreorem C. — Now, we can give the proof of the following statement.

Tueorem 4.4. — Let T' C Aut(D)™ be a discrete irreducible subgroup and denote
L:=xn" y—i—ﬁ—n(&—kﬁ).
Let BT (L) be the augmented base locus of L and
Z:=BY*(L)UDUE.

Then all subvarieties W ¢ Z have big cotangent bundle.
In particular, if L is big there is a proper subvariety Z C X such that all subvarieties
W & Z have big cotangent bundle.

Proof. — Let W C X be a subvariety. Following the same steps and notations as in
the proof of theorem 4.1, we see that the pull-backs of sections w on W may vanish in
two cases: either W C BT (L)U EU Dor W is tangent to one of the codimension one
holomorphic foliation .%; induced by dz; = 0 on D". But Proposition 4.3 says that
this second alternative is not possible. O

Finally, we observe that we obtain in this case another proof of Theorem A.

Turorem 4.5. — In the same setting as above, let f : C — X be an entire curve.
Then f(C) C Z :=B*(L)U DU E. In particular, if L is big then Exc(X) # X.

Proof. — Let f: C — X be an entire curve. From the construction above, consider
global symmetric differentials vanishing on an ample divisor induced by sections of
T K+ — n(A + D) — A. The classical vanishing theorem (see for example [Dem97,
Cor.7.9]) implies that any entire curve f : C — X satisfies f*w = 0. Let us sup-
pose that f(C) does not lie in Z then f has to be tangent to one of the holomorphic
codimension-one foliations induced by dz; = 0. But this is impossible because propo-
sition 4.3 says that these leaves are hyperbolic. |
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5. HILBERT MODULAR VARIETIES

Let K be a totally real algebraic number field of degree n > 1 over the rational
number field Q, and let Ok be the ring of integers in K. Then I' = T'y = SLy(Ok)
acts on the product $™ of n copies of the upper half plane $§ = {z € C | Sz > 0}:

a By (z Z,) = aWz + W az, + 5
v bt T AWz 60 0z, 4 60 )0

where o = a(),a®, ... o™ denote the conjugates of o € K.
A holomorphic function f on $™ is called a Hilbert modular form of weight k if

f(Mz) = N(yz +6)"f(2)

for all M = (4 7) €T, where N(2) = [l 2

Hilbert modular forms are classically interpreted in terms of differential forms:
if w=dz; A---Adz, and f is a Hilbert modular form of weight k then fw®* gives an
invariant holomorphic top-differential forms which descends on (the smooth part of)
$H"/T. The observation already used in the previous sections is that one can also
look at Hilbert modular forms as symmetric differential forms. Indeed, in the above
notations, f(dz; . ..dz,)¥ is also invariant under I" and therefore provides a symmetric
differential on (the smooth part of) $H™/T.

Recall that there is a natural compactification ¥V := W adding finitely many
cusps. Then one can take a projective resolution X — Y.

Now we can apply the results of the previous section. First, a corollary of Theo-
rem 4.1 gives the following result.

Turorem 5.1. — Let n > 2. Then except finitely many possible exceptions Hilbert
modular varieties have a big cotangent bundle.

Proof. Let E = E. + E. be the exceptional divisor where E, =, E’ corresponds
to the resolution of elliptic points and E. corresponds to the resolution of cusps.
Theorem 4.1 tells us that there are constants «; depending only on the order of the
stabilizer of elliptic fixed points such that if Kx + E—)", a;E! —nE, is big then Qx
is big.

Therefore we are reduced to prove that Ky + E — Y. a; EL — nE, is big except
finitely many possible exceptions. Let S} denote the space of Hilbert modular forms
of weight k and vanishing order at least m over cusps. Sections of

k(Kx +FE—>,a;E: —nE,)

corresponds to modular forms. We have to show the maximal growth of the space
of corresponding modular forms. So we have to prove that one can produce more
sections than the number of conditions imposed by the vanishing along the exceptional
components. We shall use the following result of [Tsu85, §4]

(5.1.1) dimSY¥(Tx) = (272" 23 2k (2) — 27 Y n " dj 2 hR)K" + O (k™)
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16 B. Caporer, E. Rousseau & B. Tan

for even k > 0, where h,dk, R, (i denote the class number of K, the absolute value
of the discriminant, the positive regulator and the zeta function of K. In particular,
there is a modular form F with ord(f)/ weight(f) > v, if

_3_—o (4dr(k(2)\1/n
(5.1.2) v <273 n(T) .
If we fix n, then (x(2) has a positive lower bound independent of K. Since hR ~ d}(/Q
by the Brauer-Siegel Theorem, for any constant C' there are only a finite number of K
such that the right hand side of (5.1.2) is smaller than C'. Therefore we obtain sections
with the requested order of vanishing along F..

Let us now deal with the elliptic points. Prestel [Pre68] has obtained precise formula
on the number of elliptic points of the Hilbert modular group. In particular, one can
deduce (see [RT18, §6.5] for details) that for fixed n, there are only finitely many
different type of elliptic points and the number of equivalence classes of elliptic fixed
points is O(dg/ 2)JFE) for every ¢ > 0. This immediately gives the maximal growth
of the space of modular forms satisfying the vanishing conditions with finitely many

possible exceptions. O
As a consequence, we recover the main result of [Tsu85].

CoroLrAry 5.2. — Let n > 2. Then except finitely many possible exceptions Hilbert
modular varieties are of general type.

Proof. — This is an immediate application of [CP15] who prove that if the cotangent
bundle is big then the canonical bundle is big. O

Now, we can give the proof of the two statements announced in Theorem D of the
introduction as corollaries of Theorems 4.4 and 4.5.

Turorem 5.3. — Let n > 2. Then, except finitely many possible exceptions, Hilbert
modular varieties satisfy Exc(X) # X.

Proof. Let X be a Hilbert modular variety. The proof of Theorem 5.1 tells that
L=Kx+E-), a;E! — nE, is big except finitely many possible exceptions. Then
Theorem 4.5 tells us that Exc(X) C BT (L) U E. O

Finally, we obtain the second statement.

Tueorem 5.4. — Let n > 2. Then except finitely many possible exceptions Hilbert
modular varieties contain a proper subvariety Z such that all subvarieties not con-
tained in Z have big cotangent bundle and are of general type.

Proof. — Let X be a Hilbert modular variety such that L := Kx+E—Y", &;E' —nE,
is big. Then define Z := B*(L) U E. Let Y C X be a subvariety not contained in Z.
Theorem 4.4 gives that all subvarieties not contained in Z have big cotangent bundle
and are of general type. |
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