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Special functions and twisted L-series

par Bruno ANGLÈS, Tuan NGO DAC et Floric TAVARES RIBEIRO

To the memory of David Goss

Résumé. Nous donnons une généralisation de la fonction spé-
ciale d’Anderson–Thakur et nous prouvons un théorème de ratio-
nalité pour les séries L à plusieurs variables associées aux fonctions
chtoucas.

Abstract. We present a generalization of the Anderson–Thakur
special function, and we prove a rationality result for several vari-
able twisted L-series associated to shtuka functions.

1. Introduction

Let X = P1/Fq be the projective line over a finite field Fq having q
elements and let K be its function field. Let ∞ be a closed point of X of
degree d∞ = 1. Then K = Fq(θ) for some θ ∈ K such that θ has a pole of
order one at ∞. We set A = Fq[θ]. Following Anderson ([1], see also [23]),
we consider:

Y = K ⊗Fq X .

Let K = Frac(K ⊗Fq K) be the function field of Y . We identify K with
K ⊗ 1 ⊂ K. If we set t = 1 ⊗ θ, then K = K(t). Let τ : K → K be the
homomorphism of Fq(t)-algebras such that:

∀ x ∈ K, τ(x) = xq .

Let ∞̄ ∈ Y (K) be the pole of t, and let ξ ∈ Y (K) be the point corresponding
to the kernel of the homomorphism of K-algebras K ⊗Fq K → K which
sends t to θ. Then the divisor of f := t − θ is equal to (ξ) − (∞̄). The
function t− θ is a shtuka function, and in particular:

∀ a ∈ A, a(t) =
degθ a∑
k=0

Ca,if . . . f
(i−1), with Ca,i ∈ A.
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The map C : A → A{τ}, a 7→ Ca :=
∑degθ a
k=0 Ca,iτ

i is a homomorphism of
Fq-algebras ([23, §0.3.5 and 2.1]) called the Carlitz module. Note that:

Cθ = θ + τ .

There exists a unique element expC ∈ K{{τ}} such that expC ≡ 1 (mod τ)
and:

∀ a ∈ A, expC a = Ca expC .
Let C∞ be the completion of a fixed algebraic closure of K∞ := Fq((1

θ )).
Then expC defines an entire function on C∞, and:

Ker expC = π̃A,

for some π̃ ∈ C×∞ (well-defined modulo F×q ) called the Carlitz period. We
consider T the Tate algebra in the variable t with coefficients in C∞, i.e.
T := C∞⊗̂FqA. Let τ : T → T be the continuous homomorphism of Fq[t]-
algebras such that ∀ x ∈ C∞, τ(x) = xq. Anderson and Thakur ([3]) showed
that:

{x ∈ T, τ(x) = fx} = ωFq[t] ,
where ω ∈ T× is such that:

fω|ξ = π̃ .

The function ω is called the Anderson–Thakur special function attached
to the Carlitz module C. This function is intimately connected to Thakur–
Gauss sums ([7]).

In 2012, Pellarin ([19]) initiated the study of a twist of the Carlitz module
by the shtuka function f . Let’s consider the following homomorphism of Fq-
algebras ϕ : A → A[t]{τ}, θ 7→ θ + fτ . Then, one observes that C and ϕ
are isomorphic over T, i.e. we have the following equality in T{τ}:

∀ a ∈ A, Caω = ωϕa .

To such an object, one can associate the special value of some twisted L-
function (see [9]):

L =
∑

a∈A,a monic

a(t)
a
∈ T×.

Then, using the Anderson log-algebraicity Theorem for the Carlitz module
([2], see also [8, 18]), Pellarin proved the following remarkable rationality
result:

Lω
π̃

= 1
f
∈ K .

This result has been extended to the case of “several variables” ([9, 12])
using methods developed by Taelman ([10, 13, 14, 15, 20, 21]). This kind
of rationality results leads to new advances in the arithmetic of function
fields (see [4, 9, 11]).
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The aim of this paper is to extend the previous results to the general
context, i.e. for any smooth projective geometrically irreducible curve X/Fq
of genus g and any closed point ∞ of degree d∞ of X. In particular,
we obtain a rationality result similar to that of Pellarin (Theorem 5.3).
Our result involves twisted L-series (see [5]) and a generalization of the
Anderson–Thakur special function. The involved techniques are based on
ideas developed in [4] where an analogue of Stark Conjectures is proved for
sign-normalized rank one Drinfeld modules.

We should mention that Green and Papanikolas ([17]) have recently stud-
ied the particular case g = 1 and d∞ = 1 and, in this case, they have
obtained explicit formulas similar to that obtained by Pellarin (in the case
g = 0 and d∞ = 1).

2. Notation and background

2.1. Notation. LetX/Fq be a smooth projective geometrically irreducible
curve of genus g, and ∞ be a closed point of degree d∞ of X. Denote by
K the function field of X, and by A the ring of elements of K which are
regular outside ∞. The completion K∞ of K at the place ∞ has residue
field F∞. We fix an algebraic closure K∞ of K∞ and denote by C∞ the
completion of K∞.

We will fix a sign function sgn : K×∞ → F×∞ which is a group homo-
morphism such that sgn |F×∞ = Id |F×∞ . We fix π ∈ K ∩ Ker(sgn) and such
that K∞ = F∞((π)). Let v∞ : C∞ → Q ∪ {+∞} be the valuation on C∞
normalized such that v∞(π) = 1. Observe that:

∀ x ∈ K×, deg(xA) = −d∞v∞(x) .

Let K be the algebraic closure of K in C∞.
Let I(A) be the group of non-zero fractional ideals of A. We have a

natural surjective group homomorphism deg : I(A) → Z, such that for
I ∈ I(A), I ⊂ A, we have:

deg I = dimFq A/I .

Let P(A) = {xA, x ∈ K×}, then Pic(A) = I(A)
P(A) is a finite abelian group.

Let IK be the group of idèles of K, and H/K be the finite abelian exten-
sion of K, H ⊂ C∞, corresponding via class field theory to the following
subgroup of IK :

K× Ker sgn
∏
v 6=∞

O×v ,

where for a place v 6=∞ of K, O×v denotes the group of units of the v-adic
completion of K. Then H/K is a finite extension of degree |Pic(A)| q

d∞−1
q−1 ,

unramified outside ∞, and the decomposition group of ∞ in H/K is equal
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to its inertia group and is isomorphic to F×∞
F×q

. Set G = Gal(H/K). If we
define P+(A) = {xA, x ∈ K×, sgn(x) = 1}, then the Artin map

( · , H/K) : I(A) −→ G.

induces a group isomorphism:
I(A)
P+(A) ' G.

For I ∈ I(A), we set:
σI = (I,H/K) ∈ G.

Let HA be the Hilbert class field of A, i.e. HA/K corresponds to the
following subgroup of the idèles of K:

K×K×∞
∏
v 6=∞

O×v .

Then H/HA is totally ramified at the places of HA above ∞. Furthermore:

Gal(H/HA) ' F×∞
F×q

.

We denote by B the integral closure of A in H and B′ the integral closure
of A in HA. Observe that F∞ ⊂ B.

2.2. Sign-normalized rank one Drinfeld modules. We define the
map τ : C∞ → C∞, x 7→ xq. By definition, a sign-normalized rank one
Drinfeld module is a homomorphism of Fq-algebras φ : A → C∞{τ} such
that there exists n(φ) ∈ {0, . . . , d∞ − 1} with the following property:

∀ a ∈ A, φa = a+ · · ·+ sgn(a)qn(φ)
τdeg a .

Let n ∈ {0, . . . , d∞ − 1}. We denote by Drinn the set of sign-normalized
rank one Drinfeld modules φ with n(φ) = n, and by Drin = ∪d∞−1

n=0 Drinn
the set of sign-normalized rank one Drinfeld modules. By [16, Cor. 7.2.17],
Drin is a finite set and we have:

|Drin | = |Pic(A)|q
d∞ − 1
q − 1 .

Let φ ∈ Drin be a sign-normalized rank one Drinfeld module, we say
that φ is standard if Ker expφ is a free A-module, where expφ : C∞ → C∞
is the exponential map attached to φ (see for example [16, §4.6]).

Lemma 2.1. Let n ∈ {0, . . . , d∞ − 1}. We have:

|Drinn | =
1
d∞
|Pic(A)|q

d∞ − 1
q − 1 .
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Let φ in Drinn and let [φ] denote the set of the φ′ in Drinn which are
isomorphic to φ. Then:

∀ φ ∈ Drinn , |[φ]| = qd∞ − 1
q − 1 .

In particular, if [Drinn] = {[φ], φ ∈ Drinn}, we have:

|[Drinn]| = 1
d∞
|Pic(A)| .

Proof. Let ψ : A → H{τ} be a sign-normalized rank one Drinfeld module
(see [16, Ch. 7]). Let n(ψ) ∈ Z be such that:

∀ a ∈ A, ψa = a+ · · ·+ sgn(a)qn(ψ)
τdeg a .

Then the set of sign-normalized rank one Drinfeld modules is exactly Drin =
{ψσ, σ ∈ G}. Let σ ∈ G and write σ = (I,H/K) for some I ∈ I(A). We
have:

∀ a ∈ A, ψσa = a+ · · ·+ sgn(a)qn(ψ)+deg(I)
τdeg a .

Note that deg : I(A) → Z induces a surjective homomorphism of finite
abelian groups:

deg : I(A)
P+(A) →

Z
d∞Z

.

Since there are exactly |Pic(A)| q
d∞−1
q−1 sign-normalized rank one Drinfeld

modules and d∞ divides |Pic(A)|, we get the first assertion.
Let φ ∈ Drinn and let φ′ ∈ [φ]. Then there exists α ∈ C×∞ such that:

∀ a ∈ A, αφa = φ′aα.

Thus, α ∈ F×∞. Since EndC∞(φ) = {φa, a ∈ A}, we obtain:

EndC∞(φ) ∩ F∞ = Fq .

Hence,

|[φ]| = qd∞ − 1
q − 1 . �

Lemma 2.2. There are exactly qd∞−1
q−1 standard elements in Drin. Further-

more, if φ is such a Drinfeld module, then [φ] is the set of standard elements
in Drin.

Proof. By [16, Cor. 4.9.5 and Thm. 7.4.8], there exists φ ∈ Drin such that φ
is standard. In particular, Drin = {φσ, σ ∈ G}. Again, by [16, Cor. 4.9.5 and
Thm. 7.4.8], the Drinfeld module φσ is standard if and only if σ|HA = IdHA .
The Lemma follows. �
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2.3. Shtuka functions. The results of this section are originally due to
D. Thakur (see [23]). Let X̄ = C∞⊗Fq X, Ā = C∞⊗Fq A, and let F be the
function field of X̄, i.e. F = Frac(Ā). We will identify C∞ with its image
C∞⊗1 in F . There are d∞ points in X̄(C∞) above∞, and we denote the set
of such points by S∞. Observe that Ā is the set of elements of F/C∞ which
are “regular outside ∞”. We denote by τ : F → F the homomorphism of
K-algebras such that:

τ |Ā = τ ⊗ 1 .
For m ∈ Z, we also set:

∀ x ∈ F , x(m) = τm(x) .

Let P be a point of X̄(C∞). We denote by P (i) the point of X̄(K) obtained
by applying τ i to the coordinates of P . If D =

∑n
j=1 nPjPj ∈ Div(X̄), with

Pj ∈ X̄(C∞), and nPj ∈ Z, we set:

D(i) =
n∑
j=1

nPjP
(i)
j .

If D = (x), x ∈ F×, then:
D(i) = (x(i)) .

We consider ξ ∈ X̄(C∞) the point corresponding to the kernel of the map:

Ā→ C∞ ,
∑
i

xi ⊗ ai 7→
∑

xiai .

Let ρ : K → F, x 7→ 1⊗ x and set t = ρ(π−1).
Let ∞̄ ∈ S∞. We identify the ∞̄-adic completion of F to

C∞
((1

t

))
.

Let sgn∞̄ : C∞((1
t ))
× → C×∞ be the group homomorphism such that

Ker(sgn∞̄) = tZ × (1 + 1
tC∞[[1

t ]]), and sgn∞̄ |C×∞ = Id |C×∞ .
Let φ ∈ Drin. For a ∈ A, we write φa =

∑deg a
i=0 φa,iτ

i, φa,i ∈ H. By [16,
Ch. 6 and Prop. 7.11.4], there exist ∞̄ ∈ S∞ and fφ ∈ F× such that:

∀ a ∈ A, ρ(a) =
deg a∑
i=0

φa,ifφ . . . f
(i−1)
φ ,

and the divisor of fφ is of the form:

(fφ) = V (1) − V + (ξ)− (∞̄) ,

where V is some effective divisor of degree g. Let (∞) =
∑
∞̄′∈S∞(∞̄′). Set

W (C∞) = ∪m≥0L(V +m(∞)) ,
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and
L(V +m(∞)) = {x ∈ F×, (x) + V +m(∞) ≥ 0} ∪ {0} .

We have:
W (C∞) = ⊕i≥0C∞fφ . . . f

(i−1)
φ .

The function fφ is called the shtuka function attached to φ, and we say
that φ is the sign-normalized rank one Drinfeld module associated to fφ.
We define the set of shtuka functions to be:

F = {fφ, φ ∈ Drin} .
Then, the map Drin → F, φ → fφ is a bijection called the Drinfeld corre-
spondence.

Remark 2.3. There is a misprint in [16, p. 229]. In fact, as we will see in
the proof of Lemma 3.3, when d∞ > 1, we do not have:

sgn∞̄(−1)(fφ)
qd∞−1
q−1 = 1

as stated in [16].

3. Special functions attached to shtuka functions

3.1. Basic properties of a shtuka function. Let H = Frac(H ⊗Fq A),
and K = Frac(K ⊗Fq A). Recall that G = Gal(H/K) and we will identify
G with the Galois group of H/K. Let f ∈ F, and let φ ∈ Drinn(φ) be the
sign-normalized rank one Drinfeld module attached to f for some n(φ) ∈
{0, . . . , d∞ − 1}. Then φ : A → B{τ} is a homomorphism of Fq-algebras
such that:

∀ a ∈ A, φa =
deg a∑
i=0

φa,iτ
i ,

where φa,0 = a, φa,deg a = sgn(a)qn(φ)
, and ρ(a) =

∑deg a
i=0 φa,if . . . f

(i−1).
Recall that there exists an effective H-divisor V ([16, Ch. 6]) of degree g
such that the divisor of f is:

(f) = V (1) − V + (ξ)− (∞̄) ,

for some ∞̄ ∈ S∞. By [16, Lem. 7.1.3], ξ, ∞̄(−1) do not belong to the
support of V . Let v∞̄ be the normalized valuation on H attached to ∞̄
(v∞̄(t) = −1). Note that v∞̄(f) ≤ −1 and, when d∞ > 1, ∞̄ can a priori
belong to the support of V . We identify the ∞̄-adic completion of H with
H((1

t )). Therefore we deduce that:

f = α(f)
tk

+
∑
i≥k+1

fi
1
ti
, k ≤ −1

where α(f) ∈ H×, and fi ∈ H, for all i ≥ k + 1.
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Let expφ be the unique element in H{{τ}} such that expφ ≡ 1 (mod τ)
and:

∀ a ∈ A, expφ a = φa expφ .
Write expφ =

∑
i≥0 ei(φ)τ i, then by [16, Cor. 7.4.9], we obtain:

H = K(ei(φ), i ≥ 0) .
Observe that expφ induces an entire function on C∞, and there exist α ∈
C×∞ and I ∈ I(A) such that:

∀ z ∈ C∞ , expφ(z) =
∑
i≥0

ei(φ)zqi = z
∏

a∈I\{0}

(
1− z

αa

)
.

Furthermore, we have (see for example [23, Prop. 0.3.6]):

∀ i ≥ 0 , ei(φ) = 1
f . . . f (i−1)|ξ(i)

.

Thakur proved that if en(φ) = 0, then n ∈ {2, . . . , g − 1} ([23, proof of
Thm. 3.2]), and if K has a place of degree one then ∀ n ≥ 0, en(φ) 6= 0.

LetW (B) = ⊕i≥0Bf . . . f
(i−1). ThenW (B) is a finitely generated B⊗Fq

A = B[ρ(A)]-module of rank one (see for example [6, Lem. 4.4]). Further-
more,

∀ x ∈W (B) , fx(1) ∈W (B) .
Let I ∈ I(A). Let φI ∈ H{τ} such that the coefficient of its term of highest
degree in τ is one , and such that:∑

a∈I
H{τ}φa = H{τ}φI .

Then, we get:
degτ φI = deg I ,

KerφI |C∞ = ∩a∈I Kerφa|C∞ ,
φI ∈ B{τ} .

We denote by ψφ(I) ∈ B \ {0} the constant term of φI . We set:

uI =
deg I∑
j=0

φI,jf . . . f
(j−1) ∈W (B) ,

where φI =
∑deg I
j=0 φI,jτ

j .

Lemma 3.1. Let I, J be two non-zero ideals of A. We have:
uI |ξ = ψφ(I) ,

σI(f)uI = fu
(1)
I ,

uIJ = σI(uJ)uI .
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Proof. In [6, Lem. 4.6], we only gave a sketch of the proof of the above
results. We give here a detailed proof for the convenience of the reader.

Observe that:

∀ i ≥ 1 , (f . . . f (i−1)) = V (i) − V +
i−1∑
k=0

(
ξ(k)

)
−

i−1∑
k=0

(
∞̄(k)

)
.

Since ξ does not belong to the support of V , we deduce that:

uI |ξ = ψφ(I) .

Note that we have a natural isomorphism of B-modules:

γ :
{

W (B) ∼−→ B{τ}
∀ i ≥ 0 , f . . . f (i−1) 7−→ τ i .

For all x ∈W (B) and for all a ∈ A, we have:

γ(fx(1)) = τγ(x) ,
γ(ρ(a)x) = γ(x)φa .

In particular γ is an isomorphism of B[ρ(A)]-modules, and since W (B)
is a finitely generated B[ρ(A)]-module of rank one, this is also the case of
B{τ}. Write f =

∑
i
ρ(ai)bi∑

k
ρ(ck)dk

, for some ai, ck ∈ A, bi, dk ∈ B, we have the
following equality in B{τ}:∑

i

biφai =
∑
k

dkτφck .

For σ ∈ G, we set:

Wσ(B) = ⊕i≥0Bσ(f) . . . σ(f)(i−1) .

We have again an isomorphism of B[ρ(A)]-modules:

γσ : Wσ(B) ' B{τ} .

Again,
∀ x ∈Wσ(B) , ∀ a ∈ A, γσ(ρ(a)x) = γσ(x)φσa .

Let I be a non-zero ideal of A, and let σ = σI ∈ G. We start from the
relation: ∑

i

bσi φ
σ
ai =

∑
k

dσkτφ
σ
ck
.

We multiply on the right by φI , to obtain (see [16, Thm. 7.4.8]):∑
i

bσi φIφai =
∑
k

dσkτφIφck .
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Since γ(fu(1)
I ) = τφI , we get:(∑

i

ρ(ai)bσi

)
· γ(uI) =

(∑
k

dσkρ(ck)
)
· γ(fu(1)

I ) .

In other words, we have proved:

σ(f)uI = fu
(1)
I .

Now, let J be a non-zero ideal of A. We have:
γ(uIJ) = φIJ = φσJφI .

Since ∀ i ≥ 0, σ(f . . . f (i−1))uI = f . . . f (i−1)u
(i)
I , we get:

γ(uσJuI) = φσJφI .

It implies:
uIJ = σ(uJ)uI . �

Corollary 3.2. We have:
F = {σ(f), σ ∈ G} .

Furthermore, for σ ∈ G, φσ is the Drinfeld module associated to the shtuka
function σ(f).

Proof. Let σ ∈ G and let g ∈ F be the shtuka function associated to
φσ. By the proof of Lemma 3.1, if a′i, c′k ∈ A, b′i, d′k ∈ B are such that∑
i b
′
iφ
σ
a′i

=
∑
k d
′
kτφ

σ
c′
k
, then:

g =
∑
i ρ(a′i)b′i∑
k ρ(c′k)d′k

.

Again, by the proof of Lemma 3.1, we get:
g = σ(f) . �

Lemma 3.3. Let ι∞̄ : H → H((1
t )) be a homomorphism of K-algebras

corresponding to ∞̄. Write ι∞̄(f) = α(f)
tk

+
∑
i≥k+1 fi

1
ti
∈ H((1

t )), α(f) ∈
H×, fi ∈ H, i ≥ 0, k ≤ −1. Then:

H = K(F∞, α(f), fi, i ≥ k + 1) .
Furthermore:

HA = K

(
F∞,

fi
α(f) , i ≥ k + 1

)
.

In particular, there exists u(f) ∈ B× such that:
• H = HA(u(f)),
• α(f) ≡ ι∞̄(u(f)) (mod H×A ),
• K( f

u(f)) = Frac(HA ⊗Fq A).
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Proof. By Corollary 3.2, since |G| = |F |, we have:

H = K(f) .

Recall that H((1
t )) is isomorphic to the completion of H at ∞̄. Since ∞

splits totally in K(F∞) in d∞ places, we deduce that the natural map
ι∞̄ : H ↪→ H((1

t )) is Gal(H/K(F∞))-equivariant. Thus:

H = K(F∞, α(f), fi, i ≥ k + 1) .

If I = aA, a ∈ A\{0}, then uI = ρ(a)
sgn(a)qn(φ) , so that we have by Lemma 3.1:

σI(f) = sgn(a)qn(φ)−qn(φ)+1
f .

In particular:
sgn∞̄(−1)(ι∞̄(−1)(f)) 6∈ F×∞ .

We have α(f)
qd∞−1
q−1 ∈ HA, and f

α′(f) ∈ Frac(HA ⊗Fq A), where α′(f) ∈ H×

is such that ι∞̄(α′(f)) = α(f) (observe that ι∞̄|H ∈ G). Since H = K(f),
we get the second assertion.

Since H/HA is totally ramified at each place of HA above ∞, B×

(B)′× is
a finite abelian group, where we recall that B′ is the integral closure of
A in HA. Now recall that H/HA is a cyclic extension of degree qd∞−1

q−1 ,
and F∞ ⊂ HA. Let 〈σ〉 = Gal(HA((B)×)/HA). Then we have an injective
homomorphism:

B×

(B′)× ↪→ F×∞ , x 7→ x

σ(x) .

The image of this homomorphism is a cyclic group of order dividing qd∞−1
q−1 .

By the proof [16, Thm. 7.6.4], there exists ζ ∈ C×∞, ζq−1 ∈ H, such that:

∀ a ∈ A \ {0} , ζφaζ−1 ∈ B′{τ} and its highest coefficient is in (B′)×.

Thus ζq−1 ∈ B× and H = HA(ζq−1). In particular, there exists a group
isomorphism:

B×

(B′)× '
F×∞
F×q

.

This implies by Kummer Theory that:

α(f) ≡ u′(f) (mod H×A ) ,

for some u′(f) ∈ B× that generates the cyclic group B×

(B′)× . Now define u(f)
to be the element in B× such that ι∞̄(u(f)) = u′(f). �
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3.2. Special functions. We fix qd∞−1√−π ∈ C∞ a root of the polynomial
Xqd∞−1 + π = 0. We consider the period lattice of φ:

Λ(φ) = {x ∈ C∞, expφ(x) = 0}.
Then Λ(φ) is a finitely generated A-module of rank one and we have an
exact sequence of A-modules induced by expφ:

0→ Λ(φ)→ C∞ → φ(C∞)→ 0 ,
where φ(C∞) is the Fq-vector space C∞ viewed as an A-module via φ.

Lemma 3.4. We have:

Λ(φ) ⊂ qd∞−1√−π
−qn(φ)

K∞ ,

and for all I ∈ I(A):
Λ(φσI ) = ψφ(I)I−1Λ(φ) .

Proof. Observe that Λ(φ)K∞ is a K∞-vector space of dimension one. Let
J be a non-zero ideal of A, and let λJ 6= 0 be a generator of the A-module
of J-torsion points of φ. By the proof of [16, Prop. 7.5.16], we have:

λJ ∈ Λ(φ)K∞ .
By class field theory (see [16, §7.5]), we have:

E := H(λJ) ⊂ K∞
(
qd∞−1√−π

)
.

Furthermore, by [16, Rem. 7.5.17],

λq
d∞−1
J ∈ K×∞ .

By local class field theory, for x ∈ K×∞, we have:(
x,K∞

(
qd∞−1√−π

)
/K∞

)(
qd∞−1√−π

)
=

qd∞−1√−π
sgn(x) .

By [16, Cor. 7.5.7], for all a ∈ K×, a ≡ 1 (mod J), we get:

(aA,E/K)(λJ) = sgn(a)−qn(φ)
λJ .

Thus, for all a ∈ K×, a ≡ 1 (mod J):(
a,K∞

(
qd∞−1√−π

)
/K∞

)
(λJ) = sgn(a)qn(φ)

λJ .

Therefore, by the approximation Theorem, we get:

∀ x ∈ K×∞,
(
x,K∞

(
qd∞−1√−π

)
/K∞

)
(λJ) = sgn(x)qn(φ)

λJ .

It implies:

λJ ∈ qd∞−1√−π
−qn(φ)

K∞ .
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Hence,

Λ(φ) ⊂ qd∞−1√−π
−qn(φ)

K∞ .

The second assertion comes from the fact that we have the following
equality in H{{τ}}:

φI expφ = expφσI ψφ(I) . �

Set:
L = ρ(K)(F∞)

((
qd∞−1√−π

))
.

Then, by the above Lemma, H ⊂ F∞(( qd∞−1√−π)) ⊂ L. Let v∞ : L →
Q∪{+∞} be the valuation on L which is trivial on ρ(K)(F∞) and such that
v∞( qd∞−1√−π) = 1

qd∞−1 . Let τ : L → L be the continuous homomorphism
of ρ(K)-algebras such that:

∀ x ∈ F∞
((

qd∞−1√−π
))
, τ(x) = xq .

Observe that:
∀ x ∈ L, v∞(τ(x)) = qv∞(x) .

Lemma 3.5. We have:

Ker expφ |L = Λ(φ)ρ(K) ,

where Λ(φ)ρ(K) is the ρ(K)-vector space generated by Λ(φ).

Proof. The proof is standard in non-archimedean functional analysis, we
give a sketch of the proof for the convenience of the reader. We have:

Λ(φ)ρ(K) ⊂ Ker expφ |L .

Let:
M = qd∞−1√−πρ(K)(F∞)[[ qd∞−1√−π]] .

Let logφ ∈ H{{τ}} such that logφ expφ = expφ logφ = 1. If we write:
logφ =

∑
i≥0 li(φ)τ i, then there exists C ∈ R such that, for all i ≥ 0,

v∞(li(φ)) ≥ Cqi. It implies that there exists an integer N ≥ 0 such that
expφ is an isometry on MN .

Now, select θ ∈ A \ Fq. Then:

Ker expφ |F∞[ρ(θ)](( q
d∞−1√−π))

= Λ(φ)Fq[ρ(θ)] .

Since ρ(A) is finitely generated and free as an Fq[ρ(θ)]-module, it implies:

Ker expφ |ρ(A)[F∞](( q
d∞−1√−π))

= Λ(φ)ρ(A) .

Let V be the ρ(K)-vector space generated by ρ(A)[F∞](( qd∞−1√−π)). Then:

Ker expφ |V = Λ(φ)ρ(K) .
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Let x ∈ Ker expφ |L, then there exists y ∈ V such that:

x− y ∈MN .

Thus,
expφ(y − x) = expφ(y) ∈MN ∩ V = expφ(MN ∩ V ) .

Therefore, y = z + v, for some z ∈ MN ∩ V , and some v ∈ Λ(φ)ρ(K). It
implies that x− v ∈MN , and hence:

x = v ∈ Λ(φ)ρ(K) . �

Lemma 3.6. We consider the following ρ(K)-vector space:

V =
⋂

a∈A\Fq

expφ
( 1
a− ρ(a)Λ(φ)ρ(K)

)
.

Then, we have:
dimρ(K) V = 1 .

Proof. For any a ∈ A, we set:

Va = {x ∈ L, φa(x) = ρ(a)x} .

Then, if a 6∈ Fq, by Lemma 3.5, we have:

Va = expφ
( 1
a− ρ(a)Λ(φ)ρ(K)

)
,

and:
dimρ(K) Va = deg a = [K : Fq(a)] .

Select θ ∈ A \ Fq such that K/Fq(θ) is a finite separable extension.
Let b ∈ A \ Fq and let Pb(X) ∈ Fq[θ][X] be the minimal polynomial of b
over Fq(θ). Since Vθ is an A-module via φ and φb induces a ρ(K)-linear
endomorphism of Vθ, it follows that:

ρ(Pb)(φb) = 0 .

This implies that the minimal polynomial of φb viewed as an Fq(ρ(θ))-linear
endomorphism of Vθ is ρ(Pb(X)). Observe that Vθ is the ρ(K)-vector space
generated by:

expφ
( 1
θ − ρ(θ)Λ(φ)Fq(ρ(θ))

)
,

and:
dimFq(ρ(θ)) expφ

( 1
θ − ρ(θ)Λ(φ)Fq(ρ(θ))

)
= deg θ .

Therefore, ρ(Pb(X)) is the minimal polynomial of φb viewed as a ρ(K)-
linear endomorphism of Vθ.
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Select θ′ ∈ A \ Fq such that K = Fq(θ, θ′). Then the characteristic poly-
nomial of φθ′ on the ρ(K)-vector space Vθ is ρ(Pθ′(X)). Since Pθ′(X) has
simple roots, if V ′ = Vθ ∩ Vθ′ , we get:

dimρ(K) V
′ = 1 .

Now, let b ∈ A, there exist x, y ∈ A[θ, θ′], such that b = x
y . Let λb ∈ ρ(K)

such φb|V ′ is the multiplication by λb, then for any v ∈ V ′ \ 0, we have:
ρ(y)λbv = φybv = ρ(x)v .

It follows that:
λb = ρ(b) . �

Let sgn : ρ(K)(F∞)((π))× → ρ(K)(F∞)× be the group homomorphism
such that Ker sgn = πZ × (1 + πρ(K)(F∞)[[π]]), and sgn |ρ(K)(F∞)× =
Id |ρ(K)(F∞)× . Let π∗ = ( qd∞−1√−π)(q−1)qn(φ) .

Lemma 3.7. We have:
fπ∗ ∈ ρ(K)(F∞)((π)) ,

v∞(f) ≡ −(q − 1)qn(φ)

qd∞ − 1 (mod (q − 1)Z) ,

and:

Nρ(K)(F∞)/ρ(K)(sgn(fπ∗)) = 1 .

Proof. Recall that:

V =
⋂

a∈A\Fq

expφ
( 1
a− ρ(a)Λ(φ)ρ(K)

)
.

By Lemma 3.4, we have:

V ⊂
(
qd∞−1√−π

)−qn(φ)

ρ(K)(F∞)((π)).

Thus, by Lemma 3.6, there exists U ∈( qd∞−1√−π)−qn(φ)
ρ(K)(F∞)((π))\{0},

such that:
∀ a ∈ A, φa(U) = ρ(a)U .

Write f =
∑

i
ρ(ai)bi∑

k
ρ(a′

k
)b′
k

, ai, a′k ∈ A, bi, b′k ∈ B. Then, by the proof of Lem-
ma 3.1, we have: ∑

i

biφai =
∑
k

b′kτφa′k .

Thus, (∑
i

ρ(ai)bi

)
U =

(∑
k

ρ(a′k)b′k

)
τ(U) .



946 Bruno Anglès, Tuan Ngo Dac, Floric Tavares Ribeiro

Therefore:
τ(U) = fU .

In particular,
{x ∈ L, τ(x) = fx} = ρ(K)U .

We also get:
f ∈ π−1

∗ ρ(K)(F∞)((π)) .
Let F = fπ∗ ∈ ρ(K)(F∞)((π)). Set

R = U
(
qd∞−1√−π

)qn(φ)

∈ ρ(K)(F∞)((π)) .

We have:
τ(R) = FR.

Let i0 = v∞(F ) ∈ Z, and write:

F =
∑
i≥i0

Fi(−π)i, Fi ∈ ρ(K)(F∞) .

Let λ = Fi0 . Set:

α = q−1√−πi0
∏
i≥0

F (i)

λ(i)(−π)qii0

−1

∈ L×,

where q−1√−π = ( qd∞−1√−π)
qd∞−1
q−1 . Then clearly:

τ(α) = F

λ
α.

Thus:
τ

(
R

α

)
= λ

R

α
.

This implies:
R = µα, µ ∈ ρ(K)(F∞)× .

In particular, i0 ≡ 0 (mod q − 1), i.e. v∞(f) ≡ − (q−1)qn(φ)

qd∞−1 (mod q − 1).
Also:

sgn(R) = µ sgn(α) .

Since sgn(α) = (−1)
i0
q−1 , we get:

τ(µ)
µ

= λ. �

We set:
T := ρ(A)[F∞]

((
qd∞−1√−π

))
⊂ L.

Then T is complete with respect to the valuation v∞, and:
{x ∈ T, τ(x) = x} = ρ(A) .
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Furthermore, we have (see the proof of Lemma 3.5):
Ker expφ |T = Λ(φ)ρ(A) .

Let ev : ρ(A)[F∞] → Fq ⊂ C∞ be a homomorphism of F∞-algebras. Such
a homomorphism induces a continuous homomorphism F∞(( qd∞−1√−π))-
algebras:

ev : T→ C∞ .
We denote by E the set of such continuous homomorphisms from T to C∞.

Proposition 3.8. We have:
f ∈ T×,

sgn(fπ∗) ∈ ρ(A)[F∞]×.

Furthermore there exists U ∈ T \ {0} such that:
{x ∈ L, τ(x) = fx} = Uρ(K) .

If d∞ = 1, then sgn(fπ∗) = 1, and we can take:

U = qd∞−1√−π
−1

q−1√−πi0
∏
i≥0

(fπ∗)(i)

(−π)qii0

−1

∈ T×,

where i0 := v∞(fπ∗).

Proof. Recall that f ∈ H ⊂ L. Le P be a point in X̄(Fq) above a max-
imal ideal of ρ(A). Then P is above a maximal ideal of ρ(A)[F∞] which
can be viewed as the kernel of some homomorphism of F∞-algebras ev :
ρ(A)[F∞]→ Fq. Since the field of constants of H is F∞, we deduce that ev
can be uniquely extended to a homomorphism of H-algebras:

ev : ρ(A)[H]→ C∞ .

Furthermore, the kernel of the above homomorphism corresponds to P ∩H
(recall that H = Frac(ρ(A)[H])). Then ev extends to a continuous homo-
morphism of F∞(( qd∞−1√−π))-algebras:

ev : T→ C∞ .

We deduce that, by [23, Lem. 1.1], for any ev ∈ E , ev(f) is well-defined.
Thus f ∈ T. Therefore, by Lemma 3.7, we have:

f ∈ πZ∗ × (sgn(fπ∗) + πρ(A)[F∞][[π]]) ,
where sgn(fπ∗) ∈ ρ(A)[F∞] is such that:

Nρ(K)(F∞)/ρ(K)(sgn(fπ∗)) = 1 .
Thus:

sgn(fπ∗) ∈ ρ(A)[F∞]×,
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and there exists µ ∈ ρ(A)[F∞] \ {0} such that:

sgn(fπ∗) = τ(µ)
µ

.

In particular, f ∈ T×. Furthermore, there exists a non-zero ideal I of A
such that:

µρ(A)[F∞] = ρ(I)ρ(A)[F∞] .
Now, we use the proof of Lemma 3.7. We put i0 = v∞(fπ∗) (observe that
i0 ≡ 0 (mod q − 1)) and set:

U = µα qd∞−1√−π
−qn(φ)

,

where :

α = q−1√−πi0
∏
i≥0

(fπ∗)(i)

sgn(fπ∗)(i)(−π)qii0

−1

∈ T×.

Then:

τ(U) = fU ,

U ∈ T .

Note that U is well-defined modulo ρ(K)× and if d∞ = 1, then U ∈ T×. �

Definition 3.9. A non-zero element in {x ∈ L, τ(x) = fx} will be called
a special function attached to the shtuka function f .

Remark 3.10. Let M = {x ∈ T, τ(x) = fx}. Then, by the above Propo-
sition, there exists U ∈ T \ {0} such that:

Uρ(A) ⊂M ⊂ Uρ(K) .

Furthermore (see the proof of Lemma 3.7):

M =
⋂

a∈A\Fq

expφ
( 1
a− ρ(a)Λ(φ)ρ(A)

)
.

Thus M is a finitely generated ρ(A)-module of rank one. When d∞ = 1,
the above Proposition tells us that M is a free ρ(A)-module. In general, we
have:

M = U ′ρ(B) ,
where B ∈ I(A), U ′ ∈ L×, and M = U ′′ρ(B′) if and only if U ′ = xU ′′ where
x ∈ ρ(K)× is such that xB = B′.

Let I be a non-zero ideal of A, and let σ = σI ∈ G. Recall that, by
Lemma 3.1, we have:

σ(f) = f
τ(uI)
uI

.
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Now observe that uI ∈ T, τ(uI)
uI
∈ T×, but in general we don’t have uI ∈ T×.

By Lemma 3.1, we have:
uI
ρ(xI)

∈ T×,

where In = xIA, n being the order of I in Pic(A). Thus:

Mσ := {x ∈ T, τ(x) = σ(f)x} = ρ(xI)
uI

M .

We leave open the following question: is M a free ρ(A)-module? We will
show in section 4 that the answer is positive if g = 0.

3.3. The period π̃. By Lemma 2.2, and Lemma 3.4, let f be the unique
shtuka function in F such that, if φ is the Drinfeld module associated to f ,
we have:

Ker expφ |L = π̃A[ρ(A)] ,

where π̃ ∈ qd∞−1√−π
−qn(φ)

K∞, sgn(π̃ ( qd∞−1√−π)qn(φ)) = 1.

Proposition 3.11. There exist θ ∈ A \ Fq, a ∈ A[ρ(A)], and a special
function U ∈ T, such that for all i ≥ 0:

ρ(θ)− θqi

a(i) U |ξ(i) = ei(φ)π̃qi .

In particular, for any special function U ′ associated to f , we have :

∀ i ≥ 0, f (i)U ′|ξ(i) ∈ π̃q
i
H .

Proof. Let A = A[ρ(K)]. We still denote by ρ the obvious ρ(K)-linear map
A→ ρ(K). We observe that:

Ker ρ =
∑
a∈A

(a− ρ(a))A .

We also observe that there exists θ ∈ A \ Fq such that ρ(θ) − θ ∈ Ker ρ \
(Ker ρ)2. Set z = ρ(θ). Then z − θ has a zero of order one at ξ (observe
that z − θqi has a zero of order one at ξ(i)). Note that K/Fq(θ) is a finite
separable extension, therefore there exists y ∈ A such that K = Fq(θ, y).
Let P (X) ∈ Fq[θ][X] be the minimal polynomial of y over Fq(θ) and set:

a = P (X)
X − y

|X=ρ(y) ∈ A[ρ(A)] ⊂ A .

Since P (X) has a zero of order one at y, we have:
a 6∈ Ker ρ.

Let’s set:
U = expφ

(
a

z − θ
π̃

)
∈ T .
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Since a
z−θ 6∈ A, we have:

U 6= 0 .
Furthermore, observe that Fq[θ, y] ⊂ A ⊂ Frac(Fq[θ, y]). Thus:

∀ b ∈ A, φb(U) = ρ(b)U .

We conclude that:

U ∈ ({x ∈ L, τ(x) = fx} \ {0}) ∩ T .

Let’s set:
δ = a

z − θ
.

We have:
U =

∑
i≥0

δ(i)ei(φ)π̃qi .

We therefore get:

∀ i ≥ 0, (δ−1)(i)U |ξ(i) = ei(φ)π̃qi .

The last assertion comes from the fact that f (i) has a zero of order at
least one at ξ(i). �

We refer the reader to [1] for the explicit construction of f in the case
d∞ = 1, and to [17] for the explicit construction of the special functions
attached to f in the case g = 1 and d∞ = 1.

4. A basic example: the case g = 0

In this section, we assume that the genus of K is zero. Let’s select x ∈ K
such that K = Fq(x) and v∞(x) = 0. Let P∞(x) ∈ Fq[x] be the monic
irreducible polynomial corresponding to ∞, then degx P∞(x) = d∞. Let
sgn : K×∞ → F×∞ be the sign function such that sgn(P∞(x)) = 1. Then A =
{ f(x)
P∞(x)k , k ∈ N, f(x) ∈ Fq[x], f(x) 6≡ 0 (mod P∞(x)), degx(f(x)) ≤ kd∞}.

Observe that:
Pic(A) ' Z

d∞Z
.

Let P be the maximal ideal of A which corresponds to the pole of x, i.e.
P = { f(x)

P∞(x)k , k ∈ N, f(x) ∈ Fq[x], f(x) 6≡ 0 (mod P∞(x)),degx(f(x)) <
kd∞}, the order of P in Pic(A) is exactly d∞, and P d∞ = 1

P∞(x)A. We also
observe that the Hilbert class field of A is K(F∞). Let ζ = sgn(x) ∈ F×∞.
Then P∞(ζ) = 0. Note that:

v∞(x− ζ) = 1 ,
sgn(x− ζ) = P ′∞(ζ)−1 .



Special functions and twisted L-series 951

The integral closure of A in K(F∞) is A[F∞]. The abelian group A[F∞]×
is equal to:

F×∞
d∞−1∏
k=1

(
x− ζ
x− ζqk

)Z
.

We know that A[F∞] is a principal ideal domain and we have:

PA[F∞] = 1
x− ζ

A[F∞] .

Furthermore B = A[F∞][u], where u ∈ B× is such that:

u
qd∞−1
q−1 =

d∞−1∏
k=0

ζ − xqk

ζqk − xqk
.

Indeed, using Thakur Gauss sums ([22]), there exists g ∈ K such that
K(F∞, g)/K is a finite abelian extension and:

gq
d∞−1 =

d∞−1∏
k=0

(ζ − xqk) .

Furthermore K(F∞, g)/K is unramified outside ∞ and the pole of x, and
P∞(x) is a local norm for every place of K(F∞, g) above ∞.

Let z = ρ(x) ∈ ρ(K)×. Then:

H = H(z) .

Let Q ∈ X̄(Fq) be the unique point which is a pole of z, then:

(z − x) = (ξ)− (Q) .

We choose ∞̄ to be the point of X̄(F∞) which is the zero of z − ζ. Then:(
z − x
z − ζ

)
= (ξ)− (∞̄) .

We easily deduce that if f is a shtuka function relative to ∞̄ (note that f

is well-defined modulo {x ∈ F×∞, x
qd∞−1
q−1 = 1}), then f is of the form:

z − x
z − ζ

v, v ∈ H×.

Let θ = 1
P∞(x) ∈ A. Then:

sgn(θ) = 1 ,
deg θ = d∞ .

Let φ be the Drinfeld module attached to f , then:

φθ = θ + · · ·+ τd∞ .
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We have:

f . . . f (d∞−1) =
∏d∞−1
k=0 (z − xqk)
P∞(z) v

qd∞−1
q−1 .

We get:

1 =
d∞−1∏
k=0

(ζ − xqk)v
qd∞−1
q−1 .

Thus:
(vgq−1)

qd∞−1
q−1 = 1 ,

So that,
f = z − x

z − ζ
g1−qζ ′ ,

where ζ ′ ∈ F×∞ is such that:

(ζ ′)
qd∞−1
q−1 = 1 .

Furthermore, if we write expφ =
∑
i≥0 ei(φ)τ i, ei(φ) ∈ H, then:

ei(φ) = gq
i−1(ζ ′)−

qi−1
q−1

i−1∏
k=0

xq
i − ζqk

xqi − xqk
.

We also deduce that:
∀ a ∈ A, φa = a+ · · ·+ sgn(a)τdeg a.

Recall that H ⊂ C∞, and v∞(x− ζ) = 1. We now work in

L = F∞(z)
((

qd∞−1
√
−P∞(x)

))
.

Recall that g is the Thakur–Gauss sum associated to sgn, i.e. let C : Fq[x]→
Fq[x]{τ} be the homomorphism of Fq-algebras such that Cx = x + τ , we
have chosen λ ∈ H \ {0} such that CP∞(x)(λ) = 0, and:

g = −
∑

y∈Fq [x]\{0}
degx y<d∞

sgn(y)−1Cy(λ) .

Furthermore, λ is chosen is such a way that:

λ ∈ qd∞−1
√
−P∞(x)K∞ ,

sgn
(

λ
qd∞−1

√
−P∞(x)

)
= 1 .

Thus:

sgn
(

g
qd∞−1

√
−P∞(x)

)
= 1 .
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Recall also that:

T = ρ(A)[F∞]
((

qd∞−1
√
−P∞(x)

))
.

We can choose f such that ζ ′ = 1, i.e. f = z−x
z−ζ g

1−q. Now, recall that:

f,
z − x
z − ζ

∈ T×.

Set:

U =
∏
i≥0

(
1 + (ζ − x)qi

z − ζqi

)−1

∈ L×.

Then:
U ∈ T×.

Furthermore:
τ(U) = z − x

z − ζ
U .

Let’s set:
ω = g−1U ,

Then:

τ(ω) = fω ,

sgn
(
ω qd∞−1

√
−P∞(x)

)
= 1 ,

ω ∈ T× ,
{x ∈ T, τ(x) = fx} = ωρ(A) .

Finally observe that:

(z − x)ω|ξ = g−1(x− ζ)
∏
i≥1

(
1 + (ζ − x)qi

x− ζqi

)−1

.

Thus, there exist b ∈ K×, sgn(b) = 1, ζ ′ a root of P∞(x), such that:

π̃ = bg′−1(x− ζ ′)
∏
i≥1

(
1 + (ζ ′ − x)qi

x− (ζ ′)qi

)−1

,

for some well-chosen Thakur–Gauss sum g′ relative to a twist of sgn.
Let’s treat the elementary (and well-known, see [3], and especially the

proof of Lemma 2.5.4) case d∞ = 1. Then A = Fq[θ] for some θ ∈ K,
sgn(θ) = 1. Let’s take x = θ+1

θ . Then P∞(x) = x − 1, and ζ = 1. In that
case:

g = q−1
√
−P∞(x) = q−1

√
−1
θ
.
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We get:
f = z − x

z − 1 g
1−q = t− θ ,

where t = ρ(θ). We have:
φ 1
P∞(x)

= φθ = θ + τ .

We get:

ω = q−1√−θ
∏
i≥0

(
1− t

θqi

)−1
∈ T = Fq[t]

((
q−1

√
−1
θ

))
.

In this case φ is standard, thus we have:
Ker expφ = π̃A,

for π̃ ∈ q−1√−θK∞, sgn(π̃ q−1
√
−1
θ ) = 1. Let’s set:

ω′ = expφ
(
π̃

f

)
∈ T \ {0} .

Then, one has:
φθ(ω′) = expφ

(
θ

π̃

t− θ

)
= tω′ .

Thus:
∀ a ∈ A, φa(ω′) = ρ(a)ω′ .

Therefore there exists a ∈ A \ {0} such that:
ω′ = ωρ(a) .

But, since ∀ i ≥ 0, v∞(ei(φ)) = iqi, by examining the Newton polygon of∑
i≥0 ei(φ)τ i, we get:

v∞(π̃) = −q
q − 1 .

This implies:
v∞

(
ω′ − π̃

f

)
≥ q − q

q − 1 .

Therefore:

sgn
(
ω′

q−1

√
−1
θ

)
= sgn

(
π̃

f
q−1

√
−1
θ

)
= −1 .

Thus:
ω′ = −ω .

We get:
−π̃
θ2 = (z − x)ω′|ξ = −(z − x)ω|ξ .

Thus:
(z − x)ω|ξ = π̃

θ2 ,
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and therefore:

π̃ = θ2(z − x)ω|ξ = q−1√−θθ
∏
i≥1

(
1− θ1−qi

)−1
.

5. A rationality result for twistedL-series

Let s be an integer, s ≥ 1. We introduce:

As = A⊗Fq · · · ⊗Fq A = A⊗s ,

and set:
ks = Frac(As) .

For i = 1, . . . , s, let ρi : K → ks be the homomorphism of Fq-algebras such
that ∀ a ∈ A, ρi(a) = 1 ⊗ . . . 1 ⊗ a ⊗ 1 · · · ⊗ 1, where a appears at the ith
position. We set:

As = A⊗Fq ks ,

Ks = Frac(As) ,
Hs = Frac(B ⊗Fq ks) .

We identify H with its image H ⊗ 1 in Hs, and ks with its image 1 ⊗ ks.
Thus:

As = A[ks] .
We also identify G with the Galois group of Hs/Ks. For i = 1, . . . , s, ρi
induces a homomorphism of H-algebras:

ρi : H→ Hs .

Let Ks,∞ be the ∞-adic completion of Ks, i.e.:

Ks,∞ = ks[F∞]((π)) .

We set:
Hs,∞ = Hs ⊗Ks Ks,∞ .

Then we have an isomorphism of Ks,∞-algebras:

κ : Hs,∞ ' ks[F∞]((π∗))|Pic(A)| ,

where we set π∗ := qd∞−1
q−1
√
−π.

Let V be a finite dimensional Ks,∞-vector space. An As-moduleM ,M ⊂
V , will be called an As-lattice in V , if M is a finitely generated As-module
which is discrete in V and such that M contains a Ks,∞-basis of V . For
example, Bs := B[ks] is an As-lattice in Hs,∞.

Let φ ∈ Drin and let f be its associated shtuka function. For i = 1, . . . , s
we set:

fi = ρi(f) .



956 Bruno Anglès, Tuan Ngo Dac, Floric Tavares Ribeiro

Let τ : Hs,∞ → Hs,∞ be the continuous homomorphism of ks-algebras such
that:

∀ x ∈ H ⊗K K∞ , τ(x) = xq .

Let ϕs : As → Hs{τ} be the homomorphism of ks-algebras such that:

∀ a ∈ A, ϕs,a =
deg a∑
k=0

φa,k

s∏
i=1

k−1∏
j=0

f
(j)
i τk.

We consider:

expϕs =
∑
k≥0

ek(φ)
s∏
i=1

k−1∏
j=0

f
(j)
i τk ∈ Hs{{τ}} .

Then:
∀ a ∈ As , expϕs a = ϕs,a expϕs .

Furthermore expϕs converges on Hs,∞.

Proposition 5.1. Assume that s ≡ 1 (mod q − 1). The As-module
Ker(expϕs : Hs,∞ → Hs,∞) is a finitely generated As-module, discrete in
Hs,∞ and of rank |Pic(A)|. In particular, Ker expϕs is an As-lattice in
{x ∈ Hs,∞, ∀ a ∈ A \ {0}, σaA(x) = sgn(a)qn(φ)(s−1)x}. Furthermore, if
s 6≡ 1 (mod q − 1), then:

Ker expϕs = {0} .

Proof. One can show that, for any s, Ker expϕs is a finitely generated As-
module and is discrete in Hs,∞.

We view Hs as a subfield of ks[F∞]((π∗)). There exists G ⊂ G a system
of representatives of G

Gal(H/HA) , such that:

∀ x ∈ Hs, κ(x) = (σ(x))σ∈G .
By Proposition 3.8, for i = 1, . . . , s, σ ∈ G, we can select a non-zero element
Ui,σ ∈ Ls = ks[F∞](( qd∞−1√−π)) such that:

τ(Ui,σ) = σ(fi)Ui,σ .
Thus, by similar arguments to those of the proof of Lemma 3.5, we get:

Ker expσ(ϕs) |Ls = Λ(φσ)ks∏s
i=1 Ui,σ

.

Recall that (by Proposition 3.8):

Ui,σ ∈ Λ(φσ)ks ⊂ ( qd∞−1√−π)−qn(φ)
Ks,∞ ,

and (by Lemma 3.4):

Λ(φσ)ks ⊂ ( qd∞−1√−π)−qn(φ)
Ks,∞ .
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Thus:
Ker expσ(ϕs) |Ls ⊂ ( qd∞−1√−π)qn(φ)(s−1)Ks,∞ .

Thus, if s ≡ 1 (mod q − 1), we get:

Ker expσ(ϕs) |ks[F∞]((π∗)) = Λ(φσ)ks∏s
i=1 Ui,σ

,

and if s 6≡ 1 (mod q − 1):
Ker expσ(ϕs) |ks[F∞]((π∗)) = {0} . �

Remark 5.2. Let H′s = Frac(HA ⊗Fq ks). Let I = aA, a ∈ A \ {0}, and
σ = σI ∈ Gal(H/HA). We have already noticed that:

σ(f) = sgn(a)qn(φ)−qn(φ)+1
f .

We verify that:

∀ σ ∈ Gal(H/HA), ϕσs = ϕs ⇔ s ≡ 1
(
mod qd∞ − 1

q − 1

)
.

In particular, when s ≡ 1 (mod qd∞ − 1), ϕs is defined over H′s, expϕs :
Hs → Hs is Gal(H/HA)-equivariant, and Ker expϕs is an As-lattice in
H′s,∞ := H′s ⊗Ks Ks,∞.

We introduce (see [6]):

Ls =
∑

I∈I(A),I⊂A

∏s
k=1 ρk(uI)
ψφ(I) σI ∈ Hs,∞[G]×.

Theorem 5.3. Let s ≡ 1 (mod qd∞−1
q−1 ). Set:

W ′s = (⊕i1,...,is≥0B
s∏

k=1
fk . . . f

(ik−1)
k )Gal(H/HA) .

Then:
expϕs(LsW

′
s) ⊂W ′s .

Proof. By our assumption on s, and by Lemma 3.1, we get:
Ls ∈ H′s,∞[G]×.

The result is then a consequence of the above remark and [6, Cor. 4.10]. �

Remark 5.4. Set

W ′s =
(
⊕i1,...,is≥0B

s∏
k=1

fk . . . f
(ik−1)
k

)Gal(H/HA)

.

By Lemma 3.3, there exists u ∈ B× such that:
f

u
∈ Frac(HA ⊗Fq A) .
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In particular:
B = B′[u] ,

where we recall that B′ is the integral closure of A in HA. Thus:

W ′s = ⊕i1,...,is≥0B
′u
−
∑s

k=1
qik−1
q−1

s∏
k=1

fk . . . f
(ik−1)
k .

Let W′s be the ks-vector space generated by W ′s. Then, by the proof of [6,
Lem. 4.4], W′s is a fractional ideal of B′s := B′[ks], and therefore W′s is an
As-lattice in H′s,∞.

Proposition 5.5. Let s ≡ 1 (mod qd∞−1
q−1 ). We set:

Us = {x ∈ H′s,∞, expϕs(x) ∈W′s}.
Then Us is an As-lattice in H′s,∞ and:

LsW′s ⊂ Us .
If furthermore s ≡ 1 (mod qd∞ − 1), then Us

Ker expϕs
is a finite dimensional

ks-vector space. In particular, there exists a ∈ As \ {0} such that:
aLsW′s ⊂ Ker expϕs .

Proof. Since W′s is an As-lattice in H′s,∞, we deduce that Us is discrete in
H′s,∞ and is a finitely generated As-module. By Theorem 5.3, we have:

LsW′s ⊂ Us.
Let G′ = Gal(HA/K), and let res : H′s,∞[G] → H′s,∞[G′] be the usual
restriction map, then:

res(Ls) ∈ H′s,∞[G′]×.
Therefore LsW′s is an As-lattice in H′s,∞. We conclude that Us is an As-
lattice in H′s,∞.

If s ≡ 1 (mod qd∞ − 1), then Ker expϕs is an As-lattice in H′s,∞ by
Proposition 5.1. The proposition follows. �

Theorem 5.6. Let s ≡ 1 (mod qd∞ − 1). We work in

Ls := ks[F∞]
((

qd∞−1√−π
))
.

There exist non-zero elements ω1, . . . , ωs ∈ Ts := As[F∞](( qd∞−1√−π)) such
that:

τ(ωi) = fiωi .

There also exists h ∈ B \ {0} such that:

∀ x ∈W′s ,
Ls(x)

∏s
k=1 ωi

π̃
∈ hKs .

Furthermore, if φ is standard, then h ∈ F×∞.
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Proof. By Proposition 3.8, we have:

f1, . . . , fs ∈ T×s .

By the same proposition, there exist ω1, . . . , ωs ∈ Ts \ {0} such that:

τ(ωi) = fiωi .

We deduce, by Lemma 3.4 and Lemma 3.5, that:

Ker expϕs |L = hπ̃IAs∏s
k=1 ωi

,

where I is some fractional ideal of A, h ∈ H×. Let x ∈ W′s, by Proposi-
tion 5.5, we get:

Ls(x)
∏s
k=1 ωi

π̃
∈ hKs . �

We end this section with an application of the above Theorem. Let φ ∈
Drin such that φ is standard, i.e.

Ker expφ = π̃A.

Let f ∈ F be the shtuka function associated to φ.

Theorem 5.7. Let n ≥ 1, n ≡ 0 (mod qd∞ − 1). Then, there exists b ∈
B′ \ {0} such that we have the following property in C∞:∑

I
σI(b)
ψφ(I)n

π̃n
∈ H×A .

Proof. Write n = qk − s, k ≡ 0 (mod d∞), s ≡ 1 (mod qd∞ − 1).
Observe that the map u. extends naturally into a map u. : I(A)→ H×,

such that:

∀ x ∈ K×, uxA = ρ(x)
sgn(x) ,

∀ I, J ∈ I(A), uIJ = σI(uJ)uI .

By Lemma 3.1, we deduce that for all l ≥ 0, τ
l(uI)
uI

has no zero and no pole
at ξ. For m ≥ 1, m ≡ 0 (mod d∞), let χm : IA → H×A , such that:

∀ I ∈ I(A), χm(I) = τm(uI)
uI

|ξ .

We observe that:

∀ x ∈ K× , χm(xA) = 1 ,
∀ I, J ∈ I(A) , χm(IJ) = σI(χm(J))χm(I) .
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In particular, there exists bm ∈ B′ \ {0} such that:

∀ I ∈ I(A) , χm(I) = σI(bm)
bm

.

By Theorem 5.3, we have:
Ls(1)

∏s
j=1 ωj

π̃
∈ Ks .

We now apply τk to the above rationality result. We get:∏s
j=1(fj . . . f (k−1)

j ωj) τk(Ls(1))
π̃qk

∈ Ks .

Let j ∈ {1, . . . , s}. Let Hs,j = H(ρk(K), k = 1, . . . , s, k 6= j). Let ξj be the
place of Hs/Hs,j which corresponds to the kernel of the homomorphism of
Hs,j-algebras: ρj(A)[Hs,j ] → Hs,j , ρj(a) 7→ a. By Proposition 3.11, there
exists xj ∈ K(ρj(K))× such that we have :

xjfj . . . f
(k−1)
j ωj |ξj ∈ π̃H

×
A .

Now:

τk(Ls(1)) =
∑
I

∏s
j=1 ρj(uI)
ψφ(I)qk

s∏
j=1

τk(ρj(uI))
ρj(uI)

.

Therefore, there exists b ∈ B′ \ {0} such that:

τk(Ls(1))|ξ1,...,ξs = 1
b

∏
P

(
1− 1

ψφ(P )qk−s
(P,H/K)

)−1

(b) ∈ K×∞ .

The Theorem follows. �

References
[1] G. W. Anderson, “Rank one elliptic A-modules and A-harmonic series”, Duke Math. J. 73

(1994), no. 3, p. 491-542.
[2] ———, “Log-Algebraicity of Twisted A-Harmonic Series and Special Values of L-series in

Characteristic p”, J. Number Theory 60 (1996), no. 1, p. 165-209.
[3] G. W. Anderson & D. S. Thakur, “Tensor Powers of the Carlitz Module and Zeta Values”,

Ann. Math. 132 (1990), no. 1, p. 159-191.
[4] B. Anglès, T. Ngo Dac & F. Tavares Ribeiro, “Exceptional Zeros of L-series and

Bernoulli–Carlitz Numbers”, https://arxiv.org/abs/1511.06209, 2015.
[5] ———, “Twisted Characteristic p Zeta Functions”, J. Number Theory 168 (2016), p. 180-

214.
[6] ———, “Stark units in positive characteristic”, Proc. Lond. Math. Soc. 115 (2017), p. 763-

812.
[7] B. Anglès & F. Pellarin, “Universal Gauss-Thakur sums and L-series”, Invent. Math.

200 (2015), no. 2, p. 653-669.
[8] B. Anglès, F. Pellarin & F. Tavares Ribeiro, “Anderson-Stark units for Fq [θ]”, https:

//arxiv.org/abs/1501.06804, to appear in Trans. Am. Math. Soc., 2016.
[9] ———, “Arithmetic of positive characteristic L-series values in Tate algebras”, Compos.

Math. 152 (2016), no. 1, p. 1-61, with an appendix by F. Demeslay.

https://arxiv.org/abs/1511.06209
https://arxiv.org/abs/1501.06804
https://arxiv.org/abs/1501.06804


Special functions and twisted L-series 961

[10] B. Anglès & L. Taelman, “Arithmetic of characteristic p special L-values”, Proc. Lond.
Math. Soc. 110 (2015), no. 4, p. 1000-1032, with an appendix by V. Bosser.

[11] B. Anglès & F. Tavares Ribeiro, “Arithmetic of function fields units”, Math. Ann. 367
(2017), p. 501-579.

[12] F. Demeslay, “A class formula for L-series in positive characteristic”, https://arxiv.org/
abs/1412.3704, 2014.

[13] J. Fang, “Equivariant Special L-values of abelian t-modules”, https://arxiv.org/abs/
1503.07243, 2015.

[14] ———, “Special L-values of abelian t-modules”, J. Number Theory 147 (2015), p. 300-325.
[15] ———, “Equivariant trace formula mod p”, C. R., Math., Acad. Sci. Paris 354 (2016),

no. 4, p. 335-338.
[16] D. Goss, Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und

ihrer Grenzgebiete. 3, vol. 35, Springer, 1996, xiii+422 pages.
[17] N. Green & M. A. Papanikolas, “Special L-values and shtuka functions for Drinfeld mod-

ules on elliptic curves”, https://arxiv.org/abs/1607.04211, to appear in Research in the
Mathematical Sciences, 2016.

[18] M. A. Papanikolas, “Log-Algebraicity on Tensor Powers of the Carlitz Module and Special
Values of Goss L-Functions”, work in progress.

[19] F. Pellarin, “Values of certain L-series in positive characteristic”, Ann. Math. 176 (2012),
no. 3, p. 2055-2093.

[20] L. Taelman, “A Dirichlet unit theorem for Drinfeld modules”, Math. Ann. 348 (2010),
no. 4, p. 899-907.

[21] ———, “Special L-values of Drinfeld modules”, Ann. Math. 175 (2012), no. 1, p. 369-391.
[22] D. S. Thakur, “Gauss sums for Fq [T ]”, Invent. Math. 94 (1988), no. 1, p. 105-112.
[23] ———, “Shtukas and Jacobi sums”, Invent. Math. 111 (1993), no. 3, p. 557-570.

Bruno Anglès
Normandie Université
Université de Caen Normandie
Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139
Campus II, Boulevard Maréchal Juin
B.P. 5186, 14032 Caen Cedex, France
E-mail: bruno.angles@unicaen.fr

Tuan Ngo Dac
CNRS - Normandie Université
Université de Caen Normandie
Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139
Campus II, Boulevard Maréchal Juin
B.P. 5186, 14032 Caen Cedex, France
E-mail: tuan.ngodac@unicaen.fr

Floric Tavares Ribeiro
Normandie Université
Université de Caen Normandie
Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139
Campus II, Boulevard Maréchal Juin
B.P. 5186, 14032 Caen Cedex, France
E-mail: floric.tavares-ribeiro@unicaen.fr

https://arxiv.org/abs/1412.3704
https://arxiv.org/abs/1412.3704
https://arxiv.org/abs/1503.07243
https://arxiv.org/abs/1503.07243
https://arxiv.org/abs/1607.04211
mailto:bruno.angles@unicaen.fr
mailto:tuan.ngodac@unicaen.fr
mailto:floric.tavares-ribeiro@unicaen.fr

	1. Introduction
	2. Notation and background
	2.1. Notation
	2.2. Sign-normalized rank one Drinfeld modules
	2.3. Shtuka functions

	3. Special functions attached to shtuka functions
	3.1. Basic properties of a shtuka function
	3.2. Special functions
	3.3. The period pi

	4. A basic example: the case g=0
	5. A rationality result for twistedL-series
	References

