URNAL

de Théorie des Nombres

e BORDEAUX

anciennement Seminaire de Theorie des Nombres de Bordeaux

Special functions and twisted L-series
Tome 29, n° 3 (2017), p. 931-961.

<http://jtnb.cedram.org/item?id=JTNB_2017__29_3_ 931_0>

© Société Arithmétique de Bordeaux, 2017, tous droits réservés.

L’acces aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique I’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous
quelque forme que ce soit pour tout usage autre que ’utilisation a
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://jtnb.cedram.org/item?id=JTNB_2017__29_3_931_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Journal de Théorie des Nombres
de Bordeaux 29 (2017), 931-961

Special functions and twisted L-series

par BRUNO ANGLES, TuaAN NGO DAC et FLoric TAVARES RIBEIRO

To the memory of David Goss

RESUME. Nous donnons une généralisation de la fonction spé-
ciale d’Anderson—Thakur et nous prouvons un théoréme de ratio-
nalité pour les séries L a plusieurs variables associées aux fonctions
chtoucas.

ABSTRACT. We present a generalization of the Anderson—-Thakur
special function, and we prove a rationality result for several vari-
able twisted L-series associated to shtuka functions.

1. Introduction

Let X = P! /Fq be the projective line over a finite field F, having ¢
elements and let K be its function field. Let co be a closed point of X of
degree dos = 1. Then K = F,(0) for some § € K such that 6 has a pole of
order one at co. We set A = F,[0]. Following Anderson ([1], see also [23]),
we consider:

Y =K®f, X.
Let K = Frac(K ®p, K) be the function field of Y. We identify K with
K®1CK Ifwesett=1®86, then K= K(¢). Let 7 : K — K be the
homomorphism of F(t)-algebras such that:

VeeK, 7(x)=ua29.

Let o0 € Y (K) be the pole of ¢, and let £ € Y (K) be the point corresponding
to the kernel of the homomorphism of K-algebras K ®r, K — K which
sends t to #. Then the divisor of f := t — 6 is equal to (§) — (c0). The
function ¢ — @ is a shtuka function, and in particular:

degg a
VacA, a(t)= Y Coif... 0V, with Cy,; € A.
k=0
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The map C : A — A{r},a — C, = Zzegga Co ;7" is a homomorphism of

[Fq-algebras ([23, §0.3.5 and 2.1]) called the Carlitz module. Note that:
Cy=0+r.

There exists a unique element expy € K{{7}} such that expo =1 (mod 7)
and:

VacA, expoa=Chexpe.

Let Co be the completion of a fixed algebraic closure of Ko 1= Fq((5)).
Then expy defines an entire function on C, and:

Kerexpr =7A,

for some 7 € C%, (well-defined modulo F;) called the Carlitz period. We
consider T the Tate algebra in the variable ¢t with coefficients in C, i.e.
T := Coo®r,A. Let 7: T — T be the continuous homomorphism of Fyl[t]-
algebras such that V x € C, 7(2) = z¢. Anderson and Thakur ([3]) showed
that:

fo € T,r(a) = fa} = wByff],
where w € T* is such that:

fwlg =m.

The function w is called the Anderson—-Thakur special function attached
to the Carlitz module C. This function is intimately connected to Thakur—
Gauss sums ([7]).

In 2012, Pellarin ([19]) initiated the study of a twist of the Carlitz module
by the shtuka function f. Let’s consider the following homomorphism of F-
algebras ¢ : A — A[t][{7},0 — 0 + fr. Then, one observes that C' and ¢
are isomorphic over T, i.e. we have the following equality in T{7}:

Vace A, Cuw=uwp,.

To such an object, one can associate the special value of some twisted L-
function (see [9)):

a(t)
L= — <,
e
a€A,a monic
Then, using the Anderson log-algebraicity Theorem for the Carlitz module
([2], see also [8, 18]), Pellarin proved the following remarkable rationality

result:

1
Lo _1ek

T

f
This result has been extended to the case of “several variables” ([9, 12])
using methods developed by Taelman ([10, 13, 14, 15, 20, 21]). This kind
of rationality results leads to new advances in the arithmetic of function
fields (see [4, 9, 11]).
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The aim of this paper is to extend the previous results to the general
context, i.e. for any smooth projective geometrically irreducible curve X /F,
of genus g and any closed point oo of degree do, of X. In particular,
we obtain a rationality result similar to that of Pellarin (Theorem 5.3).
Our result involves twisted L-series (see [5]) and a generalization of the
Anderson—Thakur special function. The involved techniques are based on
ideas developed in [4] where an analogue of Stark Conjectures is proved for
sign-normalized rank one Drinfeld modules.

We should mention that Green and Papanikolas ([17]) have recently stud-
ied the particular case ¢ = 1 and do = 1 and, in this case, they have
obtained explicit formulas similar to that obtained by Pellarin (in the case
g=0and doo =1).

2. Notation and background

2.1. Notation. Let X/F; be a smooth projective geometrically irreducible
curve of genus ¢, and oo be a closed point of degree do, of X. Denote by
K the function field of X, and by A the ring of elements of K which are
regular outside co. The completion K, of K at the place oo has residue
field Foo. We fix an algebraic closure Ko, of Ko and denote by C, the
completion of K .

We will fix a sign function sgn : K3 — FJ which is a group homo-
morphism such that sgn [px = Id[px . We fix 7 € K N Ker(sgn) and such
that Koo = Foo((7)). Let voo : Coo — QU {400} be the valuation on Co
normalized such that v (7) = 1. Observe that:

VaeeK”, deg(zA) = —deovoo(z).

Let K be the algebraic closure of K in Cq.
Let Z(A) be the group of non-zero fractional ideals of A. We have a

natural surjective group homomorphism deg : Z(A) — Z, such that for
I €Z(A),I C A, we have:
deg I = dimp, A/I.
Let P(A) = {zA,x € K*}, then Pic(A) = % is a finite abelian group.
Let I be the group of ideles of K, and H/K be the finite abelian exten-
sion of K, H C C, corresponding via class field theory to the following
subgroup of Ik:
K> Kersgn H oy,

vF£00
where for a place v # oo of K, O denotes the group of units of the v-adic
completion of K. Then H/K is a finite extension of degree | Pic(A)|qdqoi11,

unramified outside oo, and the decomposition group of oo in H/K is equal
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to its inertia group and is isomorphic to IE%X;. Set G = Gal(H/K). If we

q
define Py (A) = {z A,z € K*,sgn(z) = 1}, then the Artin map
(-.H/K):I(A) — G.

induces a group isomorphism:

For I € Z(A), we set:
oy = (I,H/K) cq.
Let Ha be the Hilbert class field of A, i.e. Hs/K corresponds to the
following subgroup of the ideles of K:

K*KZ ] o
VF00
Then H/H 4 is totally ramified at the places of H4 above co. Furthermore:

]FX
Gal(H/H4) ~ IF%
q
We denote by B the integral closure of A in H and B’ the integral closure
of Ain H4. Observe that Fo, C B.

2.2. Sign-normalized rank one Drinfeld modules. We define the
map 7 : Coo = Cq,z — zx?. By definition, a sign-normalized rank one
Drinfeld module is a homomorphism of F-algebras ¢ : A — C{7} such
that there exists n(¢) € {0,...,dsx — 1} with the following property:

YacgA, ¢a:a+...+sgn(a)qn(¢)7_dega'

Let n € {0,...,dsx — 1}. We denote by Drin,, the set of sign-normalized
rank one Drinfeld modules ¢ with n(¢) = n, and by Drin = Ufg’o_l Drin,,
the set of sign-normalized rank one Drinfeld modules. By [16, Cor. 7.2.17],
Drin is a finite set and we have:

d°°—1
| Drin | = | Pic(A)|2 .
q—1

Let ¢ € Drin be a sign-normalized rank one Drinfeld module, we say
that ¢ is standard if Kerexp,, is a free A-module, where exp, : Coo = Co
is the exponential map attached to ¢ (see for example [16, §4.6]).

Lemma 2.1. Letn € {0,...,do — 1}. We have:
gt -1
q—1 "

1
| Drin,, | = d—\ Pic(A)]
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Let ¢ in Drin,, and let [¢] denote the set of the ¢ in Drin, which are
isomorphic to ¢. Then:

V ¢ € Drin,, |[¢]| =
In particular, if [Drin,| = {[¢], ¢ € Drin,}, we have:
[Drin,]| = di| Pic(A)|.

Proof. Let ¢ : A — H{7} be a sign-normalized rank one Drinfeld module
(see [16, Ch. 7]). Let n(v¢)) € Z be such that:

VCLEA, wa:a+-..+sgn(a)qn(¢)7_dega'

Then the set of sign-normalized rank one Drinfeld modules is exactly Drin =
{¢?,0 € G}. Let 0 € G and write 0 = (I, H/K) for some I € Z(A). We

have:

n()+deg(I)
Va€eA, wg=a+-"+sgn(a)q & Tdega'

Note that deg : Z(A) — Z induces a surjective homomorphism of finite
abelian groups:

deg : 1(4) — Z
& DA Aol
Since there are exactly |Pic(A)]qdq°i1_1 sign-normalized rank one Drinfeld

modules and do divides |Pic(A)|, we get the first assertion.
Let ¢ € Drin,, and let ¢’ € [¢]. Then there exists o € CX such that:

Vae A, ad,=d,a.
Thus, a € FX. Since Endc__(¢) = {¢a,a € A}, we obtain:
Endc, (¢) NFa = F,.

Hence,

_ g1
o= L. =

Lemma 2.2. There are exactly % standard elements in Drin. Further-

more, if ¢ is such a Drinfeld module, then [p] is the set of standard elements
in Drin.

Proof. By [16, Cor. 4.9.5 and Thm. 7.4.8|, there exists ¢ € Drin such that ¢
is standard. In particular, Drin = {¢?,0 € G}. Again, by [16, Cor. 4.9.5 and
Thm. 7.4.8], the Drinfeld module ¢ is standard if and only if o|x, = Idg,.
The Lemma follows. O
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2.3. Shtuka functions. The results of this section are originally due to
D. Thakur (see [23]). Let X = Coo ®p, X, A = Coo @5, A, and let F be the
function field of X, i.e. I/ = Frac(A). We will identify C,, with its image
Coo®1in F'. There are dy, points in )_((Coo) above oo, and we denote the set
of such points by S,. Observe that A is the set of elements of F' /Cs which
are “regular outside co”. We denote by 7 : F — F the homomorphism of
K-algebras such that:

T|A =7®1.
For m € Z, we also set:
VeeF, z™=7"().
Let P be a point of X (Cy). We denote by P the point of X (K) obtained
by applying 7¢ to the coordinates of P. If D = > j—1np,P; € Div(X), with
Pj € X(Cy), and np, € Z, we set:

DD =3 np P,
j=1

If D= (x), x € F*, then:
DO = (z).
We consider ¢ € X (Co) the point corresponding to the kernel of the map:

A—)COO, in®aiHinai.
7

Let p: K — F,z+ 1 ®z and set t = p(7~1).
Let 00 € So. We identify the co-adic completion of F' to

)

Let sgng, : Cx((3))* — CZ be the group homomorphism such that

Ker(sgng) = t2 x (1 + 1Co[1]), and sgng, lox =1d|cx -

Let ¢ € Drin. For a € A, we write ¢, = Z?i%a GaiT!, ¢ai € H. By [16,
Ch. 6 and Prop. 7.11.4], there exist 0 € Sy and fy € F* such that:

dega

Vaed, pla)=3 aifs---fi ",
=0
and the divisor of f4 is of the form:
(Fo) =V =V + (&) = (),

where V' is some effective divisor of degree g. Let (00) = Y 5cg. (7). Set

W(Coo) = UmzoL(V -+ m(oo)),
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and
L(V +m(x)) ={z € F*,(z) + V +m(cx) > 0} U {0}.
We have:
W(Cx) = ®i>0Co0 f5 - - - (;i—l).
The function fy is called the shtuka function attached to ¢, and we say

that ¢ is the sign-normalized rank one Drinfeld module associated to fg.
We define the set of shtuka functions to be:

§ = {fs,¢ € Drin}.

Then, the map Drin — §,¢ — fy is a bijection called the Drinfeld corre-
spondence.

Remark 2.3. There is a misprint in [16, p. 229]. In fact, as we will see in
the proof of Lemma 3.3, when do, > 1, we do not have:
qdoo 1
s (fe) T =1
as stated in [16].

3. Special functions attached to shtuka functions

3.1. Basic properties of a shtuka function. Let H = Frac(H ®r, A),
and K = Frac(K ®p, A). Recall that G = Gal(H/K) and we will identify
G with the Galois group of H/K. Let f € §, and let ¢ € Drin,,4) be the
sign-normalized rank one Drinfeld module attached to f for some n(¢) €
{0,...,doc — 1}. Then ¢ : A — B{r} is a homomorphism of F, -algebras

such that:
dega

VCLGA, ¢azz¢a,i7i7
i=0
where ¢o0 = 0, Gudega = sgn(@)"”, and pla) = S8 Guif .. fO7.
Recall that there exists an effective H-divisor V' ([16, Ch. 6]) of degree g
such that the divisor of f is:

(f)=VW -V + (&) - (%),

for some 50 € Ss. By [16, Lem. 7.1.3], £,50(-Y do not belong to the
support of V. Let vg be the normalized valuation on H attached to co
(v (t) = —1). Note that v (f) < —1 and, when do, > 1, % can a priori
belong to the support of V. We identify the co-adic completion of H with
H((3)). Therefore we deduce that:

f—at(,{)—i- > fz%, k<-1

i>k+1
where a(f) € H*, and f; € H, for all i > k + 1.
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Let expy be the unique element in H{{r}} such that exp, =1 (mod 7)
and:
VacA, expya=dgexpy .

Write expg = ;5 €i(¢)7", then by [16, Cor. 7.4.9], we obtain:
H = K(e;i(¢),i >0).

Observe that exp, induces an entire function on Co, and there exist a €
CX and I € Z(A) such that:

Vz€Cx, expy(z)= Zei(qﬁ)zqi =z H <1 - z)

i>0 ac1\{0} oa

Furthermore, we have (see for example [23, Prop. 0.3.6]):
_ 1
[ f(i_l)‘gu) .
Thakur proved that if e,(¢) = 0, then n € {2,...,9 — 1} ([23, proof of
Thm. 3.2]), and if K has a place of degree one then ¥V n > 0,¢e,(¢) # 0.
Let W(B) = @;>0Bf ... f~Y. Then W (B) is a finitely generated B®p,
A = B[p(A)]-module of rank one (see for example [6, Lem. 4.4]). Further-
more,

Vi>0, ef(e)

VzeW(B), fazM)ew(B).
Let I € Z(A). Let ¢; € H{7} such that the coefficient of its term of highest
degree in 7 is one , and such that:

N H{r}¢a = H{t}¢r.

acl
Then, we get:
deg, ¢r =deg!,
Ker ¢r|c.. = Nacr Ker ¢alc..
¢r € B{tr}.
We denote by 14(1) € B\ {0} the constant term of ¢;. We set:

deg I

ur=Y_ ¢r;f...f9iY e w(B),
=0

where ¢ = Z?igol br77.
Lemma 3.1. Let I, J be two non-zero ideals of A. We have:
urle = Yo(1),

or(fur = ful,
ury = or(uy)ur.
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Proof. In [6, Lem. 4.6], we only gave a sketch of the proof of the above
results. We give here a detailed proof for the convenience of the reader.
Observe that:

Vix1, (f...f00)=y0 _V+§ (gk)) _ i (O—O(k))_
k=0 k=0

Since & does not belong to the support of V', we deduce that:
urle = pg(1).
Note that we have a natural isomorphism of B-modules:
: W(B) — B{r}
TYvizo, £ fED g

For all x € W(B) and for all a € A, we have:

Y(fe) = my(@),

Y(p(a)r) = v(2)¢a-

In particular v is an isomorphism of B[p(A)]-modules, and since W (B)
is a finitely generated B[p(A)]-module of rank one, this is also the case of

B{r}. Write f = 2 p(a')b;, for some a;,c, € A, b;,d;, € B, we have the

following equality in B{7}:

Z bi¢ai = Z dkT¢ck .
i k
For 0 € GG, we set:
Wa(B) = ®iz0Bo(f)...a(£)" V.
We have again an isomorphism of B[p(A)]-modules:
Yo : Wo(B) ~ B{r}.

Again,
VzeWs(B),VaeA, (pla)z)=",(x)dg.
Let I be a non-zero ideal of A, and let 0 = o7 € G. We start from the

relation:
% k
We multiply on the right by ¢;, to obtain (see [16, Thm. 7.4.8]):
D b brda, =Y diTére, -
k

)
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Since 'y(fugl)) = T¢1, we get:

(Z p(a»bz) y(ur) = (Z d%p(%)) A(fui).
i k
In other words, we have proved:

o(flur = fu(f).

Now, let J be a non-zero ideal of A. We have:
Y(urs) = ¢rs = ¢3¢1.
Since Vi > 0,0(f... fDuy = f... f(i_l)ugi), we get:
V(ujur) = ¢5¢r-

It implies:
ury = o(ug)ur. 0

Corollary 3.2. We have:
§={o(f).0 € C.

Furthermore, for o € G, ¢° is the Drinfeld module associated to the shiuka
function o(f).

Proof. Let ¢ € G and let g € § be the shtuka function associated to
¢?. By the proof of Lemma 3.1, if a,c) € A, b,d, € B are such that

2 béﬂﬁZ; =2k 2;7'¢Z;€, then:

g= > plag)bg '
2k () d),
Again, by the proof of Lemma 3.1, we get:
g=oa(f) O
Lemma 3.3. Let s : H — H((})) be a homomorphism of K-algebras

corresponding to co. Write 1 (f) = % + Yiski1 fiz € H(})). a(f) €
H*, fie Hi>0,k<—1. Then:

H = K(Foo,af), fii > k+1).

Furthermore:

HA=K<FOO,C£C),QI¢+1).

In particular, there exists u(f) € B* such that:

e H = Ha(u(f)),
* o(f) = tw(u(f)) (mod H),

. K(ﬁ) = Frac(H4 ®r, A).
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Proof. By Corollary 3.2, since |G| = | |, we have:
H = K(f).

Recall that H((1)) is isomorphic to the completion of H at co. Since oo
splits totally in K(Fy) in ds places, we deduce that the natural map
ls t H— H((3)) is Gal(H/K (F))-equivariant. Thus:

If I =aA,a € A\{0}, then uy = so that we have by Lemma 3.1:

(a)
Sgn(a)q"(¢) ’

n(8) _gn(#)+1
o1(f) = sgn(a)” " f

In particular:
880 (-1) (Lso(-1) (f)) & Fo -
deo _

We have a(f) a1 € Hy, and % € Frac(H ®p, A), where o/ (f) € H*

is such that (s (o/(f)) = a(f) (observe that tx|g € G). Since H = K(f),
we get the second assertion.

Since H/H 4 is totally ramified at each place of H4 above oo, % is

a finite abelian group, where we recall that B’ is the integral closure of

A in Hy. Now recall that H/H4 is a cyclic extension of degree qdqoizl,

and Foo C Hy. Let (o) = Gal(Ha((B)*)/Ha). Then we have an injective
homomorphism:

B* T
R FX .
(By< e o (x)

The image of this homomorphism is a cyclic group of order dividing qquiIl.

By the proof [16, Thm. 7.6.4], there exists ¢ € CX, (9! € H, such that:

Vae A\{0}, (o, € B'{r} and its highest coefficient is in (B')*.

Thus (97! € B* and H = H4(¢?!). In particular, there exists a group
isomorphism:
B* FX
B ~ E.
This implies by Kummer Theory that:

a(f) =d'(f)  (mod H),

for some u/(f) € B* that generates the cyclic group %. Now define u(f)
to be the element in B> such that v (u(f)) = /(f). O
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3.2. Special functions. We fix 4" € Coo a root of the polynomial
X9~ 4 1 = 0. We consider the period lattice of ¢:

A(¢) = {z € Cu, expy(x) = 0}.

Then A(¢) is a finitely generated A-module of rank one and we have an
exact sequence of A-modules induced by exp,:

0= A(p) > Cxo = ¢(Cx) — 0,
where ¢(Cy) is the Fy-vector space Co, viewed as an A-module via ¢.

Lemma 3.4. We have:
—gn(®

Ag) V=1 ' K,
and for all I € Z(A):
A(¢7) = (DI A(9).

Proof. Observe that A(¢)K is a Ko-vector space of dimension one. Let
J be a non-zero ideal of A, and let A; # 0 be a generator of the A-module
of J-torsion points of ¢. By the proof of [16, Prop. 7.5.16], we have:

Ay € A(d) Ko
By class field theory (see [16, §7.5]), we have:
E:=H(\))C Koo(qdm*\l/—?) .
Furthermore, by [16, Rem. 7.5.17],
A e KX
By local class field theory, for z € KX, we have:

s (= ) () = T

sgn(z)
By [16, Cor. 7.5.7], for all a € K*,a =1 (mod J), we get:
(ad, E/K)(A;) = sgn(a)" "7\

Thus, for all a € K*,a =1 (mod J):

(a, Koo (“/=7) /Koo ) (A1) = sgn(@)” A,
Therefore, by the approximation Theorem, we get:

Vae K., (o Koo V1) /Kuo)(\s) = sen(z)™ A,

It implies:

—qn®)

Ay € Y x K.
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Hence,
_ g ($)
q

Ag)C ™V r T Ku.
The second assertion comes from the fact that we have the following
equality in H{{7}}:
b1 expy = expyor (D). O
Set:
L = p(K)(F) ((“=7)).

Then, by the above Lemma, H C Fuoo((**+/=n)) C L. Let vs : L —
QU{+o0} be the valuation on L which is trivial on p(K)(F ) and such that

Voo (1 =T) = ﬁ. Let 7 : L — L be the continuous homomorphism

of p(K)-algebras such that:
Vaoe Fw((qdwﬂl/—ﬂ')) , T(x) =29,
Observe that:
VaeeLl, veo(r(r))=qus(z).
Lemma 3.5. We have:
Kerexpy |1 = A(¢)p(K),
where A(@)p(K) is the p(K)-vector space generated by A(p).

Proof. The proof is standard in non-archimedean functional analysis, we
give a sketch of the proof for the convenience of the reader. We have:

A@)p(K) C Kerexpy 1.

Let:

M = Y —wp(K) (Foo) [ v/ =]
Let log, € H{{r}} such that log,exp, = expylog, = 1. If we write:
logy = 32;50li(¢)7", then there exists C' € R such that, for all i > 0,
Voo (li(#)) > Cq". Tt implies that there exists an integer N > 0 such that

exp, Is an isometry on omn.
Now, select § € A\ F,. Then:

Ker exp,, ’IFOO PO~y = A(9)Fq[p(0)].

Since p(A) is finitely generated and free as an Fy[p(6)]-module, it implies:
=A A).

r(vy=my — MOPA)

Let V be the p(K)-vector space generated by p(A)[Foo](( %" ~Y/—=7)). Then:

Kerexp, |v = A(@)p(K).

Ker exp,, ‘p(A)[
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Let z € Kerexpy |, then there exists y € V such that:
r—yemV.
Thus,
expy(y — ) = expy(y) € MV NV = exp¢(9ﬁN nv).
Therefore, y = z + v, for some z € MY NV, and some v € A(¢)p(K). It
implies that  — v € MY, and hence:
r=v€A)p(K). O

Lemma 3.6. We consider the following p(K)-vector space:

1

Ve ) ey (s MO
a€AVF, a—pla)

Then, we have:

Proof. For any a € A, we set:

Vo =A{x € L,pq(x) = pla)z}.
Then, if a € IF;, by Lemma 3.5, we have:
1

MO,

Vo = expy (

and:
dim,g) Vo = dega = [K : Fy(a)].

Select § € A\ F, such that K/F,(f) is a finite separable extension.
Let b € A\ F, and let P,(X) € F4[0][X] be the minimal polynomial of b
over Fy(0). Since Vp is an A-module via ¢ and ¢ induces a p(K)-linear
endomorphism of Vj, it follows that:

p(Py)(¢p) = 0.

This implies that the minimal polynomial of ¢, viewed as an F,(p(6))-linear
endomorphism of Vp is p(P,(X)). Observe that Vj is the p(K)-vector space
generated by:

exp, (s MO 0(6))).

and:
1
dimpg, (,(9)) €XPg <0_I0(0)A(¢)Fq(P(9))> = deg 0.

Therefore, p(P,(X)) is the minimal polynomial of ¢, viewed as a p(K)-
linear endomorphism of Vjp.
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Select 0’ € A\ Fy such that K = F,(60,6’). Then the characteristic poly-
nomial of ¢g on the p(K)-vector space Vp is p(Py(X)). Since Py (X) has
simple roots, if V' = VNV, we get:

dlmp(K) V/ =1.
Now, let b € A, there exist z,y € A[f, '], such that b = % Let Ay € p(K)
such ¢p|V" is the multiplication by ), then for any v € V' \ 0, we have:
P(Y) AV = dypv = p(x)v.
It follows that:
Xy = p(b). O

Let sgn : p(K)(Fs)((7))* — p(K)(Fs)™ be the group homomorphism

such that Kersgn = 7% x (1 4+ mp(K)(Fso)[]), and sgn|,xym.o)x =

Id ’p(K)(IFOO)X- Let 7w, = (qdm —\1/_77r)(q—1)qn(¢)_
Lemma 3.7. We have:
fre € p(K)(Foo)((7)),

— 1)gn@)
ooo(f) = — A= 1a

qdoo 1 (mOd (q - 1)Z)7

and:

No(K)(Foo) /o) (880(f7i)) = 1.

Proof. Recall that:
V= ﬂ expd)(
weas, ¢~ Pl)

By Lemma 3.4, we have:
—qn®)

Ve ("=r) T p(E)(Foo) (7).

Thus, by Lemma 3.6, there exists U € (/=) 4" p(K)(Foo)((7))\ {0},
such that:
VacegA, ¢a(U) :p(a)U.

Write f = DICIUE a;,a), € A, b, b, € B. Then, by the proof of Lem-

IICATS
S bitha, = 3 VT dur-
i k

ma 3.1, we have:

Thus,

<Z p(az-)bz-) U= <Z p(@%)%) (V).
i k
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Therefore:
T(U) = fU.
In particular,
{r e L,7(z) = fa} = p(K)U.
We also get:
femtp(K)(Fo)((m)).-
Let F = fm. € p(K)(Fso)((m)). Set
v 7@
R=U(""V=r) € p(K)Fu)((m)).
We have:
T(R) = FR.
Let ig = voo(F') € Z, and write:
F =3 F(-m)',F; € p(K)(Fe).

Let A = Fj,. Set:

-1
5 F@)
e ()

i>0 (=m
goo
where 1Y/—1 = (" Y/=x) 1 " Then clearly:
F
T(a) = TGk
Thus: R R
(1)
a a
This implies:
R=pa, péepK)(Fa)*.
In particular, ip = 0 (mod ¢ — 1), i.e. vo(f) = —% (mod g — 1).

Also:
sgn(R) = psgn(a).
L]
Since sgn(a) = (—1)a 1, we get:
() _
i

We set:
T = p(A)[Foo] ((“V=7)) c L.

Then T is complete with respect to the valuation v, and:
{z eT,7(z) =2} = p(A).
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Furthermore, we have (see the proof of Lemma 3.5):
Kerexpy [T = A(¢)p(A).

Let ev : p(A)[Fs] — F, C Co be a homomorphism of Foo-algebras. Such
a homomorphism induces a continuous homomorphism Fag(( 2" /=7))-

algebras:
ev: T — Cq.
We denote by £ the set of such continuous homomorphisms from T to C.
Proposition 3.8. We have:
feT”,

sgn(fr.) € p(A) [Fuc]”.

Furthermore there exists U € T \ {0} such that:
{rel,r(z)=fz}=Up(K).

If doo = 1, then sgn(fm.) = 1, and we can take:

iso (mm)Te

-1
. - ; )@
U:qoo—\l/jﬂ. 1q—\1/_77rO(H (f *) ) ETX,

where g := Voo (f4).

Proof. Recall that f € H C L. Le P be a point in X(F,) above a max-
imal ideal of p(A). Then P is above a maximal ideal of p(A)[Fo] which
can be viewed as the kernel of some homomorphism of F-algebras ev :
p(A)[Foo] — F,. Since the field of constants of H is Fo, we deduce that ev
can be uniquely extended to a homomorphism of H-algebras:

ev: p(A)[H] — Cx.

Furthermore, the kernel of the above homomorphism corresponds to P NH
(recall that H = Frac(p(A)[H])). Then ev extends to a continuous homo-

morphism of Foo((*"~/=7))-algebras:
ev:T — Cq.

We deduce that, by [23, Lem. 1.1], for any ev € &, ev(f) is well-defined.
Thus f € T. Therefore, by Lemma 3.7, we have:

fenl x (sgu(fm) + mp(A)[Foo][x]),
where sgn(fm,) € p(A)[Fs] is such that:
No(r) o) /o) (380 f74)) = 1.

Thus:
sgn(fm.) € p(A)[Foo] ™,
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and there exists p € p(A)[Fs] \ {0} such that:

sgn(fmy) = M

In particular, f € T*. Furthermore, there exists a non-zero ideal I of A
such that:

pp(A)Foo] = p(1)p(A)[Foo] -
Now, we use the proof of Lemma 3.7. We put iy = vo(fms) (observe that
i0 =0 (mod ¢ — 1)) and set:

U = pa _\l/jﬁ_qnw),
where : X
~ 7, )@
s (H) i <w>q"io) =t
Then: )
T(U) = fU,
UeT.

Note that U is well-defined modulo p(K)* and if doo = 1, then U € T*. O

Definition 3.9. A non-zero element in {z € L,7(z) = fz} will be called
a special function attached to the shtuka function f.

Remark 3.10. Let M = {x € T,7(z) = fz}. Then, by the above Propo-
sition, there exists U € T \ {0} such that:

Up(A) C M C Up(K).

Furthermore (see the proof of Lemma 3.7):

M = ﬂ exp¢< 1

wemy, N0~ A0)

A@o(4)).

Thus M is a finitely generated p(A)-module of rank one. When do, = 1,
the above Proposition tells us that M is a free p(A)-module. In general, we
have:

M =U'p(B),
where B € Z(A),U’ € L*, and M = U"p(B') if and only if U' = zU"” where
z € p(K)* is such that 2B = B'.
Let I be a non-zero ideal of A, and let ¢ = o; € G. Recall that, by
Lemma 3.1, we have:
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Now observe that uy € T, %I’) € T*, but in general we don’t have uy € T*.
By Lemma 3.1, we have:
ur %
p(xr)
where I = x7 A, n being the order of I in Pic(A). Thus:

Y

My = {2 € T, 7(x) = o(f)a} = 2Z0 .

ur

We leave open the following question: is M a free p(A)-module? We will
show in section 4 that the answer is positive if g = 0.

3.3. The period 7. By Lemma 2.2, and Lemma 3.4, let f be the unique
shtuka function in § such that, if ¢ is the Drinfeld module associated to f,
we have:

Kerexpy |1, = #A[p(A)],

~ oo —d"?) ~ gdoo o)
where 7 € Vv-r Ko, sgn(7 ( v—m)? ) =1

Proposition 3.11. There exist § € A\ Fy, a € A[p(A)], and a special
function U € T, such that for all i > 0:

9) — 67 .
%Ulgn = ei(P)7T.

In particular, for any special function U’ associated to f, we have :
Vi>0, fOU|w er’H.

Proof. Let A = A[p(K)]. We still denote by p the obvious p(K)-linear map
A — p(K). We observe that:
Kerp = Z(a — pla))A.
acA
We also observe that there exists § € A\ F, such that p(f) — 6 € Kerp\
(Ker p)?. Set z = p(f). Then z — 6 has a zero of order one at & (observe
that 2z — 69" has a zero of order one at £)). Note that K/F,() is a finite

separable extension, therefore there exists y € A such that K = F,(6,vy).
Let P(X) € F,[0][X] be the minimal polynomial of y over F,(#) and set:

PX)
a= X y’X:p(y) € A[p(A)] CA.
Since P(X) has a zero of order one at y, we have:
a ¢ Kerp.

Let’s set:
a
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Since %5 ¢ A, we have:
U#0.
Furthermore, observe that F,[6,y] C A C Frac(F,[0,y]). Thus:
Vbe A #(U)=p0)U.
We conclude that:
Ue ({zeL,7(x)= fx}\{0})NT.
Let’s set:

We have:

We therefore get:
Vi>0, (67HOU|w = ei(d)7?.

The last assertion comes from the fact that f) has a zero of order at
least one at €@, O

We refer the reader to [1] for the explicit construction of f in the case
dso = 1, and to [17] for the explicit construction of the special functions
attached to f in the case g =1 and do, = 1.

4. A basic example: the case g = 0

In this section, we assume that the genus of K is zero. Let’s select z € K
such that K = Fy(x) and ve(z) = 0. Let Py(z) € Fylz] be the monic
irreducible polynomial corresponding to oo, then deg, P (z) = do. Let
sgn : KX — FX be the sign function such that sgn(Ps(x)) = 1. Then A =
{7205k € N, f(z) € Fyla], f(z) # 0 (mod Pwo(a)), deg,(f(z)) < kdoo}.
Observe that:

7
=7
Let P be the maximal ideal of A which corresponds to the pole of x, i.e.

P = {8k € N, f(2) € Fyla], f(z) # 0 (mod Pa(x)), deg, (f(2)) <
kds}, the order of P in Pic(A) is exactly ds, and Pd> = ﬁ(@A. We also

observe that the Hilbert class field of A is K(Fy). Let ¢ = sgn(z) € FX.
Then P (¢) = 0. Note that:

Voo(T — () =1,
sgn(z —¢) = PL(¢)~".

Pic(A)
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The integral closure of A in K(Fo) is A[F]. The abelian group A[Fy]*

is equal to:
doo—1 z
=l =
We know that A[F] is a principal ideal domain and we have:
1
PA[F] = . CA[IE‘OO].

Furthermore B = A[F][u], where u € B* is such that:

W H (et

Cq — xq
Indeed, using Thakur Gauss sums ([22]), there exists ¢ € K such that
K (Foo, g)/K is a finite abelian extension and:

doo—1

gt = T] (¢ —a).

k=0

Furthermore K (F,g)/K is unramified outside oo and the pole of z, and
P (x) is a local norm for every place of K (Fu,g) above cc.
Let z = p(x) € p(K)*. Then:

H=H(z).
Let Q € X(F,) be the unique point which is a pole of z, then:
(z—xz)=(§ - (Q).
We choose o to be the point of X (Fs,) which is the zero of z — ¢. Then:

(=) -©- .

z=¢
We easily deduce that if f is a shtuka function relative to co (note that f
gdoo
is well-defined modulo {z € FX ,x" - T = =1}), then f is of the form:
'z : Zv, ve H”.
1 :
Let 6 = m S A. Then:
sgn(f) =1,
degf = d

Let ¢ be the Drinfeld module attached to f, then:
dp =0+ + 1%
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We have: .
£ fldeem) TTi=, ' (z — 9 )qu;ffl
.. Po() )
We get:
doo—1 . gdoo 1
= H (C—a? v a1 .
k=0
Thus:
doo _
(g )T =1,
So that,
z—
f="—g",
z—=C
where ¢’ € FX is such that:
doo _
()T =1,

Furthermore, if we write expy = 3,5 €i(@)7", €i(¢) € H, then:

iq, a1 gt
ei(9) = g 1) [T 5

¢ _ pdt
o T T

We also deduce that:
VacA ¢,=a+--+sgn(a)ri®es,
Recall that H C Cs, and v (x — () = 1. We now work in

[ =Fu(z) ((qdwl —Poo(:p))> .

Recall that g is the Thakur-Gauss sum associated to sgn, i.e. let C' : Fy[z] —
Fq[z]{7} be the homomorphism of Fg-algebras such that C;, = x + 7, we
have chosen A € H \ {0} such that Cp_(,)(A) = 0, and:

g=—>_  sen(y) 'Cy(N).

yEF,[z]\{0}
deg, y<doo

Furthermore, X is chosen is such a way that:

Thus:
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Recall also that:
T = o)) (Pl )

We can choose f such that (' =1, ie. f = %gl_q. Now, recall that:

e T*.
£2=7
Set:
i —1
Y
U= <1 + M) e L
i>0 z— (1
Then:
UeT*.
Furthermore:
Z—
U) = U
() =227
Let’s set:
w = g_lU,
Then:
T(w) = fw,
sgn <w atee =l —Poo(x)> =1,
weT™,

{w € T,7(x) = fo} = wp(A).
Finally observe that:

i —1
(z—x)w\gzg1(x—§)H<1+(<_x)) .

7
i>1 r — 1

Thus, there exist b € K™, sgn(b) = 1, {’ a root of Py (z), such that:

’ A
%:bg"l(x—(’)H<1+M) ,

i>1 z—(¢)
for some well-chosen Thakur-Gauss sum ¢’ relative to a twist of sgn.
Let’s treat the elementary (and well-known, see [3], and especially the
proof of Lemma 2.5.4) case dos = 1. Then A = F,[f] for some 0 € K,
sgn(f) = 1. Let’s take z = ale. Then Ps(z) = — 1, and ¢ = 1. In that
case:
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We get:
= z— mgl T_¢ g,
z—1
where t = p(6). We have:
=gg=0+T.
¢ 1 =% T

We get:

_ —\/_7)130 (1— ezi)_l €T =F,[{ <<- ;)) .

In this case ¢ is standard, thus we have:

Kerexp, = 7A,

for 7 € V=Ko, sgn(T 7/ 5) = 1. Let’s set:
w' = expy (f) e T\ {0}.

Then, one has: N
no_ m )
Pg(w') = expy <9t — 9) tw'.
Thus:
Vae A, ¢uw)=pla)
Therefore there exists a € A\ {0} such that:
W' = wp(a).

But, since V i > 0, voo(ei()) = iq’, by examining the Newton polygon of
Yis0€i(P)T!, we get:

~ —q
Voo (TF) = E
This implies:
q
o (0 -F) 2=t
Therefore:
5gn< F)—sgn( 1_1)——1
0
Thus:
Ww=—w
We get: N
_F .
= (= o)l = —(s — 2wl
Thus: -
(z —2)wle = 73
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and therefore:

T =0z — 2wl = V00 H (1 - 91_‘11)_1 .

i>1
5. A rationality result for twisted L-series
Let s be an integer, s > 1. We introduce:
AS :A®Fq "'®]F,1A:A®S,
and set:
ks = Frac(As).
Fori=1,...,s,let p; : K — ks be the homomorphism of F,-algebras such
that Va € A,pi(a) =1®...1®a®1---® 1, where a appears at the ith
position. We set:
As =A ®Fq ks;
Ks = Frac(Ay),
Hs = Frac(B ®F, ks).
We identify H with its image H ® 1 in Hg, and ks with its image 1 ® k.
Thus:
As = Alks].
We also identify G with the Galois group of H,/K,. For i = 1,...,s, p;
induces a homomorphism of H-algebras:
pPi - H — HS .
Let Ky o be the oo-adic completion of K, i.e.:
Ks,oo = ks [FOO]((W))
We set:
Hs,oo = Hs ®KS Ks,oo-

Then we have an isomorphism of K -algebras:

K Hg oo ks[Foo]((Tr*))|PiC(A)|,
where we set m, 1= qd;jfi/—i.

Let V be a finite dimensional K o-vector space. An As,-module M, M C
V', will be called an Ag-lattice in V, if M is a finitely generated As;-module
which is discrete in V' and such that M contains a Ky -basis of V. For
example, B, := Blkg] is an Ag-lattice in Hj .

Let ¢ € Drin and let f be its associated shtuka function. Fori=1,...,s
we set:
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Let 7 : Hy oo — Hs oo be the continuous homomorphism of ks-algebras such
that:

Vee HOg Koo, 7(z)=27.
Let @5 : Ay — Hg{7} be the homomorphism of ks-algebras such that:
dega s k—1

Vac Aa Ps,a = Z ¢a,k H H fZ(J) Tk-
k=0 i=1j=0
We consider:
s k—1 )
exp,,, = Z er () H H fij * e H{{7}}.
k>0 i=1j=0

Then:
Va€As, exp, a=psqexp,,
Furthermore exp,,, converges on H oo
Proposition 5.1. Assume that s = 1 (mod g — 1). The As-module

Ker(exp% t Hs oo = Hsoo) is a finitely generated Ag-module, discrete in
Hs oo and of rank |Pic(A)|. In particular, Kerexp, is an As-lattice in

{r € Hyoo,V a € A\ {0},044(2) = sgn(a)qnw(s*l)x}. Furthermore, if
s # 1 (mod g — 1), then:

Kerexp, = {0}.

Proof. One can show that, for any s, Kerexp,, is a finitely generated A-
module and is discrete in H .

We view Hj as a subfield of ks[Foo]((74)). There exists G C G a system
of representatives of W, such that:

VaeeHs, «k(x)=(0(r))seg-

By Proposition 3.8, fori =1,...,s, 0 € G, we can select a non-zero element
Ui s € Ls = ks[Foo) (" /=n)) such that:

T(Uio) = o(fi)UVig-
Thus, by similar arguments to those of the proof of Lemma 3.5, we get:

A(¢7)ks
Kerexp,(,,) [, = S(QS()]
i=1Yi,o

Recall that (by Proposition 3.8):
Uso € A(¢7)ks  (“V/=m) " Ky oo,
and (by Lemma 3.4):

A(@7)ks € (" V=7) """ Ky o0 .
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Thus: .
Ker exp,(, |Ls (77 —W)qn(d))(s_l)KS,oo.
Thus, if s =1 (mod ¢ — 1), we get:
A(¢7)ks

Ker exp, (o) [ks[Foc)(m)) = 57>
(on) Ik Fecl(r)) = T T,

and if s Z1 (mod ¢ —1):
Ker expg (g, [k Foc) ((r.)) = {0} 0

Remark 5.2. Let H, = Frac(Ha ®r, ks). Let I = aA,a € A\ {0}, and
o = oy € Gal(H/H_,). We have already noticed that:

O'(f) _ sgn(a)qn(qb)*qn(@ﬂf,

We verify that:

d°°—1
VoeGal(H/Hy), ¢l =pss=1 (modq 1 )
q—

In particular, when s = 1 (mod g%~ — 1), ps is defined over H, exp,,,
Hs, — H, is Gal(H/Hj)-equivariant, and Kerexp,, is an Ag-lattice in
H;,oo = H., ®k, Ks o

We introduce (see [6]):

Hk 1 Pk( ) X
Ls= € Hs 0 [G] ™.
Iez(%:ch bo(1) 7!

Theorem 5.3. Let s =1 (mod q ) Set:

Ws/ _ (@il,...,iSZOB H fk o f]gik_l))Gal(H/HA) .
k=1
Then:
expy,, (LW)) c WL
Proof. By our assumption on s, and by Lemma 3.1, we get:
L, € H [G]".
The result is then a consequence of the above remark and [6, Cor. 4.10]. O

Remark 5.4. Set
s ‘ Gal(H/H )
W! = (@il,...,isZOB H Jr-o. f,ﬁ““‘”)

k=1
By Lemma 3.3, there exists u € B* such that:

g € Frac(Hs ®p, A).
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In particular:

B = B'[u],
where we recall that B’ is the integral closure of A in H,4. Thus:

_ s qik71 s i1
Wi =@, i,>0Bu L=t H T fk(;lk ).
k=1

Let W, be the ks-vector space generated by W!.. Then, by the proof of [6,
Lem. 4.4], W, is a fractional ideal of B), := B’[ks], and therefore W', is an
Ag-lattice in H, .

g -1

Proposition 5.5. Let s =1 (mod ). We set:
Us = {z € Hy , exp,, (z) € W}
Then Us is an Ag-lattice in H ., and:
LW, C Us.
Us

If furthermore s = 1 (mod g% — 1), then Kerexp,,,
¥s

ks-vector space. In particular, there exists a € Ay \ {0} such that:

q—1

s a finite dimensional

alsW', C Ker exp,, -

Proof. Since W/ is an A-lattice in H ., we deduce that U, is discrete in
H;,oo and is a finitely generated Ag-module. By Theorem 5.3, we have:
LW, C Us.

Let G' = Gal(Ha/K), and let res : Hf [G] — H [G'] be the usual
restriction map, then:
res(Ls) € H  [G']*.
Therefore LWy is an Ag-lattice in H .. We conclude that Us is an As-
lattice in HJ .
If s = 1 (mod g% — 1), then Kerexp, is an Ag-lattice in HY by
Proposition 5.1. The proposition follows. U

Theorem 5.6. Let s =1 (mod g% —1). We work in
L = ky[Fo] ((“V/=7)).

There exist non-zero elements wi, . . . ,ws € Ty 1= Ag[Fao] (7" V/=7)) such
that:

7(wi) = fiwi.
There also exists h € B\ {0} such that:

voew  S@izwi e
T

Furthermore, if ¢ is standard, then h € FX .
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Proof. By Proposition 3.8, we have:

fl,...,fs € T?
By the same proposition, there exist wy,...,ws € Ts \ {0} such that:

T(w;) = fiw; .
We deduce, by Lemma 3.4 and Lemma 3.5, that:
hlAg
[Tiz1wi’

where I is some fractional ideal of A, h € H*. Let = € W/, by Proposi-
tion 5.5, we get:

Kerexp,, |1, =

Ls(@) [Thmy wi

s

€ hK;. O
We end this section with an application of the above Theorem. Let ¢ €
Drin such that ¢ is standard, i.e.
Kerexp, = 7A.
Let f € § be the shtuka function associated to ¢.

Theorem 5.7. Let n > 1, n = 0 (mod g% —1). Then, there exists b €
B\ {0} such that we have the following property in Cuo:

or(b
i e
%n
Proof. Write n = ¢* — 5, k=0 (mod dw),s =1 (mod g%~ — 1),

Observe that the map u, extends naturally into a map u, : Z(A) — H*,
such that:

X
GHA'

VwEKX, UpA = p(l‘) R
sgn(x)

VI,JGI(A), U]J:O'](UJ)U[.

By Lemma 3.1, we deduce that for all [ > 0, Tll(biq;’) has no zero and no pole
at & Form>1,m=0 (mod dx), let Xy, : Za — H, such that:

" (ur)

ur

VIeZ(A), xm()=

e
We observe that:

Vee K*, xm(zA) =1,
VI,JeI(A), xm(J)=01(xm(J))xm(I).
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In particular, there exists b, € B"\ {0} such that:

bm,
YIeT(), xu(h)=Zn).
By Theorem 5.3, we have:
Ls(1) T2 wy
LTz )1:1]_1% e K,.

™

We now apply 7% to the above rationality result. We get:

(S f}k:)wj) HE)

w4
Let j € {1,...,s}. Let Hy; = H(pp(K),k =1,...,5,k # j). Let & be the
place of H,/Hj ; which corresponds to the kernel of the homomorphism of
H, j-algebras: p;(A)[H, ;] — H,;, pj(a) — a. By Proposition 3.11, there
exists z; € K(p;(K))* such that we have :

.Q?jfj e f](

k—1) ~ 77X
wj|§j S ﬂ'HA .

Now:

ok _ o = pi(un) 5 7 (pj(ur))
(ﬁsm)i; by (1)7" ng pilur)

Therefore, there exists b € B’ \ {0} such that:
-1

1 1

k X

L(1 = — 1-—(P,H/K b) e K.

THLs(W)ler,es = 5 |P| %(P)qk,s( /K) | (b)

The Theorem follows. O
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