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Transcendence of the Hodge–Tate filtration

par Sean HOWE

Résumé. Soit C une extension algébriquement close et complète de Qp.
Nous démontrons qu’un groupe p-divisible G/OC de dimension 1 est défini
sur un sous-corps L ⊂ C complet pour une valuation discrète et contenant les
ratios entre les périodes de Hodge–Tate si et seulement si G est de type CM
et si et seulement si les ratios entre les périodes engendrent une extension de
Qp de degré égal à la hauteur de la composante connexe neutre de G. C’est un
analogue p-adique du résultat classique de transcendance de Schneider qui dit
que, pour τ dans le demi-plan complexe supérieur, τ et j(τ) sont tous les deux
algèbriques sur Q si et seulement si τ appartient à une extension quadratique
de Q. Nous discutons aussi brièvement d’une conjecture qui généralise ce
résultat aux shtukas à une patte.

Abstract. For C a complete algebraically closed extension of Qp, we show
that a one-dimensional p-divisible group G/OC can be defined over a complete
discretely valued subfield L ⊂ C with Hodge–Tate period ratios contained in
L if and only if G has CM, if and only if the period ratios generate an extension
of Qp of degree equal to the height of the connected part of G. This is a p-adic
analog of a classical transcendence result of Schneider which states that for τ
in the complex upper half plane, τ and j(τ) are simultaneously algebraic over
Q if and only if τ is contained in a quadratic extension of Q. We also briefly
discuss a conjectural generalization to shtukas with one paw.

1. Introduction
1.1. Transcendence of τ . An elliptic curve E over the complex numbers
C equipped with a basis for its integral Betti homology gives rise to a point

[τ : 1] ∈ H± = P1(C)\P1(R)
describing the position of the Hodge filtration on H1(E(C),C) with respect
to the fixed basis (thus, τ is the ratio of two periods of a non-zero holomor-
phic differential on E). The GL2(Z)-orbits on this set are in bijection with
the isomorphism classes of elliptic curves over C. These isomorphism classes
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are also parameterized by an algebraic modulus, the j-invariant, which has
the property that the elliptic curve Eτ corresponding to τ has a model over
the field Q(j(τ)). A classical transcendence result of Schneider [6] gives:

Theorem 1.1 (Schneider [6]). For τ ∈ H±, the following are equivalent:
(1) τ and j(τ) are both in Q.
(2) [Q(τ) : Q] = 2.
(3) Eτ has CM.

1.2. An analog for p-divisible groups. In this note, we prove a p-adic
analog of Theorem 1.1, where the role of elliptic curves is taken up by one-
dimensional p-divisible groups, C is replaced by a complete algebraically
closed C/Qp, and Q is replaced by any complete discretely valued subfield
of C (e.g., Qp or Q̂un

p , the completion of the maximal unramified extension
of Qp).

We fix some notation: for a p-divisible group G/OC , we denote by dimG
the dimension of G and by htG the height of G. The Tate module of G,

TpG := lim←−G[pn](C)

is a free Zp-module of rank htG. We denote by G◦ the connected part of G,
and by LieG the tangent space to the identity element of G◦ (thinking of
G◦ as a formal Lie group), which is a free OC-module of rank dimG. We
denote by ωG the cotangent space to the identity element of G◦; it is dual
to LieG. We denote by G∨ the dual p-divisible group (defined using Cartier
duality), which satisfies htG∨ = htG and dimG∨ = htG − dimG. Finally,
we let Zp(1) := Tpµp∞ be the Tate Zp-module, and for any Zp-module M
and n ∈ Z, we define Tate twists

M(n) := M ⊗Zp Zp(1)⊗n.

After tensoring with C, the Tate module of a p-divisible group G is
equipped with a one-step Hodge–Tate filtration

(1.1) 0→ LieG(1)⊗ C → TpG⊗ C → ωG∨ ⊗ C → 0.

If G is a one-dimensional p-divisible group of height n over OC ,
Lie(G)(1)⊗C is one-dimensional, and, after twisting by Zp(−1), the Hodge–
Tate filtration (1.1) gives a point

HT(G) ∈ P(TpG⊗ C(−1)).

Following Tate [9], we can describe HT(G) explicitly: there is a map

HT : TpG∨ → ωG

given by viewing an element of TpG∨ as a map from G to µp∞ and pulling
back the invariant differential dt

t . If we fix a basis e1, . . . , en for TpG(−1)
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giving an identification

P(TpG⊗ C(−1)) ∼= Pn−1(C)

and a basis ∂ for LieG, we have

HT(G) = [(HT(e∗1), ∂) : (HT(e∗2), ∂) : · · · : (HT(e∗n), ∂)]

where e∗i is the dual basis for TpG∨ under the natural duality TpG
∨ ∼=

TpG(−1)∗. Thus, in this presentation the homogeneous coordinates of
HT(G) are the Hodge–Tate periods of ∂. The field of definition, Qp(HT(G)),
which depends only on G, is generated by the ratios of these periods.

We say that a p-divisible group G/OC has CM if End(G)⊗Qp contains
a commutative semisimple algebra over Qp of rank equal to htG. Our main
result is

Theorem 1.2. Let G/OC be a one-dimensional p-divisible group. The fol-
lowing are equivalent:

(1) There is a complete discretely valued field L ⊂ C such that G can
be defined over OL and Qp(HT(G)) ⊂ L.

(2) [Qp(HT(G)) : Qp] = htG◦.
(3) G has CM.

Remark 1.3. When the conditions of Theorem 1.2 hold, one can always
find a complete discretely valued field L ⊂ C and a p-divisible group G′/OL
such that G′OC

∼= G and G′ has CM over OL. It is not typically true,
however, that every G′/OL such that G′OC

∼= G has CM, even after allowing
a finite extension of L. For example, over the ring of integers of a finite
extension of Qp, the only extensions of Qp/Zp by µp∞ with CM will be
those with Serre–Tate coordinate a root of unity, however, after passing to
OC all will have CM, as over OC the extensions split.

Remark 1.4. Theorem 1.2 can be used to produce transcendental elements
of C as follows: if L is a complete discretely valued extension of Qp and G
is a formal group over OL without CM, then we find that at least one of the
period ratios of G is contained in L̂\L (since any algebraic extension of L is
also discretely valued). The CM lifts of formal groups are well understood
(cf. e.g. [3] and [12]). In particular, using the Gross–Hopkins period map
it is easy to see that “most” formal groups over complete discretely valued
extensions of Qp do not have CM.

The main tools used in the proof of Theorem 1.2 are the Scholze–
Weinstein [7] classification of p-divisible groups over OC by the Hodge–Tate
filtration, and Tate’s [9] theorem on full-faithfulness of the Tate module of
a p-divisible group over a complete discretely valued field. We recall both
results in Section 2.



674 Sean Howe

Remark 1.5. The Scholze–Weinstein classification identifies the set of iso-
morphism classes of one-dimensional height n p-divisible groups over OC
with the set of GLn(Zp)-orbits in Pn−1(C). If we restrict to formal groups,
then the Hodge–Tate filtration lies in the Drinfeld upper half space Ωn−1
(constructed by removing from Pn−1 all lines that are contained in a proper
Qp-rational subspace). In particular, for n = 2, we have

Ω1(C) = P1(C)− P1(Qp)

which we can write with coordinate [τHT : 1]. Thus, for height 2 formal
groups Theorem 1.2 becomes a precise analog of Theorem 1.1. The role of
the j-invariant is played by the explicit statement that G can be defined
over OL.

1.3. Period mappings. No function playing the role of the j-invariant
appears in Theorem 1.1 because Pn is not a well-behaved moduli space
for the p-divisible groups we consider. After restricting to formal groups
we can remedy this: let G0 be the unique one-dimensional height n formal
group over Fp, and let LT∞n denote the infinite level Lubin–Tate space
parameterizing deformations of G0 with a basis of the Tate module, which
is a preperfectoid space over FracW (Fp) by work of Weinstein [11]. It admits
two period maps (cf. [7]): the Hodge–Tate period map

πHT : LT∞n → Ωn−1,

which is described on C-points using the Hodge–Tate filtration (1.1) as
above, and the Gross–Hopkins [4] period map

πGH : LT∞n → Pn−1.

The Gross–Hopkins period map factors through level zero Lubin–Tate
space, and remembers the field of definition of a deformation of G0 up
to a finite extension. Fixing an embedding W (Fp)→ C, we obtain

Corollary 1.6. For x ∈ LT∞n (C) with corresponding formal group Gx/OC ,
the following are equivalent:

(1) There is a complete discretely valued L ⊂ C such that πGH(x) ∈
Pn−1(L) and πHT(x) ∈ Ωn−1(L).

(2) [Qp(πHT(x)) : Qp] = n.
(3) Gx has CM.

1.4. Outline. In Section 2 we recall some results on p-divisible groups. In
Section 3 we prove Theorem 1.2 and Corollary 1.6. In Section 4 we briefly
discuss a conjectural generalization to higher dimensional p-divisible groups
and shtukas with one paw.
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2. Recollections
In this section we recall two theorems on p-divisible groups:

Theorem 2.1 (Tate [9, Theorem 4]). For L a complete discretely valued
extension of Qp, the functor

G 7→ TpG

is fully faithful from the category of p-divisible groups over OL to the cate-
gory of finite free Zp-representations of Gal(L/L).

Theorem 2.2 (Scholze–Weinstein [7, Theorem B]). For C a complete al-
gebraically closed extension of Qp, the functor

G 7→ (TpG,LieG ⊂ TpG⊗ C(−1))

is an equivalence between the category of p-divisible groups over OC and
the category of pairs (M,Fil) consisting of a finite free Zp-module M and
a C-vector subspace Fil ⊂M ⊗ C(−1).

Remark 2.3. We note that for 1-dimensional p-divisible formal groups,
Theorem 2.2 is due to Fargues [2].

3. Proofs
In this section we prove Theorem 1.2 and then deduce Corollary 1.6 from

it. The key observation in the proof of Theorem 1.2 is that the combination
of Tate’s theorem (Theorem 2.1 above) and the fact that the Hodge–Tate
filtration is determined by the Galois representation put strong restrictions
on the field of definition of the Hodge–Tate filtration for a p-divisible group
over a complete discretely valued field.

To prove Theorem 1.2, we will need a linear algebra lemma. For F ′/F
an extension of fields, V a finite dimensional vector space over F , and
W ⊂ V ⊗F F ′ a one-dimensional subspace, we will denote by F (W ) the
field of definition of W inside of F ′. It is the smallest subfield L ⊂ F ′ such
that there exists a subspaceWL ⊂ V ⊗FL withWL⊗LF = W . Equivalently,
it is the field generated over F by the ratios of the homogeneous coordinates
of W as a point in P(V ⊗ F ′) with respect to a fixed F -basis of V .

Lemma 3.1. Let V be a finite dimensional vector space over a perfect field
F , and let F ′/F be an extension containing an algebraic closure of F . If

W ⊂ V ⊗ F ′

is a line whose conjugates under Aut(F ′/F ) span V ⊗F ′, then the stabilizer
of W in EndF (V ) is isomorphic to a subfield K ⊂ F (W ) such that [K :
F ] ≤ dimV . Furthermore, in this situation K = F (W ) if and only if
[F (W ) : F ] = dimV if and only if [K : F ] = dimV .
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Proof. We denote d = [F (W ) : F ] (which could be∞), and n = dimV . We
denote by K the stabilizer of W in EndF (V ).

The action of K on the line
WF (W ) := W ∩ V ⊗F F (W )

induces a map from K to F (W ). It is an injection because any element of
EndF (V ) that acts as zero on W also acts as zero on all of its conjugates
under Aut(F ′/F ), which span V ⊗F F ′. Thus we obtain K ↪→ F (W ). In
particular, K is a field. Then V is a K-vector space, so we find [K : F ] ≤ n.

We now show [K : F ] = n if and only if K = F (W ) if and only if
[F (W ) : F ] = n.

Suppose [K : F ] = n. Then, V is isomorphic to K as a K-module.
Because F ′/F contains F , and K/F is separable (F is perfect), we find
V ⊗ F ′ splits into n distinct characters of K, and thus these are the only
lines stabilized by K. Each of these lines is defined over an extension of
degree n of F , so that [F (W ) : F ] ≤ n. Since K ⊂ F (W ), [F (W ) : F ] = n,
and K = F (W ).

Suppose K = F (W ). Because W has n distinct conjugates, we have
d ≥ n. Because [K : F ] ≤ n, we have d ≤ n. Thus d = n, and [K : F ] =
[F (W ) : F ] = n.

Suppose [F (W ) : F ] = n. It suffices to show F (W ) ↪→ K, since that
implies [K : F ] ≥ n, and we obtain [K : F ] = n and K = F (W ). We
observe

V ∗ ∼= (V ∗ ⊗ F (W ))/W⊥F (W )

as F vector spaces, since both have dimension n, and the map is injective
(if it were not, there would be a non-zero linear form on V defined over F
and vanishing on W , thus the conjugates of W would not span V ⊗ F ′).
The right hand side is a F (W )-vector space, so this isomorphism equips V ∗
with an action of F (W ) preserving W⊥ ⊂ V ∗ ⊗F ′, and thus dually equips
V with an action of F (W ) preserving W ⊂ V ⊗ F ′. This gives the desired
inclusion F (W ) ↪→ K. �

Remark 3.2. We will use Lemma 3.1 in the proof of Theorem 1.2 to force
the image of the Galois representation on the Tate module of a formal group
to be abelian. For higher dimensional formal groups this step breaks down
because for a higher dimensional filtration the stabilizers in Lemma 3.1 are
no longer necessarily commutative.

We will also need the following structural lemma:

Lemma 3.3. If G/OC is a p-divisible group, then

G ∼= G◦ × (Qp/Zp)htG−dimG,

and the conjugates of LieG under Aut(C/Qp) span TpG◦(−1)⊗ C.
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Proof. LetW ′ be the span of the conjugates ofW = LieG in TpG(−1)⊗C,
and let W ′0 = (W ′ ∩ TpG(−1))(1), which we identify with a submodule of
TpG. W ′0 is a free Zp-module of rank dimW ′, saturated in TpG (here we
use some standard descent results for vector spaces to deduce that W ′ ∩
TpG ⊗ Qp has Qp-dimension equal to dimW ′ and spans W ′, cf., e.g., [5,
Propositions 16.1 and 16.7]).

By the Scholze–Weinstein classification, Theorem 2.2, the pair (W ′0,LieG)
defines a p-divisible group H over OC . Furthermore, any map from H to
Qp/Zp comes from a map from (W ′0,LieG) to (Zp, {0}), and thus must be
zero since it sends LieG and all of its conjugates to zero. Thus, H is con-
nected. If we choose a free Zp-module M of rank m complementary to W
in TpG (which exists because W ′0 is saturated in TpG), and a trivialization
Zmp ∼= M , then the resulting isomorphism

(W ′0,LieG)× (Zmp , {0}) ∼= (TpG,LieG)
gives an isomorphism
(3.1) H × (Qp/Zp)m → G.

Since H is connected, we deduce H ∼= G◦, andm = dimG−htG. Thus (3.1)
is the desired decomposition, and the statement about the conjugates of
LieG follows from the construction of W ′. �

Proof of Theorem 1.2. We first reduce to the case of G connected (i.e. to G
a formal group). Observe that passing to the connected component G◦ does
not change Qp(HT(G)), so that condition (2) of the theorem is unchanged.
Furthermore, if G can be defined over OL as in (1), then so can G◦, and
vice versa by Lemma 3.3. Thus, if we have (1) ⇐⇒ (2) for G connected,
we obtain (1) ⇐⇒ (2) for all G. Furthermore, the decomposition of
Lemma 3.3 and the Scholze–Weinstein classfication (Theorem 2.2) imply
that

End(G) =
(

End(G◦) Hom((Qp/Zp)n−htG◦ , G◦)
0 Mn−htG◦(Qp)

)
.

Here, the lower left is 0 because any map from a connected finite group
scheme to an étale finite group scheme is zero (alternatively, this can
be seen from the Scholze–Weinstein classification). From this we see that
(2) ⇐⇒ (3) for G connected implies (2) ⇐⇒ (3) for all G.

From now on we will assume G is connected. Denote by W the Hodge–
Tate filtration in TpG(−1)⊗ C. By Lemma 3.3, the conjugates of W span
TpG(−1) ⊗ C. Note Qp(W ) is the field Qp(HT(G)) in the statement of
the theorem. Now, as a consequence of the Scholze–Weinstein classification
(Theorem 2.2), End(G)⊗Qp is equal to the stabilizer of W in End(TpG⊗
Qp). We then obtain (2) ⇐⇒ (3) from Lemma 3.1. In general, we denote
this stabilizer, which is equal to EndG⊗Qp, by K. By Lemma 3.1, it is a
field with [K : Qp] ≤ n.
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We now show (1) =⇒ (2). We assume (1), and by abuse of nota-
tion write G/OL for some p-divisible group over OL with base change to
OC equal to G. Because the induced L-semilinear action of Gal(L/L) on
TpG(−1)⊗L preserves the Hodge–Tate filtration and is in fact L-linear, the
line W is preserved by the linear action of Gal(L/L). On the other hand,
the image of Gal(L/L) is also contained in EndQp(TpG(−1) ⊗ Qp). Thus,
Galois acts through K, and Tate’s theorem (Theorem 2.1) implies that the
centralizer of K also acts by isogenies. So, we must have that K contains
its centralizer in EndQp(TpG(−1) ⊗ Qp), which implies that [K : Qp] = n.
Thus, by Lemma 3.1, [Qp(HT(G)) : Qp] = n.

Finally we show (3) =⇒ (1). For a fixed [K : Qp] = n, our computations
so far along with the Scholze–Weinstein classification (Theorem 2.2) show
that isogeny classes of G with CM byK correspond to orbits of GLn(Qp) on
Ωn−1(K). There is a unique such orbit, corresponding to bases for K/Qp up
to Q×p homothety. Any Lubin–Tate formal group G/OK for K is contained
in this isogeny class and any group isogenous to it is defined over the ring
of a integers of a finite extension of K, thus we conclude any formal group
with CM by K can in fact be defined over the ring of integers of a finite
extension of Qp. �

Proof of Corollary 1.6. For a point x ∈ LT∞n , we will show Corollary 1.6(1)
is equivalent to Theorem 1.2(1) for Gx. It suffices to show that if πGH(x)
is in a discretely valued extension L of FracW (k) then Gx can be defined
over a finite extension of L. As in [4], Corollary 23.21, πGH is surjective (at
level 0) on L points. The fibers of πGH contain isogenous groups, and thus
there is some G′ isogenous to Gx defined over a finite extension of L. But
then Gx is also defined over a finite extension of L, since the kernel of an
isogeny from G′ to Gx is defined over a finite extension. �

4. Generalizations
In the archimedean setting, an analog of Theorem 1.1 holds for abelian

varieties of higher dimension (cf. [1] and [8]). Our method of proof in the
p-adic setting does not obviously generalize to p-divisible groups of dimen-
sion ≥ 1 (cf. Remark 3.2), however, it is natural to conjecture the analogous
result.

We might even go further: p-divisible groups give the simplest examples
of shtukas with one paw over SpaC[ as in [10]. By a result of Fargues
(cf. [10, Theorem 12.4.4]), a shtuka with one paw is equivalent to a pair
consisting of a finite free Zp-moduleM and a B+

dR-lattice L ⊂M⊗BdR. The
lattice L induces a filtration on M ⊗BdR, thus by restriction on M ⊗B+

dR,
and then, via specialization along the natural map θ : B+

dR → C, onM⊗C.
The resulting filtration on M ⊗C is called the Hodge–Tate filtration. This
generalizes the Hodge–Tate filtration on a p-divisible group, in which case
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M = TpG and L is uniquely determined by the Hodge–Tate filtration and
the requirement that it lie in the natural minuscule Schubert cell relative
to M ⊗ B+

dR. We note that, in general, the Hodge–Tate filtration can have
multiple steps!

We say a shtuka (M,L) has CM if (M ⊗Qp,L) admits endomorphisms
by a semi-simple commutative algebra over Qp of dimension equal to the
rank of M .

There is also a natural analog of being defined over a complete discretely
valued subfield in this setting: Given a complete discretely valued field
L ⊂ C and a latticeM in a deRham representation of Gal(L/L), we obtain
a shtuka with one paw from the pair

(M, (M ⊗ BdR)Gal(L/L) ⊗L B+
dR).

We will say a shtuka with one paw is arithmetic if it is isomorphic to one
of this form. We formulate the optimistic

Conjecture 4.1. If (M,L) is an arithmetic shtuka with one paw with
Hodge–Tate filtration defined over a complete discretely valued subfield of
C then (M,L) has CM.

Remark 4.2. For a CM shtuka, the Hodge–Tate filtration is algebraic
since any sub-space preserved by the CM algebra K is a direct sum of the
1-dimensional character spaces for K.
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