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Newton–Okounkov bodies: an approach of
function field arithmetic

par Huayi CHEN

Résumé. En utilisant les méthodes de la géométrie d’Arakelov dans le cadre
de corps de fonctions, on associe, à chaque système linéaire gradué birationnel
et de type sous-fini, un corps convexe dont la mesure de Lebesgue s’identifie
au volume du système linéaire gradué. Comparé à d’autres approches dans la
littérature, cette nouvelle approche demande moins de paramètres non intrin-
sèques de la variété projective. En outre, cette méthode n’exige pas l’existence
d’un point rationnel régulier sur la variété projective, ce qui est supposé, par
exemple, dans la construction de Lazarsfeld et Mustaţǎ.

Abstract. By using the method of Arakelov geometry in the function field
setting, we associate, to each graded linear series which is birational and of
sub-finite type, a convex body whose Lebesgue measure identifies with the
volume of the graded linear series. Compared to other constructions in the
literature, less non-intrinsic parameters of the projective variety are involved
in this new approach. Moreover, this method does not require the existence
of a regular rational point in the projective variety, which was assumed for
example in the construction of Lazarsfeld and Mustaţǎ.

1. Introduction

The theory of Newton–Okounkov bodies, initialised by Okounkov [19, 20]
and then developed by Lazarsfeld and Mustaţǎ [16], and Kaveh and Kho-
vanskii [11, 12] respectively, is an efficient tool to study the asymptotic
behaviour of graded linear series on projective varieties. Let X be an in-
tegral projective scheme of Krull dimension d over a field k and L be an
invertible OX -module. This theory associates, to each graded linear series
of L (satisfying some mild conditions), a convex body of Rd (called Newton–
Okounkov body of the graded linear series) whose Lebesgue measure is equal
to the volume of the graded linear series divided by d!. The construction
relies on a valuation of the rational function field k(X) valued in the group
Zd equipped with a monomial order, such that the residue field of the val-
uation coincides with k. This valuation can be constructed through the
choice of a flag of smooth subschemes of X containing a regular rational
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point (see [16]), or through the choice of a regular sequence of the local
ring of a regular rational point (see [12]). Moreover, in [8, Theorem 2.9] it
is shown that any valuation of maximal rank of the field k(X) is equiv-
alent to a valuation associated with a flag in a birational modification of
X. From the point of view of birational geometry, the dependence of the
Newton–Okounkov body on the choice of the parameters (regular point,
flag of smooth closed subvarieties, monomial order on Rd) is a subtle prob-
lem. We refer the readers to [14] for a detailed discussion on the convex
bodies appearing as Newton–Okounkov bodies of divisors, see also [16, §5].
Moreover, the existence of a regular rational point actually implies that the
k-scheme is geometrically irreducible. Although interesting consequences of
the Okounkov convex body approach, such as Fujita approximation and
the volume as a limite, can still be obtained by using fine technics of lo-
cal multiplicities (see [9]), the construction of convex bodies becomes more
complicated and relies on even more non-intrinsic choices.

The purpose of this article is to introduce a new approach of relating
graded linear series to convex bodies in Euclidean spaces, which is based
on function field arithmetics. The construction only depends on the choice
of a flag of successive field extensions

k = K0 ⊂ K1 ⊂ · · · ⊂ Kd = k(X),

such that each extension Ki/Ki−1 is of transcendence degree 1 (the exten-
sions Ki/Ki−1 are necessarily finitely generated, see [3, Chapter V, §14,
no. 7 Corollary 3]). Thus we can consider Ki as the field of rational func-
tions of a regular projective curve Ci over Spec(Ki−1). Given a graded
linear series V• of a Cartier divisor on X, we let V•,Ki be the graded sub-Ki-
algebra of

⊕
n∈N k(X) generated by V•. It generates a graded OCi-algebra

of vector bundles Ei• on the curve Ci. In the case where the graded lin-
ear series V• is birational (see Definition 3.5), we show that the volume of
V•,Ki is equal to the arithmetic volume of the graded-OCi-algebra Ei•. We
also construct by induction a family of convex bodies (∆i)di=0, where ∆i

is a convex body in Ri, which is delimited by the graph of a non-negative
concave function on ∆i−1 constructed from the function field arithmetic
of Ei• by using the method of Fujita approximation for arithmetic graded
linear series (see [1, 5]). Note that Katz and Urbinati [10] have studied the
construction of Newton–Okounkov bodies on schemes over a discrete val-
uation ring, where the idea of arithmetic Newton–Okounkov body [1, 22]
also appears.

From the point of view of birational geometry, the above procedure holds
for the general setting of graded linear series of a finitely generated exten-
sion K of the base field k and it is not necessary to fix a projective model
of K. For any d ∈ N, d > 1, we denote by Cd the set of d-uplets (∆i)di=0
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where each ∆i is a convex body in Ri and such that the projection of ∆i

on Ri−1 by the i− 1 first coordinates is contained in ∆i−1.

Theorem 1.1. Let k be a field and K/k be a finitely generated extension
of transcendence degree d > 1. We fix a flag

(1.1) k = K0 ⊂ K1 ⊂ · · · ⊂ Kd = K

of field extensions such that Ki/Ki−1 is of transcendence degree 1. Let
A(K/k) be the set of all birational graded linear series of sub-finite type
of K/k (see Definition 3.5). There exists a map (∆i)di=0 from A(K/k) to
Cd, only depending on the flag (1.1), which satisfies the following conditions:

(1) For all graded linear series V• and V ′• in A(K/k) such that Vn ⊂ V ′n
for sufficiently positif n, one has ∆i(V•) ⊂ ∆i(V ′• ) for any i ∈
{0, . . . , d}.

(2) For any graded linear series V• in A(K/k), any integer m > 1 and
any i ∈ {0, . . . , d}, one has ∆i(V (m)

• ) = m∆i(V•), where V (m)
• :=⊕

n∈N Vmn.
(3) For all graded linear series V• and W• in A(K/k), one has

∆i(V•) + ∆i(W•) ⊂ ∆i(V• ·W•),

for any i ∈ {0, . . . , d}, where “+” denotes the Minkowski sum.
(4) For any graded linear series V• in A(K/k) and any i ∈ {0, . . . , d},

the mass of ∆i(V•) with respect to the Lebesgue measure is equal
to the volume of the graded linear series V•,Kd−i

of K/Kd−i divided
by i!.

Moreover, the graded linear series V• satisfies the Fujita approximation
property (see Definition 3.7).

As explained above, for any V• ∈ A(K/k), the family of convex bodies
∆i(V•) are constructed in a recursive way. More precisely, it can be shown
that the graded linear series V•,K1 belongs to A(K/K1) (see Remark 3.6).
We let (∆0(V•), . . . ,∆d−1(V•)) be the family (∆0(V•,K1), . . . ,∆d−1(V•,K1)),
where by abuse of notation we use the expression (∆i)d−1

i=0 to denote the
map A(K/K1) → Cd−1 predicted by the theorem as an induction hypoth-
esis. The extension K1/k corresponds to a regular projective curve C over
Spec k whose rational function field is K1. The convex body ∆d(V•) is then
constructed as the arithmetic Newton–Okounkov body of the graded OC-
algebra on vector bundles generated by V•.

Compared to the classic approach of Newton–Okounkov bodies, the
above construction relies on fewer parameters, which are closely related
to the birational geometry of the extension K/k. Moreover, the convex
bodies ∆i(V•), i ∈ {0, . . . , d} are related by linear projections. This fact
reflects interesting geometric information of the graded linear series V•,Ki .
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The rest of the article is organised as follows. In the second section, we
recall some classic results on function field arithmetic of vector bundles.
In the third section, we discuss several properties of graded linear series.
Finally, in the fourth section, we explain the construction of convex bodies
associated with graded linear series and prove the main theorem.

Acknowledgement. I would like to thank the referee for the comments.
This work is partially supported by the ANR project ANR-14-CE25-0015.
Moreover, the author has benefitted from the visiting support of Beijing
International Center for Mathematical Research and would like to thank
the center for the hospitalities.

2. Function field arithmetic of vector bundles

In this section, we let k be a field and C be a regular projective curve
over Spec k (namely an integral regular projective scheme of dimension 1
over Spec k). By vector bundle on C, we mean a locally free OC-module E
of finite rank.

2.1. Degree function. Recall that Riemann–Roch formula shows that,
for any vector bundle E on C, one has

(2.1) h0(E)− h1(E) = deg(E) + rk(E)(1− g(C/k)),

where h0(E) and h1(E) are respectively the ranks ofH0(C,E) andH1(C,E)
over k, deg(E) = deg(c1(E)∩[C]) is the degree of E, and g(C/k) is the genus
of the curve C relatively to k, which is equal to the rank of H0(C,ωC/k)
over k, ωC/k being the relative dualising sheaf. Note that by Serre duality
one has h1(E) = h0(E∨ ⊗ ωC/k).

Let K = k(C) be the field of rational functions on C. Recall that any
closed point x of C determines a discrete valuation ordx( · ) on the field K.
We denote by | · |x the absolute value on K defined as | · |x := e− ordx( · ), and
byKx the completion ofK with respect to | · |x, on which the absolute value
| · |x extends by continuity. If E is a vector bundle on C, the OC-module
structure on E determines, for each closed point x ∈ C, a norm ‖ · ‖x on
EKx defined as

‖s‖x := inf{|a| : a ∈ K×x , a−1s ∈ E ⊗OC
ox},

where ox is the valuation ring of Kx. Recall that the degree of E can also
be computed as

(2.2) deg(E) = −
∑

closed point x∈C
[k(x) : k] log ‖s1 ∧ · · · ∧ sr‖x,det,

where (s1, . . . , sr) is an arbitrary basis of EK over K, k(x) is the residue
field of the closed point x, and ‖ · ‖x,det is the determinant norm on det(EKx)
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induced by ‖ · ‖x. Similarly, for any non-zero vector s in EK , we define

(2.3) deg(s) = −
∑

closed point x∈C
[k(x) : k] log ‖s‖x.

Note that, if E is an invertible OC-module, then for any non-zero vector
s ∈ EK , one has deg(s) = deg(E).

Proposition 2.1. Let C be a regular projective curve over a field k and E
be a vector bundle on C. For any non-zero section s ∈ H0(C,E) viewed as
a vector in EK , one has deg(s) > 0.

Proof. Since s is a global section of E, for any closed point x ∈ C, one has

− log ‖s‖x = ordx(s) > 0.

Hence we obtain from (2.3) the relation deg(s) > 0. �

Proposition 2.2. Let C be a regular projective curve over a field k and L
be an invertible OC-module. If deg(L) > 0, then h0(L) 6 deg(L) + 1.

Proof. The inequality is trivial if h0(L) = 0. In the following, we assume
that L admits a non-zero global section s, which defines an injective homo-
morphism from L∨ to OC . Therefore one has

h0(L∨ ⊗ ωC/k) 6 h0(ωC/k) = g(C/k),

where g(C/k) is the genus of C. By Riemann–Roch formula (2.1) we obtain

h0(L) = h0(L∨ ⊗ ωC/k) + deg(L) + 1− g(C/k) 6 deg(L) + 1. �

2.2. Successive minima. Let k be a field, C be a regular projective curve
over Spec k and E be a vector bundle on C. For any i ∈ {1, . . . , rk(E)}, let
λi(E) be the supremum of λ ∈ R such that the K-vector subspace of EK
generated by the vectors s ∈ EK \ {0} satisfying deg(s) > λ has rank > i.
By definition one has

λ1(E) > · · · > λr(E), with r = rk(E).

These invariants are similar to (the minus logarithmic version of) successive
minima in geometry of numbers.

Proposition 2.3. Let C be a regular projective curve over a field k and E
be a vector bundle on C. If E is generated by global sections, then for any
i ∈ {1, . . . , rk(E)} one has λi(E) > 0.

Proof. Let K = k(C) be the field of rational functions on C. Since E is
generated by global sections, there exist non-zero global sections s1, . . . , sr
of E which form a basis of EK overK. By Proposition 2.1, one has deg(si) >
0 for any i ∈ {1, . . . , n}, which implies the assertion of the proposition. �
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By Hadamard’s inequality, if (s1, . . . , sr) is a basis of EK over K, then
for any closed point x ∈ C one has

log ‖s1 ∧ · · · ∧ sr‖x,det 6
r∑
i=1

log ‖si‖x.

Thus we obtain

(2.4) λ1(E) + · · ·+ λr(E) 6 deg(E).

Roy and Thunder have proved the following converse inequality (see [21,
Theorem 2.1]):

(2.5) λ1(E) + · · ·+ λr(E) > deg(E)− rk(E)`C(g(C/k)),

where `C is a non-negative function on R+ depending only on the curve C.
The successive minima are related to the R-filtration by minima. Let E be

a vector bundle on C. For any t ∈ R, let F t(EK) be the K-vector subspace
of EK generated by non-zero vectors s ∈ EK such that deg(s) > t. Then
(F t(EK))t∈R is a decreasing R-filtration of EK . Note that the function
(t ∈ R) 7→ dimK(F t(EK)) is left continuous, and one has the following
equality of distributions

rk(E)∑
i=1

δλi(E) = − d
dt dimK(F t(EK)),

where δλi(E) denotes the Dirac measure on λi(E).

2.3. Positive degree. Let k be a field, C be a regular projective curve
and E be a vector bundle on C. We denote by deg+(E) the supremum of
the degrees of all vector subbundles of E, called the positive degree of E.
Recall that one has (see [7, Theorem 2.4])

(2.6)
∣∣h0(E)− deg+(E)

∣∣ 6 rk(E) max(g(C/k)− 1, 1),

where h0(E) is the rank of H0(C,E) over k. Moreover, by Hadamard’s
inequality, one has

(2.7)
rk(E)∑
i=1

max(λi(E), 0) 6 deg+(E),

which is similar to (2.4). Also we can deduce from (2.5) the following in-
equality (we refer the readers to [7, Proposition 8.1] for a proof)

(2.8) deg+(E) 6
rk(E)∑
i=1

max(λi(E), 0) + rk(E)`C(g(C/k)).

Combining the inequalities (2.6)–(2.8), we obtain the following result.
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Proposition 2.4. Let C be a regular projective curve over a field k and E
be a vector bundle on C. One has

(2.9)

∣∣∣∣∣∣h0(E)−
rk(E)∑
i=1

max(λi(E), 0)

∣∣∣∣∣∣ 6 rk(E)˜̀C(g(C/k)),

where ˜̀C(x) = `C(x) + max(x− 1, 1) for any x ∈ R+.

3. Graded linear series

3.1. Graded linear series of a divisor. Let k be a field and π : X →
Spec k be an integral projective k-scheme. Let K be the field of rational
functions on X. For any Cartier divisor D on X, we denote by H0(D) the
k-vector space

H0(D) = {f ∈ K : D + div(f) > 0} ∪ {0}.

Denote by OX(D) the sub-OX -module of the constant sheaf π∗(K) gen-
erated by −D. It is an invertible OX -module. For any finite dimensional
k-vector subspace V of K which is contained in H0(D), the canonical ho-
momorphism π∗(V ) → π∗(K) factors through OX(D). The locus where
the homomorphism π∗(V ) → OX(D) is not surjective is called the base
locus of V with respect to the Cartier divisor D, denoted by BD(V ). It is a
Zariski closed subset of X. If V is non-zero, then one has BD(V ) ( X.
Moreover, the homomorphism π∗(V ) → OX(D) induces a k-morphism
jV,D : X \BD(V )→ P(V ) such that j∗V,D(OV (1)) ∼= OX(D)|X\BD(V ), where
OV (1) denotes the universal invertible sheaf of P(V ). Note that the rational
morphism X 99K P(V ) determined by jV,D does not depend on the choice
of the Cartier divisor D (such that H0(D) ⊃ V ). We denote by jV this
rational morphism.

Definition 3.1. Let V be a finite dimensional k-vector subspace of K.
We say that V is birational if the rational morphism jV : X 99K P(V )
maps X birationally to its image. Note that this condition is equivalent
to the condition K = k(V ), where k(V ) denotes the sub-extension of K/k
generated by elements of the form a/b in K, a and b being elements in V ,
b 6= 0. By definition, if V is birational and if f is a non-zero element of K,
then fV := {fg | g ∈ V } is also birational.

Remark 3.2. Let V be a finite dimensional k-vector subspace ofK. If there
exists a very ample Cartier divisor A on X such that H0(A) ⊂ V , then the
rational morphisme jV : X 99K P(V ) maps X birationally to its image,
namely V is birational. More generally, if V is a finite dimensional k-vector
subspace of K which is birational and if W is another finite dimensional
k-vector subspace of K containing V , then W is also birational.
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Let D be a Cartier divisor on X. We denote by V•(D) :=
⊕

n∈NH
0(nD).

This is a graded k-algebra. We call graded linear series of D any graded
sub-k-algebra of V•(D). If V• is a graded linear series of D, its volume is
defined as

vol(V•) := lim sup
n→∞

dimk(Vn)
nd/d! ,

where d is the dimension of X. In particular, if V• is the total graded linear
series V•(D), its volume is also called the volume of D, denoted by vol(D).
The divisor D is said to be big if vol(D) > 0. Note that if D is an ample
divisor, then its volume is positive, and can be written in terms of the
self-intersection number (Dd) (see [15, §2.2.C] for more details).

Definition 3.3. Let D be a Cartier divisor on X and V• be a graded linear
series of D. Following [16, Definition 2.5], we say that the graded linear
series V• is birational if for sufficiently positive integer n, the rational map
jVn : X 99K P(Vn) maps X birationally to its image.

Remark 3.4.
(1) Let D be a Cartier divisor on X and V• be a birational graded linear

series of D. If ν : X ′ → X is a birational projective k-morphism
from an integral projective k-scheme X ′ to X, then V• is also a
birational graded linear series of ν∗(D).

(2) Let D be a Cartier divisor on X and V• be a graded linear series.
We assume that V• contains an ample divisor, namely Vn 6= {0}
for sufficiently positive integer n, and there exist an ample Cartier
divisor A on X and an integer p > 1 such that Vn(A) ⊂ Vnp for
n ∈ N>1. Then V• is a birational graded linear series of D.

3.2. Graded linear series of a finitely generated extension. Let k
be a field and K be a field extension of k which is finitely generated over k.

Definition 3.5. By linear series of K/k we mean any finite dimensional
k-vector subspace V of K. We say that a linear series V of K/k is birational
if K = k(V ). Recall that k(V ) denotes the sub-extension of K/k generated
by elements of the form a/b with a, b ∈ V , b 6= 0.

We call graded linear series of K/k any graded sub-k-algebra V• of⊕
n∈NK (equipped with the polynomial graded ring structure) such that

each homogeneous component Vn is a linear series of K/k for any n ∈ N. If
V• is a graded linear series of K, its volume is defined as

vol(V•) := lim sup
n→∞

dimk(Vn)
nd/d! ∈ [0,+∞],

where d is the transcendence degree of K over k.
Let V• be a graded linear series of K/k. We say that V• is of finite type

if it is finitely generated as a k-algebra. We say that V• is of sub-finite type
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if it is contained in a graded linear series of finite type. We say that V•
birational if k(Vn) = K for sufficiently positive n.

We denote by A(K/k) the set of all birational graded linear series of
sub-finite type of K/k.

Remark 3.6.
(1) Let V• and V ′• be two graded linear series of K/k. Denote by V• ·V ′•

the graded linear series
⊕

n∈N(Vn · V ′n) of K/k, where Vn · V ′n is the
k-vector space generated by {ff ′ | f ∈ Vn, f ′ ∈ V ′n}. If both graded
linear series V• and V ′• are of finite type (resp. of sub-finite type,
birational), then also is V• · V ′• .

(2) Let V• be a graded linear series of K/k. If k′/k is a field exten-
sion such that k′ ⊂ K, we denote by V•,k′ the graded linear series⊕
n∈N Vn,k′ ofK/k′, where Vn,k′ is the k′-vector subspace ofK gener-

ated by Vn. If V• is of finite type (resp. of sub-finite type, birational),
then also is V•,k′ .

(3) Let V• be a graded linear series of K/k which is of sub-finite type.
There then exists a birational graded linear series of finite type W•
of K/k such that Vn ⊂Wn for any n ∈ N. Without loss of generality
we may assume that 1 ∈W1 and thatW• is generated asW0-algebra
by W1. Then the scheme X = Proj(W•) is a projective model of the
field K over k (namely an integral projective k-scheme such that
k(X) = K). Moreover, the element 1 ∈W1 defines an ample Cartier
divisor A on X such that H0(nA) = Wn for sufficiently positive
integer n. Therefore, in the asymptotic study of the behaviour of
Vn when n → ∞, we may assume that V• is a graded linear series
of a Cartier divisor on an integral projective scheme over k which
is a projective model of K over k.

Definition 3.7. Let V• be a graded linear series of K/k. We say that V•
satisfies the Fujita approximation property if the relation

sup
W•⊂V•

vol(W•) = V•

holds, where W• runs over the set of graded sub-k-algebra of finite type
of V•.

Remark 3.8. If a graded linear series V• satisfies the Fujita approximation
property, then the “limsup” in the definition of its volume is actually a limit,
provided that Vn 6= {0} for sufficiently positive n. Let W• be a graded sub-
k-algebra of finite type of V•. For sufficiently divisible integer m > 1, the
graded k-algebra

W (m)
• := k ⊕

⊕
n∈N, n>1

Wnm
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is generated by Wm (see [2, III.§1, no. 3, Lemma 2]) and, by the classic
theory of Hilbert–Samuel functions (see [4, VIII.§4]), the sequence

(d! dimk(Wnm)/(nm)d)n>1

converges to the volume of W•. By the assumption that Vn 6= {0} for
sufficiently positive n, we obtain that

lim inf
n→∞

dimk(Vn)
nd/d! > vol(W•),

which implies the convergence of the sequence (d! dimk(Vn)/nd)n>1 if V•
satisfies the Fujita approximation property.

3.3. Construction of vector bundles from linear series. Let C be
a regular projective curve over a field k and k(C) be the field of rational
functions on C. Denote by η the generic point of C.

Definition 3.9. Let M be a vector space over k(C) and V be a finite
dimensional k-vector subspace of M . For any affine open subset U of C, we
let E(U) be the sub-OC(U)-module of M generated by V . These modules
define a torsion-free coherent sheaf E on C which is a vector bundle since
C is a regular curve. We say that E is the vector bundle on C generated by
the couple (M,V ).

Remark 3.10. By definition any element s ∈ V defines a global section
of E over C, which is non-zero when s 6= 0. Hence we can consider V as a
k-vector subspace of H0(C,E). Moreover, the vector bundle E is generated
by global sections, and hence λi(E) > 0 for any i ∈ {1, . . . , rk(E)} (see
Proposition 2.3).

We now consider the particular case where V is a linear series. LetK/k be
a finitely generated extension of fields such that K contains k(C). Suppose
given a projective modelX of the fieldK (namelyX is an integral projective
k-scheme such that k(X) ∼= K) equipped with a projective surjective k-
morphism π : X → C and a Cartier divisor D on X. Let V be a finite
dimensional k-vector subspace of H0(D). Note that the vector bundle E
generated by (K,V ) identifies with the vector subbundle of π∗(OX(D))
generated by V . Moreover, the generic fibre Eη of E is the k(C)-vector
subspace of K generated by V (with the notation of Remark 3.6(2), Eη =
Vk(C)). In particular, if V is a birational linear series of K/k, then Eη is a
birational linear series of K/k(C).

4. Construction of convex bodies

In this section, we prove the main theorem (Theorem 1.1) of the article.
Throughout the section, we fix a field k and a finitely generated extension
K/k and we let d be the transcendence degree ofK over k. In the case where
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d = 0, we assume that K = k, and the Lebesgue measure on R0 = {0} is
assumed to be the Dirac measure on 0 by convention. We fix also a flag

(4.1) k = K0 ( K1 ( · · · ( Kd = K

of sub-extensions of K/k such that each extension Ki/Ki−1 is of transcen-
dence degree 1. We denote by A(K/k) the set of graded linear series V• of
K/k which are of sub-finite type and birational (see Definition 3.5). In the
following, we will construct by induction a map ∆d from A(K/k) to the set
of convex bodies in Rd which only depends on the choice of the flag (4.1)
and satisfies the following properties:

(a) if V• and V ′• are two elements of A(K/k) such that Vn ⊂ V ′n for
sufficiently positive n, then one has ∆d(V•) ⊂ ∆d(V ′• );

(b) for any V• ∈ A(K/k) and any m ∈ N, m > 1, one has

∆d(V (m)
• ) = m∆d(V•);

(c) if V• and V ′• are elements in A(K/k), one has

∆d(V• · V ′• ) ⊃ ∆d(V•) + ∆d(V ′• ).

(d) for any graded linear series V• ∈ A(K/k), the Lebesgue measure of
∆d(V•) is equal to vol(V•)/d!.

We also prove the following assertion by induction on d.

Proposition 4.1. Any graded linear series V• ∈ A(K/k) satisfies the Fujita
approximation property (see Definition 3.7). In particular, the sequence

dimk(Vn)
nd/d! , n ∈ N, n > 1

converges to vol(V•) when n tends to the infinity.

4.1. Case of d = 0. In the case where d = 0, one has Vn = k for
sufficiently positive n since K is assumed to be k. Moreover, the graded
linear series V• is of finite type and one has vol(V•) = 1. Clearly V• satisfies
the Fujita approximation property. We let ∆0(V•) be {0} = R0. Its mass
with respect to the Lebesgue measure (which is the Dirac measure on 0 by
convention) is 1, which is equal to vol(V•)/0!.

4.2. Induction hypothesis. We assume that d > 1 and that the con-
struction of convex bodies associated to birational graded linear series of
finite type has been defined and that Proposition 4.1 has been established
for field extensions of transcendence degree d− 1. In particular, we assume
that a map ∆d−1 from A(K/K1) to the set of convex bodies in Rd−1 has
been constructed, which satisfies the conditions (a)–(d) above.
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4.3. Construction of convex bodies. Since the extension K1/k (which
is of finite type) is of transcendence degree 1, there exists a regular pro-
jective curve C over Spec k such that k(C) = K1. We denote by η the
generic point of the curve C. In the following, we consider a graded linear
series V• in A(K/k). Note that V•,K1 is a graded linear series in A(K/K1)
(see Remark 3.6(2)). For any n ∈ N, we let En be the vector bundle on C
generated by (K,Vn) (see Definition 3.9). Note that one has En,η = Vn,K1 .
Moreover, the direct sum E• =

⊕
n∈NEn forms a graded OC-algebra, and

one has V•,K1
∼= E• ⊗OC

K1 as graded-K1-algebras. We call E• the graded
system of vector bundles on C generated by V•.

By Remark 3.6(3), there exists a birational projective model X of the
field K over k and ample Cartier divisor D on X such that V• identifies
with a graded linear series of D. The inclusion K1 → K defines a rational
k-morphism from X to C. By replacing X by a birational modification of
X, we may assume that the rational k-morphism X 99K C extends to a
flat projective k-morphism π : X → C. In particular, we can consider E•
as a graded OC-sub-algebra of

⊕
n∈N π∗(O(nD)), see Section 3.3 for more

details.
For each integer n ∈ N, the vector space Vn,K1 is equipped with the

R-filtration by minima as follows

∀ t ∈ R, F t(Vn,K1) = VectK1({s ∈ Vn,K1 | s 6= 0, deg(s) > t}),

where in the computation of degree, we consider the vector bundle structure
of En. In particular, the filtration is multiplicative. In other words, for all
(n,m) ∈ N2 and (t1, t2) ∈ R2, one has

(4.2) F t1(Vn,K1)F t2(Vm,K1) ⊂ F t1+t2(Vn+m,K1).

For any t ∈ R, let V t
•,K1

be the graded sub-K1-algebra of V•,K1 defined as⊕
n∈N
Fnt(Vn,K1).

Clearly, the graded linear series V t
•,K1

is of sub-finite type. Let

λasy
max(E•) := sup

n∈N, n>1

λ1(En)
n

= lim
n→+∞

λ1(En)
n

.

The second equality comes from the fact that the sequence (λ1(En))n>1 is
super-additive. Since En is a vector subbundle of π∗(O(D)), we obtain that

λ1(En) 6 µmax(π∗(O(nD))),

where for any vector bundle F on C, µmax(F ) denote the maximal slope of
F , defined as

sup
F ′⊂F

deg(F ′)/ rk(F ′),
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with F ′ running over the set of all non-zero vector subbundles of F . By [6,
Theorem 4.3.6], we obtain that λasy

max(E•) is finite. The following lemma is
similar to [1, Lemma 1.6].

Lemma 4.2. For any real number t < λasy
max(E•), the graded linear series

V t
•,K1

belongs to A(K/K1).

Proof. Since V t
•,K1

is a graded sub-K1-algebra of V•,K1 , it is of sub-finite
type (see Remark 3.6(2)). It remains to verify that V t

•,K1
is birational.

By Remark 3.6(2), the graded linear series V•,K1 is birational. Let N0 ∈
N such that the linear series VN0,K1 is birational. Let ε > 0 such that
t+ ε < λasy

max(E•). for sufficiently positive integer n, there exists an element
sn ∈ Vn,K1 \ {0} such that deg(sn) > (t + ε)n. For any section s ∈ VN0,K1
such that deg(s) > 0, one has

(4.3) deg(ssn) > deg(s) + deg(sn) > (t+ ε)n

which is bounded from below by t(n+N0) when n > tN0ε
−1, where the first

inequality (4.3) comes from the fact that (since E• is a graded OC-algebra)

∀ closed point x ∈ C, ‖ssn‖x 6 ‖s‖x · ‖sn‖x.

We then deduce that the linear series V t
n,K1

is birational for sufficiently
positive n, namely the graded linear series V t

• is birational. �

By the induction hypothesis, for any real number t < λasy
max(E•) the

convex body ∆d−1(V t
•,K1

) is well defined. Since En is generated by global
sections, one has V t

•,K1
= V•,K1 for t 6 0. Moreover, for any couple (t1, t2)

of real numbers such that t1 6 t2 6 λasy
max(E•) one has ∆d−1(V t1

•,K1
) ⊃

∆d−1(V t2
•,K1

). We define a function GE• : ∆d−1(V•,K1)→ [0, λasy
max(E•)] such

that (see [1, Definition 1.8])

GE•(x) = sup{t |x ∈ ∆d−1(V t
•,K1)}.

By convention, if {t |x ∈ ∆d−1(V t
•,K1

)} is empty, then GE•(x) is defined as
λasy

max(E•). By definition, for any t ∈ [0, λasy
max(E•)], one has

{x ∈ ∆d−1(V•,K1) |GE•(x) > t} =
⋂
ε>0

∆d−1(V t
•,K1).

Therefore, the function GE• is upper semi-continuous. Moreover, by the
condition (4.2) and the induction hypothesis (notably the conditions (b)
and (c)), we obtain that, for any rational number λ ∈ [0, 1] and all real
numbers t1 and t2 bounded from above by λasy

max(E•), one has

∆(V λt1+(1−λ)t2
•,K1

) ⊃ λ∆(V t1
•,K1

) + (1− λ)∆(V t2
•,K1

).
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By Sierpiński’s theorem (see for example [13, Theorem 9.4.2]), we obtain
that the functionGE• is concave and is continuous on ∆(V•,K1)◦, the interior
of ∆(V•,K1).

Definition 4.3. We let ∆d(V•) be the convex body in Rd delimited by the
concave function GE• , namely ∆d(V•) is by definition the closure of the set

{(x, t) |x ∈ ∆d−1(V•,K1), 0 6 t 6 GE•(x)}.
By the same method of [1, Theorem 1.11 and Corollary 1.13], we deduce
from the induction hypothesis (notably the limit property predicted in
Proposition 4.1, which replaces the condition of containing an ample se-
ries in loc. cit.) on V t

•,K1
(t < λasy

max(E•)) that

(4.4)

vol(∆d(V•)) =
∫
t∈[0,λasy

max(E•)[
vol(∆d−1(V t

•,K1)) dt

= lim
n→+∞

1
nd

∑
16i6dimK1 (Vn,K1 )

λi(En)>0

λi(En) = vol(E•),

where by definition

vol(E•) := lim
n→+∞

dimkH
0(C,En)
nd

,

and the last inequality of (4.4) comes from (2.9) and the fact that
dimK1(Vn,K1) = O(nd−1), n→ +∞,

which is also a consequence of the induction hypothesis and the sub-
finiteness condition.

Remark 4.4. Similarly to [1, Theorem 1.14], the graded system E• of vec-
tor bundles on C satisfies the “arithmetic Fujita approximation property”,
namely

(4.5) sup
p>1

vol(E[p]
• )

pd
= vol(E•),

where E[p]
• is the graded sub-OC-algebra of E(p)

• generated by Ep.

4.4. Verification of the properties. In the previous subsection, we have
constructed a map ∆d from A(K/k) to the set of convex bodies in Rd. It
remains to verify that the map ∆d satisfies the properties (a)–(d) described
in the beginning of the section and that any graded linear series in A(K/k)
satisfies the Fujita approximation property.

Let V• and V ′• be two graded linear series in A(K/k). Let E• and E′• be
graded systems of vector bundles on C generated by V• and V ′• respectively.
Assume that, for sufficiently positive integer n, one has Vn ⊂ V ′n, which
implies that En is a vector subbundle of E′n. In particular, for any t ∈ R, one
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has V t
n ⊂ V ′n

t for sufficiently positive t. Thus by the induction hypothesis
one has ∆d−1(V t

• ) ⊂ ∆d−1(V ′• t) for any t < λasy
max(E•), which implies that

∆d(V•) ⊂ ∆d(V ′• ). Therefore, the map ∆d satisfies the condition (a).
Let V• be a graded linear series in A(K/k) and E• be the graded system

of vector bundles on C generated by V•. For any m ∈ N, m > 1, let E(m)
• :=⊕

n∈NEmn, which is the graded system of vector bundles on C generated by
V (m)
• . By definition one has λasy

max(E(m)
• ) = mλasy

max(E•). Moreover, for any
t < λasy

max(E•), one has V (m),mt
•,K1

= V
t,(m)
•,K1

. Therefore one has ∆d(V (m)
• ) =

m∆d(V•). In other words, the map ∆d satisfies the condition (b).
Let V• and V ′• be two graded linear series in A(K/k), and E• and E′• be

graded system of vector bundles on C generated by V• and V ′• , respectively.
Let F• be the graded system of vector bundles on C generated by V• · V ′• .
For any n ∈ N, one has a homomorphisme of OC-modules En⊗OC

E′n → Fn
induced by the canonical k-linear map Vn ⊗k V ′n → Vn · V ′n. In particular,
for any (t, t′) ∈ R2 one has

F t(Vn,K1) · F t′(V ′n,K1) ⊂ F t+t′(Vn,K1 · Vn,K1).

This implies that, for any (x, y) ∈ ∆d−1(V•)×∆d−1(V ′• ), one has
GF•(x+ y) > GE•(x) +GE′•(y).

Hence ∆d(V• · V ′• ) ⊃ ∆d(V•) + ∆d(V ′• ). Namely the map ∆d satisfies the
condition (c).

The condition (d) and the Fujita approximation property of V• follow
from (4.4) and the following lemma, which concludes the proof of Theo-
rem 1.1.

Lemma 4.5. Let V• be a graded linear series in A(K/k) and E• be the
graded system of vector bundles on C generated by V•. One has

(4.6) vol(V•) = vol(E•) := lim
n→+∞

dimkH
0(C,En)

nd/d! .

Moreover, the graded linear series V• satisfies the Fujita approximation
property.

Proof. For any n ∈ N, one has (see Remark 3.10)
dimk(Vn) 6 dimkH

0(C,En).
Therefore vol(V•) 6 vol(E•).

In the following, we prove the converse inequality. By Remark 3.6 (iii), we
may assume without loss of generality that K is the rational function field
of a normal projective k-scheme X and that V• is a birational graded linear
series of a very ample Cartier divisor D on X. Moreover, the inclusion
k(C) ⊂ X defines a rational k-morphism from X to C. By replacing X
by its blowing-up along the locus where the rational k-morphism is not
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defined, we may suppose that the rational morphism X 99K C extends to
a flat projective k-morphism π : X → C. We can thus identify each vector
bundle En with the vector subbundle of π∗(OX(D)) generated by Vn.

We denote by ϕ : C → Spec k the structural morphism. Let p > 1 be an
integer such that the rational morphism jp : X 99K P(Vp) defined by the
linear series Vp maps X birationally to its image. Let up : Xp → X be the
blowing-up of X along the base locus of jp, namely

Xp := Proj

⊕
m>0

(ϕπ)∗(Symm(Vp)) −→ OX(pmD)

 .
Then the rational morphism jp : X 99K P(Vp) gives rise to a projective
k-morphism fp : Xp → P(Vp) which maps Xp birationally to its image. Let
Lp be the pull-back of the tautological invertible sheaf OVp(1) by jp. Hence
one has

vol(Lp) = vol(OVp(1)|fp(Xp))
since fp maps birationally Xp to its image. Therefore the volume of Lp is
equal to that of the graded linear series

V [p]
• :=

⊕
n>0

Im(Symn
k(Vp) −→ Vnp).

Let
E[p]
• =

⊕
n>0

Im(Symn
OC

(Ep) −→ Enp).

For sufficiently positive integer n, one has E[p]
n ⊂ (πup)∗(L⊗np ). Hence

(4.7) vol(V•) >
vol(V [p]

• )
pd

= vol(Lp)
pd

>
vol(E[p]

• )
pd

.

By (4.5) we obtain vol(V•) > vol(E•). The equality (4.6) is thus proved.
Moreover, the inequality (4.7) and the equality (4.6) also imply that

sup
p>1

vol(V [p]
• )

pd
= vol(V•).

Hence the graded linear series V• satisfies the Fujita approximation prop-
erty. �

Remark 4.6. The above result shows that any sub-finite and birational
graded linear series verifies the Fujita approximation property. In recent
works [17, 18], Maclean has constructed a graded algebra over a field, which
satisfies the Fujita approximation property, but can not be realised as the
graded linear series of a divisor over a projective model. It seems to be a
natural question if the construction of Newton–Okounkov bodies can be
realised for general graded linear series (non-necessarily of sub-finite type)
which satisfy the Fujita approximation property.
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