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Oscillatory integrals with uniformity in
parameters

par Eren Mehmet KIRAL, Ian PETROW et Matthew P. YOUNG

Résumé. Nous prouvons une formule asymptotique précise pour certains
types d’intégrales oscillatoires que l’on peut traiter par la méthode de la
phase stationnaire. Les estimations sont uniformes en termes de paramètres
auxiliaires, ce qui est crucial pour les applications en théorie analytique des
nombres.

Abstract. We prove a sharp asymptotic formula for certain oscillatory
integrals that may be approached using the stationary phase method. The
estimates are uniform in terms of auxiliary parameters, which is crucial for
application in analytic number theory.

1. Introduction

Exponential integrals occur in many problems in analytic number the-
ory, including moments of L-functions, lattice-point counting, and the cir-
cle method (see e.g. [3], [5], [6]). For some more advanced applications
(e.g. in [2]) it is necessary to develop an asymptotic expansion of multi-
dimensional integrals with uniformity in parameters. For example, in their
celebrated paper [2], Conrey and Iwaniec are faced with an integral of the
form

(1.1)
∫
R3
w(x1, x2, x3)e(2

√
tx1x2x3 − x1λ1 − x2λ2 − x3λ3)dx1dx2dx3

for some smooth dyadically supported weight function w. In (1.1) and other
intended applications (see also [7], [8]), one is faced with an integral in sev-
eral variables with several varying parameters, and needs an asymptotic
expansion in terms of all of the parameters. In this paper, we treat such
integrals by iteratively applying the stationary phase method in one vari-
able.
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As such, this paper concerns the asymptotic behavior of oscillatory in-
tegrals of the form

I = I(x2, . . . , xd;w, φ) =
∫
R
w(x1, . . . , xd)eiφ(x1,...,xd)dx1,

where w, φ are smooth functions of Rd and w has compact support. We wish
to understand the behavior of I as w and φ vary in certain families defined
in terms of derivative bounds. One may then apply other oscillatory integral
transforms in the auxiliary variables (such as additional stationary phase
analyses, Fourier/Mellin transforms, or the integral transforms appearing in
the Kuznetsov formula), which is a common technique in analytic number
theory. The present work hopes to automate the analysis of I as much as
possible, thereby shifting the mental burden off tedious calculations with
weight functions so that number theorists can focus on more arithmetic
aspects.

Next we discuss some of the existing results in the literature, and why
they are unsatisfactory for some applications the authors have encountered
in analytic number theory. The stationary phase method appears in many
standard textbooks, e.g. see [4, Theorem 7.7.5], [9, Ch. VIII Proposition 3],
or [10, Theorem 3.11]. The method gives an asymptotic expansion of a
Fourier integral of the form

∫∞
−∞ e

iλϕ(x)a(x)dx, where a is smooth of com-
pact support, under the assumption that ϕ′(x0) = 0 for a unique point x0 in
the support of a. We do not wish to restrict attention to phase functions of
the form λϕ(x). For instance, one may consider a phase of the form λx−x2

or x − λ log x. Although one may sometimes reduce to the case λϕ(x) by
some ad-hoc change of variables, e.g. x→ λx in the first example above, it
is not desirable to require a pre-processing step.

In order to arrive at the primary results of this paper stated in Section 3,
we study the main term resulting from a stationary phase analysis. This
main term is given in terms of differential operators applied to a, and
evaluated at x0 (which is the stationary point, defined implicitly in terms
of these auxiliary variables). These differential operators have coefficients
depending on ϕ (with negative powers of ϕ′′(x0), see [10, (3.4.11)]). Most
of the work in this paper consists of bounding the derivatives of this main
term with respect to the remaining variables.

The paper is organized as follows. In Section 2 we define the class of
functions of interest to us here, followed by some examples and easy prop-
erties. In Section 3 we state our Main Theorem, which gives an asymptotic
formula for I under conditions ensuring the stationary phase method may
be applied. The crucial point here is that we establish derivative bounds on
I, which are strong enough that one may often fruitfully and easily iterate
the stationary phase method. In Section 4 we illustrate this process with an
example which was chosen due to its application to some moment problems
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in the analytic theory of L-functions [2], [7], [8]. We give the proof of the
Main Theorem in Section 5.

2. Inert functions

2.1. Basic Definition. We begin with certain families of functions de-
fined by derivative bounds. Let F be an index set and X = XT : F → R≥1
be a function of T ∈ F .

Definition 2.1. A family {wT }T∈F of smooth functions supported on
a product of dyadic intervals in Rd>0 is called X-inert if for each j =
(j1, . . . , jd) ∈ Zd≥0 we have

C(j1, . . . , jd)

:= sup
T∈F

sup
(x1,...,xd)∈Rd

>0

X−j1−···−jdT

∣∣∣xj11 · · ·x
jd
d w

(j1,...,jd)
T (x1, . . . , xd)

∣∣∣ <∞.
The notion of X-inert measures the uniformity of the “flatness” of the

functions wT as we move across the family F .
We also remark that the assumption that wT has support on a product

of dyadic intervals is often easily attained, by application of a dyadic par-
tition of unity. We often abbreviate the sequence of constants C(j1, . . . , jd)
associated to a family of inert functions by CF .

Convention. Throughout this paper, constants implied by � and O()
symbols are uniform with respect to F , and depend only on CF . On the
occasion that an implied constant depends on some additional auxiliary
parameter, e.g. ε > 0 or A ≥ 1, we will place it as a subscript. We also use
the standard notation e(x) = e2πix.

2.2. Examples. We present several examples of how inert families may
be constructed.

Example 2.2 (Dilation). Let w(x1, . . . , xd) be a fixed smooth function
that is supported on [1, 2]d and define

(2.1) wX1,...,Xd
(x1, . . . xd) = w

(
x1
X1

, . . . ,
xd
Xd

)
.

Then with F = {T = (X1, . . . , Xd) ∈ Rd>0}, the family {wT }T∈F is 1-inert.

Example 2.3 (Oscillation). With w as in the previous example we let

(2.2) WT (x1, . . . , xd) = eiλ1x1+···+iλdxdw

(
x1
X1

, . . . ,
xd
Xd

)
,

but now F = {T = (X1, . . . , Xd, λ1, . . . , λd)}. It is easy to see WT is X-
inert with X = XT = 1 + max(|λ1|X1, . . . , |λd|Xd), but not Y -inert for any
Y = YT such that YT /XT → 0 as XT →∞.
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Example 2.4 (Products). Let {wT }T∈F and {vT ′}T ′∈F ′ be X and Y -inert
families respectively. Then {wT · vT ′}(T,T ′)∈F×F ′ is a max(XT , YT ′)-inert
family.

For instance, in the one-variable case, we have∣∣∣∣∣max(X,Y )−jxj dj

dxjwT (x)vT ′(x)
∣∣∣∣∣ ≤

j∑
k=0

(
j

k

)
Cw(k)Cv(j − k).

Example 2.5 (Specialization). Suppose that {wT (x1, . . . , xd)}T∈F is X-
inert, supported on xi � Xi, and that we specialize x1 = X1f( x2

X2
, . . . , xd

Xd
),

say, where f is a fixed smooth function. Let

WT (x2, . . . , xd) = wT

(
X1f

(
x2
X2

, . . . ,
xd
Xd

)
, x2, . . . , xd

)
.

Then {WT }T∈F is also X-inert.

One may deduce this quickly from (5.12) below.

2.3. Fourier transforms. Under the Fourier transform inert functions
behave regularly. Suppose that wT (x1, . . . , xd) is X-inert and supported on
xi � Xi for each i. Let

ŵT (t1, x2, . . . , xd) =
∫ ∞
−∞

wT (x1, . . . , xd)e(−x1t1)dx1

denote its Fourier transform in the x1-variable.

Proposition 2.6. Suppose that {wT : T ∈ F} is a family of X-inert
functions such that x1 is supported on x1 � X1, and {w±Y1 : Y1 ∈ (0,∞)}
is a 1-inert family of functions with support on ±t1 � Y1. Then the family
{X−1

1 w±Y1(t1)ŵT (t1, x2, . . . , xd) : (T,±Y1) ∈ F × ±(0,∞)}} is X-inert.
Furthermore if Y1 � qεX/X1 then for any A > 0, we have

X−1
1 w±Y1(t1)ŵT (t1, x2, . . . , xd)�ε,A q

−A

Proof. It is a standard fact in Fourier analysis that ŵT and its derivatives
may be bounded in terms of X,X1, . . . , Xd by integration by parts. Inte-
grating by parts j1 times gives

∂j1X−1
1 ŵT (t1, x2, . . . , xd)

∂tj11

=
∫ ∞
−∞

∂j1

∂xj11

[
wT (X1x1, . . . , xd)xj11

]
e(−x1X1t1) dx1

(−t1)j1 �
Xj1

|t1|j1
,

since the j1-th derivative of the expression in square brackets is � Xj1 ,
and is supported on x1 � 1. By a slight generalization of this to allow
derivatives with respect to x2, . . . , xd, we see that X−1

1 ŵT (t1, x2, . . . , xd)
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satisfies the desired derivative bound that an X-inert function is required
to have.

The missing property is that it is not dyadically supported in t1 (with
t1 > 0). However, we can get around this minor issue by defining

WT,Y1(t1, x2, . . . xd) = wY1(t1)ŵT (t1, x2, . . . xd),
where {wY1 : Y1 > 0} is a 1-inert family, supported on t1 � Y1 (or−t1 � Y1).
For instance, wY1 could be part of a dyadic partition of unity. Now we
can claim that X−1

1 WT,Y1 forms an X-inert family. Moreover, by a similar
integration by parts argument, we have that

WT,Y1(t1, x2, . . . , xd)�A X1

(
1 + |t1|X1

X

)−A
�
(

1 + Y1X1
X

)−A
,

giving the final statement of the proposition. �

3. Stationary phase

Main Theorem (Stationary phase). Suppose wT is X-inert in t1, . . . td,
supported on t1 � Z and ti � Xi for i = 2, . . . , d. Suppose that on the
support of wT , φ = φT satisfies

(3.1) ∂a1+a2+···+ad

∂ta1
1 . . . ∂tad

d

φ(t1, t2, . . . , td)�CF

Y

Za1

1
Xa2

2 . . . Xad
d

,

for all a1, . . . , ad ∈ N. Suppose φ′′(t1, t2, . . . , td) � Y
Z2 , (here and below,

φ′ and φ′′ denote the derivative with respect to t1) for all t1, t2, . . . , td in
the support of wT , and there exists t0 ∈ R such that φ′(t0) = 0 (note t0 is
necessarily unique). Suppose that Y/X2 ≥ R ≥ 1. Then

(3.2) I =
∫
R
eiφ(t1,...,td)wT (t1, . . . , td)dt1

= Z√
Y
eiφ(t0,t2,...,td)WT (t2, . . . , td) +OA(ZR−A),

for some X-inert family of functions WT , and where A > 0 may be taken
to be arbitrarily large. The implied constant in (3.2) depends only on A
and CF .

The fact that the family WT is inert in (3.2) shows a kind of closure
property of the weight functions that appear in stationary phase. It is
therefore well-suited for iterated integrals where the conditions of stationary
phase may be applied.

The Main Theorem builds on earlier work of Blomer–Khan–Young [1]
which obtained an asymptotic formula for I in the one-variable case. What
is new in this paper is the careful analysis of the derivative bounds on
the resulting weight function with respect to all the remaining variables
t2, . . . , td.



150 Eren Mehmet Kıral, Ian Petrow, Matthew P. Young

To continue this discussion, we synthesize Lemma 8.1 and Proposition 8.2
of [1] using this language of inert functions, along with some simplified
choices of parameters, with the following:

Lemma 3.1 ([1]). Suppose that w = wT (t) is a family of X-inert functions,
with compact support on [Z, 2Z], so that w(j)(t)� (Z/X)−j. Also suppose
that φ is smooth and satisfies φ(j)(t) � Y

Zj for some Y/X2 ≥ R ≥ 1 and
all t in the support of w. Let

I =
∫ ∞
−∞

w(t)eiφ(t)dt.

(1) If |φ′(t)| � Y
Z for all t in the support of w, then I �A ZR

−A for A
arbitrarily large.

(2) If φ′′(t)� Y
Z2 for all t in the support of w, and there exists t0 ∈ R

such that φ′(t0) = 0 (note t0 is necessarily unique), then

(3.3) I = eiφ(t0)√
φ′′(t0)

FT (t0) +OA(ZR−A),

where FT is a family of X-inert functions (depending on A) sup-
ported on t0 � Z.

In case it is useful in other contexts, we mention that statement (1) only
requires Y/X ≥ R.

The part of the conclusion that FT is a family of X-inert functions is
not explicitly stated that way, but is implicit in [1, (8.11)]. Here we need to
carefully mention that [1, (8.11)] gives bounds on the derivatives of FT (y)
viewing y as an independent variable. In practice, y = t0 depends on φ in
some way, and so more information is required in order to realize FT as an
inert function with respect to auxilliary variables.

4. An example

Suppose λ1, λ2, λ3 ∈ R, and wT (x1, x2, x3) is anX-inert family supported
on xi � Xi for all i = 1, 2, 3. Suppose that the family T ∈ F may be
parameterized by some real number q ≥ 1, where X �ε q

ε. Consider

(4.1) I =
∫
R3
wT (x1, x2, x3)e(−tx1x2x3 + x1λ1 + x2λ2 + x3λ3)dx1dx2dx3.

Suppose that t > 0 is so that P := tX1X2X3 � qδ for some fixed δ > 0,
since otherwise the phase arising from tx1x2x3 is hardly oscillatory (in this
case, e(−tx1x2x3)wT (x1, x2, x3) is X-inert with X �ε q

ε, so that Propo-
sition 2.6 applies). Also, suppose that Xi � q100, for each i = 1, 2, 3. To
begin, we first locate the λi into dyadic regions outside of which I is very
small.
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Since ∂
∂xi
φ = λi − tx1x2x3

xi
(here and throughout this example, our usage

of φ differs by a factor of 2π from that in the previous section, but this has
no significant effect), unless

(4.2) λi �
P

Xi
,

then | ∂∂xi
φ| � |λi|+ P

Xi
. In this scenario, we may apply Lemma 3.1 part (1)

with Z = Xi and Y = |λ1|X1 + P . Since Y � qδ � X2qε by assumption,
we conclude that I �A q

−A unless (4.2) holds.
Now suppose that (4.2) holds. Viewing x2, x3 as fixed, change variables

x1 → x1
X2X3
x2x3

, so that

(4.3) I =
∫
R3
wT (x1, x2, x3)

e

(
−tx1X2X3 + x1λ1

X2X3
x2x3

+ x2λ2 + x3λ3

)
dx1dx2dx3,

where wT denotes a new X-inert family of functions (we do not give a new
name to the new family). The reason to perform this change of variables is
to de-linearize the phase so that stationary phase may be applied in either
the x2 or x3 variables. Let us focus on x3 first, where the phase takes the
form φ = λ3x3 + x1λ1

X2X3
x2x3

, so

(4.4) ∂

∂x3
φ = λ3 − x1λ1

X2X3
x2x2

3
and ∂2

∂x2
3
φ = 2x1λ1X2X3

x2x3
3

.

The conditions of the Main Theorem hold with Y = X1λ1 � P and Z = X3,
and with the stationary point (x3)0 = (λ1x1X2X3

λ3x2
)1/2. For consistency, one

may check from (4.2) that

(4.5) (x3)0 �
(
λ1X1X3
λ3

)1/2
� X3,

so that indeed the magnitude of (x3)0 matches the support of wT .
We therefore obtain from the Main Theorem that

(4.6) I = X3√
P

∫
R2
e(−tx1X2X3)e

(
x2λ2 + 2

√
λ1λ3x1X2X3

x2

)
wT (x1, x2)dx2dx1 +OA(q−A).

Again, wT represents a new X-inert family of functions.
Now we repeat the process for x2. The new phase to consider is φ =

x2λ2 + 2
√

λ1λ3x1X2X3
x2

which satisfies

(4.7) ∂

∂x2
φ = λ2 −

√
λ1λ3x1X2X3

x3
2

and ∂2

∂x2
2
φ = 3

2

√
λ1λ3x1X2X3

x
5/2
2

.
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The conditions of the Main Theorem hold, with Z = X2 and

(4.8) Y =
√
λ1λ3X1X3 � P.

The stationary point occurs as

(4.9) (x2)0 =
(
λ1λ3x1X2X3

λ2
2

)1/3
.

Thus,

(4.10) I = X2X3
P

∫ ∞
−∞

e(−tx1X2X3 + 3(λ1λ2λ3x1X2X3)1/3)

wT (x1)dx1 +OA(q−A).

Finally, we perform stationary phase one final time, on x1. We have
φ = −tx1X2X3 + 3(λ1λ2λ3x1X2X3)1/3 which satisfies the conditions of
Theorem 3 with Z = X1, and Y = P . The stationary point occurs at

(4.11) (x1)0 =
(
λ1λ2λ3
t3X2

2X
2
3

)1/2
.

Similarly to the previous two cases, we have

(4.12) I = X1X2X3
P 3/2 e

2

√
λ1λ2λ3

t

WT ( · ) +OA(q−A).

Here the notation WT ( · ) denotes an inert function after specializing the
variables in terms of the ambient parameters Xi, λi, t.

It is an important feature of the above analysis that if the original inert
function appearing in (4.1) is X-inert in terms of additional variables (e.g.
the λi), then the resulting inert function in (4.12) remains X-inert with
respect to these variables.

An easy modification of the line of reasoning presented in this section
can be used to analyze (1.1). Indeed, the astute reader may notice that the
Conrey–Iwaniec integral (1.1) is of the same form as a threefold Fourier
transform of (4.12) with the substitution t↔ 1/t.

5. Proof of the Main Theorem

Our proof of the Main Theorem proceeds gradually. As a first step, we
will show

Lemma 5.1. Suppose wT is X-inert in t1, . . . td, supported on t1 � Z and
ti � Xi for i = 2, . . . , d, and φ satisfies

(5.1) ∂a1+a2+···+ad

∂ta1
1 . . . ∂tad

d

φ(t1, t2, . . . , td)�CF

Y

Za1

Xa2+···+ad

Xa2
2 . . . Xad

d
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on the support of wT . Assume the conditions in Lemma 3.1(2) hold for
t = t1 (uniformly in t2, . . . , td), and that t0 satisfies

(5.2) ∂b2+···+bd

∂tb2
2 . . . ∂tbd

d

t0 �CF

t0

Xb2
2 . . . Xbd

d

,

for t0 � Z (that is, 1
Z t0 is 1-inert). Then

(5.3) I = eiφ(t0,t2,...,td)√
φ′′(t0, t2, . . . , td)

FT (t0, t2, . . . , td) +OA(ZR−A),

where FT = FT (t0, t2, . . . , td) is X-inert in t2, . . . , td.

Lemma 5.1 differs from the Main Theorem in a few ways. The assump-
tion (5.1) is slightly weaker than (3.1) because of the presence of X on
the right hand side of (5.1). Moreover, Lemma 5.1 contains an additional
assumption (5.2) on the behavior of the function t0 implicitly defined by
φ′(t0, t2, . . . , td) = 0. Finally, the main term in (3.2) is simplified in that
(φ′′(t0, t2, . . . , td))−1/2 is, in essence, replaced by ZY −1/2. Before turning to
the proof of Lemma 5.1, we state some additional lemmas that bridge the
gap from Lemma 5.1 to the Main Theorem.

A simple yet common situation occurs when t0 is a generalized monomial
in the other variables, meaning

(5.4) t0 = ctα2
2 . . . tαd

d ,

where the αi are fixed real numbers and c is some constant (depending on
T ). It is easy to see that if t0 is of the form (5.4), then it satisfies (5.2). The
following result shows that t0 satisfies (5.2) in much greater generality.

Lemma 5.2. Let conditions be as in Lemma 5.1. Then 1
Z t0 (with t0 de-

fined implicitly by φ′(t0, t2, . . . , td) = 0) is X-inert. In particular, if φ satis-
fies (5.1) with X = 1 (as in the Main Theorem) the assumption (5.2) may
be omitted from the statement of Lemma 5.1.

The reader may wonder, then, why we have retained the assumption (5.2)
in Lemma 5.1. One reason is that in many important cases, it is easy to
verify (5.2) directly (e.g. when (5.4) holds). Another reason is that our
proof of Lemma 5.2 builds naturally on the proof of Lemma 5.1.

Once one knows that 1
Z t0 is X-inert, it is then not too difficult to absorb

φ′′(t0, t2, . . . , td)−1/2 into the weight function. For this, we have

Lemma 5.3. Let conditions be as in the Main Theorem. Then

(5.5) FT (t0, t2, . . . , td)√
φ′′(t0, t2, . . . , td)

= Z√
Y
WT (t2, . . . , td),

for some family of X-inert functions WT .
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Taken together, Lemmas 5.1, 5.2, and 5.3 then finish the proof of the
Main Theorem.

Proof of Lemma 5.1. The assumptions in place mean that if we consider
t2, . . . , td as temporarily fixed, then I meets the conditions of Lemma 3.1,
part (2), and so (3.3) holds. The bound [1, (8.11)] gives that

dj

dyj
FT (y)� (X/Z)j � (X/y)j .

However, this estimate views t2, . . . , td as fixed, and does not give bounds
on the derivatives of F with respect to ti with 2 ≤ i ≤ d. To go further, we
need to extract the origin of F = FT from [1]. We have

F (y) =
∑
n

pn(y), pn(y) = cn(φ′′(y))−nG(2n)
y (t)

∣∣∣
t=y

,

where the sum over n is finite (depending only on the desired value of A
in (3.3)), cn are certain absolute constants, and

Gy(t) = Gy(t; t2, . . . , td) = wT (t, t2, . . . , td)eiH(t,y,t2,...,td),

where (with φ′′ representing the second derivative in the first variable)

H(t, y, t2, . . . , td)
= φ(t, t2, . . . , td)− φ(y, t2, . . . , td)− 1

2φ
′′(y, t2, . . . , td)(t− y)2.

Remarks. Within the definition of pn (and hence F ), the symbol y is an
arbitrary real number in the support of wT . Within (3.3), we then substitute
y = t0, where now t0 is an implicit function of the other variables. Moreover,
this expansion may seen to be equivalent to [10, (3.4.11)].

It may aid the reader to summarize the steps of [1] leading to the above
expression for F . Firstly, Part (1) of Lemma 3.1 follows from repeated
integration by parts. It turns out that under the assumptions of Part (2)
of Lemma 3.1, one can well-approximate I by a shorter integral around t0
of length � Z√

Y
Rε. The assumed lower bound on φ′′ leads to a lower bound

on |φ′|, by the mean value theorem. One then uses the integration by parts
bound on the complement of this small neighborhood around t0 to show
this part of the integral is O(R−A). Now, to develop the main term, one
approximates φ(t) by φ(t0)+ 1

2φ
′′(t0)(t−t0)2+· · · , where the dots represents

the cubic and higher terms which in turn are pulled in to the smooth weight
function. Finally, one uses the Fourier inversion formula on an integral of
the form

∫∞
−∞ e

iA(t−t0)2
g(t)dt where g has controlled derivatives.



Oscillatory integrals with uniformity 155

From this point on, the proof of Lemma 5.1 is self-contained. We write
pn more explicitly as a function of y, t2, . . . , td as

(5.6) pn(y, t2, . . . , td) = cn

( 1
φ′′(y, t2, . . . , td)

)n ∂2n

∂t2n
Gy(t; t2, . . . , td)

∣∣∣∣
t=y

.

We see that G(2n)
y (t)|t=y is a sum of scalar multiples of terms of the form

w
(ν0)
T (y, t2, . . . , td)H(ν1)(y, y, t2, . . . , td) · · ·H(ν`)(y, y, t2, . . . , td),

where the superscripts refer to partial differentiation in the first variable,
where ν0 ≥ 0, ν1, . . . , ν` ≥ 1, and where ν0 + ν1 + · · ·+ ν` = 2n. Note that
H(ν)(y, y, t2, . . . , td) = φ(ν)(y, t2, . . . , td) for ν ≥ 3, and vanishes otherwise.
We therefore deduce that

(5.7) G(2n)
y (t)

∣∣∣
t=y
� max

ν0+ν1+···+ν`=2n

(
X

Z

)ν0 Y `

Zν1+···+ν`
� X2n + Y 2n/3

Z2n ,

with the final inequality seen as follows. Since we may assume νi ≥ 3 for i ≥
1, we have 3` ≤ ν1 + · · ·+ν` = 2n−ν0, whence Xν0Y ` ≤ (X/Y 1/3)ν0Y 2n/3,
which is acceptable for X ≤ Y 1/3. On the other hand, if X ≥ Y 1/3, then
we use Y `Xν0 ≤ X3`+ν0 ≤ X2n to obtain the desired bound.

Let Jn(y, t2, . . . , td) = G
(2n)
y (t, t2, . . . , td)|t=y. A slight generalization

of (5.7) shows

J (a1,a2,...,ad)
n (y, t2, . . . , td)�

X2n + Y 2n/3

Z2n
Xa1+a2+···+ad

Za1Xa2
2 . . . Xad

d

.

The meaning of the superscripts on Jn now mean differentiation with re-
spect to the different variables, viewing y as independent from t2, . . . , td.

Next we examine Φn(y, . . . , td) := (φ′′(y, t2, . . . , td))−n. We claim

(5.8) Φ(a1,a2,...,ad)
n (y, t2, . . . , td)� (Z2/Y )n 1

Za1

Xa2+···+ad

Xa2
2 . . . Xad

d

.

For this, we first note that an easy induction argument gives

da

dxa
1

f(x) =
∑

j1+···+ja=a
cj1,...,ja

(f (j1)(x)) . . . (f (ja)(x))
f(x)a+1 ,

for certain constants cj1,...,ja . Next we generalize to multiple variables. Let
ji be a d-tuple of nonnegative integers, and let a = (a1, . . . , ad). Then

(5.9) ∂a1+···+ad

∂ya1 . . . ∂tad
d

1
f(y, t2, . . . , td)

=
∑

j1+j2+···+ja·1=a
cj1,...ja·1

f (j1) . . . f (ja·1)

fa·1+1 ,

where 1 is the 1-vector of length d (so a · 1 = a1 + · · ·+ ad), and cj1,...,ja·1
are absolute constants. This may be easily verified by induction.
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One may show directly from (5.1) that

(5.10) ∂b1+···+bd

∂yb1 . . . ∂tbd
d

(φ′′(y, t2, . . . , td))n �
(
Y

Z2

)n 1
Zb1

Xb2+···+bd

Xb2
2 . . . Xbd

d

.

Combining (5.9) with (5.10) and that φ′′(t)� Y/Z2, we derive that

Φ(a1,...,ad)
n (y, t2, . . . , td)

�
∑

j1+j2+···+ja·1=a

(
Y
Z2

)n(a·1)∏d
k=2

(
X
Xk

)j1·ek+···+ja·1·ek

Zj1·e1+···+ja·1·e1
(
Y
Z2

)n(a·1+1) ,

where ek is the kth standard basis vector. This simplifies to give the
claimed (5.8).

Putting the above bounds together, we derive that

(5.11) p(a1,...,ad)
n (y, t2, . . . , td)�

((
X2

Y

)n
+
( 1
Y 1/3

)n) Xa1+···+ad

Za1Xa2
2 . . . Xad

d

.

Since Y/X2 ≥ R ≥ 1, this gives an asymptotic expansion in n as R → ∞
(as in [1]), and each pn is X-inert in all variables. Therefore, F is also
X-inert in all variables (again, viewing y as an independent variable).

As a final step we need to incorporate the fact that t0, which is sub-
stituted for y, is not an independent variable but rather a function of
t2, . . . , td. We may derive the shape of a general derivative of F as fol-
lows. Let a = (a2, . . . , ad), j = (j2, . . . , jd), k = (k2, . . . , kd), and bi be
(d− 1)-tuples of nonnegative integers. We claim

(5.12) ∂a2+···+ad

∂ta2
2 . . . ∂tad

d

F (t0, t2, . . . , td)

=
∑

j+k≤a

∑
N≤j2+···+jd

∑
b1+···+bN +k=a

cj,k,b1,...,bN

× F (j2+···+jd,k2,...,kd)t
(b1)
0 . . . t

(bN )
0 ,

where the condition j+k ≤ a is interpreted componentwise (so j`+k` ≤ a`
for all `), and the c∗’s are absolute constants. Moreover, we emphasize that
the notation F (j2+···+jd,k2,...,kd) here and below represents partial differenta-
tion of F with y viewed as an independent variable. Once one guesses this
shape of expression, it is not difficult to verify it using induction.
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Using (5.12), (5.11), and (5.2), we derive

∂a2+···+ad

∂ta2
2 . . . ∂tad

d

F (t0, t2, . . . , td)

� max Xj2+···+jd+k2+···+kd

Zj2+···+jdXk2
2 . . . Xkd

d

ZN∏d
`=2X

(b1+···+bN )·e`

`

,

where the maximum is over j+k ≤ a,N ≤ j2+· · ·+jd, b1+· · ·+bN+k = a.
Since N ≤ j2 + · · ·+ jd, in the Z-aspect, the above bound is� 1 (meaning,
the exponent on Z is ≤ 0). The power on X is at most a2 + · · · + ad, and
the power of X` in the denominator is a`. Hence

∂a2+···+ad

∂ta2
2 . . . ∂tad

d

F (t0, t2, . . . , td)�
(
X

X2

)a2

. . .

(
X

Xd

)ad

,

which is precisely the desired condition to show that F is X-inert. This
completes the proof of Lemma 5.1. �

Proof of Lemma 5.2. Let f = φ′ (the derivative with respect to the
first variable, t1), so t0 is defined implicitly by f(t0, t2, . . . , td) = 0. Note
that (5.1) translates to

f (a1,a2,...,ad)(t1, t2, . . . , td)�
Y

Z

1
Za1

(
X

X2

)a2

. . .

(
X

Xd

)ad

.

Likewise, the condition φ′′(t)� Y/Z2 means

f (1,0,...,0)(t1, t2, . . . , td)�
Y

Z2 .

Implicit differentiation gives

t
(ej0 )
0 = −f

(ej0 )

f (e1) ,

where j0 ∈ {2, 3, . . . , d}, and ej denotes the j-th standard basis vector.
From this, we easily deduce t(ej0 )

0 � Z X
Xj0

, consistent with 1
Z t0 being X-

inert. Now we proceed inductively to treat arbitrary derivatives. Let a =
(a2, . . . , ad). We have

t
(a+ej0 )
0 = − ∂a2+···+ad

∂ta2
2 . . . ∂tad

d

f (ej0 )(t0, t2, . . . , td)
f (e1)(t0, t2, . . . , td)

.

As shorthand, let g = f (ej0 ), and h = f (e1). By (5.12), we have
∂a2+···+ad

∂ta2
2 . . . ∂tad

d

(
g

h

)
=

∑
j+k≤a

∑
N≤j2+···+jd

∑
b1+···+bN +k=a

cj2,...,jd,k,N,b1,...,bN

×
(
g

h

)(j2+···+jd,k2,...,kd)
t
(b1)
0 . . . t

(bN )
0 .
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Note the total “degree” of any bi is at most that of a, so our inductive
hypothesis gives the desired bound for these t(bi)

0 .
We claim that

(5.13)
(
g

h

)(α,k2,...,kd)
� Z

X

Xj0

1
Zα

(
X

X2

)k2

. . .

(
X

Xd

)kd

.

Taking this for granted for a moment, we derive

t
(a+ej0 )
0 �

∑
j+k≤a

∑
N≤j2+···+jd

∑
b1+···+bN +k=a

Z
X

Xj0

1
Zj2+···+jd

(
X

X2

)k2

. . .

(
X

Xd

)kd

ZN
d∏
`=2

(
X

X`

)(b1+···+bN )·e`

,

using the inductive hypothesis. This simplifies as

t
(a+ej0 )
0 � Z

X

Xj0

(
X

X2

)a2

. . .

(
X

Xd

)ad

,

as desired.
Now we prove the claim (5.13). The generalized product rule gives(

g

h

)(m)
=

∑
m1+m2=m

cm1,m2g
(m1)

(1
h

)(m2)
.

Meanwhile, the derivatives of 1/h are given by (5.9). Therefore,(
g

h

)(α,k2,...,kd)
�

∑
m1+m2=(α,k2,...,kd)

Y

Z

X

Xj0

1
Zm1·e1

d∏
`=2

(
X

X`

)m1·e`

×
∑

j1+···+jm2·1=m2

(
Y
Z2

)m2·1

(
Y
Z2

)m2·1+1
1

Z(j1+...jm2·1)·e1

d∏
`=2

(
X

X`

)(j1+...jm2·1)·e`

.

This simplifies to give the claimed bound. �

Proof of Lemma 5.3. Suppose D ⊂ R is an open interval, and f : D → R
and g : Rd → D are smooth. It is not hard to show that

(5.14) ∂a1+···+ad

∂xa1
1 . . . ∂xad

d

f(g(x1, . . . , xd))

=
∑

1≤k≤a·1

∑
j1+···+jk=a

cj1,...,jk
f (k)(g)g(j1) . . . g(jk),

for certain constants c∗. If f is fixed, and g is part of an X-inert family of
functions, then one may easily deduce that f ◦ g is also an X-inert family.

In the present context, we take g = Z2

Y φ
′′(t0, t2, . . . td), which forms an

X-inert family of functions, by the previous lemmas. Since φ′′ � Y
Z2 by
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assumption, the image of g is contained in a fixed open interval of positive
reals (not including 0). We may take f(u) = u−1/2, which is smooth on the
image of g. �
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