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Deligne–Illusie Classes as Arithmetic
Kodaira–Spencer Classes

par Taylor DUPUY et David ZUREICK-BROWN

Résumé. Faltings a montré qu’il n’y a pas de « classes de Kodaira–Spencer
arithmétiques » satisfaisant à un certain axiome de compatibilité. En modi-
fiant légèrement ses définitions, nous montrons que les classes de Deligne–
Illusie satisfont à ce que l’on pourrait considérer comme « condition de com-
patibilité de Kodaira–Spencer arithmétique ».

Abstract. Faltings showed that “arithmetic Kodaira–Spencer classes” satis-
fying a certain compatibility axiom cannot exist. By modifying his definitions
slightly, we show that the Deligne–Illusie classes satisfy what could be con-
sidered an “arithmetic Kodaira–Spencer” compatibility condition.

1. Introduction

The abstract of the paper “Does there exist an Arithmetic Kodaira–
Spencer class?” [9] is the following: “We show that an analog of the Kodaira–
Spencer class for curves over number-fields cannot exist.” In the present
paper we show that if we modify the axioms in [9] slightly such classes can
exist; motivated by work of Buium and by work of Mochizuki, we give a
candidate for such a class.

Remark 1.1. The term “arithmetic Kodaira–Spencer class” is vague and
the definition varies from paper to paper. In this paper we use the Deligne–
Illusie class (see Section 2.5). More distinct “arithmetic Kodaira–Spencer
theory” can be found in [7], [5] and [10, §1.4].

We recall the setup of [9]. For schemes S and X of finite type over a
base B and a smooth map of B-schemes π : X → S, we have an exact
sequence

(1.1) 0→ π∗(ΩS/B)→ ΩX/B → ΩX/S → 0
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giving rise to a class κ(X) ∈ Ext1(ΩX/S , π
∗ΩS/B) = H1(X,TX/S⊗π∗ΩS/B)

which [9] calls the Kodaira–Spencer class. The image of κ(X) under the
natural map

H1(X,TX/S ⊗ π∗ΩS/B)→ HomOS
(TS/B, R1π∗TX/S)

(arising from the projection formula [11, Tag 01E6] and the 5-term exact
sequence arising from spectral sequence for the composition Γ ◦ π∗ of func-
tors) is the Kodaira–Spencer map. Such classes are important for many
diophantine reasons and we refer the reader to [9] for a discussion.

The problem observed in [9] (and elsewhere) is that if S is the spectrum
of the ring of integers of a number field then there are no derivations and
hence the Kodaira–Spencer map doesn’t make sense.1 Although no map can
exist, it is (a priori) possible for extensions corresponding to (1.1) to exist
in a canonical way (they don’t as Faltings observes). For such extension
classes to be canonical [9] posits that for morphisms f : X → Y of smooth
S-schemes, “Kodaira–Spencer classes with values in ω” (where ω = ΩS/B)
should satisfy

(1.2) f∗(κ(Y )) = df∗(κ(X)) ∈ H1
(
X, f∗(TY/S)⊗ ω

)
.

Although [9] shows no such classes may exist, we show (using Buium’s
“wittferential algebra” [5], which formalizes the analogy between Witt vec-
tors and power series) that there exist classes DIX1/S1(δ) ∈ H1(X0, F

∗TX0)
which we call “Deligne–Illusie classes”, and which satisfy a condition sim-
ilar to (1.2). Here subscripts n denote a reduction modulo pn+1 and the
recipient sheaf here is the Frobenius tangent sheaf, whose local sections are
Frobenius semi-linear derivations. The name stems from their implicit use
in [6]. We show the following.

Theorem 1.2. For a morphism f : X → Y of smooth p-formal schemes
over S = Spf Zp which is either smooth or a closed immersion we have

(1.3) f∗DIY1/S1(δ) = df∗DIX1/S1(δ) ∈ H1(X0, F
∗
X0TX0).

In Section 2 we give the analogies with the Kodaira–Spencer map, and
we prove (1.3) in Section 3. In a separate paper we study the vector bundles
coming from these extensions [8].

Acknowledgments. We would like to thank Piotr Achinger, Jeff Achter,
Alexandru Buium, Lance Gurney, Ehud Hrushovski, Eric Katz, Joe Rabi-
noff, Damian Rössler, Ehud de Shalit, Ari Shnidman, Dinesh Thakur, and

1Actually, ΩOK /Z exists and the annihilator is the different, which controls ramification. This
means for all but finitely many primes its localization will be zero. The theory we give presently
gives something for unramified primes.
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2. Notation and analogies

2.1. Classical derivations/differentiation and π-derivations/wittfe-
rentiation. Let CRing denote the category of commutative rings. For R ∈
CRing we let CRingR denote the category of R-algebras.

Let A ∈ CRing and B ∈ CRingA. We have a correspondence between
the module of derivations ∂f : A→ B, which we denote by Der(A,B), and
functions f : A→ B[ε]/(ε2) given by

A
f //

∂f $$

B[ε]/(ε2)
pr1
��
B

where pri : B[ε]/(ε2)→ B are given by pr0(a+ εb) = a and pr1(a+ εb) = b.
The map from the collection of such f ’s to the collection of derivations is
given by

f 7→ ∂f = pr1 ◦f.
If X is a scheme over a ring R, we will let Der(OX/R) denote the sheaf of
R−linear derivations on X; this sheaf is isomorphic to TX/R.

Now for the arithmetic version. The idea in what follows is to replace
B 7→ B[ε]/(ε2) with other ring schemes to get “new derivations”. In the
same way that derivations are in correspondence with maps to the ring of
dual numbers, π-derivations are defined via maps to rings of truncated witt
vectors of length two.

Let R be a finite extension of Zp with uniformizer π ∈ R. Let q denote the
cardinality of the residue field of R. For an R-algebra A we define Wπ,1(A)
to be the set A×A with addition and multiplication rules given by

(a0, a1)(b0, b1) = (a0b0, a1b
q
0 + b1a

q
0 + πa1b1),

(a0, a1) + (b0, b1) =

a0 + b0, a1 + b1 −
1
π

q−1∑
j=1

(
q

j

)
aq−j0 bj0

 ;

these are the so-called ramified witt vectors of length two. When the π is
understood we will just denote this ring by W1.

Let A ∈ CRingR and B ∈ CRingA, with structure map g : A → B. We
define a π- derivation to be a function δ : A→ B such that the map

f : A→W1(B), x 7→ f(x) := (g(x), δ(x))
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is a ring homomorphism. Given a ring homomorphism f : A→W1(B), the
composition δf = pr1 ◦f is a π-derivation. From the sum and product rules
for Witt vectors we may derive the sum, product and identity rules for
p-derivations. We denote the collection of π-derivations from δ : A→ B by
π-Der(A,B).

Example 2.1. In the examples below we will let π = p a rational prime.
(1) δ : Zp → Zp given by δ(x) = (x− xp)/p;
(2) δ : Z/p2 → Z/p given by the same formula. Note now that division

by p is a map pZ/p2 → Z/p.

Finally note that given a π-derivation δ, the map φ(x) = xq + πδ(x) is
a lift of the Frobenius (a ring homomorphism whose reduction modulo π
coincides with a qth power map).

2.2. Notation for reductions mod powers of primes. We start with
a field K of characteristic zero, complete under a discrete valuation v, with
residue field k of characteristic p > 0. We assume v is normalized such that
v(K×) = Z and we denote by e := v(p) the absolute ramification index.
Let R be the valuation ring of K. Assume now that we are given a prime
element π ∈ R which is algebraic over Qp. Having fixedK and π as above we
shall define a map δ : R→ R which will play the role of a “derivation with
respect to π”. Let q be the cardinality of the residue field of Qp(π). Then,
by standard local field theory, there exists a ring automorphism φ : R→ R
that lifts the Frobenius automorphism F : k → k, F (x) := xq. We define
the map δ : R→ R by the formula

δ(x) = φ(x)− xq

π

for x ∈ R. We shall usually write x′, x′′, . . . , x(n) in place of δ(x), δ2(x), . . . ,
δn(x).

There exists a unique lift of the Frobenius φ = φR,π which acts as φ(ζn) =
ζqn (for (n, q) = 1) and satisfies φ(π) = π. We will let

Rn = R/πn+1

and for X/R a scheme we let

Xn = X ⊗Rn = X mod πn+1.

2.3. Absolute and relative Frobenius. For X0/S a scheme over a base
S of characteristic p we will let FX0 = FX0,q denote the absolute Frobenius
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and FX0/S = FX0/S,q denote the relative Frobenius. They fit into a diagram

X0
FX0/k

!!

FX0

��
X

(q)
0

//

��

X0

��
S

FS // S.

Here X(q)
0 = X0 ×S,FS

S is the Frobenius twist of X0, which is just the
pullback of X0 by the Frobenius on the base. In terms of equations, we
simply raise to qth power the coefficients of the defining equations of X0.
On sections we have F#

X0
(f) = f q and F#

S (a) = aq. When no confusion
arises, we may just denote a Frobenius as F .

Let X and X ′ be schemes or π-formal schemes over R which lift X0. A
lift of the Frobenius is a morphism

φ : X → X ′

such that φ⊗R R/π ∼= FX0 .

2.4. Frobenius derivations. For X0 a scheme over a field k of character-
istic p we define the sheaf FDer(OX0) of Frobenius semi-linear derivations
or F -derivations to be FDer(OX0) := F ∗X0

TX0/k; note that these can be ei-
ther the p-Frobenius or a pa-Frobenius depending on the context. It follows
directly from the definition that local section D has the property that D
acts as

D(xy) = xqD(y) +D(x)yq,
where x and y are local sections of OX0 .

2.5. Deligne–Illusie classes. Let X/R be a smooth scheme. As in the
above setup, let δ : R→ R be the unique π-derivation such that the induced
Frobenius fixes a chosen uniformizer π. We define the Deligne–Illusie class
to be the C̆ech cohomology class

DIX1/R1(δ) = [δi − δj mod π] ∈ H1(X0, F
∗
X0TX0/k)

where δi : OUi,1 → OUi,0 are local prolongations of p-derivations on the
base and (Ui → X)i∈I is a cover by Zariski affine opens with lifts of the
π-derivations. Such lifts exist locally due the infinitesimal lifting property.
See, for example, [4, Lemma 1.3]. When the derivation on the base R is
understood we will use the notation

DIX1/R1(δ) = DI(X1).
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When we want to signify that DI(X1) is an obstruction to lifting the mth
power Frobenius we use the notation DIm(X1).

2.6. Kodaira–Spencer classes and three properties of Kodaira–
Spencer classes. Let X/K be a smooth projective variety. Let ∂K ∈
Der(K) be a derivation on the base. Let (Ui → X)i∈I be a cover by Zariski
opens. The Kodaira–Spencer class is defined by

KSX/K(∂K) = [∂i − ∂j ] ∈ H1(X,TX/K)
where ∂i ∈ Der(OX(Ui)) are prolongations of the derivation on the base:
∂i|K = ∂K . We present three properties which will have arithmetic analogs.

2.6.1. Property 1: Representability of sheaf of prolongations of
derivations. The first jet space is defined to be the representative of the
sheaf of prolonged derivatives Der(OX/(K, ∂K)) on X:

Der(OX/(K, ∂K)) ∼= ΓX(−, J1(X/(K, ∂K))).
Here g : J1(X/(K, ∂K)) → X is the first jet space on X and the right
hand side denotes the sheaf of sections of g.2 Local sections of this space
are local lifts of the derivation. One may observe that J1(X/(K, ∂K)) is a
torsor under TX/K , and is thus classified by KSX/K(∂K) ∈ H1(X,TX/K)
(the difference of two derivations prolonging a derivation on the base field
is zero on the base field since they agree there).

2.6.2. Property 2: Buium–Ehresmann Theorem. Let K be an alge-
braically closed field equipped with a derivation ∂. In what follows we let
K∂ = {a ∈ K : ∂(a) = 0} denote the field of constants. The following are
equivalent for X/K projective:

(1) KSX/K(∂) = 0,
(2) X/K admits a global lift of ∂, and
(3) X ∼= X0 ⊗K∂ K for some scheme X0 defined over K∂ ;

see [3, Chapter II, Section 1].

2.6.3. Property 3: Kodaira–Spencer Compatibility. In [9] it was
asked if there exists an arithmetic Kodaira–Spencer class. He isolated the
following key property: let K be a field with a derivation. If f : X → Y is a
morphism over K (for example, a smooth morphism or a closed immersion)
then

f∗KSY/K(∂) = df∗KSX/K(∂) ∈ H1(X, f∗TY/K),
where

df : TX/K → f∗TY/K
is the natural map and df∗ is the induced map on cohomology.

2In the special case that ∂K = 0 we have J1(X/(K, ∂K)) = TX/K and the functor of points
of J1 is just X composed with the dual number functor; i.e., J1(X/(K, ∂K))(A)→ X(A[ε]/ε2).
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2.7. Three analogous properties for Deligne–Illusie classes. We
now present three properties (one of which is new and stated as a theo-
rem) which are analogs of the three properties for Kodaira–Spencer classes.

2.7.1. Property 1: Representability of sheaf of prolongations of
p-deriva- tions. We now work over R a finite extension of Zp with prime
element π ∈ R. Let X be a π-formal scheme over R as in Section 2.2. We
define the first π-jet space ([5, 4]) to represent the sheaf of π-derivations
on X. More precisely the map g : J1(X) → X represents the sheaf of π-
derivations (in characteristic zero). That is, local sections of g correspond
to local lifts of π-derivations. When talking about the first π-jet space of a
scheme we will always mean the first π-jet space of its π-formal completion.

We can consider the above situation modulo π2. Here, the sheaf
π-Der(OX1 ,OX0)

of prolongations of the π-derivation δ1 : R1 → R0 is representated by sec-
tions of a map

g0 : J1(X)0 → X0.

Here J1(X)0 is the reduction mod π of the first arithmetic jet space. Local
sections of g0 correspond to local lifts of the Frobenius on OX1 → OX1 ,
or equivalently π-derivations OX1 → OX0 . The scheme J1(X)0 is a torsor
under F ∗TX0 whose class is classified by DIX1/R1(δ1) (this can be seen by
just subtracting two π-derivations pointwise and obtaining a derivation of
the Frobenius).

Locally, the constructions looks as follows: for a ring A = R〈X〉/(G) =
lim←−R[X]/(G, πn), where X = (x1, . . . , xm) and G = (f1, . . . , fe), we have

O(J1(Spec(A))) = R〈X, Ẋ〉/(G, δ(G))
where δ(G) denotes the tuple of formal π-derivations of the elements f1, . . . ,
fe which we understand as expanding using the sum and product rules to
arrive at elements of R[X, Ẋ]. For example

δ(x2 + rx1) = 2xq2ẋ2 + δ(r)xq1 + ẋ1r
q + πẋ1δ(r)Cπ(x2

2, rx1)

where Cπ(a, b) = aq+bq−(a+b)q

π ∈ R[a, b] is the polynomial in the addition
rule for Witt vectors. Here the universal formal π-derivation δ : R〈X〉 →
R〈X, Ẋ〉 prolongs the fixed π-derivation on the base. This construction
globalizes to give a π-formal scheme g : J1(X)→ X.

2.7.2. Property 2: Buium–Ehresmann Theorem/Descent Philos-
ophy. Recall that

DIX1/R1(δ1) = 0
if and only ifX1 has a lift of the Frobenius modulo π2. In view of the analogy
with Buium–Ehresmann theorem this should be viewed as a sort-of descent.
In fact, Borger defines a category of Λp-schemes where the objects are pairs
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(X,φX) consisting of schemes or p-formal schemes together with lifts of
the Frobenius and whose morphisms (X,φX) → (Y, φY ) are morphisms
f : X → Y which are equivariant with respect to φX and φY . We think of
this as a sort of descent to the field with one element in view of [2].

2.7.3. Property 3: Deligne–Illusie Compatibility. In the present pa-
per we prove the following.

Theorem 2.2. Let f : X → Y be a morphism of formally smooth π-formal
schemes over R (a finite extension of Zp with specified prime element π).
If f is smooth or a closed immersion then
(2.1) df∗DIX1/R1(δ1) = f∗DIY1/R1(δ1) ∈ H1(X, f∗F ∗TX0/R0).

This property is new and is proved in Section 3. The proof uses affine
bundle structures of J1(X/R)—the first π-arithmetic jet space of Buium,
the fact that smooth morphisms locally decompose as étale morphism fol-
lowed by projections from an affine space, and properties of jet spaces and
étale morphisms X → Z of p-formal schemes J1(X) ∼= J1(Z)×ZX to build
“local Frobenius compatibility data”.

3. Proof of compatibility

In what follows we will fix R a finite extension of Zp with uniformizer π
and residue field k of cardinality q. We will fix a π-derivation on the base.

Definition 3.1.
(1) A morphism of R schemes f : X → Y is Deligne–Illusie compatible

provided
df∗(DI(X1)) = f∗DI(Y1) ∈ H1(X0, f

∗FTY0).
(2) Let f : X → Y be a morphism of π-formal schemes. By locally local

Frobenius compatibility data for f we will mean two covers
(Ui → X)i∈I and (Vi → Y )i∈I

with lifts of the Frobenius φUi and φVi (with the second cover pos-
sibly having repeat open sets) such that for each i,

f(Ui) ⊂ Vi
and f |Ui is compatible with φUi and φVi .

(3) If f admits local Frobenius compatibility data we will say f is locally
Frobenius compatible.

Lemma 3.2. Let f : X → Y be a morphism of smooth π-formal schemes
over Spf(R).

(1) If f is a closed immersion then f is locally Frobenius compatible.
(2) If f is étale then f is locally Frobenius compatible.
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(3) If f is a projection of the form An
Y → Y then f is locally Frobenius

compatible.

In the proofs, we will repeatedly use the fact that a scheme X admits
a Frobeinus lift if and only if the map J1(X) → X admits a section, and
that two lifts are compatible if and only if the induced diagram

(3.1)
J1(X)

��

// J1(Y )

��
X //

TT

Y

TT

commutes.

Proof. We begin with case 1. We will work with π-formal schemes and
omit the hats. Let X have dimension n and Y have dimension n+m. The
problem is affine local, so by [5, Chapter 3, Proposition 3.13, p. 75] we
may assume without loss of generality that X and Y are affine and that
J1(X) ∼= X×An and J1(Y ) ∼= Y ×An+m.Compatible lifts of the Frobenius
φX and φY are thus equivalent to compatible sections of the diagram

(3.2)
X ×An

��

// Y ×An+m

��
X // Y.

On coordinate rings, the map X ×An → Y ×An+m is given by a map

O(Y )〈s1, . . . , sn+m〉
α−→ O(X)〈t1, . . . , tn〉

where the si and tj are coordinates on each affine space, and our desired
sections correspond to a commutative diagram

(3.3)

O(Y )〈s1, . . . , sn+m〉

σY

��

α // O(X)〈t1, . . . , tn〉

σX

��
O(Y ) β // O(X)

where σY and σX are the natural maps given by σY (si) = δY (si) and
σX(ti) = δX(ti) where δX and δY are the π-derivations associated to φX and
φY (c.f. [5, Chapter 3, Section 3.2]). Observe that the map α is determined
by a formula of the form

α(si) =
∑
J

ai,J t
J , 1 ≤ i ≤ m

where J = (j1, . . . , jn) ∈ Nn, tJ =
∏
tjii is multi-index notation, and ai,J ∈

O(X) π-adically tend to zero as |J | → ∞.
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Suppose σX(ti) is defined by σX(ti) = Ai ∈ O(X) for some choices
of Ai ∈ O(X). We will prove that there exists a lift of the Frobenius of
Y which is compatible with this one. Observe the compatibility condition
α ◦ φY = φX ◦ α implies β ◦ σY = σX ◦ α, which implies that

βσY (si) =
∑
J

ai,JA
J := Bi.

Here A = (A1, . . . , Am). Constructing σY to make the diagram (3.3) com-
mute is now simple: for any Bi ∈ O(Y ) with image Bi in O(X), the mor-
phism σY defined by

σY (si) = Bi

works (i.e. defines a commutative diagram). Note that such Bi always exist
because O(Y )→ O(X) was assumed to be surjective.

Next we prove the second claim. Suppose f is étale. By [5, Chapter 3,
Corollary 3.16, p. 77] we have

(3.4) J1(X) ∼= X ×Y J1(Y )

as π-formal schemes. In this case, the diagram

(3.5)
J1(X) = X ×Y J1(Y )

��

// J1(Y )

��
X // Y

is cartesian, and given a section of σY : J1(Y )→ Y we can simply take σX
to be (id, σY ).

For the third claim, let m = dim(Y ). While it is not in general true that
J1(X1×X2) ∼= J1(X1)×J1(X2), this isomorphism does hold if X2 is affine
space. We consider the diagram

J1(X) ∼= J1(Y )× J1(An)

��

// J1(Y )

��
X // Y.

Since J1(An) ∼= A2n, any section of Y → J1(X) extends to a section of
Y → J1(X), completing the proof. �

Lemma 3.3. The following are true.
(1) If f : X → Y admits local Frobenius compatibility data, it is

Deligne–Illusie compatible.
(2) If f : X → Z is Deligne–Illusie compatible and g : Z → Y is Deligne–

Illusie compatible then their composition is.
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Proof. We will work π-formally and omit hats everywhere. To begin the
proof of the first claim, we fix local Frobenius compatibility data (Defini-
tion 2): i.e., we fix open covers (Ui → X)i∈I and (Vi → Y )i∈I such that
f(Ui) ⊂ Vi together with φXi : O(Ui) → O(Ui) and φYi : O(Vi) → O(Vi)
such that φiXf# = f#φiY . Observe that this last condition is equivalent to
δXi f

# = δiY f
# as elements of π-Der(OY , f∗OX)(Ui). This implies for each

Uij = Ui ∩ Uj we have

(3.6) DX
ij f

# = f#DY
ij ∈ FDer(OY (Vij), f∗OX(Uij)),

where DX
ij := δXi − δXj and DY

ij := δYi − δJY . Note that the right hand
side of (3.6) induces df DI(X) and the right hand side of (3.6) induces
f∗DI(Y ). 3 4

The proof of the second claim requires the identities

d(g ◦ h) = h∗(dg∗) ◦ dh∗, (g ◦ h)∗ = h∗g∗.

It then follows that

f∗DI(Y ) = (g ◦ h)∗DI(Y )
= h∗g∗DI(Y )
= h∗(dg∗DI(Z))
= (h∗dg∗)(h∗DI(Z))
= (h∗dg∗)(dhDI(X))
= df∗DI(X).

The fourth equality follows from the diagram

H i(Z,FDer(Z)) dg∗ //

h∗

��

H i(Z, g∗ FDer(Y ))

h∗
��

H i(X,h∗ FDer(Z)) h∗dg∗// H i(X,h∗g∗ FDer(Y )). �

Theorem 3.4. Let f : X1 → Y1 be a smooth morphism of smooth R1-
schemes. Then

df∗(DI(X1)) = f∗(DI(Y1)) ∈ H1(X0, f
∗FTY0).

Proof. We first prove the theorem locally and assume we can factor the
morphism f : X → Y as

X → An
Y → Y,

3Since O(f−1(Uij)) → O(Vij) we may view this as giving a map on X and hence giving a
cocycle for a sheaf on X.

4In general, for F a quasi-cohrent sheaf on Y , the map f∗ : Hi(Y, F ) → Hi(X, f∗F ) can be
performed locally by just identifying sections of F with sections of f∗F with new coefficients.
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where the first map is étale and the second map is the standard projection
(see e.g. [11, Tag 039P]). This can be done locally where by “locally” we
mean that there exists a cover by affine open subsets X ′ ⊂ X and Y ′ ⊂ Y
with f(X ′) ⊂ Y ′ with this factorization.

We will now express f as a composition of Deligne–Illusie compatible
morphisms. We apply Lemma 3.2 part 2 and Lemma 3.2 part 3 together
with Lemma 3.3 part 1 to get the outer morphisms of the composition to
be Deligne–Illusie compatible. Lemma 3.3 part 2 says the composition of
compatible morphisms is compatible.

We now show compatibility globally. Consider a covering (Ui,0 → X0)i∈I
such that

df∗(DI(X1))|Ui,0 = f∗(DI(Y1))|Ui,0 ∈ H1(X0, f
∗FTY0)(Ui,0).

Putting these together gives an element

c ∈ H0(X0, H
1(f∗FTY0)).

The comparison between the cohomology sheaf H1(X0, f
∗FTY0) and the

cohomology H1(X0, f
∗FTY0) comes from the low degree exact sequence of

the spectral sequence comparing sheafy cohomology and cohomology (see
for example [11, 01ES] for the spectral sequence). The convergent spectral
sequence is given by

Ei,j2 = H i(X0, H
j(f∗FTY0)) =⇒ H i+j(X0, f

∗FTY0)

and the low degree exact sequence gives

0→ H1(X0, H
0(FTY0))→ H1(X0, f

∗FTY0)→ H0(X,H1(f∗FTY0))
→ H1(X0, H

0(f∗FTY0))→ H2(X0, f
∗FTY0)

which reduces to

0→ H1(X0, f
∗FTY0)→ H0(X,H1(f∗FTY0))→ H2(X0, f

∗FTY0)→ 0.

By local compatibility we have that f∗DI(Y1) and df DI(X1) in H1(X0,
f∗FTY0) map to the same element in H0(X0, H

1(f∗FTY0)); since the map

H1(X0, f
∗FTY0)→ H0(X0, H

1(f∗FTY0))

is injective, the desired equality follows. �

Proof of Theorem 1.2. By Theorem 3.4 we know that compatibility holds
for a smooth morphism. By combining Lemma 3.2 with Lemma 3.3 we have
compatibility for closed immersions. �
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