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Conjugacy classes of finite subgroups
of SL(2, F ), SL(3, sF )

par Yuval Z. FLICKER

Résumé. Soit F un corps. Nous déterminons les sous-groupes finis G de
SL(2, F ) dont le cardinal |G| n’est pas divisible par la caractéristique de F ,
à conjugaison près. Dans le cas où F = sF est séparablement clos, nous mon-
trons (via des arguments de la théorie des représentations des groupes finis)
que deux sous-groupes isomorphes de SL(2, F ) sont conjugués. Nous obtenons
le même résultat pour les sous-groupes finis irréductibles de SL(3, sF ). L’ex-
tension du cas séparablement clos au cas rationnel repose naturellement sur la
cohomologie galoisienne. Plus précisément, nous calculons le premier groupe
de cohomologie galoisienne du centralisateur C de G dans le SL en question,
modulo l’action du normalisateur. Les résultats obtenus ici dans le cas semi-
simple simplement connexe sont différents des résultats déjà connus dans le
cas du groupe adjoint PGL(2). Enfin, nous déterminons le corps de définition
d’un tel sous-groupe fini G de SL(2, sF ), c’est-à-dire le corps minimal F1, tel
que ĎF1 = sF et tel que le groupe fini G s’injecte dans SL(2, F1).

Abstract. Let F is a field. We determine the finite subgroups G of SL(2, F )
of cardinality |G| prime to the characteristic of F , up to conjugacy. When
F = sF is separably closed, using representation theory of finite groups we show
that isomorphic subgroups of SL(2, F ) are conjugate. We show this also for
irreducible finite subgroups of SL(3, sF ). The extension of the separably closed
to the rational case is naturally based on Galois cohomology: we compute the
first Galois cohomology group of the centralizer C of G in the SL, modulo
the action of the normalizer. The results we obtain here in the semisimple
simply connected case are different than those already known in the case of
the adjoint group PGL(2). Finally, we determine the field of definition of such
a finite subgroup G of SL(2, sF ), that is, the minimal field F1 with ĎF1 = sF
such that the finite group G embeds in SL(2, F1).
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1. Introduction
Let F be a field. Denote by sF a separable algebraic closure of F . The

finite subgroups considered below are only those which have order indivis-
ible by charF . In other characteristics, linearly reductive finite subgroup
schemes are classified in [9]. It is well-known (see, e.g., [7]) that the finite
subgroups G of SL(2, sF ) are the cyclic group Cr = Z/r, the binary dihe-
dral group BD4r, and the binary Platonic groups BT24 = 2A4 = SL(2, 3),
BO48 = 2S4, BI120 = 2A5 = SL(2, 5). Their orders are r, 4r, 24, 48, 120.
So charF 6= 2 unless we consider Cr with odd r. It is also known (see,
e.g., [8]) that the finite subgroups of SL(3, sF ) are (the families (A), (B),
(C), (D) and) of type (C′), (D′), (E), . . . , (J). We determine in the case
of SL(2) the finite subgroups of the group of rational points SL(2, F ) up
to conjugacy. When F = sF is separably closed, we show that isomorphic
finite subgroups of SL(2, sF ) are conjugate. This follows from representa-
tion theory of finite groups. We show this also in the case of SL(3, sF ), for
irreducible finite subgroups, and leave the questions of rationality in this
dimension to another work. Note that 〈diag(1, ω, ω2)〉 and 〈ωI〉, where ω is
a primitive 3rd root of 1 in F and I is the identity element of SL(3, F ), are
isomorphic (to the cyclic group of order 3), but they are not conjugate in
SL(3, sF ). Such rationality questions (over F ) lead naturally to Galois coho-
mology, see [16]. The reduction of the separably closed to the rational case
is naturally based on the first Galois cohomology group of the centralizer
C of G in the SL, modulo the action of the normalizer. Such a question
had been considered in the case of PGL(2) by Beauville [1]. We consider
the semisimple simply connected SL rather than the adjoint PGL. We also
determine the field of definition of the given finite subgroup G of SL(2, sF ),
namely the minimal field F1 with ĎF1 = sF such that the group SL(2, F1)
contains the finite group G.

Acknowledgments. I warmly thank Ron Solomon and J.-P. Serre for use-
ful correspondence, and Tokyo University IPMU for hospitality when some
of this work was done.

2. Fields of definition of finite subgroups of SL(2, sF )
The question in this section is to find which of the subgroups of sS =

SL(2, sF ) embed in S = SL(2, F ) for a given field F , or alternatively, given a
subgroupG of sS, in which S does it embed. This information is illuminating,
but not required for the rest of this paper.

Proposition 2.1.
(1) S contains Cr (r ≥ 3) if and only if F contains ζ + ζ−1 for some

primitive rth root ζ = ζr of 1 in sF . The group Cr is uniquely defined
up to conjugacy in S.
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(2) S contains Q8 = BD4·2 if and only if there are a, b ∈ F with
a2 + b2 = −1, thus for all F with charF > 0.

(3) (Example 1) If F = Fq, q = pf odd, then the 2-Sylow subgroup of
S = SL(2, q) is Q8 if q ≡ ±3 (mod 8), and

BD4·2r , 2r+2||(q2 − 1), if q ≡ ±1 (mod 8).

(4) S contains BD4·r, r ≥ 2, if and only if
(a) F contains α = ζ + ζ−1 for some primitive 2rth root ζ = ζ2r

of 1 in sF×, and
(b) −1 ∈ NE/FE

×, E = F (ζ), namely when ζ /∈ F×, there are x,
y in F with −1 = x2 − αxy + y2.

(Example 2) Suppose F = Fq, q = pf odd. If S contains BD4r, and
2k|r, then 2k+2|(q2 − 1) and (4a). If 2k+2|(q2 − 1) and (4a), then
S contains BD4r, 2k||r. Thus when q ≡ ±3 (mod 8), k ≤ 1. If F
contains Fq with 2k+2|(q2 − 1) and (4a), then S ⊃ BD4r, 2k||r.

(5) S contains 2A4 if and only if −1 is a sum of two squares in F , in
particular if charF > 2.

(6) S contains 2S4 = BO48 if and only if −1 is a sum of two squares
in F and

√
2 ∈ F .

(7) S contains 2A5 if and only if −1 is a sum of two squares in F and
5 is a square in F .

Proof. (1). Suppose Cr ↪→ S and h ∈ S generates the image of Cr. Then
the eigenvalues of h are ζ, ζ−1, and trh = ζ + ζ−1 lies in F . Conversely, if
α = ζ + ζ−1 lies in F , then h = ( α 1

−1 0 ) ∈ S. The characteristic polynomial
of h, x2 − αx+ 1, has roots ζ, ζ−1, which are distinct (as ζ = ζ−1 implies
ζ2 = 1, but r ≥ 3 by assumption), hence h is diagonalizable in sS and has
order r, so Cr = 〈h〉 ⊂ S.

To see that Cr is uniquely defined up to conjugacy in S, note that if b is an
element of S with eigenvalues ζ, ζ−1, then it is conjugate to h in sS. So there
is g ∈ sS with h = g−1bg. Then h = σ(g)−1bσ(g) for every σ ∈ Gal( sF/F ).
Hence gσ = gσ(g)−1 lies in the centralizer of b in sS. This is a torus, say
T , over F . Hence the cocycle {σ 7→ gσ} lies in ker[H1(F, T ) → H1(F, S)].
But H1(F, T ) is trivial (as is H1(F, S)), so there is some t in T ( sF ) with
gσ = tσ(t)−1, thus gσ(g)−1 = tσ(t)−1 for all σ ∈ Gal( sF/F ). Consequently
t−1g = σ(t−1g), namely t−1g = s ∈ S, so g = ts and h = s−1t−1bts = s−1bs.

(2). Recall that Q8 = 〈i, j; i2 = −I = j2, j−1ij = i−1〉. By matrix mul-
tiplication, s = ( a bc d ) in SL(2, F ) satisfies s2 = −I if and only if d = −a
and a2 + bc = −1. If a = 0 then d = 0 and s = ( 0 e

−1/e 0 ). If ζ4 lies in F ,
take i = ( 0 1

−1 0 ), j = diag(ζ4,−ζ4); then Q8 ⊂ S. If not, in a suitable basis
i = ( 0 e

−1/e 0 ) and j = ( a b
c −a ). As ij = ( ec −ea

−a/e −b/e ) lies in the ring Q8 (as i, j
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do) its square is −I, so b = e2c, and 1 = det j = −a2 − e2c2. Conversely, if
a, b ∈ F , a2 + b2 = −1, then 〈( 0 1

−1 0 ), ( a b
b −a )〉 is a copy of Q8 in SL(2, F ).

Example. F = Q(
√
−2), a =

√
−2, b = 1. Any F with charF > 0, e.g.,

F = F7, a = 3, b = 2.

(3). Let F = Fq be a finite field of odd order q = pf . We determine the 2-
Sylow subgroup of S = SL(2, q) using [13, Theorem 6.11, p. 189]. It asserts
that if P is a p-group containing at most one subgroup of order p, then
either P is cyclic, or else p = 2 and P is a generalized quaternion group.
Using this with p = 2, noting that the only element of order 2 in S is −I,
and that there are a and b with −1 = a2 + b2 in any finite field, we see
that S contains the quaternion group Q8 generated by ( 0 1

−1 0 ) and ( a b
b −a ).

Hence the 2-Sylow is a generalized quaternion group. The order of SL(2, q)
is q(q2 − 1), so the order of a 2-Sylow subgroup of SL(2, q) is 2k||(q2 − 1),
meaning the biggest power 2k of 2 dividing q2 − 1. If q is congruent to
3 or 5 modulo 8, which means that p ≡ ±3 (mod 8) and f is odd, then
8||(q2− 1), k = 3, the 2-Sylow is Q8, and S contains no element of order 8.
If q ≡ ±1 (mod 8), which means that p has this property or f is even, then
2k+2|(q2− 1), k ≥ 2, the 2-Sylow is BD2k+2 , k ≥ 2, strictly bigger than Q8,
and S contains an element of order 2k+1.

A self-sufficient proof is as follows. If q ≡ 1 (mod 4) and 2r+2||(q2 − 1),
r ≥ 1, then 2r+1||(q−1), 2||(q+1). As Fq is cyclic of order q−1, it contains
ζ of order 2r+1. Put d = diag(ζ, ζ−1). Then T = 〈d, i〉, with matrix i as in
(2), is a Sylow 2-subgroup of S with d2r = i2 = −I and i−1di = d−1. This
T is a generalized quaternion group.

If q ≡ −1 (mod 4), let E be a field of order q2 containing F . Then the
multiplicative group E1 = E× acts as F -linear transformations on the 2-
dimensional F -space (E,+), so E1 ⊂ GL(2, F ). The group E1 is cyclic of
order q2−1. Denote a generator by y. Hence E1 contains a cyclic subgroup
T1 of order 2r+2. The subgroup {yn(q−1); 0 ≤ n < q + 1} of E1 is of order
(q2−1)/(q−1) = q+1; it is contained in S. Hence, a cyclic subgroup T2 of T1
of order 2r+1 is contained in S. Clearly E is the centralizer ring for T2 inside
the ring Mat(2, F ) of 2×2-matrices with entries in F . Hence E1 = CS(T2).
Let T be a Sylow 2-subgroup of S containing T2. Since T ∩ E1 = T2, T is
non-abelian and −I is the only element of T of order 2. Let j be in T −T2.
If t is a generator of T2 with eigenvalues λ, λ−1, then j−1tj must have
the same eigenvalues. So j−1tj = t−1, since j does not centralize T2. In
particular, the centralizer of j in T2 is {−I, I}. So j2 is in {−I, I}. Since j
does not have order 2, j2 = −I. It follows that T = 〈t, j〉 is a generalized
quaternion group of order 2r+2.

(4). The case of r = 2 is (2), where α = 0. Now C2r ⊂ BD4r ⊂ S implies
α = ζ + ζ−1 ∈ F by (1), for ζ = ζ2r. The group BD4r is generated by
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h (with hr = −I) and g with ghg−1 = h−1 and g2 = −I. If ζ ∈ F , then
h = diag(ζ, ζ−1) and g = ( 0 1

−1 0 ) generate BD4r, and −1 ∈ NE/FE
× as E =

F (ζ) is F . If ζ /∈ F , then h = ( α 1
−1 0 ) still lies in S. Its eigenvalues are ζ, ζ−1.

Thus the normalizer of h is C∪gC, where C is the centralizer of h. By matrix
multiplication, g = ( x y

y−αx −x ) with −1 = x2−αxy+y2 = (x−ζy)(x−ζ−1y).
Thus −1 is a norm from the quadratic extension E = F (ζ) of F . Note that
g2 = −I. Conversely, if α = ζ + ζ−1 ∈ F and there are x, y ∈ F with
−1 = x2 − αxy + y2 = (x− ζy)(x− ζ−1y), then BD4r = 〈h, g〉 ⊂ S.

Example. If r = 4, ζ = ζ8 = 1+i√
2 , α =

√
2. If F = F7, r = 4, h = ( 3 1

−1 0 ),
j = ( 2 1

2 −2 ), jhj−1 = h−1.

(5). If S contains 2A4 = Q8 : C3 = BT24, then it contains Q8, so −1 is a
sum of two squares in F by (2). Conversely, following Serre [17, 10.2.3], if
−1 = a2 +b2 is a sum of two squares in F , we define I, i, j, k in the algebra
M(2, F ) of 2× 2 matrices over F by

I =
(

1 0
0 1

)
, i =

(
0 1
−1 0

)
, j =

(
a b
b −a

)
, k =

(
b −a
−a −b

)
.

Since i2 = j2 = k2 = −I, ijk = −I, this defines an isomorphism ofM(2, F )
with the quaternion algebra Q(F ) = 〈i, j; i2 = j2 = (ij)2 = −I〉 over F ,
thus a splitting of Q(F ) over any field F where −1 is a sum of squares. Let

Q = Q8 = {±I, ±i, ±j, ±k} ⊂ SL(2, F )
be the quaternion group, consisting of 8 elements. The set

X =
{1

2(±I ± i± j ± k)
}
⊂ SL(2, F )

consists of 16 elements. The matrices in X normalize Q. The set Y = Q∪X
is a subgroup of SL(2, F ) of order 24. It is the semidirect product of the
normal subgroup Q with its complement the cyclic group C3 of order 3
generated by 1

2(−1 + i+ j + k). It is isomorphic to SL(2, 3) = 2A4.
Note that −1 is a sum of two squares in Fp: if p > 2, there are (p+ 1)/2

elements in Fp of the form −a2, and (p+ 1)/2 elements of the form 1 + b2,
and (p+ 1)/2 + (p+ 1)/2 > p.

(6). If S contains 2S4 = BO48, then it contains 2A4 = Q8 : C3 as a
subgroup of index 2, so −1 is a sum of two squares in F by (5). Its 2-
Sylow subgroup is BD4·4, which contains C8. Hence ζ8 + ζ−1

8 =
√

2 (i.e.,
(ζ8 + ζ−1

8 )2 = 2) lies in F . Note that 2S4/Q8 = S3. The group BO48
is presented in [7, (BO48) of Subsection 3.2] as generated by BT24 and
w4 = diag(ζ8, ζ

−1
8 ) in sS, thus by t and w4. As ζ8 = (1 + i)/

√
2, if i and

√
2

lie in F , this gives a presentation also in S.
If 2 is a square in F , and −1 is a sum of two squares (and not necessarily

a square), then S contain 2S4. Under this assumption on F , first we note
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that PSL(2, F ) contains S4. Indeed, put s = I + i. Then s2 = 2i, sis−1 = i,
sjs−1 = k, sks−1 = −j. Hence s normalizes Y of (5). The image σ of s in
PGL(2, F ) then normalizes Y/{±I} = A4. The group generated by Y/{±I}
and σ is isomorphic to S4. If 2 = c2 with c ∈ F , then s/c has determinant
1, so S4 is contained in PSL(2, F ).

Next, we note that if PSL(2, F ) contains S4, then SL(2, F ) contains 2S4.
The opposite direction is clear. So, suppose H ⊂ PSL(2, F ) with H ' S4.
Let G be the full pre-image of H in SL(2, F ) for the natural projection map
SL(2, F ) → PSL(2, F ) (quotient by the center Z = Z(SL(2, F )) = {±I}).
We are assuming charF 6= 2. Then Z is a normal (central) subgroup of
G and G/Z = H ' S4. Let T be a Sylow 2-subgroup of G. Then −I is
the unique involution of T , and T/Z is dihedral of order 8. So, T is the
generalized quaternion group of order 16. Hence, G ' 2S4.

Indeed, let A = [H,H] ' A4 and let E = [T/Z, T/Z] ⊂ A. Then E is
a Klein 4-group and the pre-image of E in [G,G] is Q ' Q8. Let X be a
Sylow 3-subgroup of A, so that A = EX. Let Y be a Sylow 3-subgroup of
[G,G]. Then

[G,G] = Q : Y ' 2A4 ' SL(2, 3)
and G = [G,G]T with T ∩ [G,G] = Q and with T a generalized quaternion
group. It is not hard to prove that G is unique up to isomorphism and
G ' 2S4.

In short, PSL(2, F ) contains S4 if and only if SL(2, F ) contains 2S4.

(7). If S contains 2A5, then it contains its subgroup 2A4, hence −1 is a
sum of two squares in F . Also, 2A5 contains an element h of order 5, whose
eigenvalues are

ζ = −1 + u
√

5
4 + vi

√
5 + u

√
5

2
√

2
, u, v ∈ {±1},

so trh = ζ + ζ−1 = −1+u
√

5
2 lies in F , as does

√
5.

Conversely, assume 5 is a square in F , and −1 is a sum of two squares.
We construct a group R in SL(2, F ) isomorphic to SL(2, 5) = 2A5, following
Serre [17, 10.2.3], who attributes the construction to Coxeter [4]. Consider
the 8 matrices x+ yi+ zj + wk, where

(x, y, z, w) = 1
2(0,±1,±t,±t′)

with t = 1+
√

5
2 and t′ = 1−

√
5

2 . Permuting these (x, y, z, w) by even permu-
tations, we obtain a set T of 8 × 12 = 96 matrices. They are of order 3
(resp. 4, 5, 6, 10) if their x-component is −1

2 (resp. 0, −t/2 or −t′/2, 1
2 , t/2

or t′/2). Put R = Y ∪ T , where Y is the group Q : C3 = SL(2, 3) of (5)
above. See also [3, p. 2]. �
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Remark 2.2.
(1) Part (1) holds vacuously for r = 2. Indeed, if charF 6= 2 then there

is a unique element, −I, of order 2 in S = SL(2, F ). It generates
the center Z = 〈−I〉 of S. If charF = 2, each ( 1 a

0 1 ), a ∈ F×, has
order 2.

(2) In (5), we cannot argue that S contains also the normalizer 2S4 =
N

sS(Q8) of Q8 in sS = SL(2, sF ), as by (6) F would have to contain√
2 too. Thus the construction of the normalizer of A = Q8 in the

proof of [7, Proposition 2.3] is not purely rational over F .
(3) The condition on F for PGL(2, F ) to contain A4 (there are a, b in

F with −1 = a2 + b2 if charF 6= 2; there is c ∈ F with c2 + c = 1
if charF = 2), S4 (charF 6= 2 and there are a, b in F with −1 =
a2 +b2), A5 (there are a, b, c in F with −1 = a2 +b2 and c2 +c = 1)
is given already in [15, Remarque in 2.5].

(4) The examples of case (3) and the second half of (4) of the propo-
sition (concerning subgroups of finite groups) are of course well-
known, and are given simply for completeness, as examples, as the
proof is short. References include [5, Chapter XII], [11], [14], and
recently [2]. These texts might be of interest to group theorists. For
our rationality considerations we give a complete but short treat-
ment. In any case the case of finite field F is just an example of the
proposition, which considers a general field.

3. Isomorphic finite subgroups of SL(2, sF ) are conjugate
We now determine the conjugacy classes of finite subgroups of SL(2, sF ).

Proposition 3.1. Any two finite irreducible isomorphic subgroups of the
group SL(2, sF ), with cardinality prime to char sF , are conjugate.

3.1. The cyclic Cr. The cyclic group Cr (which is reducible) is generated
by an element of order r, diagonalizable, with eigenvalues ζ±1

r . So there is a
single conjugacy class of groups Cr = Z/r in SL(2, sF ) if r 6= 0 in sF . When
r = 2, the only element of order 2 in SL(2, sF ) is −I.

3.2. The binary dihedral BD4·2 = Q8. This is the quaternion group
of 8 elements 〈i, j; i2 = j2 = (ij)2 = −I〉. By matrix multiplication, an
s = ( a bc d ) ∈ SL(2, sF ) with s2 = −I has a + d = 0 and a2 + bc = −1. If
a = 0, then d = 0 and s = ( 0 b

−1/b 0 ). We may choose the basis so that
i = w, w = ( 0 1

−1 0 ). If j too has the form ( 0 b
−1/b 0 ), as (ij)2 = −I we have

b = ±i, and Q8 is the group generated by i = w and j = diag(i,−i),
and ij = y = diag(i,−i)w. If not, still with i = w, j = ( a b

c −a ), and as
ij = ( c −a

−a −b ) lies in the ring Q8 (as i, j do) its square is −I, so c = b, and
1 = det j = −a2 − b2. Note that we cannot have i = y, with y = ( a b

b −a ),
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and j = ( c d
d −c ), as then (ij)2 6= −I. Hence one of i, j has the form y. Now

with a suitable choice of a basis, i will be taken to be y, then j has to be w
or −w, the only element in the normalizer of 〈y〉, modulo 〈y〉, and 〈y, w〉
is a copy of Q8 in SL(2, F ), unique up to conjugation.

Here is another way to see this. There are 5 conjugacy classes in Q8. They
are I, −I, {±i}, {±j}, {±ij}. Hence there are 5 irreducible representations
of Q8, 4 of them of dimension 1, factorizing through the quotient C4 = 〈i〉,
mapping i to 1, −1, i, −i, and one irreducible faithful two dimensional
representation (sum of dimensions is 4× 12 + 22 = 8 = |Q8|).

3.3. The binary dihedral BD4·r, r ≥ 3. The cyclic subgroup C2r =
〈h〉 of the binary dihedral group

BD4·r = 〈h, w; hr = −I = w2, whw−1 = h−1〉, r ≥ 3,
is diagonal, up to conjugacy, by 3.1. The w solving the equation are ±( 0 1

−1 0 )
if r is odd, and also the product of this with diag(ζ4, ζ

−1
4 ) if r is even, so

BD4·r is uniquely determined by C2r, as its normalizer in SL(2, sF ).

3.4. 2A4 = SL(2, 3) = BT24. This group ([12, p. 288]) has 3 irreducible
two-dimensional representations, (ψ, ξ1, ξ2 in [6, p. 228]), obtained from
each other by twisting with the 3 1-dimensional representations, which take
at u of order 3 the value ω (= 3rd root of 1), so only one representation
can be into SL(2, sF ).

3.5. 2S4 = BO48. 2S4 is not in [3], since it is a solvable group. I could
not find a character table in the literature, so let us work out this well
known case. A Sylow 2-subgroup is the generalized quaternion group of
order 16, BD16 = 〈d(ζ), a(i)〉, where ζ is a primitive 8th root of 1, d(x) =
diag(x, 1/x), a(x) = ( 0 x

−1/x 0 ). There are 3 classes of elements in 2S4 outside
2A4, intersecting BD16 in the BD16-classes in BD16 − Q8: 2 classes of
elements of order 8: {d(ζ), d(1/ζ)}, {d(ζ3), d(ζ5)}, and one class of elements
of order 4: {a(ζj); j = 1, 3, 5, 7} (so we got 8 elements of BD16 − Q8;
conjugate by the elements of order 3 in 2S4 to get the 24 elements of
2S4 − 2A4). Also, there are 5 2S4-classes inside 2A4: one each of elements
of order 1, 2, 3, 4, and 6 (these classes consist of 1, 1, 6, 8, 8 elements;
see [12, p. 288] for 2A4 = SL(2, 3)). So there are 8 characters of 2S4, five
of which descend to characters of S4 (as there are 5 conjugacy classes in
S4, three of them in S3). So there are 3 faithful characters of 2S4. Their
degrees squared have to add up to 24. So we get character degrees 2, 2
and 4. The characters of 2A4 = SL(2, 3) of degree 2 which do not give
representations in SL(2, sF ) (but in GL(2, sF ); χ6, χ7 in [12, p. 288]) are not
invariant in 2S4. So they induce up to a character of degree 4. The character
χ5 of 2A4 of degree 2 which does map into SL(2, sF ) lifts to a character
of degree 2 of 2S4. The other character of 2S4 of degree 2 comes from
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tensoring the first representation with the nontrivial degree 1 representation
2S4/2A4 � S4/A4 � 〈−I〉. As 〈−I〉 is a subgroup of 2S4, the image of the
second representation is the same as that of the first.

3.6. 2A5 = SL(2, 5) = BI120. By [6, p. 228], SL(2, q), q = 5, has
two representations of degree 2, η1 and η2. Conjugation by 2S5 permutes
them. Indeed, if two representations are twists by an automorphism, then
their images in SL are conjugate: if η1 is one representation and α is the
automorphism, then η1 and η2 = η1 ◦ α have the same image.

3.7. Isomorphic finite subgroups of PGL(2, sF ) = SO(3, sF ) are
conjugate. Let us consider the analogous question for PGL(2, sF ).

Proposition 3.2. Any two finite irreducible isomorphic subgroups of the
group PSL(2, sF ), with cardinality prime to char sF , are conjugate.

Proof. We need to consider 3-dimensional representations of A4, S4, A5.
From [12, p. 287], S4 has a unique 3-dimensional representation χ4 in
SL(3, sF ) (and another, χ5, in GL(3, sF ), obtained by twisting with the sign
character, whose value at the transpositions is −1, not 1). Its restriction
to the index 2 subgroup A4 is irreducible. By [12, p. 288], A5 has two
3-dimensional representations, but they are obtained from each other by
conjugation in S5, so their images are equal. �

4. Isomorphic finite subgroups of SL(2, F ) up to conjugacy
In this section (assuming charF does not divide the order of the group

in question) we parametrize the conjugacy classes in SL(2, F ) of isomorphic
subgroups of SL(2, F ).

Theorem 4.1. Up to conjugacy, SL(2, F ) contains a single subgroup iso-
morphic to Cr = Z/r. The subgroups (up to conjugacy) isomorphic to
each of Q8 = BD4·2, 2S4 = BO48 and 2A5 = BI120, in SL(2, F ), are
parametrized by F×/F×,2. The same holds for 2A4 = BT24 if F contains√

2, namely if S contains 2S4. If not, the conjugacy classes in SL(2, F )
of 2A4 are parametrized by a quotient of F×/F×,2 by a subgroup of cardi-
nality two. If µ2r(F ) has cardinality 2r, then the subgroups of type BD4·r,
r ≥ 3, are parametrized, up to conjugacy in SL(2, F ), by F×/F×,2µ2r(F ).
The same holds also when ζ2r does not lie in F×, but then the cardinality
of µ2r is a proper divisor of 2r.

Proof. This follows using the proposition below. The centralizer of Cr is
Gm = GL(1) if r ≥ 3, and S = SL(2) if r = 2. We have H1(F,Gm) = {0},
H1(F, S) = {0}. The first sentence of the theorem follows. The centralizer
of each of the other subgroups is the center C2 = µ2 = {±I} of S. We
have H1(F, µ2) = F×/F×,2 ([16, II.1.2 Corollary]: x 7→ x2 defines a short
exact sequence 1 → µ2 → Gm → Gm → 1, hence a long exact sequence
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{±1} → F× → F× → H1(F, µ2) → H1(F,Gm) = 1). The normalizer of
BD4·2 = Q8 in SL(2, sF ) is 2A4 = Q8 : C3. By Proposition 2.1, S contains
Q8 if and only if it contains its normalizer 2A4. If the normalizer N of
G ⊂ SL(2, F ) in SL(2, sF ) lies in SL(2, F ), it acts trivially on H1(F,C)0.
The claim about Q8 follows. The normalizer of 2S4 is 2S4. That of 2A4 is
2S4. That of 2A5 is 2A5. Using the proposition below, the claims about
2S4 and 2A5 follow, as the normalizer is just the group. As for the claim
about 2A4, the normalizer N = 2S4 of 2A4 in SL(2, sF ) lies in SL(2, F ) if√

2 ∈ F . If not, the conjugacy classes in SL(2, F ) of 2A4 are parametrized
by a quotient of F×/F×,2 by a subgroup of cardinality 2.

Consider the remaining case of BD4·r, r ≥ 3. Its centralizer C in SL(2) is
µ2, so H1(F,C)0 = H1(F,C) = F×/F×,2. Its normalizer is BD8·r. Suppose
ζ = ζ2r ∈ F . Fix the embedding

i : BD4·r = 〈a, b; ar = b2 = −I, bab−1 = a−1〉 ↪→ SL(2, F ),
with i(a) = diag(ζ, ζ−1) and i(b) = ( 0 1

−1 0 ). The embeddings in SL(2, F )
of subgroups isomorphic to BD4·r (up to conjugation by SL(2, F )) are the
conjugates of i by diag(β, 1/β), where β2 = α ∈ F×/F×,2. The powers of
i(a) are not affected by conjugation by diag(β, 1/β), but i(b) becomes

Int(diag(β, 1/β))i(b) = ( 0 α
−1/α 0 ).

The normalizer is
BD8·r = 〈c, b; c2r = b2 = −I, bcb−1 = c−1〉.

It acts on H1(F, µ2) by multiplication by the cocycle

σ 7→ ρ−1σ(ρ), ρ = diag(ν, ν−1), ν = ζ4r.

This cocycle corresponds to the class of ζ = ν2 in F×/F×,2, which generates
µ2r(F ).

Suppose now ζ = ζ2r /∈ F . We still have α = ζ + ζ−1 ∈ F , as BD4r ⊂
SL(2, F ). Fix the embedding

i : BD4·r = 〈a, b; ar = b2 = −I, bab−1 = a−1〉 ↪→ SL(2, F ),

with i(a) = ( α 1
−1 0 ) and i(b) = ( x y

y−αx −x ). Then there is some η = ( a b
−ζ−1 −ζb )

with 1 = ab(ζ−1 − ζ) so that

i(a) = η diag(ζ, ζ−1)η−1, i(b) = η( 0 1
−1 0 )η−1,

with x = ζ−1a2 + ζb2 and y = a2 + b2. The embeddings in SL(2, F ) of
subgroups isomorphic to BD4·r (up to conjugation by SL(2, F )) are the
conjugates of i by η diag(β, 1/β)η−1, where β2 = α ∈ F×/F×,2. The pow-
ers of i(a) are not affected by conjugation by η diag(β, 1/β)η−1, but i(b)
becomes

Int(η) Int(diag(β, 1/β))i(b) = Int(η)( 0 α
−1/α 0 ).
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The normalizer is

BD8·r = 〈c, b; c2r = b2 = −I, bcb−1 = c−1〉.

It acts on H1(F, µ2) by multiplication by the cocycle

σ 7→ Int(η)(ρ−1σ(ρ)), ρ = diag(ν, ν−1), ν = ζ4r.

This cocycle corresponds to the class of ζ = ν2 in E×/E×,2, E = F (ζ),
which generates µ2r(E). As ζ /∈ F , the cardinality of µ2r(F ) is a proper
divisor of 2r. �

Example 4.2. The subgroups G = 2A5 = SL(2, 5) and Gx = x−1Gx of
SL(2, q), q ≡ ±1 (mod 5), are not conjugate if x ∈ GL(2, q), detx /∈ F×,2,
e.g., when q = 9, in SL(2, 9) = 2A6.

Let F be a field, and S an algebraic group over F . Denote by S(F ) the
group of F -points of S. Let G be a subgroup of S(F ); fix an embedding
e : G ↪→ S(F ). Let sF be a fixed separable closure of F , and Gal( sF/F ) the
Galois group. Put Gg = g−1Gg. Denote by Conj(G,S(F )) the (pointed,
by G) set {Gg ⊂ S(F ); g ∈ S( sF )/S(F )} of subgroups of S(F ) which are
conjugate to G in S( sF ), modulo conjugacy by S(F ).

Let C = CentS(G) be the centralizer of G in S, H1(F,C)0 the kernel of
the natural map H1(F,C)→ H1(F, S) where

H i(F, S) = H i(Gal( sF/F ), S( sF )),

and N the normalizer of G in S( sF ). In the rest of this section, following [1]
we prove the following.

Proposition 4.3. There is a natural isomorphism

H1(F,C)0/N
∼−→ Conj(G,S(F ))

of pointed sets.

To describe the set Conj(G,S(F )), consider the set Embe(G,S(F )) of
embeddings j : G ↪→ S(F ) which are conjugate in S( sF ) to e, thus j =
Int(g)e : G ↪→ S(F ), where

Int(g)ρ = gρg−1 : h 7→ gρ(h)g−1, g ∈ S( sF ),

modulo conjugacy by S(F ). The image map

im : Embe(G,S(F ))→ Conj(G,S(F )),

sending an embedding to its image, is onto.
The normalizer N of G in S( sF ) acts on G by automorphisms, hence on

Embe(G,S(F )). Two embeddings with the same image are obtained from
each other by an automorphism of G, which has to be given by an element
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of N if the two embeddings are conjugate to each other by S( sF ). Hence im
defines an isomorphism

Embe(G,S(F ))/N ∼−→ Conj(G,S(F )).

Note: if N is contained in S(F ) then it acts trivially on Embe(G,S(F )).

Lemma 4.4. The pointed set Embe(G,S(F )) is canonically isomorphic to
H1(F,C)0.

Proof. Put X = {g ∈ S( sF ); g−1σ(g) ∈ C( sF ) for all σ ∈ Gal( sF/F )}. The
group S(F ) acts on X by left multiplication, and C( sF ) acts on X by right
multiplication. The kernel of H1(F,C) → H1(F, S) is identified in [16,
Chapter I, 5.4, Corollary 1] with the quotient on the left by S(F ) of the
set of Gal( sF/F )-invariant elements of S( sF )/C( sF ). The latter set is, by
definition, X/C( sF ), so H1(F,C)0 = S(F )\X/C( sF ).

For every g ∈ X, the conjugate embedding Int(g)e = geg−1 lies in
Embe(G,S(F )). Each element j ∈ Embe(G,S(F )) has the form Int(g)e
for some g ∈ S( sF ). For each σ ∈ Gal( sF/F ), σ(g) again conjugates e to
j. Hence g−1σ(g) ∈ C( sF ), and g ∈ X. So the map g 7→ geg−1, X →
Embe(G,S( sF )) is onto. Two elements, g and g′, in X, give the same em-
bedding in Embe(G,S(F )), if and only if g′ lies in S(F )gC( sF ). So this map
descends to a canonical bijection S(F )\X/C( sF ) ∼−→ Embe(G,S( sF )). �

Proof of Proposition 4.3. The isomorphism of the lemma can be presented
explicitly as follows. A class in the kernel H1(F,C)0 is represented by a
1–cocycle Gal( sF/F )→ C( sF ) which becomes a coboundary in S( sF ), hence
it takes the form σ 7→ g−1σ(g) for some g ∈ X. To this class associate the
embedding geg−1.

Now an element n of N acts on Embe(G,S(F )) by j 7→ j ◦ Int(n). If
j = geg−1, this amounts to replacing g by gn, hence the 1–cocycle ϕ :
σ 7→ g−1σ(g) by n−1ϕσ(n). This defines an action of N on H1(F,C) which
preserves H1(F,C)0. In conclusion, the map g 7→ gGg−1 reduces to an
isomorphism H1(F,C)0/N

∼−→ Conj(G,S(F )) of pointed sets. �

5. Isomorphic irreducible finite subgroups of SL(3, sF ) are
conjugate

Theorem 5.1. Any two finite irreducible isomorphic subgroups of SL(3, sF )
with cardinality prime to char sF and to 3 are conjugate.

5.1. (J) PSL(2, 7), order 23 · 3 · 7. PSL(2, 7), order 168, [12, p. 289],
has two 3-dimensional representations, obtained from each other by first
conjugating by PGL(2, 7), which contains PSL(2, 7) as a normal subgroup
of index 2. So they have the same image.
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5.2. (I) 3A6, the Valentiner group, order 23 · 33 · 5.
Proposition 5.2. There are 4 irreducible representations of 3A6 of de-
gree 3. The group Aut(A6)/A6 = Z/2×Z/2 permutes them. Hence there is
a single copy (up to conjugacy) of 3A6 in SL(3, sF ).
Proof. The [3] presents the character tables for the simple groups in order
of their size. So A6 is the third group in the Atlas. Character tables for
all the decorated versions of A6 are tabulated. The little diagram at the
end of the discussion of this item (bottom of 2nd page) shows that the
table for 3G, G = A6, is the third one down in the left hand column. It
lists five characters with degrees 3, 3, 6, 9, 15. The sum of their squares is
9+9+36+81+225 = 360, not 1080. There are the non-faithful characters,
which are the characters of A6 at the top of column 1, of degrees 1, 5, 5,
8, 8, 9, 10. The sum of their squares is 360 = |A6|. Also, the table for 3A6
only treats the representations whose restriction to Z = Z(3A6) = 〈z〉 map
z to ωI, ω being a primitive 3rd root of 1 in sF . So there is another set of
characters with the same degrees 3, 3, 6, 9, 15, where z is mapped to ω2I.
In other words, there are 4 irreducible representations of 3A6 of degree 3.

Now Aut(A6)/A6 ist eine Kleinsche Vierergruppe (un petit groupe de
quatre) permuting these 4 characters. To see this, note that Aut(A6) has
three subgroups of index 2. One is S6. Another is PGL(2, 9). The third is
the Mathieu group M10. Consider the action of each of the outer automor-
phisms on the relevant conjugacy classes: the two central classes and the
two classes of elements of order 5. From [10, Table 6.3.1], we see that the
M10-automorphism centralizes Z(3A6), while the other two invert it. Also,
the PGL(2, 9)-automorphism centralizes a cyclic group of order 5, while
NS6(C5) ' F20, the Frobenius group of order 20, in which all elements of
order 5 are conjugate. The group A6 has cyclic Sylow 5-subgroups of order 5.
One is P = 〈(12345)〉. The normalizer NA6(P ) in A6 of P is dihedral D10 of
order 10, meaning that (12345) is conjugate in A6 to (54321) = (12345)−1.
But (12345) is not conjugate in A6 to (13524) = (12345)2, which is a rep-
resentative of the other class.

In S6, all 5-cycles are conjugate: For a symmetric group, cycle type
determines conjugacy class. So in A6 there are n5 = |A6|/|NA6(C5)| =
6 · 5 · 4 · 3/2 · 5 = 2232 5-Sylow subgroups. Hence there are 4 · 4 · 9 elements
of order 5, 8 · 9 = 72 in each of the two conjugacy classes of elements of
order 5 in A6. The group PGL(2,9) contains an element, say t /∈ A6, which
commutes with the element (12345) in A6 = PSL(2, 9). Then, of course,
t also commutes with (13524) = (12345)2. So, every element of PGL(2, 9)
leaves invariant (under conjugation) the conjugacy class, (12345)A6 (which
consists of 72 elements), and also the conjugacy class, (13524)A6 . On the
other hand, S6 interchanges these two A6-classes. So up to conjugacy we
have only one image in SL(3, sF ). �
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Scholium 5.3. In 1861, Emile Mathieu wrote a beautiful paper describing
a new simple group of order 12 · 11 · 10 · 9 · 8, which is a sharply 5-transitive
subgroup of S12. This group is called M12 in his honor. The stabilizer of
one point is also a simple group, called M11. The stabilizer of two points
is the group M10 which is not simple but contains A6 as a normal simple
subgroup of index 2. In 1873, Mathieu published a paper on M24.
5.3. (H) A5 = PSL(2, 5) = SL(2, 4), order 22 · 3 · 5. This group has
two irreducible 3-dimensional representations ([12, p. 288]). Conjugation by
S5 = PGL(2, 5) (equality, as S5 = Aut(A5), PGL(2, p) = Aut(PSL(2, p))
for all primes p) permutes these two representations, so A5 has a unique
embedding in SL(3, sF ), up to conjugation. (By [3, 1st case, p. 36], table at
the bottom has 2G, G = A5; 2A5 has no faithful 3-dimensional representa-
tions. See also Linear representation theory of double cover of alternating
group in https://groupprops.subwiki.org/wiki/.)

5.4. (G) The Hessian group H, order 23 · 34.
Proposition 5.4. There are 6 irreducible 3-dimensional representations of
the Hessian group H in SL(3, sF ). Their images are conjugate to each other
under SL(3, sF ).
Proof. The Hessian group H is a subgroup of SL(3, sF ) which has a nor-
mal subgroup A with H/A = SL(2, 3). This gives one faithful represen-
tation ρ0 : H ↪→ SL(3, sF ). In fact, the normalizer of A in SL(3, sF ) is H
([8, Corollary 3.6(3)]). We proceed to determine all faithful 3-dimensional
representations ρ of H. Such ρ is faithful on A. A 3-dimensional faithful
representation of A is nontrivial on Z = 〈ωI〉, ω being a primitive 3rd root
of 1 in sF . There are 11 conjugacy classes in A = 〈S, T 〉, 8 of 3 elements
each: these are the classes of

S = diag(1, ω, ω2), S−1, SjT, SjT−1 (j = 0, 1, 2),

where T =
( 0 1 0

0 0 1
1 0 0

)
, and 3 classes of a single element each: ωjI (j = 0, 1, 2).

Hence there are 11 irreducible representations of A: the trivial, 4 pairs of
1-dimensional representations C3 = A/Ej → Z (the kernel Ej (1 ≤ j ≤ 4)
is as in Proposition 3.2 in [8]) determined by where ω goes to in Z = 〈ωI〉;
and 2 3-dimensional ones, as 27 = 32 +32 +9×1. The latter are the natural
embedding ρA = ρ0|A of A in SL(3, sF ), and its composition with ω 7→ ω−1.
Hence there is exactly one copy of A inside SL(3, sF ) up to conjugacy, and
any faithful representation of A in SL(3, sF ) is conjugate to ρA = ρ0|A.

If ρ1 is any extension of ρA to H, then ρ1(hah−1) = ρ0(hah−1) for
all a ∈ A and h ∈ H. Hence ρ1(h)−1ρ0(h) lies in the centralizer Z of A
in SL(3, sF ) for all h ∈ H, namely there is a character χ : H/A → Z
with ρ1 = χρ0 on H. Such a character on H/A = SL(2, 3) = Q8 : C3 is
trivial on the quaternion normal subgroup Q8 of SL(2, 3), the two nontrivial

https://groupprops.subwiki.org/wiki/
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characters are denoted by χ2, χ3 in [12, p. 288]. This gives a total of 6
irreducible 3-dimensional representations. However, the image of χ2, χ3 is
Z ⊂ H, and sH = H, where h 7→ sh is the automorphism of H defined by
ω 7→ ω2. So up to conjugation in SL(3, sF ), the image of H in SL(3, sF ) is
independent of the faithful representation used to embedH in SL(3, sF ). �
Scholium 5.5. To put the last paragraph in general perspective, let us
recall some results in representation theory from [12]. Corollary 6.17 of [12]
asserts: if AEH are finite groups, and ρ ∈ IrrH (= set of irreducible
representations of H) is such that ϑ = ρ|A lies in IrrA, then β ⊗ ρ, β ∈
Irr(H/A), are irreducible, distinct for distinct β, and are all the irreducible
constituents of ϑH = IndHA ϑ.

Chapter 11 of [12] starts by observing that if θ ∈ IrrA, AEH, is invariant
under H, namely θh : a 7→ θ(h−1ah) is equivalent to θ for all h ∈ H,
then for each irreducible constituent χ of θH there is e(χ) ∈ Z>0 with
χA = e(χ)θ. Thus if θ extends to H (i.e., e(χ) = 1 for some χ), then by [12,
Corollary 6.17] the e(χ) are the degrees of the irreducible characters of
H/A.

To determine when such a θ extends, recall that a function ρ : H →
GL(n, F ) such that for all g, h ∈ H there is α(g, h) ∈ F with ρ(g)ρ(h) =
α(g, h)ρ(gh), is called a projective F -representation of H of degree n. The
function α : H ×H → F is called the factor set of ρ. It is uniquely deter-
mined by ρ, and nonzero. Equivalently, the composition ρ∗ of ρ with the
projection g 7→ g∗, GL(n, F )→ PGL(n, F ), is a homomorphism.

Then Theorem 11.2 of [12] asserts: if θ ∈ IrrA, AEH, is H-invariant,
then there is a projective representation ρ ofH with ρ(aha′) = θ(a)ρ(h)θ(a′)
for all a, a′ ∈ A, h ∈ H. Any other projective representation ρ1 of H sat-
isfying this identity has the form ρ1 = µρ for some character (that is, a
multiplicative function) µ : H/A→ sF×.

Finally Theorem 11.7 of [12] clarifies that θ extends to a representation
ρ of H iff its factor set is trivial in H2(H/A, sF×).

Now in our case H2(H/A, sF×) is trivial, so the invariant irreducible
representation ρA extends to a representation ρ of H in GL(3, sF ), where H
is a group which induces the action of the normalizer N = NSL(3, sF )(A) of
A in SL(3, sF ), namely for each h ∈ H there is y ∈ N with ah = ay, for all
a ∈ A. As

CSL(3, sF )(A) = Z(SL(3, sF )) = Z,

we have H/Z = N/Z. The subgroup AQ8 of order 33 ·23 of H is isomorphic
to the analogous group in N . If we take H ⊂ SL(3, sF ), then ρ is the
embedding that extends ρA, the other representations are the twist with µ
of order 3 and with its square, and those obtained on applying ω 7→ ω−1.
If we take H = A : SL(2, 3), it has a faithful representation into GL(3, sF ),
but not into SL(2, 3); the same for its twists and conjugates.



570 Yuval Z. Flicker

5.5. (E), (F) The subgroups A : Q8, A : C4 of H, orders 23 · 33,
22 · 33. The last sentence of the proof of the proposition of (G) applies to
the subgroups (E), (F) too, as the image of H depends only on the image
of A, which is uniquely defined up to conjugation.

Theorem 5.6. Up to conjugacy, SL(3, F ) contains at most one subgroup
isomorphic to A = 〈S, T 〉, A : 〈R〉, A : C4, A : Q8, the Hessian group
H (with H/A = SL(2, 3)), A5, the Valentiner group 3A6, PSL(2, 7), pro-
vided that charF does not divide the order of the group in question, and F
contains a (primitive) 3rd root of 1.

Proof. As in the case of Theorem 4.1, this is just a corollary of Proposi-
tion 4.3 and Theorem 5.1. The centralizer of each of these groups in SL(3, F )
is the center C3 = Z = Z/3 = 〈ωI〉 of SL(3, F ). As H1(F,Gm) = {0},
H1(F,SL(3)) = {0} and H1(F,Z) = {0}. As

1→ Z → SL(3)→ PGL(3)→ 1

is exact, so

Z → SL(3, F )→ PGL(3, F )→ H1(F,Z/3)→ H1(F,SL(3)) = {0}

is exact, and PSL(3, F ) = SL(3, F )/〈ωI〉, as the center of SL(3, F ) is
〈ωI〉. �

The groups in the Theorem of type (C′), (D′), (E), (F), (G), make a
tower, each group contained in the next. The infinite reducible or decom-
posable families (A), (B), (C), (D), can be similarly analyzed. But note
that the isomorphic subgroups Z = 〈ωI〉 and 〈S = diag(1, ω, ω2)〉 are not
conjugate in SL(3, sF ).
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