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`-torsion in class groups of certain families of
D4-quartic fields

par Chen AN

Résumé. Nous donnons une borne supérieure pour la `-torsion des groupes de
classes pour presque tous les corps de certaines familles des corps quartiques
de type D4. Nos outils principaux sont une nouvelle version du théorème de
densité de Chebotarev pour ces familles et une borne inférieure sur le nombre
de corps dans les familles.

Abstract. We prove an upper bound for `-torsion in class groups of almost
all fields in certain families of D4-quartic fields. Our key tools are a new
Chebotarev density theorem for these families of D4-quartic fields and a lower
bound for the number of fields in the families.

1. Introduction
In this paper we prove the first unconditional nontrivial upper bound

on `-torsion, for all positive integers ` ≥ 1, in class groups of certain D4-
quartic fields. In particular, this holds for almost all fields in any infinite
family of D4-quartic fields associated to a fixed biquadratic field.

The ideal class group ClK , defined for every number field K, is the quo-
tient group of the fractional ideals modulo principal ideals. For an integer
` ≥ 1, we define the `-torsion subgroup

ClK [`] = {[a] ∈ ClK : [a]` = Id}
and let d = [K : Q]. We denote DK as the absolute value of disc(K/Q).
Then for any ε > 0, one has the trivial bound |ClK [`]| ≤ |ClK | �d,ε D

1/2+ε
K .

But it is widely conjectured that |ClK [`]| �d,`,ε D
ε
K , for any ε > 0. Progress

towards this has been difficult. Even under GRH, one only obtains

(1.1) |ClK [`]| �d,`,ε D
1
2−

1
2`(d−1) +ε

K ,

for all ε > 0; see [4, Proposition 3.1].
In the recent work of [3, 5, 7, 15, 16, 17], nontrivial upper bounds for

`-torsion at least as strong as (1.1) have been proved for almost all fields
in certain families of degree d fields, for any d ≥ 2, but notably D4-quartic
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fields have not been treated in these works. This omission motivates the
work of this paper, which exhibits an infinite collection of families of D4-
quartic fields for which we can prove such bounds. See also [6] and [14] for
results on `-torsion bounds from the perspective of moments.

For a number field K, let K̃ be the Galois closure of K over Q within
a fixed choice of Q. By a D4-quartic field K we mean a quartic extension
K of Q such that Gal(K̃/Q) ∼= D4, and we will define our families of
D4-quartic fields according to a fixed biquadratic extension of Q. We write
Q = Q(

√
a,
√
b) as a biquadratic field over Q, where a, b are distinct square-

free integers not equal to 0 or 1. Denoting ξ = gcd(|a|, |b|), we have Q =
spanQ{1,

√
a,
√
b,
√
ab
ξ }. For any such Q, we define the family

F4(Q) = {K : K is a D4-quartic field, K̃ contains Q = Q(
√
a,
√
b)}

and denote
F4(Q;X) = {K : K ∈ F4(Q), DK ≤ X}.

From the lattice of fields in Section 2, we will see that for any D4-quartic
field K, K̃ contains a unique biquadratic subextension Q. Therefore, taking
all the families F4(Q) for Q = Q(

√
a,
√
b) as a and b vary, we obtain all D4-

quartic fields. In other words, taken together, these families are “generic”.
Our first main result of this paper is the following theorem on bounding

`-torsion in class groups of almost all fields in F4(Q;X) for each choice of
a biquadratic field Q such that F4(Q) 6= ∅.

Theorem 1.1. Let Q = Q(
√
a,
√
b) be such that F4(Q) 6= ∅. For every 0 <

ε < 1
4 sufficiently small, and every integer ` ≥ 1, there exists a parameter

B1 = B1(`, ε) such that for every X ≥ 1, aside from at most B1X
ε fields

in F4(Q;X), every field K ∈ F4(Q;X) satisfies

(1.2) |ClK [`]| �`,ε D
1
2−

1
6`+ε

K .

Theorem 1.1 provides the first unconditional nontrivial bound for `-
torsion in class groups of infinite families of D4-quartic fields.

In order to show that almost all fields in F4(Q) satisfy (1.2), we must
exhibit a lower bound for |F4(Q;X)| that grows strictly faster than B1X

ε.
This leads to the following theorem, as our second main result.

Theorem 1.2. Let Q = Q(
√
a,
√
b) be such that F4(Q) 6= ∅. Then

X1/2 �Q |F4(Q;X)| � X.

The lower bound in Theorem 1.2 is the first nontrivial lower bound
for such families of D4-quartic fields. The upper bound is an immedi-
ate consequence of the result N4(D4, X) ∼ c(D4)X (where c(D4) > 0)
in [2]. Taking Theorem 1.1 and Theorem 1.2 together, we know that when
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F4(Q) 6= ∅, almost all fields K ∈ F4(Q;X) satisfy (1.2). We might ex-
pect that |F4(Q;X)| ∼ CX1/2 for some positive constant C. But to show
that Theorem 1.1 and our third main result – an effective Chebotarev den-
sity theorem (see Theorem 1.7) – hold for almost all fields in F4(Q;X), it
suffices to find any constant β > 0 such that |F4(Q;X)| �Q X

β.
We say that b is a norm of Q(

√
a) if b is a norm of an element in Q(

√
a).

For the set F4(Q) to be nonempty, consider the following three criteria on
a, b:

b is a norm of Q(
√
a);(1.3)

−b is a norm of Q(
√
a);(1.4)

−a is a norm of Q(
√
b).(1.5)

We will prove that F4(Q) 6= ∅ is equivalent to the following condition:
Condition 1.3. The pair (a, b) satisfies at least one of (1.3), (1.4), or (1.5).

It is easy to see that the relationship of a and b is independent of the
order, i.e., if the pair (a, b) satisfies Condition 1.3, then the pair (b, a) does
as well. Note that we also have symmetry in Condition 1.3 among a, b, ab

ξ2

(recall that ξ = gcd(|a|, |b|)). By this we mean that if the pair (a, b) sat-
isfies Condition 1.3, then so does (a, ab

ξ2 ), or (b, ab
ξ2 ), and vice versa. This is

because b is a norm of Q(
√
a) ⇐⇒ a is a norm of Q(

√
b); ab

ξ2 is a norm of
Q(
√
a) ⇐⇒ −b is a norm of Q(

√
a) (since −a = (−

√
a) · (

√
a) is a norm

of Q(
√
a)).

Moreover, there are infinitely many pairs (a, b) satisfying Condition 1.3.
For example, when b1 is a prime and b1 ≡ ±1 (mod 8), (2, b1) satisfies (1.3);
when b2 is a prime and b2 ≡ 11 (mod 12), (3, b2) satisfies (1.4). There are
infinitely many such b1, b2, by Dirichlet’s theorem on primes in arithmetic
progressions.
Remark 1.4. One notices that we only deal with infinite families of D4-
quartic fields but not all D4-quartic fields. If we take the union of all the
≤ B1X

ε exceptional fields as a, b vary, we possibly get � X exceptional
fields. It remains an interesting open problem to prove the analogue of
Theorem 1.1 for all D4-quartic fields simultaneously.
Outline of the method. At its foundation, our approach is analogous to
that of [15]. The difference from [15] will be shown explicitly in Section 2.
After the work of Ellenberg and Venkatesh in [4], to prove (1.2) in Theo-
rem 1.1 for a number fieldK, it will suffice to be able to count the number of
small unramified primes which split completely in K (see Proposition 6.2).
Our main idea is that after fixing a biquadratic field Q = Q(

√
a,
√
b), we

establish a new effective Chebotarev density theorem (Theorem 1.7) for
almost all fields in F4(Q;X). In particular, studying the family F4(Q), as
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was recommended in Remark 6.12 of [15], avoids the barrier encountered
in [15] when considering D4-quartic fields; see Section 2.

For a D4-quartic field K and its Galois closure K̃, and for any fixed
conjugacy class C in G ∼= D4, we define the prime counting function as

πC (x, K̃/Q) =
∣∣∣∣∣
{
p prime : p is unramified in K̃,

[
K̃/Q
p

]
= C , p ≤ x

}∣∣∣∣∣ ,
where

[
K̃/Q
p

]
is the Artin symbol, i.e., the conjugacy class of the Frobenius

element corresponding to the extension K̃/Q and the prime p.
Obtaining an accurate count for πC (x, K̃/Q) depends on a zero-free re-

gion for ζ
K̃

(s). Thus, we consider the factorization of ζ
K̃

(s), i.e.,

ζ
K̃

(s) =
∏

ρ∈Irr(D4)
L(s, ρ, K̃/Q)dim ρ(1.6)

= ζ(s)L(s, χa∗)L(s, χb∗)L
(
s, χ( ab

ξ2 )∗
)
L2(s, ρ

K̃
).

Here we use the notation that for c ∈ {a, b, ab
ξ2 },

c∗ =
{
c, if c ≡ 1 (mod 4)
4c, if c ≡ 2, 3 (mod 4)

is the fundamental discriminant of the field Q(
√
c) over Q, and χc∗( · ) =(

c∗

·
)
is the real primitive Dirichlet character given by the Kronecker symbol.

Note also that ρ
K̃

is the 2-dimensional faithful representation of D4.
Since we have fixed a and b as K varies, the L-functions L(s, χa∗),

L(s, χb∗), and L(s, χ( ab
ξ2 )∗) are fixed in (1.6), and hence so is the Dedekind

zeta function of the biquadratic field,

ζQ(s) = ζ(s)L(s, χa∗)L(s, χb∗)L
(
s, χ( ab

ξ2 )∗
)
.

Therefore, as K varies in F4(a, b), the only varying L-factor in ζ
K̃

(s) is
L(s, ρ

K̃
). This is critical to the success of our method, see Remark 2.1.

We first prove a Chebotarev density theorem with an assumed zero-free
region for ζ

K̃
(s)/ζQ(s).

Theorem 1.5 (Chebotarev density theorem with assumed zero-free re-
gion). Let 0 < ε0 <

1
4 be sufficiently small. Suppose that Q = Q(

√
a,
√
b) is

a biquadratic field with F4(Q) 6= ∅. Suppose also that for K ∈ F4(Q) such
that D

K̃
≥ C7 for an absolute constant C7 given in (4.8), ζ

K̃
(s)/ζQ(s) =

L2(s, ρ
K̃

) (hence L(s, ρ
K̃

)) has no zero in

(1.7) [1− δ, 1]× [−(logD
K̃

)2/δ, (logD
K̃

)2/δ],
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where

(1.8) δ = ε0
42 + 4ε0

.

Then for every conjugacy class C ⊂ G = D4,

(1.9)
∣∣∣∣πC (x, K̃/Q)− |C |

|G|
Li(x)

∣∣∣∣ ≤ |C ||G| x

(log x)2

for all
x ≥ κ1 exp [κ2(log log(Dκ3

K̃
))2]

for parameters κi = κi(a, b, ε0) (see (4.9), (4.10), (4.11)).

Theorem 1.5 is analogous to Theorem 3.1 in [15] and we will prove The-
orem 1.5 mainly by an adaptation of the proof of Theorem 3.1 in [15].

We show via work of Kowalski and Michel in [10] that almost all fields
in our family are zero-free in the described region.

Theorem 1.6. Suppose that Q = Q(
√
a,
√
b) is such that F4(Q) 6= ∅.

For every 0 < ε0 <
1
4 , there are �ε0 X

ε0 fields K ∈ F4(Q;X) such that
ζ
K̃

(s)/ζQ(s) = L2(s, ρ
K̃

) could have a zero in the region (1.7).

Hence we obtain our third main result, an effective Chebotarev density
theorem for our family F4(Q).

Theorem 1.7. Suppose that Q = Q(
√
a,
√
b) is such that F4(Q) 6= ∅. For

every 0 < ε0 <
1
4 sufficiently small, there exists a constant B2 = B2(ε0)

such that for every X ≥ 1, aside from at most B2X
ε0 fields in F4(Q;X),

each field K ∈ F4(Q;X) has the property that for every conjugacy class
C ⊂ G = D4,

(1.10)
∣∣∣∣πC (x, K̃/Q)− |C |

|G|
Li(x)

∣∣∣∣ ≤ |C ||G| x

(log x)2

for all

(1.11) x ≥ κ1 exp [κ2(log log(Dκ3
K̃

))2]

for parameters κi = κi(a, b, ε0).

Theorem 1.7 is a direct consequence of Theorem 1.5 and Theorem 1.6.
The error term in the Chebotarev density theorem (Theorem 1.7) can be
improved by considerations of Brumley, Thorner, and Zaman, see [1], but
as this is not needed for the application of Theorem 1.1, we do not pursue
this here.

Taking Theorem 1.2 and Theorem 1.7 together, we know that almost
all fields K ∈ F4(Q;X) have the property that for every conjugacy class
C ⊂ G = D4, (1.10) and (1.11) hold.
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2. Motivation for the construction of the family F4(Q)
We begin by describing the family F4(Q) and in particular why in this

setting we can carry out the approach of [15].
For a D4-quartic field K, we consider all the subextensions of K̃. In

order to understand the relations among K, K̃, and their subfields, we
are led by Galois theory to consider all the subgroups of D4. We write
D4 = 〈r, s | r4 = 1, s2 = 1, srs−1 = r−1〉 and then have the following
diagrams.
Lattice of groups:

1

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

〈r2, s〉 〈r〉 〈r2, rs〉

〈r, s〉

Lattice of fields:

K̃

K1 K2 Q K3 K4

F2 F1 F3

Q
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In the lattice of fields, the set of fields {F1, F2, F3} is equal to the set
{Q(
√
a),Q(

√
b),Q(

√
ab
ξ )}, where ξ = gcd(|a|, |b|).

At a key step in [15], for each fixed group G, the authors provide a way
to control the number of G-fields whose Galois closures share a certain fixed
field. In detail, by specifying an appropriate restriction on the ramification
type of tamely ramified primes, one can impose that if the primes divide
DK , then they divide DF . Here F = K̃H , where H is allowed to be the
kernel of any irreducible representation of the Galois group G. In the case
G = D4, this cannot be done, since there is no restriction on ramification
type satisfying the requirement above. We illustrate this point with the
following Table 2.1(recall that D4 = 〈r, s | r4 = 1, s2 = 1, srs−1 = r−1〉).

In this table, p is an odd prime. This makes p unramified or tamely
ramified since p - |D4| (see [15, Lemma 6.10]). Hence, the inertia group of
p is cyclic. The first column is the conjugacy class of a generator for the
cyclic inertia group of p. In the first row, expp(DK) denotes the exponent
α such that pα||DK , and F1, F2, F3 are the same as depicted in the lattice
of fields. Note that all of the fields F1, F2, F3 are of the form KH , where
H varies over the kernels of the irreducible representations of the Galois
group G.

Table 2.1.

Ramification expp(DK) expp(DK̃
) expp(DF1) expp(DF2) expp(DF3)type of p

[1] 0 0 0 0 0
[r2] 2 4 0 0 0
[s] 1 4 1 0 1

[r3s] 2 4 1 1 0
[r] 3 6 0 1 1

From Table 2.1, we know that whatever ramification type (or collection
of ramification types) we choose, there are primes p such that p | DK but
p - DF for a field F = KH . Therefore, there is no suitable restriction
on ramification type for the method presented in [15]. This motivates our
definition of the family F4(Q), which effectively removes consideration of
the last three columns of this table.

Remark 2.1. Once the biquadratic field Q = Q(
√
a,
√
b) has been fixed,

the L-functions L(s, χa∗), L(s, χb∗), and L(s, χ( ab
ξ2 )∗) are fixed. Our method

is to pass to the right of possible real simple exceptional zeros of these three
L-functions. When K varies in F4(Q;X), we obtain a zero-free region (1.7)
for almost all functions L(s, ρ

K̃
). Then we consider the intersection of the
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zero-free regions of L(s, ρ
K̃

) and L(s, χa∗)L(s, χb∗)L(s, χ( ab
ξ2 )∗). We are able

to obtain a zero-free region of ζ
K̃

(s)/ζ(s) (see (4.2)) for almost all fields
K ∈ F4(Q;X). Based on the zero-free region of ζ

K̃
(s)/ζ(s), we obtain

an effective Chebotarev density theorem (Theorem 1.7) and a theorem on
`-torsion of class groups (Theorem 1.1).

We also remark that the paper [3] gives a nontrivial bound for `-torsion
in class groups of non-D4 quartic fields. The obstacle in the D4 case lies
in the counting problem for D4-quartic fields with local conditions, which
has non-multiplicative local densities; on the other hand, see (2.14), (2.15)
of [3] on the counting for non-D4 quartic fields.

3. Counting D4-quartic fields with a fixed biquadratic field Q

In this section, the problem that interests us is a lower bound of
|F4(Q;X)| as X → ∞, provided that F4(Q) 6= ∅. The aim of this sec-
tion is to describe a new explicit construction for this problem.

We first state all the necessary lemmas and propositions, and then turn
to the proofs. As before, Q = Q(

√
a,
√
b) is a biquadratic field, where a, b

are distinct square-free integers not equal to 0 or 1.

Lemma 3.1. For K ∈ F4(Q), there is a unique quadratic subfield of K.
Moreover, K̃ only contains D4-quartic fields that are extensions of two qua-
dratic subfields of K̃, but not of the third quadratic subfield.

Lemma 3.1 is a direct corollary of the lattice of fields, whose notation
we now adopt. If we consider the D4-quartic field K1, then its unique qua-
dratic subfield is F2. Moreover, K̃1 only contains D4-quartic fields that are
extensions of F2 and F3, but not of F1. In this case, we say that F2 and F3
are the only two extended quadratic fields of K1.

With Lemma 3.1 in hand, we define

F4(a, b) =
{
K ∈ F4(Q) :

Q(
√
a),Q(

√
b) are the only two

extended quadratic fields of K

}
.(3.1)

Similarly, we define F4(a, ab
ξ2 ) and F4(b, ab

ξ2 ), where ξ = gcd(|a|, |b|). Then
we have

F4(Q) = F4(a, b) tF4

(
a,
ab

ξ2

)
tF4

(
b,
ab

ξ2

)
since for any field in F4(Q), its extended quadratic fields are Q(

√
a) and

Q(
√
b), Q(

√
a) and Q(

√
ab
ξ ), or Q(

√
b) and Q(

√
ab
ξ ).

For c ∈ {a, b}, we are able to define a subset F4,c(a, b) of F4(a, b) by

F4,c(a, b) = {K ∈ F4(a, b) : Q(
√
c) is the unique quadratic subfield of K}
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and a subset F4,c(a, b;X) of F4,c(a, b) by
F4,c(a, b;X) = F4(Q;X) ∩F4,c(a, b).

It is clear that
F4(a, b) = F4,a(a, b) tF4,b(a, b).

Similarly as in our definitions of two refined subfamilies inside F4(a, b),
we have definitions of two refined subfamilies inside each of F4(a, ab

ξ2 ) and
F4(b, ab

ξ2 ). Hence, we have

(3.2) F4(Q) = F4,a(a, b) tF4,b(a, b) tF4,a

(
a,
ab

ξ2

)
tF4, ab

ξ2

(
a,
ab

ξ2

)
tF4,b

(
b,
ab

ξ2

)
tF4, ab

ξ2

(
b,
ab

ξ2

)
.

Thus in order to give a lower bound on |F4(Q;X)|, it will suffice to give
a lower bound on one of these six subfamilies. From now on, we focus on
F4,a(a, b), but the results apply to the other five subfamilies as well.

We have the following result that gives a generator for K ∈ F4,a(a, b).
Lemma 3.2. For K ∈ F4,a(a, b), there exists g ∈ Z, h ∈ Z∗ = Z − {0}
such that K = Q(

√
g + h

√
a).

Assuming Lemma 3.2, we give explicit criteria for F4,a(a, b) to be non-
empty.
Proposition 3.3. Assume that Q = Q(

√
a,
√
b) is a biquadratic extension

of Q. Then F4,a(a, b) 6= ∅ if and only if b is a norm of Q(
√
a).

Moreover, under the condition F4(Q) 6= ∅, there exists a well-defined
function ϕ : (a, b) 7→ (g0, h0, n0), the image being an ordered triple of
positive integers satisfying a certain equation (see (3.9) if F4,a(a, b) 6= ∅
and (3.10) (3.11) if F4,a(a, b) = ∅). The triple depends only on the ordered
pair (a, b).

By Proposition 3.3, we have F4,a(a, b) 6= ∅ ⇐⇒ b is a norm of
Q(
√
a) ⇐⇒ a is a norm of Q(

√
b) ⇐⇒ F4,b(a, b) 6= ∅. Similarly, we have

F4,a(a, abξ2 ) 6= ∅ ⇐⇒ F4, ab
ξ2

(a, ab
ξ2 ) 6= ∅; F4,b(b, abξ2 ) 6= ∅ ⇐⇒ F4, ab

ξ2
(b, ab

ξ2 ) 6=
∅. Proposition 3.3 then gives that F4(Q) 6= ∅ is equivalent to the state-
ment that (a, b) satisfies Condition 1.3, because both are equivalent to the
statement that at least one of the sets F4,a(a, b),F4,a(a, abξ2 ),F4,b(b, abξ2 ) is
nonempty.

For the moment, we assume that F4,a(a, b) 6= ∅ and show that

|F4(Q;X)| �Q X
1/2.

Later we show how to reach the same conclusion, if F4,a(a, b) = ∅ and at
least one of the other two subfamilies is nonempty.
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Lemma 3.4. Using Lemma 3.2 and Proposition 3.3, we let

K = Q(
√
g + h

√
a) ∈ F4,a(a, b),

where g, h are integers, h 6= 0, and let a positive integer n be given such
that n satisfies

g2 − h2a = n2b.

We will show that such an integer n exists and is unique; see (3.7) below.
Then we have
(3.3) DK ≤ Ca,bn2,

where Ca,b = 256|a|3|b|3. Moreover, under the analogous conditions, the
same result (3.3) holds for fields in the other five subfamilies in (3.2) with
the same constant Ca,b.

Given an ordered pair (a, b) with F4(Q(
√
a,
√
b)) 6= ∅, we recall the

function ϕ : (a, b) 7→ (g0, h0, n0) in Proposition 3.3 and set

Ma(a, b;X) =

m ∈ Z>0 square-free :
gcd(m, |ab|) = 1,

m ≤ 1
16n0

√
|a|3|b|3

X1/2

 .(3.4)

We also set
K[m] = Q

(√
g0m+ h0m

√
a

)
for any positive integer m and

Ta(a, b;X) = {K[m] : m ∈Ma(a, b;X)}.
Assuming F4,a(a, b) 6= ∅, we have the following lower bound on

|Ta(a, b;X)|. This gives a lower bound of |F4,a(a, b;X)|.

Proposition 3.5. Assume that F4,a(a, b) 6= ∅. Then the following state-
ments hold.

(1) We have
(3.5) Ta(a, b;X) ⊂ F4,a(a, b;X).

(2) If m1,m2 ∈Ma(a, b;X), m1 6= m2, then K[m1] 6= K[m2].
(3) We have

(3.6) |Ta(a, b;X)| �a,b X
1/2.

Assuming the above lemmas and propositions, we deduce Theorem 1.2
as follows. Let Q = Q(

√
a,
√
b) be such that F4(Q) 6= ∅. If F4,a(a, b) 6= ∅,

then (3.5) and (3.6) immediately give Theorem 1.2. If F4,a(a, b) = ∅, then
F4,a(a, abξ2 ) 6= ∅ or F4,b(b, abξ2 ) 6= ∅. We choose any c ∈ {a, b} such that
F4,c(c, abξ2 ) 6= ∅ holds and denote â = c, b̂ = ab

ξ2 . Thus F4,̂a(â, b̂) 6= ∅.
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Note that Q(
√
â,
√
b̂) = Q(

√
a,
√
b) and that (â, b̂) satisfies (1.3). Again by

Proposition 3.3, the image of (â, b̂) under ϕ is a triple of integers. Proposi-
tion 3.5 holds with a replaced by â, b replaced by b̂. Then (3.5) and (3.6)
give Theorem 1.2.

Proof of the lemmas and propositions.

Proof of Lemma 3.2. Noting that K is a degree 2 extension of Q(
√
a), we

can find α ∈ K\Q(
√
a) s.t. α2 ∈ Q(

√
a). Clearly K = Q(

√
a)(α). Every

element in Q(
√
a) has the form u+v

√
a, where u, v ∈ Q, so α2 = g′+h′

√
a,

where g′, h′ ∈ Q. If h′ = 0, then Q(α) is a normal extension of Q, leading
to a contradiction since K 6= K̃. Thus we have h′ ∈ Q∗. Letting λ > 0
be the least common multiple of the denominators of g′ and h′ (if g′ = 0,
then 1 is its denominator), we have λ2α2 = λ2g′ + λ2h′

√
a. Now we let

g = λ2g′, h = λ2h′; then g ∈ Z, h ∈ Z∗, and
√
g + h

√
a ∈ K. Since

α /∈ Q(
√
a), we have

√
g + h

√
a /∈ Q(

√
a). Thus, Q(

√
g + h

√
a) is a quartic

subextension of K. It forces K = Q(
√
g + h

√
a). �

Proof of Proposition 3.3. For the first direction, we assume F4,a(a, b) 6= ∅.
By Lemma 3.2, for K ∈ F4,a(a, b), we can write K = Q(

√
g + h

√
a) where

g ∈ Z, h ∈ Z∗. It is easy to see that

K̃ = K

(√
g − h

√
a

)
= Q

(√
g + h

√
a,
√
g − h

√
a

)
.

We notice that
√
g + h

√
a ·
√
g − h

√
a =

√
g2 − h2a ∈ Q(

√
a),Q(

√
b), or

Q(
√
ab
ξ ). It cannot be in Q(

√
a), otherwise√

g − h
√
a =

(√
g + h

√
a

)−1√
g2 − h2a ∈ K,

which leads to a contradiction sinceK 6= K̃. Therefore we have
√
g2 − h2a ∈

Q(
√
b) ∪Q(

√
ab
ξ ), which induces that either

(3.7) g2 − h2a = n2b

or

(3.8) g2 − h2a = n2ab

ξ2 ,

for some n ∈ Z>0.
To study the automorphisms of K̃/Q, we use the notations 1 =

√
g+h

√
a,

2 =
√
g − h

√
a, 3 = −

√
g + h

√
a, and 4 = −

√
g − h

√
a. Then we see

Gal(K̃/Q) ∼= D4 = 〈r, s | r4 = 1, s2 = 1, srs−1 = r−1〉 by setting r = (1234)
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and s = (13) as permutations of four letters. The field K = Q(
√
g + h

√
a)

appears as the fixed field of 〈r2s〉 (i.e., K2 in the lattice of fields) and the
field Q(

√
g − h

√
a) appears as the fixed field of 〈s〉 (i.e., K1 in the lat-

tice of fields). Now we would like to compute the fixed field of 〈rs〉. Using
the temporary notation A =

√
g + h

√
a and B =

√
g − h

√
a, we notice

that A−B is invariant under the automorphism rs = (14)(23). Moreover,
A2 −B2 = 2h

√
a and A2 +B2 = 2g. Thus,

(A−B)2 = 2g − 2AB = 2g − 2
√
g2 − h2a.

If we have (3.7), then (A−B)2 = 2g−2n
√
b and A−B = ±

√
2g − 2n

√
b.

The fixed field of 〈rs〉 is Q(
√

2g − 2n
√
b). Thus, the extended quadratic

fields of K are Q(
√
a) and Q(

√
b).

If we have (3.8), then (A−B)2 = 2g−2n
√
ab
ξ and A−B = ±

√
2g − 2n

√
ab
ξ .

The fixed field of 〈rs〉 is Q(
√

2g − 2n
√
ab
ξ ). Thus, the extended quadratic

fields of K are Q(
√
a) and Q(

√
ab
ξ2 ). This case is excluded because K ∈

F4,a(a, b). Thus, we must have (3.7), which is equivalent to the fact that b
is a norm of Q(

√
a).

For the other direction of Proposition 3.3, we know that (3.7) has a
nontrivial solution because b is a norm of Q(

√
a). We fix a well-defined

nontrivial solution (g0, h0, n0) of (3.7) in the following way. First, we define
the set N = {n ∈ Z>0 : ∃ g ∈ Z≥0, h ∈ Z>0 s.t. g2−h2a−n2b = 0}. The set
N is nonempty and there exists the least element n0 in N . Second, we define
the set H = {h ∈ Z>0 : ∃ g ∈ Z≥0 s.t. g2−h2a−n2

0b = 0}. There exists the
least element h0. Once n0, h0 are determined, g0 is uniquely determined as
the nonnegative solution of g2 − h2

0a− n2
0b = 0. In this way can we choose

the well-defined solution (g0, h0, n0), i.e., g0, h0, n0 are nonnegative integers
only depending on the ordered pair (a, b) and satisfy h0 6= 0, n0 6= 0,

(3.9) g2
0 − h2

0a = n2
0b.

As an example, if (a, b) = (2, 7), then (g0, h0, n0) = (3, 1, 1).
We denote K0 = Q(

√
g0 + h0

√
a) and claim that K0 ∈ F4,a(a, b). We

see that K0 is quartic and has a quadratic subfield Q(
√
a). By [8, p. 88],

we know that Gal(K̃0/Q) ∼= K4 ⇐⇒ g2
0 − h2

0a = k2 for some inte-
ger k; Gal(K̃0/Q) ∼= C4 ⇐⇒ g2

0 − h2
0a = ak2 for some integer k;

Gal(K̃0/Q) ∼= D4 ⇐⇒ g2
0 − h2

0a 6= k2 or ak2 for any integer k. Here
K4 is the Klein 4-group and C4 is the cyclic group of order 4. Since
g2

0 − h2
0a = n2

0b and n2
0b 6= k2 or ak2 for any k, we have Gal(K̃0/Q) ∼= D4.
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Moreover, K̃0 = Q(
√
g0 + h0

√
a)(
√
g0 − h0

√
a) contains

√
g2

0 − h2
0a, an

element of Q(
√
a,
√
b)\Q(

√
a). Thus, K̃0 contains Q(

√
a,
√
b) and hence

K0 ∈ F4(Q). Following the proof of the first direction of Proposition 3.3,
we know that Q(

√
2g0 − 2n0

√
b) is in the same lattice of fields as K0,

so the extended quadratic fields of K0 are Q(
√
a) and Q(

√
b). This gives

K0 ∈ F4(a, b). Recalling that K0 has a quadratic subfield Q(
√
a), we con-

clude that K0 ∈ F4,a(a, b) and F4,a(a, b) 6= ∅.
The function ϕ can be constructed as follows. We assume that F4(Q) 6=

∅. If F4,a(a, b) 6= ∅, then we let ϕ send (a, b) to (g0, h0, n0) as above. If
F4,a(a, b) = ∅, then F4,a(a, abξ2 ) 6= ∅ or F4,b(b, abξ2 ) 6= ∅. If F4,a(a, abξ2 ) 6= ∅,
then we choose (g0, h0, n0) to be the triple satisfying

(3.10) g2
0 − h2

0a = n2
0
ab

ξ2

using the same procedure as above. If F4,a(a, abξ2 )=∅ (hence F4,b(b, abξ2 ) 6=∅),
then we choose (g0, h0, n0) to be the triple satisfying

(3.11) g2
0 − h2

0b = n2
0
ab

ξ2

using the same procedure as above. Now we finish the proof of Proposi-
tion 3.3. �

Proof of Lemma 3.4. We know from algebraic number theory that the ring
of integers OK is a free Z-module with rank 4, and that

spanZ
{

1,
√
a,
√
g + h

√
a,
√
ag + ah

√
a

}
is a sublattice of OK . Therefore we have

(3.12) |disc(K)| = |disc(OK)|

≤
∣∣∣∣disc

(
spanZ

{
1,
√
a,
√
g + h

√
a,
√
ag + ah

√
a

})∣∣∣∣
= |256a2(g2 − h2a)|.

Note that (g, h, n) satisfies relation (3.7), hence DK ≤ 256|a|2|b|n2. By
choosing Ca,b = 256|a|3|b|3 we have DK ≤ Ca,bn

2. In the same way, the
result DK ≤ Ca,bn2 holds for fields in other five subfamilies with the same
constant Ca,b. Lemma 3.4 then follows. �

Note that Huard, Spearman, and Williams [8] compute explicitly the
discriminant of a quartic field of the form Q(

√
g + h

√
a); see [8, Theorem 1].

We do not approach their method here, since Lemma 3.4 is sufficient for
our purpose.
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Now we prove Proposition 3.5. Remember that we have fixed the ordered
pair (a, b) (hence have fixed (g0, h0, n0)).

Proof of Proposition 3.5(1). For m ∈ Ma(a, b;X), the proof of K[m] ∈
F4,a(a, b) is the same as that of K0 ∈ F4,a(a, b) in the proof of Propo-
sition 3.3, so we omit it here.

By (3.4), we know that if m ∈ Ma(a, b;X), then n2
0Ca,bm

2 ≤ n2
0Ca,b ·

1
n2

0Ca,b
X = X. For any K[m] ∈ Ta(a, b;X), we have m ∈ Ma(a, b;X).

By (3.12) we have

DK[m] ≤ |256a2((g0m)2 − (h0m)2a)| = 256|a|2n2
0|ab|m2 ≤ n2

0Ca,bm
2 ≤ X.

Thus, we have K[m] ∈ F4,a(a, b;X). It follows that

Ta(a, b;X) ⊂ F4,a(a, b;X). �

Proof of Proposition 3.5(2). We let m1,m2 ∈ Ma(a, b;X) such that m1 6=
m2. If K[m1] = K[m2] ∈ Ta(a, b;X), then

√
g0m2+h0m2

√
a√

g0m1+h0m1
√
a

=
√

m2
m1
∈ K[m1].

Thus we have √m1m2 ∈ K[m1]. Since (√m1m2)2 ∈ Q and note that Q(
√
a)

is the only quadratic subfield of K[m1], we know that √m1m2 ∈ Q(
√
a).

Note also that a and m1m2 are integers in Q(
√
a), where a is square-free

and m1m2 is not a perfect square, it follows that |a| divides m1m2. This
contradicts the fact that (|a|,m1) = (|a|,m2) = 1 if a 6= −1. If a = −1, then
since m1m2 is positive and is not a perfect square, √m1m2 /∈ Q(

√
−1). We

also have a contradiction. Therefore we know that K[m1] 6= K[m2]. �

Proof of Proposition 3.5(3). By Proposition 3.5(2), there is a one-to-one
correspondence between the elements in Ta(a, b;X) and Ma(a, b;X), so
|Ta(a, b;X)| = |Ma(a, b;X)|. We need to prove that

(3.13) |Ma(a, b;X)| �a,b X
1/2.

For Z ∈ R>0 and a positive integer q ≥ 2, we define the set

M(Z, q) = {m ∈ Z>0 square-free : gcd(m, q) = 1,m ≤ Z}.

It suffices to prove that

(3.14) M(Z, q)�q Z as Z →∞.

With (3.14) in hand, (3.13) follows immediately once we take

Z = 1
16n0

√
|a|3|b|3

X1/2, q = |ab|.

We recall the Möbius function µ and Euler’s totient function φ. Also, we
temporarily use the notation ( · , · ) instead of gcd( · , · ) for brevity. Then we
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have

M(Z, q) =
∑
m≤Z

(m,q)=1

∑
d2|m

µ(d) =
∑
d≤
√
Z

µ(d)
∑
m≤Z

(m,q)=1
d2|m

1

=
∑
d≤
√
Z

(d,q)=1

µ(d)
∑
m≤Z

(m,q)=1
d2|m

1 m=m′d2
=

∑
d≤
√
Z

(d,q)=1

µ(d)
∑

m′≤b Z
d2 c

(m′,q)=1

1

=
∑
d≤
√
Z

(d,q)=1

µ(d)
[
φ(q)
q

⌊
Z

d2

⌋
+O(1)

]

= φ(q)
q

∑
d≤
√
Z

(d,q)=1

µ(d)
⌊
Z

d2

⌋
+O(

√
Z)

= Zφ(q)
q

∑
d≤
√
Z

(d,q)=1

µ(d)
d2 +O(

√
Z) +O(

√
Z)

= Zφ(q)
q

∑
(d,q)=1

µ(d)
d2 +O

Z ∑
d>
√
Z

1
d2

+O(
√
Z)

= Zφ(q)
q

∏
p prime
p-q

(1− p−2) +O(
√
Z)

= φ(q)
qζ(2)

∏
p prime
p|q

(1− p−2)−1Z +O(
√
Z).

Therefore, (3.14) follows. Now we finish the proof of Proposition 3.5. �

Another natural way to count D4-quartic fields is to count the fields
up to isomorphism. In that way, our lower bound still holds, since one
isomorphism class of fields is in one-to-one correspondence with two fields
in Q̄. In detail, in the lattice of fields, inside Q̄, K1 and K2 are the only
two representatives of the same isomorphism class of fields. In other words,
if K = Q(

√
g + h

√
a) is a D4-quartic field, where g ∈ Z, h ∈ Z∗, then the

only other field isomorphic to K in Q̄ is Q(
√
g − h

√
a).
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4. Proof of Theorem 1.5
In this section we assume that for a field K ∈ F4(Q;X) with Q =

Q(
√
a,
√
b), ζ

K̃
(s)/ζQ(s) = L2(s, ρ

K̃
) is zero-free in the region (1.7), and

then derive Theorem 1.5 with the assumption above. We proceed via a
simple adaptation of the argument in [15], except now we use the fact that
the L-functions L(s, χa∗), L(s, χb∗), and L(s, χ( ab

ξ2 )∗) are fixed, and we move
to the right of any exceptional zero they may possess.

First, we consider the zero-free region for ζQ(s)/ζ(s) where Q =
Q(
√
a,
√
b); this is a product of Dirichlet L-functions. Theorem 5.26 of [9]

provides the standard zero-free region for a Dirichlet L-function.

Proposition 4.1. There exists an absolute constant C0 > 0 such that for
any primitive Dirichlet character χ modulo q, L(s, χ) has at most one zero
s = σ + it in the region

σ ≥ 1− C0
log q(|t|+ 3) .

The exceptional zero may occur only if χ is real, and it is then a simple
real zero, say βχ, with

1− C0
log 3q ≤ βχ < 1.

We set

qmax = max
{
|a∗|, |b∗|,

∣∣∣∣(abξ2

)∗∣∣∣∣}
and denote

(4.1) βmax = max
{
βχa∗ , βχb∗ , βχ( ab

ξ2 )∗

}
.

If none of βχa∗ , βχb∗ , or βχ( ab
ξ2 )∗

exists, we simply set βmax = 3
4 . Then by

Proposition 4.1, ζQ(s)/ζ(s) has no zeros in the region R1 ∩R2, where

R1 = {σ + it : βmax < σ ≤ 1},

R2 =
{
σ + it : σ ≥ 1− C0

log qmax(|t|+ 3)

}
.

Second, by the hypothesis of Theorem 1.5, the function ζ
K̃

(s)/ζQ(s) is
zero-free in the region (1.7). Given ε0, we let δ be the constant in (1.8), so δ
depends only on ε0. We choose ε0 sufficiently small such that δ < 1−βmax.

Consequently, the function ζ
K̃

(s)/ζ(s) is zero-free in the region R1∩R2∩
R3, where

R3 = {σ + it : σ ≥ 1− δ, |t| ≤ (logD
K̃

)2/δ}.
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Since βmax < 1− δ, the zero-free region R1 ∩R2 ∩R3 is the same as

R4 = R2 ∩R3

=
{
σ + it : σ ≥ max

{
1− C0

log qmax(|t|+ 3) , 1− δ
}
, |t| ≤ (logD

K̃
)2/δ

}
.

In our Chebotarev density theorem we are interested in the range where
D
K̃
→ ∞, so we can assume that D

K̃
is sufficiently large and the above

zero-free region R4 becomes

(4.2)
{
σ ≥ 1− δ, if |t| ≤ T0,

σ ≥ 1− C0
log qmax(|t|+3) , if T0 ≤ |t| ≤ (logD

K̃
)2/δ,

where T0 = eC0/δ

qmax
−3 is the height of the intersection point of the boundary

lines of two zero-free regions for ζ
K̃

(s)/ζQ(s) and ζQ(s)/ζ(s). In fact we can
let

(4.3) D
K̃
≥ exp

(
exp

(
C0
2

))
to fulfill our assumption.

To prove Theorem 1.5, we consider two different ranges of x. For x ≥
exp(80(logD

K̃
)2), we note that the error term allowed in Theorem 1.5 is

larger than the error term c3x exp(−c4(log x)1/2) (where c3, c4 are effectively
computable constants) in the unconditional effective Chebotarev density
theorem of Lagarias and Odlyzko ([11, Theorem 1.3]), so our Chebotarev
density theorem holds for such x. Now we assume that x≤exp(80(logD

K̃
)2).

For K ∈ F4(Q), we define the weighted prime-counting function as

ψC (x, K̃/Q) =
∑
p,m

p unramified in O
K̃

Nm
K̃/Q

pm≤x[
K̃/Q
p

]
=C

log p,

and the final result for πC (x, K̃/Q) will follow from partial summation. By
Theorem 7.1 of [11], we have

(4.4)
∣∣∣∣ψC (x, K̃/Q)− |C |

|G|
x

∣∣∣∣ ≤ C1(S(x, T ) + E1 + E2),

where C1 is an absolute constant and

E1 = |C |
|G|

(xT−1 log x logD
K̃

+ logD
K̃

+ 8 log x+ 8xT−1 log x log T ),

E2 = |C |
|G|

(log x logD
K̃

+ 8xT−1(log x)2).
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By (4.24) of [15], in the case of G = D4, we know that

(4.5) |S(x, T )| ≤ C2
|C |
|G|

(E3 + E4 + E5),

where C2 is an absolute constant and

E3 = 8x1/2(logD
K̃

)2, E4 = x
1−δ log T log(D

K̃
T 8)
,

E5 = x
1− C

log qmax(T+3) log T log(D
K̃
T 8).

We set
T = (logD

K̃
)2/δ.

We are able to use the analysis of the error terms E1, E2, E3, and E4
in [15, Section 4] to show that the absolute values of the four error terms
are bounded by C3|C ||G|−1x(log x)−1, provided that
(4.6) D

K̃
≥ C4.

Note that C3 and C4 are absolute constants. The only difference is the term
E5 due to a different value of L (T ), the width of the zero-free region up
to the height T . In our setting,

L (T ) = C0
log qmax(T + 3) .

In order to have the bound for the error term as claimed in (1.10), we
want

x1−L (T ) log T log(D
K̃
T 8) ≤ C5

|C |
|G|

x(log x)−1,

where C5 is an absolute constant. If this holds, the error term in (4.4) be-
comes the right hand side of (1.10) after partial summation. Upon recalling
x ≤ exp(80(logD

K̃
)2), it suffices to have

x ≥ exp
{
C−1

0 log
[
2qmax(logD

K̃
)2/δ

]
log
[
C6δ

−2(logD
K̃

)4
]}
,

where C6 = 21760C−1
5 . We write this as

(4.7) x ≥ exp
{

8C−1
0 δ−1 log log

(
D

(2qmax)δ/2

K̃

)
log log

(
DC61/4δ−1/2

K̃

)}
.

We combine the analysis of E5 with that of error terms E1, E2, E3, E4
and recall (4.3) and (4.6). Then we obtain the followings. If

(4.8) D
K̃
≥ C7 = max

{
exp

(
exp

(
C0
2

))
, C4

}
,

then (4.5) holds for all

κ′′1 exp
[
κ′′2

(
log log

(
D
κ′′3
K̃

))2]
≤ x ≤ exp(80(logD

K̃
)2)
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with

κ′′1 = C
1/δ
6 δ−2/δ,

κ′′2 = max{4δ−1, 8C−1
0 δ−1},

κ′′3 = max{2qmax, C6
1/4δ−1/2},

as a result of (4.30) of [15] and our (4.7). Moreover, Theorem 1.5 holds with

κ1 = 40C1/δ
6 δ−2/δ,(4.9)

κ2 = max{4δ−1, 8C−1
0 δ−1}+ 4,(4.10)

κ3 = (480C1)1/5 max{2qmax, C6
1/4δ−1/2},(4.11)

as a result of (4.47) of [15]. Note that δ is given in terms of ε0 in (1.8).
Aside from absolute constants, κi depends on a, b, ε0, since qmax depends
only on a, b.

5. Proof of Theorem 1.6
We prove Theorem 1.6 via an adaptation of the argument in Section 5,6

of [15]. Notice here that because we have defined our family so that only
one factor in (1.6) is varying as K varies, one avoids the difficulties faced
in [15] when applying Theorem 2 of [10] to noncuspidal representations.

For Q = Q(
√
a,
√
b) with F4(Q) 6= ∅, and for every X ≥ 1, we define

F̃4(Q;X) to be the set containing all the Galois closures of K as K varies
in F4(Q;X). Moreover, we define

LQ(X) =
{
L(s, ρ

K̃
) : K̃ ∈ F̃4(Q;X)

}
,

where we recall ρ
K̃

is the faithful 2-dimensional irreducible representation
of D4. If K1,K2 ∈ F4(Q) have the property that L(s, ρ

K̃1
) = L(s, ρ

K̃2
),

then K̃1 = K̃2 by [15, Proposition 6.3]. Importantly in this application,
we note that the character ρ

K̃
is faithful. Therefore, LQ(X) is a set and

that the elements in LQ(X) are in one-to-one correspondence with those
in F̃4(Q;X).

Recall from the lattice of fields in Section 2 that four D4-quartic fields
share one Galois closure, hence share one L-factor L(s, ρ

K̃
). In order to

prove Theorem 1.6, it suffices to prove the following theorem.

Theorem 5.1. Let Q = Q(
√
a,
√
b) satisfy F4(Q) 6= ∅. For every 0 < ε0 <

1
4 , in the set LQ(X), there are �ε0 X

ε0 L-functions L(s, ρ
K̃

) that could
have a zero in the region (1.7).
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Proof. We will prove this via an application of Theorem 2 of [10], which
gives an upper bound for the zero density in a family of cuspidal automor-
phic L-functions. We first verify the conditions Kowalski and Michel’s work
requires in our specific setting.

We note that the strong Artin conjecture is true for dihedral groups
(see [12]). Thus, for a D4-quartic field K and its associated L-function
L(s, ρ

K̃
), there exists an automorphic representation π

K̃
= π(ρ

K̃
) on

GL2(AQ) such that L(s, ρ
K̃

) and L(s, π
K̃

) agree almost everywhere. Since
ρ
K̃

is irreducible, π
K̃

is cuspidal. Moreover, if π is cuspidal and L(s, πv) =
L(s, ρv) for almost all v, then in fact L(s, π) = L(s, ρ) (see [13, Proposi-
tion 2.1]). Thus, there exists a cuspidal automorphic representation π

K̃
on

GL2(AQ) such that L(s, π
K̃

) = L(s, ρ
K̃

). We let

SQ(X) =
{
π
K̃

: K̃ ∈ F̃4(Q;X)
}
.

Since LQ(X) is a set, so is SQ(X). Moreover, if π
K̃1

= π
K̃2

, then L(s, ρ
K̃1

) =
L(s, ρ

K̃2
) and hence K̃1 = K̃2. Therefore, the elements in SQ(X) are in one-

to-one correspondence with those in F̃4(Q;X).
The result of Theorem 2 of [10] requires four conditions on SQ(X), which

we now verify.
(1) Every element in SQ(X) satisfies the Ramanujan–Petersson Con-

jecture, since the Ramanujan–Petersson Conjecture is automati-
cally true for automorphic L-functions corresponding to Artin L-
functions.

(2) There exists A > 0 such that for all X ≥ 1 and all π ∈ SQ(X),

Cond(π)� XA.

Indeed, Lemma 6.1 of [15] shows that D
K̃
� D4

K , so that by the
conductor-discriminant formula D

K̃
=
∏
ρ∈Irr(D4) Cond(ρ)ρ(1), we

see that A = 4 suffices for our purpose.
(3) For all X ≥ 1, we have

|SQ(X)| � X.

This holds because |SQ(X)| = |F̃4(Q;X)| ≤ |F4(Q;X)| � X.
(4) Since the strong Artin conjecture is true for G = D4, for every

K ∈ F4(Q;X), the convexity bound

|L(s, π
K̃

)| �ε (Cond(π
K̃

)(|t|+ 2)m)(1−<(s))/2+ε

holds for any 0 ≤ <(s) ≤ 1 and any ε > 0. Also, we have an anal-
ogous convexity bound for Rankin–Selberg L-functions L(s, π

K̃
⊗

π
K̃′

), where π
K̃
� π

K̃′
. See [15, Section 6.2].
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We define the zero-counting function for π = π
K̃
:

N(π;α, T ) = |{s = β + iγ : β ≥ α, |γ| ≤ T, L(s, π) = 0}|.
Now we apply Theorem 2 in [10], which in our context takes the following
form.

Theorem 5.2. Let α ≥ 3
4 and T ≥ 2. In the context of SQ(X) above, there

exists a constant B ≥ 0, depending only on the parameters (a, b, A) in the
four properties above, such that for every c0 > 21, we have that there exists
a constant Mc0 depending only on c0 such that for all X ≥ 1,∑

π∈Sa,b(X)
N(π;α, T ) ≤Mc0T

BXc0
1−α

2α−1 .

To apply this, letting 0 < ε0 <
1
4 be given, we set c0 = 21 + ε0 and set

α, T such that c0(1−α)
2α−1 = ε0/2, T = Xε0/(2B) and recall (1.8), the defining

formula for δ. So we have α = 2c0+ε0
2(c0+ε0) and δ = 1− α. Theorem 5.2 shows

that there are �ε0 X
ε0 L-functions in LQ(X) that could have a zero in

R(X) = {s = σ + it : 1 − δ ≤ σ ≤ 1, |t| ≤ Xε0/(2B)}. Consequently, aside
from�ε0 X

ε0 exceptions in LQ(X), L(s, ρ
K̃

) = L(s, π
K̃

) is zero-free in the
region (1.7) for all X sufficiently large such that

(5.1) (logD
K̃

)2/δ < Xε0/(2B).

Note that by Lemma 6.1 of [15], we have D
K̃
≤ c1D

4
K , for some absolute

constant c1 > 0. Together with the relation DK ≤ X, (5.1) will follow as
long as X is sufficiently large such that
(5.2) (4 logX + log c1)2/δ < Xε0/(2B).

Any fixed power of X is greater than any fixed power of logX once X
is sufficiently large. Therefore, there exists a constant D0 = D0(ε0) such
that (5.2) (hence (5.1)) holds whenever X ≥ D0. For the remaining cases
with small discriminant X < D0, we have |LQ(X)| ≤ |F4(Q;X)| �
D0 �ε0 1. Theorem 5.1 then follows. �

6. Proof of Theorem 1.1
We use Theorems 1.5 and 1.6 to prove Theorem 1.1. As a consequence of

Theorem 1.5, we have the following proposition (analogous to Corollary 3.16
in [15]).

Proposition 6.1. Let Q = Q(
√
a,
√
b) be a biquadratic field satisfying

F4(Q) 6= ∅. For every ε0 > 0 sufficiently small, let δ be defined as in (1.8).
Then for any σ > 0, there exists a constant B3 = B3(ε0, σ) such that
for every X ≥ 1, every field K ∈ F4(Q) that has DK ≥ B3 and whose
associated L-function L(s, ρ

K̃
) (see (1.6)) is zero-free in the region (1.7),
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has the property that for any fixed conjugacy class C in D4, there are at
least

�C ,σ
Dσ
K

logDK

rational primes p ≤ Dσ
K with Artin symbol

[
K̃/Q
p

]
= C .

Proposition 6.1 is deduced from Theorem 1.5 in the same manner that
Corollary 3.16 is deduced from Theorem 3.1 in Section 6.6 of [15], thus we
omit the proof here.

We recall Lemma 2.3 of Ellenberg and Venkatesh [4]. In our setting, it
has the following form.

Proposition 6.2. Let K be a D4-quartic field and fix a positive integer
`. Set η < 1

6` and suppose that there are at least M rational primes with
p ≤ Dη

K that are unramified and split completely in K. Then

|ClK [`]| �`,ε1 D
1
2 +ε1
K M−1,

for every ε1 > 0.

Now we deduce Theorem 1.1 from Theorem 1.6, Propositions 6.1 and 6.2,
recalling the numbers ε0 and δ chosen in Proposition 6.1. We set C = Id,
so we count unramified primes which split completely in K̃, hence split
completely in K. For any positive integer `, we choose ε2 > 0 sufficiently
small and set σ = 1

6`−ε2. Then for everyX ≥ 1, for any fieldK ∈ F4(Q;X)
with DK ≥ B3 that is not one of �ε0 Xε0 fields whose associated L-
function L(s, ρ

K̃
) could have a zero in the region (1.7), there are �`,ε2

D
1
6`−ε2
K / logDK primes p ≤ D

1
6`−ε2
K that split completely in K. Thus, by

Proposition 6.2, for such a field K, we have

|ClK [`]| �`,ε1,ε2 D
1
2−

1
6`+ε2+ε1

K ,

for all ε1 > 0, ε2 > 0 sufficiently small. Note that the number of K ∈
F4(Q;X) such that DK < B3 is � B3, which is a constant depend-
ing on `, ε0, ε2. Theorem 1.1 then follows as we choose ε0, ε1, ε2 such that
max{ε0, ε1 + ε2} ≤ ε and δ = ε0

42+4ε0
< 1 − βmax. Note that βmax ∈ (0, 1),

defined in (4.1), is a fixed number when Q = Q(
√
a,
√
b) is fixed.
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