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Reduction of certain crystalline representations
and local constancy in the weight space

par Shalini BHATTACHARYA

Résumé. Nous étudions la réduction mod p des représentations galoisiennes
cristallines de dimension 2. Berger a montré que lorsque la trace de l’endo-
morphisme de Frobenius est fixée non nulle, la réduction, sous certaines con-
ditions, est localement constante par rapport au poids. Ici, nous donnons une
estimation du rayon de constance de la réduction autour de certains points
spéciaux dans l’espace de poids en calculant une majoration pour la valuation
p-adique du rayon. Notre borne supérieure se révèle être une fonction linéaire
de la pente de la représentation cristalline considérée.

Abstract. We study the mod p reduction of crystalline local Galois repre-
sentations of dimension 2. Berger showed that for a fixed non-zero trace of
the Frobenius, the reduction process is locally constant for varying weights
under certain conditions. Here we give an estimate of the radius of this local
constancy around some special points in the weight space by computing an
upper bound for the exponent of p−1 in the radius. Our upper bound turns
out to be a linear function of the slope of the crystalline representation under
consideration.

1. Introduction
Let p ≥ 5 be an odd prime number. Let E be a finite extension of Qp

and let v : Q∗p → Q be the normalized valuation so that v(p) = 1. Let mE

be the maximal ideal in the ring of integers OE of E. For any integer k ≥ 2
and any ap ∈ mE , let Dk,ap = Ee1 ⊕ Ee2 be the filtered ϕ-module where
the Frobenius operator ϕ acts by the matrix

( 0 −1
pk−1 ap

)
with respect to the

basis 〈e1, e2〉, and the filtration is given by

Fili(Dk,ap) =


Ee1 ⊕ Ee2, if i ≤ 0
Ee1, if 1 ≤ i ≤ k − 1
0, if k ≤ i.
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Now let V = Vk,ap be the unique two-dimensional irreducible crystalline
representation of GQp := Gal(Qp|Qp) such that Dcris(V ∗) = Dk,ap , where
V ∗ is the dual representation of V . The existence of such representations
follows from the theory of Colmez and Fontaine [14]. We recall that Vk,ap

has Hodge–Tate weights (0, k − 1) and slope v := v(ap) > 0.
The semi-simplification of the mod p reduction V k,ap of any GQp-stable

integral lattice in Vk,ap is independent of the choice of the lattice. Despite
the variety of non-isomorphic irreducible two-dimensional crystalline rep-
resentations V in characteristic 0 which are indexed by the tuples (k, ap)
up to twists, at the mod p level one has very limited choice for the semi-
simplified reductions V . Behaviour of the mod p reductions of the repre-
sentations Vk,ap has been studied by several mathematicians. The explicit
shape of V k,ap has been computed for small weights k ≤ 2p + 1 [10, 15],
small slopes v < 2 [8, 9, 12, 13, 16, 18], or when the slope is very large
compared to the weight k [7]. For results on the irreducibility of V k,ap , we
refer to [1]. Now one can also effectively compute these reductions using
the algorithm given in [21] for small values of k and p.

In this article we will study how the reduction behaves with varying
weight k, where ap ∈ mE is kept constant. Let us begin by recalling a result
about the local constancy of the map k 7→ V k,ap , for any fixed non-zero
ap ∈ mQ̄p

. The following theorem is due to Laurent Berger, see Theorem B
of [6], together with [4].

Theorem 1.1 (Berger). Suppose ap 6= 0 and k > 3v(ap) + (k−1)p
(p−1)2 + 1.

Then there exists m = m(k, ap) such that if k′ − k ∈ pm−1(p− 1)Z>0, then
V k′,ap

∼= V k,ap.

In the context of the theorem above, one may ask the following questions:
• Theorem 1.1 ensures the existence of m(k, ap), but no estimates are
available for this constant. What are the possible values ofm(k, ap)?
For fixed ap, is it possible to choose an m(k, ap) that works for all
k? This phenomenon, when occurs, can be referred to as “uniform
local constancy” of the reduction.
• It is clear from Theorem 1.1 that local constancy in the weight space
holds around the weights k bigger than 3v

1− p

(p−1)2
+ 1 (also see [4]).

One wonders if this bound is necessary, or whether one can improve
the lower bound on k?

Clearly if Theorem 1.1 holds for some m, then so it does for all m′ ≥ m.
But we will denote by m(k, ap) the smallest possible m ∈ N satisfying this
property. The uniform local constancy is generically true for small slopes,
where the reductions have been already computed. Let us recall some cases
with known explicit values of m(k, ap):
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• v ∈ (0, 1): We have m(k, ap) = 1, cf. [12], unless k ≡ 3 mod (p− 1)
and v = 1/2. For v = 1/2 and k ≡ 3 mod (p− 1), the behaviour of
the reduction is complicated, and it is clear from the main theorem
of [13] that m(k, ap) depends on k and ap in a more serious way.

• v = 1: We have m(k, ap) =
{

3, if k ≡ 3 mod (p− 1)
2, if k 6≡ 3, 4 mod (p− 1).

For k ≡ 4 mod (p− 1), the reductions are more complex [9].

• v ∈ (1, 2): We have m(k, ap) =
{

3, if k ≡ 3 mod (p− 1)
2, if k 6≡ 3 mod (p− 1),

unless v = 3/2 and k ≡ 5 mod (p − 1). For the remaining excep-
tional case, i.e., when v = 3/2 and k ≡ 5 mod (p − 1), we refer
to [18].

Thus for small slopes, m(k, ap) is independent of k in most cases, and it
does increase with the slope v = v(ap) in general. In this article we compute
m(k, ap) for some small weights k. We also improve the lower bound on k
in Berger’s Theorem 1.1 a bit, though could not avoid a lower bound that
is linear in the slope. More precisely, we prove the following.

Theorem 1.2. For c ∈ {0, 1, 2, 3}, let b ≥ 2c and suppose k = b+c(p−1)+
2, 2 ≤ b ≤ p− 1. In the range c < v < p/2 + c of slopes, if k > 2v + 2 and
k 6≡ 3 mod (p+ 1), then Berger’s constant m(k, ap) exists and is bounded
above by 2v + 1.

Remark 1.3. (a) We give an upper bound on m(k, ap) for most weights k
lying in the range (2v + 2, 4p− 2]. To avoid technical complications in the
proof we exclude a few cases, e.g., the weights k ≡ 3 mod (p− 1) or k ≡ 3
mod (p + 1) or when 2 ≤ b < 2c. However, we hope a similar bound for
m(k, ap) will work without these conditions.

(b) For any given finite rational number v > c, one can choose a prime
p > 2v, so our theorem applies for arbitrarily large (finite) slopes. We
mention here that the condition v > c can be dropped for c = 0, 1 by the
known results for v ≤ 1. Also note that the hypothesis of Theorem 1.2
implies ap 6= 0. In fact, it follows from Proposition 4.1.4 in [7] that there is
no local constancy with respect to weight at ap = 0.

(c) Berger proved that the constant m(k, ap) exists if k > 3v
1− p

(p−1)2
+ 1

(Theorem 1.1). However, direct computation gives us a better lower bound
2v+ 2 on k for local constancy. We conclude that this lower bound is strict
based on the chaotic behaviour of the reduction as one p-adically approaches
the point k = 2v + 2, cf. [17, 18]. Looking at the constant m(2v + 2, ap) in
the few known cases, we note two kinds of irregularities:
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(i) One can derive from [13] and [9] respectively, together with [15] that

m(3, ap) ≤ dv(a2
p − p)e+ 1, if v = 1/2, a2

p 6= p

m(4, ap) ≤ dv(a2
p − p2)e, if v = 1, a2

p 6= p2.

In these cases the constant m(k, ap) cannot be bounded in terms of the
slope v = v(ap). For example, we can make m(3, ap) arbitrarily large by
choosing an ap 6= ±p1/2 of slope 1/2 that is p-adically close enough to the
point (±)p1/2. In general for k = 2v + 2, we expect the constant m(k, ap)
to be determined by v(a2

p − pk−2). But the quantity v(a2
p − pk−2) depends

on more than just the valuation of ap. So even if m(k, ap) exists, it might
not always be expressible as a function of the slope v.

(ii) The cases a2
p = pk−2 are excluded in the inequalities displayed above

for the following reason. If a2
p = p, one can show m(3, ap) = 1 using the

results in [13, 15]. But for a2
p = p2, we have v(a2

p −
(r
2
)
p2) = v(r − 2) + 2,

provided k′ = r+2 is p-adically close enough to 4 and thus p(p−1) | (r−2).
This implies by Theorem 1.1 of [9] that V k′,ap is reducible. On the other
hand by [15] we get V 4,ap is irreducible. So there does not exist any finite
m(k, ap) for k = 4 and ap = ±p. In this case, local constancy in the weight
space fails around the point k = 4!

The irregularities listed above prove that our lower bound 2v + 2 for
k in Theorem 1.2 is optimal. However, based on what is known for small
slopes, we expect the local constancy to hold in the weight space around
the points 2 ≤ k < 2v+ 2 as well, hoping k = 2v+ 2 to be an isolated point
of exception.

Let GQp2 denote the subgroup Gal(Qp|Qp2) of GQp , where Qp2 is the
unique quadratic unramified extension of Qp. Let ω : GQp → F×p ↪→ F×p and
ω2 : GQp2 → F×p2 ↪→ F×p be fixed fundamental characters of level one and
two respectively. For p + 1 - a, let ind(ωa2) denote the unique irreducible
representation of GQp with determinant ωa such that its restriction to the
inertia group is isomorphic to ωa2 ⊕ ω

pa
2 .

Theorem 1.2 is a direct consequence of the following main result in Sec-
tion 3: Let us consider any weight k′ ∈ k+(p−1)N for some pair (k, ap) satis-
fying the hypotheses of Theorem 1.2. If t = v(k′−k) ≥ 2v(ap), then we show
that V k′,ap is irreducible of the form ind(ωk−1

2 ). Thus whenever k′ is close
enough to k in the weight space, with an explicit bound p−2v(ap) on their
distance, V k′,ap is isomorphic to V k,ap . Our proof uses the compatibility of
p-adic and mod p Local Langlands correspondences following [10, 12], and
we generalise some of the techniques introduced in [8] and [9]. Our methods
directly determine the reduction of Vk′,ap without knowing or computing
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the shape of V k,ap . Therefore by using local constancy one recovers part of
a general result of [7], see Remark 3.11.

More details about the proof are given in the next section.

2. Basics
In this section we quickly recall some notations and explain the basic

principle of our proof.

2.1. The Hecke operator. Let G = GL2(Qp), K = GL2(Zp) be the
standard maximal compact subgroup of G and Z ∼= Q×p be the center of
the group G. We begin by recalling the Hecke operator T , which acts G-
linearly on the compact induction indGKZ V , for certain representations V
of KZ.

Let R be a Zp-algebra and let V = Symr R2⊗Ds be the usual symmetric
power representation of KZ twisted by a power of the determinant charac-
ter D, modelled on homogeneous polynomials of degree r in two variables
X and Y over R. For g ∈ G, v ∈ V , let [g, v] ∈ indGKZ V be the function
with support in the coset KZg−1 given by

g′ 7→
{
g′g · v, if g′ ∈ KZg−1

0, otherwise.

Any element of indGKZ V is a V -valued function on G that is compactly
supported mod KZ and thus is a finite linear combination of functions of
the form [g, v], for g ∈ G and v ∈ V . The Hecke operator T is defined by
its action on these elementary functions via the formula

(2.1) T ([g, v(X,Y )])

=
∑
λ∈Fp

[
g
(
p [λ]
0 1

)
, v (X,−[λ]X + pY )

]
+
[
g
(

1 0
0 p
)
, v(pX, Y )

]
,

where [λ] denotes the Teichmüller representative of λ ∈ Fp.

2.2. The Local Langlands Correspondences. Let Γ denote the finite
group GL2(Fp) which naturally acts on a two-dimensional vector space over
Fp. For any r ≥ 0, we have the symmetric power representations

Vr := Symr F2
p ∈ Rep F̄p

(Γ)

of dimension r + 1. For 0 ≤ r ≤ p− 1, λ ∈ Fp and η : Q×p → F×p a smooth
character, we know that

π(r, λ, η) := indGKZ Vr
T − λ

⊗ (η ◦ det)

are smooth admissible representations of G, also irreducible in most cases.
Recall that here p ∈ KZ acts on Vr := Symr F2

p trivially and the rest of KZ
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acts by the inflation of K = GL2(Zp)� Γ. These objects π(r, λ, η) together
capture all possible irreducible representations of G in characteristic p, as
proved in [2, 3, 11].

With this notation, Breuil’s semi-simple mod p Local Langlands Corre-
spondence [10, Def. 1.1] is given by the map LL as follows:

• λ = 0: indGQp

GQ
p2

(ωr+1
2 )⊗ η LL7−→ π(r, 0, η),

• λ 6= 0:
(
µλω

r+1⊕µλ−1
)
⊗η LL7−→ π(r, λ, η)ss⊕π([p−3−r], λ−1, ηωr+1)ss,

where {0, 1, . . . , p− 2} 3 [p− 3− r] ≡ p− 3− r mod (p− 1).
On the other hand, by the p-adic Local Langlands correspondence we

have the association Vk,ap  Πk,ap , where Πk,ap is the locally algebraic
representation of G given by

Πk,ap =
indGKZ Symr Q2

p

(T − ap)
,

where r = k − 2 ≥ 0 and T is the Hecke operator as usual. Consider the
standard lattice in Πk,ap given by

Θk,ap := image
(
indGKZ Symr Z2

p → Πk,ap

)
(2.2)

'
indGKZ Symr Z2

p

(T − ap)(indGKZ Symr Q2
p) ∩ indGKZ Symr Z2

p

.

By the compatibility of the p-adic and mod p Local Langlands Correspon-
dence which was conjectured in [10] and proved in [5], we know that

Θss
k,ap

:=
(
Θk,ap ⊗ Fp

)ss
' LL(V ss

k,ap
).

The correspondence LL at the mod p level is injective, so it is enough to
compute LL(V ss

k,ap
) to determine V ss

k,ap
. Therefore, we are going to study

Θss
k,ap

as an object in Rep F̄p
(G). The superscript “ss” will often be skipped,

as in this article we are only concerned about the semi-simplified reduction.

3. Computing the reduction
3.1. Some results in characteristic p. In this subsection we prove some
general lemmas in characteristic p that will be useful in computing the
reduction Θk′,ap , where k′ is as in the last paragraph of Section 1.

By the definition of Θk′,ap , for r = k′−2 ≥ 0, we have a natural surjection

P : indGKZ Vr � Θk′,ap .

Note that on the special polynomial

(3.1) θ(X,Y ) := XpY − Y pX = −X
∏
λ∈Fp

(Y − λX) ∈ Symp+1 F2
p = Vp+1,
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Γ := GL2(Fp) acts by the determinant character. For eachm ∈ N, we define

V (m)
r := {f ∈ Vr : θm divides f in Fp[X,Y ]},

so that Vr ⊇ V
(1)
r ⊇ V

(2)
r ⊇ . . . is a chain of Γ-submodules of length

b r
p+1c + 1. Moreover, we know that V (m)

r
∼= Vr−m(p+1) ⊗ Dm, where D

denotes the determinant character.

Lemma 3.1. Let F (X,Y ) =
r∑
i=0
aiX

r−iY i ∈ Vr be a polynomial such that

Fp 3 ai 6= 0 =⇒ i ≡ a mod (p− 1),
for some fixed congruence class a mod (p − 1). For 0 ≤ m ≤ p, we have
F (X,Y ) ∈ V (m)

r if and only if the following conditions are satisfied:
• i < m, or i > r −m =⇒ ai = 0 ∈ Fp,
•
∑
i
j!
(i
j

)
ai = 0 ∈ Fp, for 0 ≤ j ≤ m− 1.

Proof. We consider f(z) =
r∑
i=0
aiz

i ∈ Fp[z], so that F (X,Y ) = Xr · f( YX ).

It follows from (3.1) that
θm | F (X,Y )

⇐⇒ F (X,Y ) = F1(X,Y ) · (−X)m
∏
λ∈Fp

(Y − λX)m, F1 ∈ Vr−(p+1)m,

⇐⇒ Xm | F (X,Y ) and f(Y/X) = F1(1, Y/X)(−1)m
∏
λ∈Fp

(Y/X − λ)m,

⇐⇒ Xm | F (X,Y ) and f(z) =
∏
λ∈Fp

(−(z − λ))mF1(1, z),

⇐⇒ Xm, Y m | F (X,Y ) and (z − λ)m | f(z), ∀ λ ∈ F×p .

The conditions Xm, Y m | F (X,Y ) are equivalent to
ai 6= 0 =⇒ m ≤ i ≤ r −m,

and (z − λ)m divides f(z) if and only if f(λ) = f ′(λ) = · · · = f (m−1)(λ) =
0 ∈ Fp. Looking at the coefficients of f(z), for λ ∈ F×p , we have

f (j)(λ) =
∑
i

ai · i(i− 1) . . . (i− j + 1)λi−j = λa−j ·
∑
i

ai

(
i

j

)
j!,

using the hypothesis on the coefficients of F (X,Y ). This completes our
proof.

Note that as we are in the situation j < m ≤ i ≤ r−m here, the binomial
coefficients

(i
j

)
above are all a priori non-zero, though some of them might

vanish mod p. �
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For integers 0 ≤ m ≤ s let us define polynomials Fs,m (or Fm) in Vr as

(3.2) Fs,m(X,Y ) := XmY r−m −Xr−s+mY s−m,

where r > s and r ≡ s mod (p− 1), so Lemma 3.1 can be applied on Fs,m
for suitable values of m. The congruence class of r mod (p−1) in the range
{2, 3, . . . , p} will be denoted by “b” throughout this article. Our “s” here
may or may not coincide with b, as in general s ∈ {b, b+p−1, b+2(p−1), . . .}.
For a fixed s, multiple values of m will be considered in our calculations.
By abuse of notation, we will drop the index s in Fs,m and denote it simply
by Fm. With this notation we prove the following key lemma:

Lemma 3.2. Let r ≡ s mod (p− 1), and t = v(r − s) ≥ 1 and 1 ≤ m ≤
p− 1.

(a) For s ≥ 2m, the polynomial Fm is divisible by θm but not by θm+1.
(b) For s > 2m, the image of Fm generates the subquotient V

(m)
r

V
(m+1)

r

over Γ.

Proof. (a). Any polynomial divisible by θm+1 is a multiple of Xm+1, so
θm+1 - Fm.

To show θm | Fm, by Lemma 3.1 we need to show both m, s −m ≥ m,
and further for all 0 ≤ j ≤ m− 1,

j!
((

r −m
j

)
−
(
s−m
j

))
≡ 0 mod p,

which is ensured by the fact t = v(r − s) ≥ 1. Note that the last condition
is satisfied for j = m as well.

(b). We recall the structure of V
(m)

r

V
(m+1)

r

∼= Vr−m(p+1)

V
(1)

r−m(p+1)
⊗Dm given by the short

exact sequence

(3.3) 0→ Vs′−p+1 ⊗Dm →
Vr−m(p+1)

V
(1)
r−m(p+1)

⊗Dm ∼=
Vs′

V
(1)
s′

⊗Dm

→ V2p−2−s′ ⊗Ds′+m → 0,

where s′ ≡ r−m(p+ 1) mod (p− 1) in the range s′ ∈ {p, p+ 1, . . . 2p− 2}.
This short exact sequence is non-split as Γ-representation, except for when
s′ = 2p − 2. Both the non-zero maps in the sequence above are described
explicitly in Lemma 5.3 of [10] in the range p ≤ s′ ≤ 2p − 2. We want to
compute the image of Fm(X,Y ) ∈ V

(m)
r

V
(m+1)

r

in the quotient above. But to do

that, first we need to know its image in Vs′

V
(1)

s′
⊗Dm under the isomorphism
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map from V
(m)

r

V
(m+1)

r

. We now claim that the polynomial

Hm(X,Y ) := Fm(X,Y )−(−1)mθ(X,Y )m(Y r−m(p+1)−Y s−2mXr−s−pm+m)

in Vr lies in the submodule V (m+1)
r . Assuming the claim, it is enough to

show the image of θm(Y r−m(p+1) − Y s−2mXr−s−pm+m) generates V
(m)

r

V
(m+1)

r

over Γ. By the sequence (3.3), for s′ 6= 2p − 2, it is enough to show that
this image maps to a non-zero element in the quotient above. We check (for
s > 2m) that in fact its image is

Y s′ − Y s′−p+1Xp−1 ∈ Vs′

V
(1)
s′

⊗Dm,

which maps to −X2p−2−s′(6= 0) ∈ V2p−2−s′ ⊗Ds′+m.
For s′ = 2p − 2, the sequence (3.3) splits. So we further check that

the image of the polynomial Y s′ − Y s′−p+1Xp−1 does not lie in the one-
dimensional Γ-subspace V0⊗Dm of Vs′

V
(1)

s′
⊗Dm. This can be seen by applying

the matrix w = ( 0 1
1 0 ) ∈ Γ, as

(Y s′ − Y s′−p+1Xp−1)− w · (Y s′ − Y s′−p+1Xp−1)

= Y s′ − Y s′−p+1Xp−1 − (−1)m(Xs′ −Xs′−p+1Y p−1) 6∈ V (1)
s′ ⊗D

m.

The image of Fm(X,Y ) in V2p−2/V
(1)

2p−2 ⊗ Dm must generate the whole
module over Γ, as it is contained in none of its direct summands.

Proof of claim. The lowest degree of X in Hm(X,Y ) is ≥ m+p−1 ≥ m+1,
and the lowest degree of Y in Hm(X,Y ) is ≥ s−m ≥ m+ 1, as s > 2m by
hypothesis. Following the proof of Lemma 3.1, we consider

hm(z) := Hm(1, z) = zr−m − zs−m − (−1)m(z − zp)m(zr−m(p+1) − zs−2m)
= zr−m − zs−m − (zp−1 − 1)m(zr−mp − zs−m).

We already know Xm+1, Y m+1 divide Hm(X,Y ), hence

θm+1 | Hm(X,Y ) ⇐⇒ (z − λ)m+1 | hm(z), ∀ λ ∈ F×p .

Equivalently, we need dihm
dzi (λ) = 0 for all 0 ≤ i ≤ m(< p), and all λ ∈

F×p . For the first part Fm(1, z) = zr−m − zs−m of hm(z), this vanishing of
derivatives is already proved in part (a) above. For the other part −(zp−1−
1)m(zr−mp − zs−m) of hm(z), the derivatives up to order m vanish since
1− λp−1 = 0 = λr−mp − λs−m, for all λ ∈ F×p . �

Let us mention here that the polynomials Fm(X,Y ) vanish in the case
r = s and thus Lemma 3.2 is not valid for r = s. Since this is a key lemma



34 Shalini Bhattacharya

to be used to prove our main result, our proofs will be applicable only for
large enough weights k′ > s+ 2.

Now we recall a very useful fact from Remark 4.4 in [12], that if v(ap) < m

and r = k′−2 ≥ m(p+1), then kernel of the natural map indGKZ Vr � Θk′,ap

contains the sub-representation indGKZ(V (m)
r ), and thus Θk′,ap is a quotient

of indGKZ(Vr/V (m)
r ). We fix an ap with positive valuation, and let n ∈ N be

the smallest such that v(ap) < n+ 1, so we have

(3.4) P : indGKZ(Vr/V (n+1)
r )� Θk′,ap .

We consider the chain of submodules of length n+ 1

0 ⊆ V
(n)
r

V
(n+1)
r

⊆ V
(n−1)
r

V
(n+1)
r

⊆ · · · ⊆ Vr

V
(n+1)
r

,

inducing the chain

0 ⊆Mn ⊆Mn−1 ⊆ · · · ⊆M0 = indGKZ

(
Vr

V
(n+1)
r

)
,

where Mi := indGKZ
(

V
(i)

r

V
(n+1)

r

)
for 0 < i ≤ n, with respective images

(3.5) P (Mn) ⊆ P (Mn−1) ⊆ · · · ⊆ P (M0) := Θk′,ap .

We have this chain of submodules inside Θk′,ap , and we will try to compute
it piece by piece. For example, we would like to check if some of the sub-
quotients P (Mi)/P (Mi+1) of Θk′,ap are in fact zero.

3.2. Computations in characteristic 0. We extend the formula for the
Hecke operator T when acting on indGKZ Symr Q2

p in particular, to see how
T acts on its explicit elements viewed as Symr Q2

p-valued functions on the
Bruhat–Tits tree for GL2.

For m = 0, set I0 = {0}, and let Im = {[λ0] + [λ1]p+ · · ·+ [λm−1]pm−1 :
λi ∈ Fp} ⊂ Zp for m > 0, where the square brackets denote Teichmüller
representatives. For m ≥ 1, there is a truncation map [ ]m−1 : Im → Im−1
given by taking the first m − 1 terms in the p-adic expansion above; for
m = 1, [ ]m−1 is the 0-map. Let α =

( 1 0
0 p
)
. For m ≥ 0 and λ ∈ Im, let

g0
m,λ =

(
pm λ
0 1

)
and g1

m,λ =
(

1 0
pλ pm+1

)
,

noting that g0
0,0 = Id is the identity matrix and g1

0,0 = α in G. We have

G =
∐

m≥0, λ∈Im,
i∈{0,1}

KZ(gim,λ)−1.

Thus a general element in indGKZ V is a finite sum of functions of the
form [g, v], with g = g0

m,λ or g1
m,λ, for some λ ∈ Im and v ∈ V . Let
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v =
∑r
i=0 ciX

r−iY i ∈ V = Symr Q2
p⊗Ds. Then expanding the formula (2.1)

for Hecke operator, one writes T = T+ + T−, where

(3.6) T+([g0
n,µ, v])=

∑
λ∈I1

g0
n+1,µ+pnλ,

r∑
j=0

pj r∑
i=j

ci

(
i

j

)
(−λ)i−j

Xr−jY j


(3.7) T−([g0

n,µ, v])

=

g0
n−1,[µ]n−1

,
r∑
j=0

 r∑
i=j

pr−ici

(
i

j

)(
µ− [µ]n−1
pn−1

)i−jXr−jY j

 (n > 0)

(3.8) T−([g0
n,µ, v]) = [α,

r∑
j=0

pr−jcjX
r−jY j ] (n = 0)

as in Lemma 2.3 of [10]. These explicit formulas for T+ and T− will be used
to compute (T − ap)f for the functions f ∈ indGKZ Symr Q2

p. We will work
with large values of r which are p-adically close to some relatively small
s = b+ c(p− 1) with 2 ≤ b ≤ p− 1. Our final result is valid for c = 0, 1, 2, 3
and b ≥ 2c, as mentioned in the introduction. However it will be clear from
our statements that some of the intermediate lemmas are true in a more
general setting.

Suppose r ≡ s mod p(p−1) for some 2 ≤ s ≤ p2−p, so t := v(r−s) > 0.
Let us define, for 0 ≤ i ≤ s, and 0 ≤ m < p− 1, the sums

Sr,i,m :=
∑

j≡r−m mod (p−1)
s−m≤ j<r−m

(
j

i

)(
r

j

)
(3.9)

and with this notation, we have the following technical lemma.

Lemma 3.3. Let r = s+ dpt(p− 1) with p - d, for some s = b+ c(p− 1),
2 ≤ b ≤ p− 1 and 0 ≤ c ≤ p− 1. For 0 ≤ i < s and 0 ≤ m < p− 1, one has

Sr,i,m ≡
(
r

i

) ∑
j≡s−m mod (p−1)

0≤j<s−m

((
s− i
j − i

)
−
(
r − i
j − i

)) mod pt,

which further implies that

Sr,i,m ≡
{

0 mod pt, c = 0
0 mod pt+1−c, c > 0.

The lemma can be proved using the same techniques as in [9, Proposi-
tion 2.8]. We skip the proof here to save some space.
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Proposition 3.4. Let r = s + dpt(p − 1), where s = b + c(p − 1) with
2 ≤ b ≤ p−1. If b ≥ c−1, 0 ≤ m < c ≤ v(ap) < p−1 and t > v(ap)+c−1,
then for all g ∈ G and for 0 ≤ i ≤ m, there exists f i ∈ indGKZ Symr Q2

p such
that

(T − ap)f i ≡

g, ∑
0<j<s−m

j≡r−m mod (p−1)

(
r − i
j

)
Xr−jY j

 mod ℘.(3.10)

If 2c − 1 ≤ b ≤ p − 1, v(ap) > c and t > v(ap) + c, we can choose fm
such that moreover

(T − ap)
fm

p
≡

g, ∑
0<j<s−m

j≡r−m mod (p−1)

(r−m
j

)
p

Xr−jY j

 mod ℘,(3.11)

where ℘ stands for the prime ideal above p in the ring of integers of Qp(ap).

Proof. Since T is G-linear operator, it is enough to prove the statement for
g = g0

1,0. We note that existence of an m with 0 ≤ m < c forces c to be at
least 1. Next we define f i = f2 + f1 + f0 as follows:

(3.12)

f2 =
∑
λ∈F×p

[
g0

2,p[λ],

( 1
[λ]

)m−i Fi(X,Y )
pi(p−1)

]
−
[
g0

2,0,

(
r− i
r−m

)
Fm(X,Y )

pm

]
,

f1 = 1
ap

g0
1,0,

∑
s−m≤j<r−m

j≡r−m mod (p−1)

(
r − i
j

)
Xr−jY j

 ,

f0 =
{

[Id, Fs(X,Y )] if r ≡ m mod (p− 1)
0 otherwise.

Using the formulae for T+ and T− we check

T+f2 ≡ 0 mod ℘ as t > v(ap) ≥ m ≥ i,
and s− 2m > s− 2c+ 1 > 0,

−apf2 ≡ 0 mod pv(ap)−m ≡ 0 mod ℘, as m < c ≤ v(ap)

T−f2 − apf1 + T+f0 ≡

g0
1,0,

∑
0<j<s−m

j≡r−m mod (p−1)

(
r − i
j

)
Xr−jY j

 mod ℘,

as r − s+ i > i,
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−apf0 ≡ 0 mod pv(ap) ≡ 0 mod ℘,

T−f0 ≡ 0 mod ps ≡ 0 mod ℘, as s > 0,

T−f1 ≡ 0 mod pm+p−1−v(ap) ≡ 0 mod ℘,

as v(ap) < p− 1,
T+f1 ≡ 0 mod ℘,

as s − m = b − m + c(p − 1) ≥ c − 1 − m + c(p − 1) ≥ p − 1 > v(ap),
and then we use Lemma 3.3 for Sr−i,i′,m−i, 0 ≤ i′ ≤ v(ap) with the fact
t > v(ap) + c− 1 ≥ v(ap) + b s−m−i+1

p c − 1, so that t+ 1− b s−m−i+1
p c > 0.

For i = m, the same computation works and we obtain the congru-
ence (3.10), but Lucas’ theorem tells us that each of the binomial coeffi-
cients in the right hand side are in fact divisible by p, if b ≥ 2c− 1. Similar
careful calculation for (T − ap)(fm/p) gives us the congruence (3.11) as
claimed. �

For the rest of the article, we will use the following abuse of notation: a
polynomial f(X,Y ) ∈ Vr is said to “vanish modulo kerP”, if for all g ∈ G
the elements [g, f(X,Y )] map to 0 under the map P : indGKZ Vr � Θr+2,ap .

Proposition 3.5. Let r = s+ dpt(p− 1), with p - d and s = b+ c(p− 1).
Further suppose that 2c − 1 ≤ b ≤ p − 1 and m < c ≤ v(ap) < p − 1.
If t > v(ap) + c − 1, then the monomials Xr−b+m−j(p−1)Y b−m+j(p−1) for
c−m ≤ j ≤ c− 1 vanish modulo kerP .

Proof. We note that for m = 0, there is no integer j in the given range. So
we may assume m ≥ 1 and consider the m×m matrix

A = (aji)c−m≤j≤c−1,0≤i≤m−1 , with aji :=
(

r − i
j(p− 1) + b−m

)
.

As 1 ≤ m < c, we have c ≥ 2 and hence t ≥ 2 by hypothesis. Using that,
we have

r − i = s+ dpt(p− 1)− i = b− c− i+ cp+ dpt(p− 1)
∈ (b− c− i) + cp+ p2Z,

and j(p− 1) + b−m = (b−m− j) + jp.

We check that the entries above b − c − i, c, b −m − j and j all lie in the
range [0, p− 1]:

0 < c − m ≤ b − c − m + 1 ≤ b − c − i ≤ b − c ≤ c − 1 < p − 1,

0 ≤ c ≤ p − 1,

0 ≤ b − 2c + 1 < b − m − (c − 1) ≤ b − m − j ≤ b − m − (c − m) = b − c < p − 1,

0 < c − m ≤ j ≤ c − 1 < p − 1.
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Hence by Lucas’ theorem, aji ≡
( b−c−i
b−m−j

)(c
j

)
mod p, so aji 6≡ 0 mod p if

and only if j − i ≥ c − m. Thus A ∈ Mm(Zp) is such that modulo p
it reduces to a lower triangular matrix with non-zero (mod p) diagonal
entries. Hence detA ∈ Z∗p and A−1 ∈ GLm(Zp). For any 0 ≤ l ≤ m− 1, let
d = (d0, d1, . . . , dm−1) ∈ Zmp be the vector given by d := A−1el, where el
denote the column vector with 1 as the l-th entry and 0 elsewhere. Then
by the first part of Proposition 3.4, we get

(T−ap)
m−1∑
i=0

(dif i) ≡
[
g,Xr−b+m−(c−m+l)(p−1)Y b−m+(c−m+l)(p−1)

]
mod ℘,

where f i’s are as in Proposition 3.4. Here we also use that the first few
terms in (3.10) vanish as

( r−i
j(p−1)+b−m

)
≡ 0 mod p for 0 ≤ j < c −m, for

any i ≥ 0. �

Remark 3.6. Proposition 3.5 is applicable to any c ≤ p/2, although for
the final result of this paper we have assumed c ≤ 3 to avoid technical
complications.

Lemma 3.7. For 0 ≤ j,m ≤ c − 1, and r = b + c(p − 1) + p2Z with
2c− 1 ≤ b ≤ p− 1,( r−m

j(p−1)+b−m
)

p
≡
( p−1
c−1−j

)(c
j

)(b−m−j
b−m−c

) ≡ (−1)c−1−j
(c
j

)(b−m−j
c−j

) mod p.

Proof. Let A =
n∑
i=0
aip

i, B =
n∑
i=0
bip

i and A − B =
n∑
i=0
cip

i, with 0 ≤

ai, bi, ci < p. If pe |
(A
B

)
, then by [20], we have(
A

B

)
≡ (−p)e

n∏
i=0

ai!
bi!ci!

mod pe+1.

This result can be applied for A = r −m, B = j(p− 1) + b−m and e = 1
to obtain the required congruence. �

The next proposition is crucial for our proof, which eliminates the pos-
sible contribution of the factors V

(m)
r

V
(m+1)

r

for 0 ≤ m < c in Θr+2,ap , when
t = v(r − s) is sufficiently large.

Proposition 3.8. Let s = b+ c(p− 1) with 0 ≤ c ≤ 3, 2c− 1 ≤ b ≤ p− 1
and let c < v = v(ap) < p − 1. If r ≡ s mod pt(p − 1) with 2v ≤ t < ∞,
then there is a surjection

indGKZ

(
V

(c)
r

V
(bvc+1)
r

)
� Θr+2,ap

that is induced from P : indGKZ Vr � Θr+2,ap.
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Proof. By Remark 4.4 in [12], we have indGKZ V
(n)
r ⊆ kerP if r ≥ n(p+ 1)

and n > v. Using this fact for n = bvc+ 1, we have indGKZ V
(bvc+1)
r ⊆ kerP

for r ≥ (bvc+1)(p+1). For r < (bvc+1)(p+1), we note that V (bvc+1)
r = 0.

Hence in any case the surjection P factors through indGKZ
(

Vr

V
(bvc+1)

r

)
. This

already proves the proposition for c = 0, as V (0)
r = Vr by definition.

So we assume c ≥ 1 for the rest of the proof. We will show that for
0 ≤ m < c, the image of indGKZ

(
V

(m)
r

V
(m+1)

r

)
is 0 in Θk,ap . We begin with the

simplest case m = 0.

Case 1: m = 0. We are under hypothesis t ≥ 2v(ap) > 2c ≥ 2, therefore
r ≡ s mod p3. By equation (3.11) we have

(3.13)

g, ∑
0<j<s

j≡r mod (p−1)

(r
j

)
p
Xr−jY j

 ∈ kerP,

but then ∑
0<j<s

j≡r mod (p−1)

(r
j

)
p
Xr−jY j ≡ ν ·Xr−bY b mod 〈V (1)

r , Xr〉Γ,

where

ν =
∑

0<j<s
j≡r mod (p−1)

(r
j

)
p
≡

∑
0<j<s

j≡s mod (p−1)

(s
j

)
p
≡ b− s

b
≡ c

b
6≡ 0 mod p,

by Lemma 2.5 in [8]. Using (4.2) of [19] and Lemma 5.3 of [10] we can see
that the monomialXr−bY b generates (overK or Γ) the quotient Vp−1−b⊗Db

of Vr/V (1)
r . Being generated by the image of the highest monomial Xr, the

other factor Vb of Vr/V (1)
r has no contribution in Θr+2,ap . So all of the

quotient Vr/V (1)
r has zero contribution in Θr+2,ap .

Case 2: 0 < m < c. In this case b ≥ 2c− 1 ≥ 2m+ 1, so
m+1∑
i=0

(−1)i
(
m+ 1
i

)
Xr−s+m+i(p−1)Y s−m−i(p−1) ∈ V (m+1)

r ,

and by Proposition 3.5, the middle terms vanish “modulo kerP”, implying

Xr−s+mY s−m ≡ (−1)mXr−b+m−(c−m−1)(p−1)Y b−m+(c−m−1)(p−1)

mod V (m+1)
r + “ kerP”.



40 Shalini Bhattacharya

Further we recall that m ≤ c − 1 < v(ap), so XmY r−m vanishes “mod
kerP”, implying Fm(X,Y ) ≡ −Xm+r−sY s−m mod “ kerP”, where Fm is
the polynomial defined in (3.2). Hence it is enough to check that

(3.14)
[
g, Xr−b+m−(c−m−1)(p−1)Y b−m+(c−m−1)(p−1) mod V (m+1)

r

]
∈ kerP

to show indGKZ
(

V
(m)

r

V
(m+1)

r

)
3
[
g, Fm(X,Y )

]
P7−→ 0, killing the factor V

(m)
r

V
(m+1)

r

by Lemma 3.2(b). As 0 ≤ c ≤ 3, we have two possibilities here, namely
c−m = 1 or c−m = 2.

For c−m = 1, by congruence (3.11) and Proposition 3.5, Xr−b+mY b−m

vanishes mod kerP , since by Lemma 3.7, (r−m
b−m)
p ≡ (−1)c−1

(b−m
c ) 6≡ 0 mod p.

For c − m = 2, again using (3.11) and Proposition 3.5, we get that

the polynomial (r−m
b−m)
p Xr−b+mY b−m+ ( r−m

b−m+p−1)
p Xr−b+m−p+1Y b−m+p−1 van-

ishes modulo “kerP”. But we use the fact
∑m+1
i=0 (−1)i

(m+1
i

)
Xr−b+m−i(p−1)

× Y b−m+i(p−1) lies in V (m+1)
r together with Proposition 3.5 to conclude

Xr−b+mY b−m ≡ (m+ 1)Xr−b+m−p+1Y b−m+p−1 mod V (m+1)
r + “ kerP”.

Therefore [g, η ·Y b−m+p−1Xr−b+m−p+1] ∈ kerP +P (indGKZ V
(m+1)
r ), where

η := (m+ 1)
(r−m
b−m

)
p

+
( r−m
b−m+p−1

)
p

.

By Lemma 3.7, η ≡ (−1)c

(b−m
c )(b − (2m + 1)) 6≡ 0 mod p as m = c − 2, prov-

ing (3.14). �

The following useful lemma is a direct consequence of the explicit mod
p Local Langlands Correspondence.

Lemma 3.9. Let k′ = r+2 and r ≡ b mod (p−1) for some 2 ≤ b ≤ p−1.
If the map P reduces to a surjection

indGKZ
V

(c)
r

V
(c+1)
r

� Θ := Θk′,ap

for some 0 ≤ c < p/2 and if b 6= 2c± 1, then

Θ ∼=
{
π(b− 2c, 0, ωc), b ≥ 2c
π(2c− b, 0, ωb−c), b ≤ 2c.

For b = 2c ± 1, in addition to the irreducible shape above one also has a
reducible possibility where Θss ∼=

(
π(p− 2, λ, 1)⊕ π(p− 2, λ−1, 1)

)
⊗ η with

η = ωc+1 or ωc.
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Proof. Let us first consider the case b ≥ 2c, which would be relevant for us
in this paper. Using Proposition 2.1 of [8], we get

0→ indGKZ(Vb−2c ⊗Dc)→ indGKZ
V

(c)
r

V
(c+1)
r

→ indGKZ(Vp−1−b+2c ⊗Db−c)→ 0

where Θ is a quotient of the middle term of the short exact sequence above.
We check that under the hypotheses both the indices b−2c and p−1−b+2c
lie in the range [0, p− 1]. Since Θ lies in the image of the mod p Langlands
correspondence, looking at the explicit map LL defined in §2 we conclude
that Θ is supercuspidal and isomorphic to π(b− 2c, 0, ωc) ∼= π(p− 1− b+
2c, 0, ωb−c), unless either b− 2c or p− 1− b+ 2c equals p− 2.

We note that b − 2c can possibly be p − 2 only if c = 0, but then the
factor Vb−2c = Vb is the image of the highest monomial submodule 〈Xr〉 in
Vr/V

(1)
r , which is known to die under the map P , so cannot contribute to

Θ. On the other hand if p−1−b+2c = p−2, i.e., b = 2c+1, then reducible
case in the Local Langlands correspondence may occur. In that case Θ is
a quotient of indGKZ(Vp−2 ⊗Dc+1), may be π(p− 2, 0, ωc+1) or it may have
two JH factors, namely π(p − 2, λ, ωc+1) and π(p − 2, λ−1, ωc+1) for some
λ ∈ F×p .

The remaining case b < 2c can be treated similarly, with

0→ indGKZ(Vb−2c+p−1 ⊗Dc)→ indGKZ
V

(c)
r

V
(c+1)
r

→ indGKZ(V2c−b ⊗Db−c)→ 0

being the relevant short exact sequence. �

Corollary 3.10. Let p ≥ 5, s = b+ c(p− 1) with 0 ≤ c ≤ 3 and 2c ≤ b ≤
p− 1 and let k := s+ 2. If b 6= 2c+ 1 and v = v(ap) ∈ (c, c+ 1), then

(i) m(k, ap) ≤ 2v + 1, and
(ii) by local constancy, V k,ap

∼= ind(ωk−1
2 ).

Proof. By Proposition 3.8, if r ≡ s mod p2v(ap)(p − 1), then under the
hypothesis we have a surjection

indGKZ

(
V

(c)
r

V
(c+1)
r

)
� Θk′,ap ,

where k′ = r+2. By Lemma 3.9, we have Θk′,ap
∼= π(b−2c, 0, ωc). By mod p

Local Langlands correspondence V k′,ap
∼= ind(ωs+1

2 ), as s = b−2c+c(p+1).
Next we apply Theorem 1.1 to k = s+ 2. One checks that k > 3v(ap) +

(k−1)p
(p−1)2 +1 using the conditions p ≥ 5, v(ap) < c+1 and k = b+c(p−1)+2.
So there exists m = m(k, ap), such that k′ − k ∈ pm−1(p − 1)Z>0 implies
V k′,ap

∼= V k,ap . But by the previous paragraph we know that V k′,ap
∼=
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ind(ωk−1
2 ) for such k′ withm ≥ 2v+1. Hence we conclude that (the smallest)

m(k, ap) ≤ 2v(ap) + 1, and V k,ap
∼= ind(ωk−1

2 ). �

Remark 3.11. The main point of the proof here is to determine the shape
of V k′,ap , and then the rest follows as a consequence. The shape of V k,ap

is already known for c = 0, 1 by the results in [10, 15], which is consistent
with part (ii) above. Also since k = b+c(p−1)+2, we know that bk−2

p−1c = c

unless b = p− 1, thus we recovered the shape of V k,ap for v(ap) > c proved
in [7] for the weights k satisfying our hypothesis.

If b = p − 1, then one deduces using Berger–Li–Zhu’s work that for
v > c+ 1 = bk−2

p−1c, V k,ap
∼= ind(ωk−1

2 ). But we note that by Corollary 3.10
above, even in the lower range of slopes c < v < c+1 the reduction V k,ap has
the same shape. This indicates that the bound bk−2

p−1c may not be optimal
in some cases, which is also suggested by the numerical evidences (cf. [22,
§6.1]).

In fact, as it is known in most cases that V k,ap
∼= ind(ωk−1

2 ) for v(ap) > c,
one expects Corollary 3.10 to hold without the upper bound c + 1 on the
slope. Therefore for higher slopes we attempt to eliminate the factors V

(m)
r

V
(m+1)

r

for all m in the range c < m ≤ bv(ap)c, and we succeed under the extra
condition v(ap) < c+ p/2.

Proposition 3.12. Fix ap with c < v(ap) < p
2 + c. Let r ≡ s mod (p− 1)

for some s > 2v(ap), s = c(p − 1) + b < r with 2c ≤ b ≤ p − 1 and let
c < m ≤ bv(ap)c. If t = v(r − s) ≥ 2v(ap), then for 0 ≤ i < m− v

(( r−i
r−m

))
,

∃ f i ∈ indGKZ Symr Q2
p such that

(3.15) (T − ap)f i ≡
pm

ap

g0
1,0,

∑
c<j<s−m

j≡r−m mod (p−1)

(r−i
j

)( r−i
r−m

)Xr−jY j


+
[
g0

2,0, Fm(X,Y )
]

mod ℘.

Proof. Let f i = f0 + f1 + f2 be given by

f2 =
∑
λ∈F×p

[
g0

2,p[λ],

(
p

[λ]

)m−i Fi(X,Y )
(p− 1)

( r−i
r−m

)
ap

]
+
[
g0

2,0,−
Fm(X,Y )

ap

]

f1 =

g0
1,0,

pm

a2
p

∑
s−m≤j<r−m

j≡r−m mod (p−1)

(r−i
j

)( r−i
r−m

)Xr−jY j
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f0 =


[
Id, p

2m−b( r−i
b−m)

ap( r−i
r−m) Fs−b+m(X,Y )

]
if 0 ≤ b−m ≤ c

0 otherwise.

The binomial coefficient
( r−i
r−m

)
can be non-unit only if b − c < m ≤ v(ap),

which never happens for c = 0 as in that case b = s > 2v(ap) > v(ap) + c
by hypothesis. Further for 1 ≤ c < m and 0 ≤ i < m, we have

(3.16) v

((
r − i
r −m

))
= v

((
r − i
s−m

))
=


0, if c < m ≤ b− c
1, if i ≤ b− c < m ≤ bv(ap)c
0, if b− c < i < m ≤ bv(ap)c,

and apf0 always vanishes mod ℘ as we note

v

((
r − i
r −m

))
=
{

0, 1 ≤ m− c for b−m < c,

0 < m− c for b−m = c.

< m− (b−m) = v
(
p2m−b

)
,

T−f0 vanishes mod ℘ for 0 ≤ b−m ≤ c, as c < m ≤ bv(ap)c and s > v(ap)
by hypothesis. Using the facts s > 2v(ap) ≥ m + v(ap) and t > v(ap), we
get T+f2 vanishes mod ℘ and

T+f0 =


[
g0

1,0,−
pm( r−i

b−m)
ap( r−i

r−m)X
r−b+mY b−m

]
if 0 ≤ b−m ≤ c

0 otherwise.

Therefore we can see that

T−f2 − apf1 + T+f0 ≡
pm

ap

g0
1,0,

∑
c<j<s−m

j≡r−m mod (p−1)

(r−i
j

)( r−i
r−m

)Xr−jY j

 mod ℘,

giving the first part of the claimed congruence (3.15). As m− i > v
(( r−i
r−m

))
,

we have −apf2 ≡ [g0
2,0, Fm(X,Y )] mod ℘ as needed. We further note that

T−f1 vanishes mod ℘ as v(ap) < p/2 + c and so 2m+ p− 1 ≥ p+ 2c+ 1 >
v
(
a2
p

( r−i
r−m

))
. Finally, to compute T+f1, we note s > 2v(ap) and Lemma 3.3

for Sr−i,·,m−i can be used. By the hypothesis t ≥ 2v(ap), we have t + 1 −
c+m > v

(
a2
p

( r−i
r−m

))
and T+f1 vanishes mod ℘. �

We will treat the first part of the right hand side of congruence (3.15) as
“error”, since the part supported on g0

2,0 is what we are really interested in.
We will use (3.15) for different values of i (for fixed m > c) and add their
linear combinations to cancel out those non-integral error terms, and also
ensure that the main part, supported on g0

2,0, remains integral and non-zero
mod ℘. The next theorem is the main result of our paper.
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Theorem 3.13. For c ∈ {0, 1, 2, 3}, suppose c < v = v(ap) < c + p
2 . Let

s = b + c(p − 1) > 2v for 2c ≤ b ≤ p − 1. If r ≡ s mod pt(p − 1) and
2v ≤ t <∞, then

(1) there is a surjection indGKZ
(

V
(c)

r

V
(c+1)

r

)
� Θk′,ap for k′ = r + 2, and

(2) if b 6= 2c+1, then V k′,ap
∼= ind(ωs+1

2 ) ∼= V k,ap and m(k, ap) ≤ 2v+1,
for k = s+ 2.

Proof. Since the result is known for 0 < v = v(ap) < 1, we assume that
v ≥ 1 and so t ≥ 2 by the hypothesis. By Proposition 3.8, we know Θk′,ap

is a quotient of indGKZ
(

V
(c)

r

V
(bvc+1)

r

)
. We will show that the factors V

(m)
r

V
(m+1)

r

for
c < m ≤ bvc map to zero under the quotient map, so that it reduces to a
surjection from indGKZ

(
V

(c)
r

V
(c+1)

r

)
as claimed.

Case 1: c < m ≤ b− c. In this case by (3.16),
( r−i
r−m

)
6≡ 0 mod p, for i =

0, 1, . . . ,m−1. Then we consider the matrix A = (aji) ∈Mc+1(Zp) given by

aji =


( r−(m−1−i)
j(p−1)+b−m

)
(r−(m−1−i)

r−m
) , for 0 ≤ j ≤ c− 1, 0 ≤ i ≤ c

1, j = c.

We further check that A ∈ GLc+1(Zp) for 0 ≤ c ≤ 3, as detA is non-
zero modulo p. So we have the column vector d = (d0, d1, . . . , dc) = A−1 ·
(0, 0, . . . , 0, 1) ∈ Zc+1

p , ensuring

c∑
i=0

di

( r−(m−1−i)
j(p−1)+b−m

)
(r−(m−1−i)

r−m
) = 0, for 0 ≤ j ≤ c− 1,

d0 + d1 + . . . dc = 1, for j = c.

Now if we take f =
∑c
i=0 dif

m−1−i, where f i are as in Proposition 3.12,
then

(T − ap)f ≡ 0 +
[
g0

2,0, Fm(X,Y )
]

mod ℘.

Hence by Lemma 3.2(b), the possibility of non-zero contribution of the
factor V

(m)
r

V
(m+1)

r

to Θk′,ap is eliminated for the range of m under consideration.

Case 2: b− c < m ≤ bvc. Note that this case does not arise for c = 0 by
the condition s > 2v.

For c = 1, by Proposition 3.12 we have

(T − ap)f i ≡
[
g0

2,0, Fm(X,Y )
]

mod ℘,

killing the factor V
(m)

r

V
(m+1)

r

by Lemma 3.2(b).
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For c = 2, 3, we attempt to use congruence (3.15) for different i to elim-
inate the “bad” or non-integral parts of (T − ap)f i by using invertibility of
an integral (p-adic) matrix, as in the previous case. However, the matrix
under consideration is no more integral now, by (3.16). So we consider a
modified matrix A = (aji) ∈Mc(Zp) given by

aji =


( m−i
c−i−1

)(r−i−(b−m+j(p−1)
c−i−1

) , for 1 ≤ j ≤ c− 1, 0 ≤ i ≤ c− 1

1, for j = 0, 0 ≤ i ≤ c− 1.
Next we use the fact r ≡ b − c mod p for c = 2 and 3, to see that detA
is congruent to −(m− 1)−1 and 2(m− 2)−2(m− 3)−1 mod p respectively.
Thus A ∈ GLc(Zp) and d = (d0, d1, . . . dc−1) := A−1 · (1, 0, . . . , 0) ∈ Zcp and
hence

c−1∑
i=0

di

( m−i
c−i−1

)(r−i−(b−m+j(p−1))
c−i−1

) = 0, for 1 ≤ j ≤ c− 1,

d0 + d1 + · · ·+ dc−1 = 1, for j = 0.

Next, we multiply the first c−1 equations above by
( r−(c−1)
b−m+j(p−1)

)
(r−(c−1)

r−m
) to obtain

(3.17)
c−1∑
i=0

di

( r−i
b−m+j(p−1)

)
( r−i
r−m

) = 0, for 1 ≤ j ≤ c− 1.

If we take f =
∑c−1
i=0 dif

i, where f i are as in Proposition 3.12, then

(T − ap)f ≡ 0 +
[
g0

2,0, Fm(X,Y )
]

mod ℘.

Now that we have eliminated all V
(m)

r

V
(m+1)

r

for c < m ≤ bvc, there is a
surjection

indGKZ

(
V

(c)
r

V
(c+1)
r

)
� Θk′,ap .

Next we use Lemma 3.9 to get to the conclusion, as in the proof of Corol-
lary 3.10. �

Note that the condition b 6= 2c + 1 is equivalent to k 6≡ 3 mod (p + 1).
Thus we have completed the proof of Theorem 1.2 stated in the introduc-
tion.

Remark 3.14. Proposition 3.12 fails for s = 2v(ap) only slightly as T+f1
does not vanish mod ℘, but still is integral. Further if s is odd, i.e., v(ap) ∈
1
2Z \ Z, then m ≤ bvc < v and as a result XmY r−m ∈ kerP . So modulo
kerP , we have Fm(X,Y ) ≡ −Xr−s+mY s−m and the equation (3.15) for
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i = 0 reduces to (T − ap)f0 ≡
[
g0

2,0, (1− ps

a2
p
)Fm(X,Y )

]
mod ℘. Therefore

following the same argument as above, Theorem 3.13 also holds for small
odd weights k = 2v+2 < p+2 under the extra condition pk−2

a2
p
6≡ 1 mod ℘.
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