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Partial sums of the cotangent function

par Sandro BETTIN et Sary DRAPPEAU

Résumé. Nous prouvons l’existence de formules de réciprocité pour des
sommes de la forme

∑k−1
m=1 f( m

k ) cot(πmh
k ), où f est une fonction C1 par

morceaux, qui met en évidence un phénomène d’alternance qui n’apparaît
pas dans le cas classique où f(x) = x. Nous déduisons des majorations de ces
sommes en termes du développement en fraction continue de h/k.

Abstract. We prove the existence of reciprocity formulae for sums of the
form

∑k−1
m=1 f

(
m
k

)
cot
(
πmh

k

)
where f is a piecewise C1 function, featuring an

alternating phenomenon not visible in the classical case where f(x) = x. We
deduce bounds for these sums in terms of the continued fraction expansion
of h/k.

1. introduction
There are several results in the literature proving reciprocity formulae

for certain averages of the cotangent function. A prototypical example is
the classical Dedekind sum which can be defined as

s

(
h

k

)
:= − 1

4k

k−1∑
m=1

cot
(
π
m

k

)
cot

(
π
mh

k

)
, h, k ∈ N, (h, k) = 1,

and satisfies the well known reciprocity formula

s

(
h

k

)
+ s

(
k

h

)
− 1

12hk = 1
12

(
h

k
+ k

h
− 3

)
.

The Dedekind function has been generalized in several ways, all satisfying
some sort of reciprocity (see e.g. [4, 5, 17]).

Another related example is given by the Vasyunin sum

V

(
h

k

)
:=

k−1∑
m=1

m

k
cot

(
π
mh

k

)
, h, k ∈ N, (h, k) = 1,
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where, here and in the following, the overline indicates any multiplicative
inverse modulo the denominator. The Vasyunin sum satisfies the reciprocity
formula

(1.1) V

(
h

k

)
+ V

(
k

h

)
= log 2π − γ

π
(k + h) + k − h

π
log h

k

−
√
hk

π2

∫ ∞
−∞

∣∣∣∣ζ (1
2 + it

)∣∣∣∣2 (hk
)it dt

1
4 + t2

,

where ζ(s) is the Riemann zeta-function, as well as another one relating
V
(
h/k

)
with V

(
k/h

)
. For this, other generalizations, and the relation of

V with the Báez–Duarte and Nyman–Beurling criterion for the Riemann
hypothesis we refer to [2, 3, 7, 8, 16].

Following the Euclid algorithm and repeatedly applying these results, one
can then obtain bounds and asymptotic formulae for these sums in terms
of the continued fraction expansion of h/k. See, for example [6] and [12].

All of the results mentioned above involve sums over all (non-zero)
residues. Having in mind an application to the value distribution of
Kashaev’s knot invariants [9], we are led to the problem of bounding partial
sums of the cotangent function. For example, let

C`

(
h

k

)
:= 1

k

∑
1≤m≤`

cot
(
π
mh

k

)
, h ∈ Z, k ∈ N, (h, k) = 1, 1 ≤ ` < k.

Despite the simplicity of this definition, this partial average behave rather
erratically, and there is little reason to suspect at first the existence of pure
reciprocity formulae such as (1.1).
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Figure 1.1. The graphs of ( `
677 , C`(

231
677)) as 1 ≤ ` < 677

and of ( `
215 , C`(

16
215) as 1 ≤ ` < 215.

Figure 1.1 shows the evolution of C`(231/677) and C`(16/215) as ` varies.
The continued fraction expansions of 231

677 and 16
215 are {0; 2, 1, 13, 2, 3, 2} and

{0; 13, 2, 3, 2} respectively, so that the similarity of the two graphs suggests
that a reciprocity formula is in action. As we will see below, in this case,
the reciprocity formula which we naturally obtain doesn’t directly relate
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C` (h/k) with C` (k/h), nor C` (h/k) with C`(k/h), but rather C`(h/k)
with C`′(h/k1), where k1 ≡ k1 (mod h) and 0 < k1 ≤ h, that is, the
double iteration of a standard reciprocity formula. This seems to be the
first observed instance of such an alternating behaviour in these objects.
We give this (non-exact) reciprocity formula in Corollary 10 below.

In general we will consider this question for

Sf

(
h

k

)
:= 1

k

k−1∑
m=1

f

(
m

k

)
cot

(
π
mh

k

)
, h ∈ Z, k ∈ N, (h, k) = 1.

where f is a piecewise C1 function. It will follow from our arguments that
for generic functions f , Sf (h/k) doesn’t satisfy a simple reciprocity formula
unless f is smooth with only one point of discontinuity other than, possibly,
0. However, we are able to control its size in all cases, as needed for example
in our application to the distribution of the Kashaev invariants.

Theorem 1. Let f : R→ R be a 1-periodic function which is piecewise C1,
and continuous except possibly at d points. Let

D0 = max
x∈R

lim
ε→0
|f(x+ ε)− f(x− ε)| and D1 := ‖f ′‖2.

Then ∣∣∣∣Sf (hk
)∣∣∣∣ ≤ dD0

πk

r∑
m=1

vm log
(
vm
vm−1

)
+O(dD0 +D1),∣∣∣∣∣Sf

(
h

k

)∣∣∣∣∣ ≤ dD0
π

r−1∑
m=0

log(vm+1
vm

)
vm

+O(dD0 +D1),

where v0, . . . , vm are the partial quotients of the continued fraction expan-
sion of h/k.

Remark 2. Following the approach of [6], it would be possible to compute
the distribution of Sf (h/k) as 1 ≤ h < k and k → ∞ (the method of [14]
might also be used with some effort). In particular, one can prove that
there is a function ε : R>0 → R>0 with limA→∞ ε(A) = 0, so that for
each A > 0, the number of h ∈ [1, k] with (h, k) = 1 and |Sf (h/k)| ≤ A is
at least k(1− ε(A)) + o(k) as k →∞.

Remark 3. If {x} denotes the fractional part of x, then π cot(πx)−{x}−1−
{−x}−1 extends to an odd bounded function on R. In particular, Theorem 1
holds also if one replaces cot(πy) by ({y}−1−{y}−1)/π in the definition of
Sf (h/k) (or any other 1-periodic function of y having a similar asymptotic
behaviour around 0).

Theorem 1 is a crucial ingredient in the following law of large numbers
for values of the Kashaev invariants of the figure eight knot, which we prove
in [9] :
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Theorem 4. For x ∈ Q, let

J(x) :=
∞∑
n=0

n∏
r=1

∣∣∣1− e2πirx
∣∣∣2

be the Kashaev invariant of the 41 knot. For some constant µ > 0, as Q→
+∞, we have

log J(x) ∼ µ(logQ) log logQ

for a proportion 1− o(1) of fractions x ∈ (0, 1]∩Q of reduced denominator
at most Q.

2. A reciprocity formula
2.1. Lemmas. We introduce some notation and give some basic results on
the Hurwitz and periodic zeta-functions (cf. [1, Chapter 12.9]). For x ∈ R
and <(s) > 1, let

ζ(s, x) :=
∑

n+x>0

1
(n+ x)s , F (s, x) :=

∑
n≥1

e (nx)
ns

,

where e (x) := e2πix. Notice that we have “periodized” the Hurwitz zeta-
function. It is well known that ζ(s, x) and F (s, x) extend as meromorphic
functions on C and satisfy functional equations. The functional equations
are nicely expressed in terms of ζ±(s, x) := ζ(s, x)±ζ(s,−x) and F±(s, x) =
F (s, x)± F (s,−x). Indeed, they become

F+(s, x) = χ(s)ζ+(1−s, x), F−(s, x) = 2iΓ(1−s)
(2π)1−s cos

(
πs

2

)
ζ−(1−s, x).

where χ(s) := 2 Γ(1−s)
(2π)1−s sin(πs2 ) is as in the functional equation of the Rie-

mann zeta-function.
We also recall the special values

(2.1)

F+(1, x) = − log((1− e−2πix)(1− e2πix))
= − log(4 sin(πx)2), x /∈ Z,

F−(1, x) = 2πi
∑
n∈N

sin(2πnx)
πn

= 2πi ((x))

where ((x)) := 0 if x ∈ Z and ((x)) := 1
2 − {x} otherwise.

Also, we have the expansion at s = 1

ζ(s, x) = 1
s− 1 − ψ({x}) +O(s− 1),
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where ψ is the digamma function [10, Section 8.36], and so also

(2.2) F+(1− s, x) = −1−
(
γ+log 2π+ 1

2ψ({x})+ 1
2ψ({−x})

)
(1− s)

+O((s− 1)2).
For h, ` ∈ Z, k ∈ N we define

(2.3) V1

(
h

k
,
`

k

)
:= 2

∑
m≥1

∑
n≥1

sin(2πnmh
k ) cos(2πm `

k )
πnm

= 2
∑
m≥1

cos(2πm `
k )

m

((
mh

k

))
which clearly converges since

∑k
m=1 cos(2πm`/k) ((mh/k)) = 0 by parity.

Actually, the above computation together with the functional equations
for ζ(s, x) can be used to show that one can smoothly truncate the sum
over m,n at height � Xk1+ε, for any X ≥ 1, at the cost of an error which
is O((Xk)−100), as is done e.g. in [6, p. 11423] with an analogous series.

For h, p ∈ Z, k, q ∈ N, (h, k) = 1 we also define

V2

(
h

k
,
p

q

)
:=

∑
m∈Z

|m+ p
q
|≥1

∑
n≥1

sin(2π hkn|m+ p
q |)

πn|m+ p
q |

=
∑
m∈Z

|m+ p
q
|≥1

((
h
k |m+ p

q |
))

|m+ p
q |

where the outer sum is computed by summing together the terms m and
−m. Again, one easily sees that the series converges and that one can
smoothly truncate the sums atm,n� X(qk)1+ε at a cost of an error which
is O((Xqk)−100). The manipulation of conditionally convergent sums and
integrals in the following is justified by these considerations.

We remark (cf. e.g. Lemma 9 below with f(x) = x for 0 < x < 1) that
V1(hk ,

`
k ) and V2(hk ,

p
q ) reduce to −π

kV (hk ) if k|` and p = 0.
We will prove a reciprocity formula relating V1 with V2, generalizing (1.1),

following the same approach as in the proof of [7, Theorem 5]. We shall need
the following uniform convexity bound for F+(1

2 + it, x).

Lemma 5. Let x 6∈ Z and
K+(s, x) := F+(s, x)− χ(s)({x}s−1 + {−x}s−1).

Then K+(1
2 + it, x)�ε (1 + |t|)

1
4 +ε uniformly in x.

Proof. For <(s) = 1 + ε we have K+(s, x) �ε 1, whereas on <(s) = −ε
after applying the functional equation and expanding the resulting series
we have K+(s, x) �ε (1 + |s|)

1
2 +ε uniformly in x. Phragmen–Lindelöf’s

theorem [15, Section 5.61] then gives the claimed bound. �
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2.2. Main reciprocity formula.

Proposition 6. Let `, h, k ≥ 1 and (h, k) = 1. For h 6= 1, let β :=
{ kh}

−1{ `h} if k - ` and β = 0 if k | `. Then, we have

(2.4) 1
h
V1

(
h

k
,
`

k

)
+ δh6=1

1
k
V2

({
k

h

}
, β

)
=
(
γh,k,`
h
− 1
k

)
log

(
k

h

)
+O

(1
k

+ 1
h

)
,

where δh6=1 = 0 if h = 1 and δh6=1 = 1 otherwise, and where γh,k,` = 1 if
k | ` and otherwise γh,k,` = 2 if k ≤ h and 0 ≤ γh,k,` ≤ 1 if k > h.

Remark 7. For k - `, the term γh,k,` log
(
k
h

)
/h can be replaced in this

estimate by

1
h

(
log

{
`

k

}
+ log

{
− `
k

}
− log−

({
`

k

}
k

h

)
− log−

({
− `
k

}
k

h

))
,

where log−(x) := min(log x, 0).

Proof. We assume k - `, since otherwise the formula is an immediate con-
sequence of the usual Vasyunin’s formula (1.1). Let

I(h, k) := 1
2πi

∫
( 1

2 )

F+(s, `k )ζ(1− s)
hsk1−s

ds
s(1− s) ,

where
∫

(c) · ds :=
∫ c+i∞
c−i∞ · ds. We will now proceed to evaluate I(h, k) in two

different ways.
Throughout, we denote

α = `

k
.

In the notation of Lemma 5, we have

I(h, k) = 1
2πi

∫
( 1

2 )

K+(s, α)ζ(1− s)
hsk1−s

ds
s(1− s)

+ 1
2πi

∫
( 1

2 )

χ(s)({α}s−1 + {−α}s−1)ζ(1− s)
hsk1−s

ds
s(1− s) .

By Lemma 5, the first integral is bounded by

� 1√
hk

∫
R

|ζ(1
2 + it)| dt

(1 + |t|)
3
2
� 1√

hk
,
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whereas the contribution of {α} to the second integral is

1
2πi

∫
( 1

2 )

χ(s){α}s−1ζ(1− s)
hsk1−s

ds
s(1− s)

= 1
k{α}

1
2πi

∫
( 1

2 )
ζ(s)

(
{α}k

h

)s ds
s(1− s) .

If {α} kh < 1 we move the line of integration to <(s) = +∞ obtaining a
contribution from the double pole at s = 1 of

log({α} kh) + γ − 1
h

.

If {α} kh ≥ 1 then we move the integral to <(s) = −1
4 passing through a

simple pole at s = 0. The contribution of the residue is − 1
2k{α} = O(1/h),

whereas the integral on the new line contributes O( 1
k{α}({α}

k
h)−1/4) =

O(1/h) since ζ(−1/4 + it) � (1 + |t|)
3
4 . Thus, in both cases we find that

the contribution of {α} to the second integral is

log−({α}k/h) +O(1)
h

.

Repeating the same computation for {−α} we then obtain our first expres-
sion for I(h, k):

(2.5) I(h, k) = log−({α}k/h) + log−({−α}k/h) +O(1)
h

+O

( 1√
kh

)
.

Now we compute I(h, k) in a second way. We split the integral into

1
2πi

∫
( 1

2 )

F+(s, α)ζ(1− s)
hsk1−s

ds
s(1− s)

= 1
2πi

∫
( 1

2 )

F+(s, α)ζ(1− s)
hsk1−s

ds
1− s + 1

2πi

∫
( 1

2 )

F+(1− s, α)ζ(s)
h1−sks

ds
1− s

= I1 + I2,

say, where in the second integral we made the change of variables s→ 1−s.
We now consider I1. We move the line of integration to <(s) = 5/4 passing
through a simple pole at s = 1. We obtain

I1 = −F
+(1, α)

2h + 1
2πi

∫
(5/4)

F+(s, α)ζ(1− s)
hsk1−s

ds
1− s.

By (2.1),

F+(1, α) = − log(4 sin(πα)2) = −2 log{α} − 2 log{−α}+O(1).
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Also,

1
2πi

∫
(5/4)

F+(s, α)ζ(1− s)
hsk1−s

ds
1− s

=
∑

m∈Z6=0

∑
n≥1

e (mα)
k

1
2πi

∫
(5/4)

χ(1− s)(hn|m|/k)−s ds
1− s.

By the Mellin formula
1

2πi

∫
(5/4)

χ(1− s)u−s ds
1− s = sin(2πu)

πu

we find

1
2πi

∫
(2)

F+(s, α)ζ(1− s)
hsk1−s

ds
1− s

=
∑

n≥1,m∈Z6=0

sin(2πhn|m|/k) e (mα)
πhn|m|

= 1
h
V1

(
h

k
, α

)
.

Thus,

I1 = log{α}+ log{−α}+O(1)
h

+ 1
h
V1

(
h

k
, α

)
.

As for I2 we move the line integration to <(s) = 5/4 passing through a
double pole at s = 1. By (2.2) the pole contributes a residue

(2.6) ψ({α}) + ψ({−α}) + 2 log(2πk/h)
2k

= −{α}
−1 − {−α}−1 + 2 log(k/h) +O(1)

2k
since ψ(x) = 1

x +O(1) for 0 < x < 1. The contribution of the integral to I2
is

1
2πi

∫
(5/4)

F+(1− s, α)ζ(s)
h1−sks

ds
1− s

=
∑
m∈Z

∑
n≥1

1
2πih

∫
(5/4)

χ(1− s)
(
kn

h
|m+ α|

)−s ds
1− s

=
∑
m∈Z

∑
n≥1

sin(2π khn|m+ α|)
πkn|m+ α|

= 1
k

∑
m∈Z

((
k
h |m+ α|

))
|m+ α|

,
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where in the first line we have applied the functional equation to F+ and
expanded the Dirichlet series.

Now, we observe that the series sums to zero if h = 1 (since k|m+ α| ∈ Z
in this case) and the claimed result easily follows. Thus, assume h 6= 1. We
isolate the terms m ∈ {−bαc,−bαc − 1, b−βc, b−βc + 1} from the sum,
where

β :=
{
k

h

}−1 { `
h

}
.

The terms m ∈ {−bαc,−bαc − 1} contribute((
k
h{α}

))
k{α}

+

((
k
h{−α}

))
k{−α}

whereas the contribution of m′ ∈ {b−βc, b−βc + 1} (with m′ 6= −bαc,
−bαc − 1) is bounded by

1
k

((
k
h |m

′ + α|
))

|m′ + α|
� 1

k
.

Next, we replace α in the denominator by β. The error in doing so is
1
k

∑
m 6=−bαc,−bαc−1,b−βc,b−βc+1

((
k

h
|m+ α|

))( 1
|m+ {α}| −

1
|m+ β|

)
� 1

k
.

We can then include again the terms −bαc and −bαc − 1 (when they are
different from b−βc, b−βc+ 1) at the cost of an error which is analogously
seen to be O(1/k), obtaining

1
k

∑
m∈Z

((
k
h |m+ α|

))
|m+ α|

= 1
k

∑
m∈Z,

m6=b−βc,b−βc+1

((
k
h |m+ α|

))
|m+ β|

+

((
k
h{α}

))
k{α}

+

((
k
h{−α}

))
k{−α}

+O

(1
k

)
.

By periodicity of the sine we then have

1
k

∑
m∈Z,

m6=b−βc,b−βc+1

((
k
h |m+ α|

))
|m+ β|

= 1
k

∑
m∈Z,

m 6=b−βc,b−βc+1

((
k
h |m+ β|

))
|m+ β|

= 1
k
V2

({
k

h

}
, β

)
+O

(1
k

)
.
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Finally, we observe that((
k
h{α}

))
k{α}

+

((
k
h{−α}

))
k{−α}

= 1
2k{α} + 1

2k{−α} −
{ kh{α}}
k{α}

−
{ kh{−α}}
k{−α}

+O

(1
h

)
= 1

2k{α} + 1
2k{−α} +O

(1
h

)
.

Indeed, the third term is O(1/h) (and similarly for the fourth) since, if 0 ≤
`′ ≤ k and 0 ≤ `′′ ≤ h are such that `′ ≡ ` (mod k) and `′′ ≡ `′ (mod h),
then { kh{α}}/k{α} = `′′/(`′h) ≤ 1

h .
By the above computations we then have

1
2πi

∫
(5/4)

F+(1− s, α)ζ(s)
h1−sks

ds
1− s

= 1
k
V2

({
k

h

}
, β

)
+ 1

2k{α} + 1
2k{−α} +O

(1
k

+ 1
h

)
and so, adding the contribution of the residue (2.6) we have

I2 = V2

({
k

h

}
, β

)
/k + log(k/h)/k +O

(1
k

+ 1
h

)
.

Thus,

I(h, k) = I1 + I2 = log{α}+ log{−α}
h

+ 1
h
V1

(
h

k
, α

)
+ 1
k
V2

({
k

h

}
, β

)
+ log(k/h)

k
+O

(1
k

+ 1
h

)
.

Comparing this with (2.5) we obtain the claimed identity, since for 0 < x <
1, y > 0 we have

log x+ log(1− x)− log−(xy)− log−((1− x)y) = −γ log y +O(1),

where γ = 2 if 0 < y ≤ 1 and 0 < γ ≤ 1 otherwise. �

2.3. Bound for V1 in terms of the continued fraction expansion.
We now iterate the relation (2.4) in order to obtain a bound for individual
values of V1.
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Corollary 8. Let `, h, k ∈ N with h < k and (h, k) = 1. Then, uniformly
for α ∈ 1

kZ, we have∣∣∣∣V1

(
h

k
, α

)∣∣∣∣ ≤ r−1∑
m=0

log(vm+1/vm)
vm

+O(1),∣∣∣∣∣V1

(
h

k
, α

)∣∣∣∣∣ ≤ 1
k

r∑
m=1

vm log(vm/vm−1) +O(1),

where vm is the m-th partial quotient of h
k .

Proof. By Proposition 6, recalling the notation β := { kh}
−1{ `h} if k - `

and β := 0 otherwise, we have∣∣∣∣kV1

(
h

k
,
`

k

)∣∣∣∣ ≤ δh6=1

∣∣∣∣hV2

({
k

h

}
, β

)∣∣∣∣+k log
(
k

h

)
+O(k) if h ≤ k,(2.7) ∣∣∣∣hV2

(
k

h
, β

)∣∣∣∣ ≤ ∣∣∣∣kV1

(
h

k
,
`

k

)∣∣∣∣+ h log
(
h

k

)
+O(h) if h≥k, h 6=1.(2.8)

Now, let h/k = [0; b1, . . . , br] be the continued fraction expansion of h/k,
with br 6= 1 if r > 1. Also, let h∗ ∈ [1, k] be such that h∗ ≡ (−1)r+1h (mod k)
(in particular h∗/k = [0, br, . . . , b1]). The Euclid algorithm on h∗ and k can
be written as (see [13])

vr = k, vr−1 = h∗,

v`+1 = b`+1v` + v`−1, ` = 0, . . . r.

Then, alternating the use of (2.7)-(2.8) and the reduction modulo the de-
nominator in V1, we obtain

(2.9) k

∣∣∣∣∣V1

(
h

k
, α

)∣∣∣∣∣ ≤
r∑

m=1

(
vm log(vm/vm−1) +O(vm)

)
=

r∑
m=1

vm log(vm/vm−1) +O(k),

as desired, where the last step follows since vn−2 ≤ vn/2 for all n.
Indicating with um/vm and u′m/v

′
m the m-th convergents of h/k and

h∗/k respectively (with v−1 = v′−1 = 0), one has k = vsv
′
r−s + vs−1v

′
r−s−1

for all 0 ≤ s ≤ r (see [11, p. 91-92]). In particular, k/2 ≤ vsv′r−s ≤ k. Thus,
by (2.9) we have

k

∣∣∣∣V1

(
h

k
, α

)∣∣∣∣ ≤ r∑
m=1

v′m log(v′m/v′m−1) +O(k)

≤ k
r−1∑
m=0

log(vm+1/vm)
vm

+O(k). �
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3. Proof of Theorem 1
We will deduce Theorem 1 from Corollary 8 and the following lemma,

which shows that Sf (h/k) is, up to a small error, a linear combination of
V1(hk ,

`j
k ) for various values of `j .

Lemma 9. Let h ∈ Z, k ∈ N with (h, k) = 1. Let f : R→ R be a 1-periodic
function which is piecewise C1, and continuous everywhere except possibly
at d points `1

k , . . . ,
`d
k , with 0 ≤ `1 < · · · < `d < k, and assume f is left and

right differentiable at such points. Also, assume 2f( `ik ) = f( `ik +) + f( `ik−),
where f(x±) := limε→0+ f(x± ε). Then,

Sf

(
h

k

)
= 1
π

d∑
j=1

V1

(
h

k
,
`i
k

)(
f

(
`j
k

+
)
− f

(
`j
k
−
))

+O
(
‖f ′‖2

)
.

Proof. We have the Fourier expansion

f(x) =
∑
n∈Z

f̂(n) e (−nx) , x ∈ R

where, for n 6= 0,

f̂(n) =
d∑
j=1

f( `jk −)− f( `jk +)
2πin e (n`j/k)− f̂ ′(n)

2πin ,

and f̂ ′(n) :=
∫ 1

0 f
′(y) e (ny) dy. Note that, by the Bessel inequality,

(3.1)
∑
n6=0

∣∣∣∣∣ f̂ ′(n)
n

∣∣∣∣∣� ‖f ′‖2.
Now, we have

k−1∑
m=1

cot
(
π
mh

k

)
e
(
−nm

k

)
= −2ik

((
nh

k

))

and thus,

k−1∑
m=1

f

(
m

k

)
cot

(
πmh

k

)

= −2ik
∑

n∈Z6=0

((
nh

k

)) d∑
j=1

f( `jk −)− f( `jk +)
2πin e (n`j/k)− f̂ ′(n)

2πin

 .
Grouping this with the definition (2.3) and the bound (3.1) yields our
claim. �



Partial sums of the cotangent function 229

Proof of Theorem 1. At the cost of committing an error of size O(dD0) in
Sf (h/k), we modify f so that all of its d points of discontinuity are at
rationals of the form `

k with 2f
(
`
k

)
= f

(
`
k+
)

+ f
(
`
k−
)
. Theorem 1 then

follows by Proposition 1 and Lemma 9. �

Particular case: partial cotangent sums. For the partial cotangent
sums, alluded to in the introduction (Figure 1.1), since there is only one
point of discontinuity other than 0, we indeed obtain a (non-exact) reci-
procity relation in the following form.

Corollary 10. Let h ∈ Z, k ∈ N with (h, k) = 1, 1 ≤ h < k, and let
0 < ` < k. Let k1 ≡ k (mod h), `′ ≡ ` (mod h) with 1 ≤ k1, `

′ ≤ h and let
`1 ≡ `′ (mod k1), h1 ≡ h (mod k1) with 0 ≤ h1 < k1, 1 ≤ `1 ≤ k1. Then,

C`(h/k)− C`1(h1/k1) = 1
π

(
γh,k,` − 1

)
log k

h
+O

(
h

k1

)
.

with 0 ≤ γh,k,` ≤ 1.

Proof. By Lemma 9 we have C`(h/k) = 1
π (V1(hk ,

`
k )− V (hk , 0)) +O(1). The

result then follows, since applying Proposition 6 to (hk ,
`
k ) and to ( hk1

, `
′

k1
) ≡

(h1
k1
, `1k1

) (mod 1) we obtain

V1

(
h

k
,
`

k

)
− V1

(
h

k1
,
`′

k1

)
=
(
γh,k,` −

h

k

)
log k

h
+ h

k1
log k1

h
+O

(
h

k1

)
. �
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