
Ngoc Ai Van NGUYEN, Anthony POËLS et Damien ROY

A transference principle for simultaneous rational approximation
Tome 32, no 2 (2020), p. 387-402.

<http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_2_387_0>

© Société Arithmétique de Bordeaux, 2020, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique
l’accord avec les conditions générales d’utilisation (http://jtnb.
centre-mersenne.org/legal/). Toute reproduction en tout ou partie
de cet article sous quelque forme que ce soit pour tout usage autre
que l’utilisation à fin strictement personnelle du copiste est con-
stitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/

http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_2_387_0
http://jtnb.centre-mersenne.org/
http://jtnb.centre-mersenne.org/legal/
http://jtnb.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 32 (2020), 387–402

A transference principle for simultaneous rational
approximation

par Ngoc Ai Van NGUYEN, Anthony POËLS et Damien ROY

Résumé. Nous établissons pour tout entier n ≥ 1 un principe de transfert
général concernant la mesure d’irrationalité des points de Rn+1 dont les co-
ordonnées sont linéairement indépendantes sur Q. Partant de là nous retrou-
vons une inégalité importante de Marnat et Moshchevitin qui décrit le spectre
conjoint des exposants ordinaire et uniforme d’approximation rationnelle pour
ces points. Lorsque les exposants d’un point réalisent quasiment l’égalité, nous
fournissons davantage d’informations sur la suite de ses meilleures approxi-
mations rationnelles. Nous concluons avec une application.

Abstract. We establish a general transference principle about the irrational-
ity measure of points with Q-linearly independent coordinates in Rn+1, for
any given integer n ≥ 1. On this basis, we recover an important inequality
of Marnat and Moshchevitin which describes the spectrum of the pairs of or-
dinary and uniform exponents of rational approximation to those points. For
points whose pair of exponents are close to the boundary in the sense that
they almost realize the equality, we provide additional information about the
corresponding sequence of best rational approximations. We conclude with an
application.

1. Introduction

Let n be a positive integer and let ξ = (ξ0, . . . , ξn) be a point of Rn+1

whose coordinates are linearly independent over Q. For any integer point
x = (x0, . . . , xn) ∈ Zn+1 we set

Lξ(x) = max
1≤k≤n

|ξ0xk − ξkx0|,

and for each X ≥ 1 we define

(1.1) Lξ(X) = min{Lξ(x) ; x ∈ Zn+1 \ {0}, ‖x‖ ≤ X},
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where ‖·‖ denotes the usual Euclidean norm in Rn+1. The behavior of this
irrationality measure Lξ is roughly captured by the quantities

(1.2)
λ(ξ) = sup

{
λ ; lim inf

X→∞
XλLξ(X) <∞

}
,

λ̂(ξ) = sup
{
λ ; lim sup

X→∞
XλLξ(X) <∞

}
which are called respectively the ordinary and the uniform exponents of
rational approximation to ξ. It is well known that they satisfy

(1.3) 1
n
≤ λ̂(ξ) ≤ 1 and λ̂(ξ) ≤ λ(ξ) ≤ ∞,

the inequality λ̂(ξ) ≥ 1/n coming from Dirichlet’s box principle [13, Theo-
rem 1A, Chapter II]. The study of such Diophantine exponents goes back
to Jarník [1] and Khinchine [2, 3] and remains a topic of much research.
Recently Marnat and Moshchevitin [6] proved the following inequality con-
jectured by Schmidt and Summerer [15, Section 3, p. 92].

Theorem 1.1 (Marnat–Moshchevitin). Let ξ ∈ Rn+1 be a point whose
coordinates are linearly independent over Q. We have

λ̂(ξ) + λ̂(ξ)2

λ(ξ) + · · ·+ λ̂(ξ)n

λ(ξ)n−1 ≤ 1,(1.4)

the ratio λ̂(ξ)/λ(ξ) being interpreted as 0 when λ(ξ) =∞.

The formulation given by Marnat and Moshchevitin in [6] is slightly dif-
ferent and is complemented by a similar result for the dual pair of exponents
which we omit here. These authors also show that (1.3) and (1.4) give a
complete description of the set of values taken by (λ, λ̂) at points ξ ∈ Rn+1

with Q-linearly independent coordinates. Previous to [6], the problem had
been considered by several authors. The case n = 1 of Theorem 1.1 is clas-
sical, as it reduces to (1.3). The case n = 2 is a corollary of the work of
Laurent [5]. The case n = 3 was established by Moshchevitin in [7], and
revisited by Schmidt and Summerer using parametric geometry of numbers
in [15]. For an alternative proof of the results of [6] based only on para-
metric geometry of numbers together with partial results towards a more
general conjecture, see the PhD thesis of Rivard–Cooke [10, Chapter 2].

Given a subset S of Zn+1, we define for each X ≥ 1
Lξ(X;S) = min{Lξ(x) ; x ∈ S and 0 < ‖x‖ ≤ X},

with the convention that min ∅ = ∞. When S * {0}, that function is
eventually finite and monotonic decreasing. Then, upon replacing Lξ(X)
by Lξ(X;S) in (1.2) we obtain two exponents λ(ξ;S), λ̂(ξ;S) which satisfy

(1.5) 0 ≤ λ̂(ξ;S) ≤ λ̂(ξ) ≤ 1 and λ(ξ, S) ≤ λ(ξ).
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In particular, we have λ(ξ;Zn+1) = λ(ξ) and λ̂(ξ;Zn+1) = λ̂(ξ).
The next result gives further information about the behaviour of

Lξ(X;S) as a function of X.

Theorem 1.2. Let ξ ∈ Rn+1 with Q-linearly independent coordinates and
let S ⊆ Zn+1. Suppose that there exist positive real numbers a, b, α, β such
that
(1.6) bX−β ≤ Lξ(X;S) ≤ aX−α

for each large enough real number X. Then α and β satisfy

(1.7) α+ α2

β
+ · · ·+ αn

βn−1 ≤ 1.

In case of equality in (1.7), we have

(1.8) lim sup
X→∞

XαLξ(X;S) > 0 and lim inf
X→∞

XβLξ(X;S) <∞,

thus α = λ̂(ξ;S) and β = λ(ξ;S).

Assuming that λ̂(ξ;S) > 0, the first part of Theorem 1.2 implies that

λ̂(ξ;S) + λ̂(ξ;S)2

λ(ξ;S) + · · ·+ λ̂(ξ;S)n

λ(ξ;S)n−1 ≤ 1,(1.9)

which gives Theorem 1.1 by choosing S = Zn+1. Indeed, if λ(ξ;S) < ∞,
then (1.6) holds for X large enough with a = b = 1 and any choice of α, β
with 0 < α < λ̂(ξ;S) and β > λ(ξ;S). Inequality (1.7) then gives (1.9) by
letting α tend to λ̂(ξ;S) and β to λ(ξ;S). Otherwise, we have λ(ξ;S) =∞
and (1.9) holds trivially since λ̂(ξ;S) ≤ 1. Another application of Theo-
rem 1.2 is given in Section 6.

Rather than taking monomials to control the function Lξ, we now turn
to a more general setting in the spirit of [1]. The following transference
principle is our main result. As we will see, it implies Theorem 1.2.

Theorem 1.3. Let ξ ∈ Rn+1 with Q-linearly independent coordinates and
let S ⊆ Zn+1. Suppose that there exist an unbounded subinterval I of (0,∞),
a point A ∈ I and continuous functions ϕ,ψ, ϑ : I → (0,∞) with the
following properties.

(i) We have ψ(X) ≤ Lξ(X;S) ≤ ϕ(X) for each X ≥ A.
(ii) The functions ϕ and ψ are strictly decreasing, whereas ϑ is increas-

ing with
lim
X→∞

ϕ(X) = lim
X→∞

ψ(X) = 0 and lim
X→∞

ϑ(X) =∞.

(iii) For each k = 1, . . . , n−1, the k-th iterate ϑk of ϑ maps [A,∞) to I.
(iv) We have ϕ(X) = ψ(ϑ(X)) for each X ≥ A.
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(v) The functions ϕ0, . . . , ϕn−1, Φ0, . . . ,Φn−1 defined on [A,∞) by

ϕ0(X) = ϕ(X)(1.10)
ϕk(X) = ϕ(ϑk(X)) · · ·ϕ(ϑ(X))ϕ(X) (1 ≤ k < n),(1.11)
Φk(X) = Xϕk(X) (0 ≤ k ≤ n− 1)(1.12)

have the property that Φ0 is monotonically increasing and that the
remaining Φ1, . . . ,Φn−1 are monotonic (either decreasing or in-
creasing).

Then Φ0, . . . ,Φn−2 are monotonically increasing and we have

(1.13) Φn−1 ≥ c,

for some constant c > 0 depending only on ξ.

Note that since ϕ is decreasing and ϑ is increasing, each function ϕk
is decreasing and tends to 0. The most natural choice for the functions
ϕ,ϕ, ϑ is to take monomials in X as below. In doing so, we now prove that
Theorem 1.3 implies Theorem 1.2. With the notation of Theorem 1.2, the
functions ψ,ϕ, ϑ defined for each X > 0 by

(1.14) (ψ,ϕ, ϑ)(X) =
(
bX−β, aX−α,

(a
b

)−1/β
Xα/β

)
satisfy ϕ = ψ ◦ ϑ. Moreover since α ≤ λ̂(ξ, S) ≤ 1 by (1.5), the product
Φ0(X) = Xϕ(X) = aX1−α is monotonically increasing for X > 0. For each
k with 0 ≤ k ≤ n− 1 and X > 0 we have

(1.15) ϕ(ϑk(X)) = a
(a
b

)(α/β)+···+(α/β)k

X−α
k+1/βk

,

and so the functions Φ1, . . . ,Φn−1 defined by (1.12) are monotonic. Thus
ϕ,ψ, ϑ satisfy Conditions (ii) to (v) of Theorem 1.3, and Condition (i)
amounts to Condition (1.6) of Theorem 1.2. Furthermore note that there is
a positive number δ > 0 (which is a polynomial in α/β) such that for each
X > 0 we have

(1.16) Φn−1(X) = an
(a
b

)δ
Xε, where ε = 1−

(
α+ α2

β
+ · · ·+ αn

βn−1

)
.

By (1.13) we then get (1.7), namely ε ≥ 0. This in turn implies (1.9) as
explained after Theorem 1.2. Suppose now that ε = 0. Since α ≤ λ̂(ξ;S)
and β ≥ λ(ξ;S), we thus have

1 = α+ α2

β
+ · · ·+ αn

βn−1 ≤ λ̂(ξ;S) + λ̂(ξ;S)2

λ(ξ;S) + · · ·+ λ̂(ξ;S)n

λ(ξ;S)n−1 ≤ 1,
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and we conclude that α = λ̂(ξ;S) and β = λ(ξ;S). Moreover, by using once
again (1.13), (1.16) and the hypothesis that ε = 0, we obtain

an
(a
b

)δ
≥ c,

where c is given by (1.13). It means that in (1.6), we cannot replace a by a
constant strictly smaller that a′ = (cbδ)1/(n+δ) and b by a constant strictly
larger than b′ = (an+δ/c)1/δ. This proves (1.8) with the superior limit ≥ a′
and the inferior limit ≤ b′.

Remark 1.4. Clearly, Conditions (ii) to (v) apply to many more general
classes of functions ϕ and ψ. For example, we can take

ϕ(X) = aX−α logσ(X) and ψ(X) = bX−β logρ(X)
for suitable positive numbers a, b, α, β and real numbers σ, ρ.

The next result complements Theorem 1.2.

Theorem 1.5. Let n > 1, let ξ be a point of Rn+1 whose coordinates
are linearly independent over Q and let S ⊆ Zn+1. Suppose that there are
positive real numbers a, b, α, β such that

(1.17) bX−β ≤ Lξ(X;S) ≤ aX−α

for each sufficiently large real number X. Then we have α ≤ β and

(1.18) ε := 1−
(
α+ α2

β
+ · · ·+ αn

βn−1

)
≥ 0.

Moreover, there exists a constant C > 0 which depends only on ξ, a, b, α, β
with the following property. If

(1.19) ε ≤ 1
4n

(
α

β

)n
min{α, β − α},

then there is an unbounded sequence (yi)i≥0 of non-zero integer points in
S which for each i ≥ 0 satisfies the following conditions:

(i)
∣∣α log‖yi+1‖ − β log‖yi‖

∣∣ ≤ C + 4ε(β/α)n log‖yi+1‖;
(ii)

∣∣logLξ(yi) + β log‖yi‖
∣∣ ≤ C + 4ε(β/α)2 log‖yi‖;

(iii) det(yi, . . . ,yi+n) 6= 0;
(iv) there exists no x ∈ S \ {0} with ‖x‖ < ‖yi‖ and Lξ(x) ≤ Lξ(yi).

For a point ξ of the form ξ = (1, ξ, ξ2) with ξ ∈ R not algebraic of degree
at most 2 over Q, satisfying (1.17) with S = Z3, β = 1 and ε = 0, we recover
a construction of the third author [11, Theorem 5.1] dealing with extremal
numbers. For a point ξ = (1, ϑ, . . . , ϑn, ξ) with ϑ ∈ R algebraic of degree n
over Q and ξ ∈ R \ Q(ϑ), satisfying (1.17) with S = Zn+1, β = 1/(n − 1)
and ε = 0, the result is due to the first author [8, Theorem 2.4.3].
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Remark 1.6. As the proof will show, the upper bound for ε in (1.19) and
the coefficients of ε in (i) and (ii) can easily be improved.

This paper is organized as follows. In Section 2 we set the notation and
we recall the definition of minimal points. Section 3 is devoted to our main
tool which is a construction of subspaces of Rn+1 defined over Q, together
with inequalities relating their heights. The proofs of Theorems 1.3 and 1.5
follow in Sections 4 and 5 respectively. Finally, some applications of our
results are presented in the last section.

2. Notation, heights and minimal points

Given points y1,y2, . . . of Rn+1, we denote by 〈y1,y2, . . .〉R the vec-
tor subspace of Rn+1 that they span. Recall that we endow Rn+1 with its
usual structure of inner product space and that we denote by ‖·‖ the cor-
responding Euclidean norm. In general, for any integer k = 1, . . . , n + 1,
we endow the vector space

∧k(Rn+1) with the unique structure of inner
product space such that, for any orthonormal basis (e1, . . . , en) of Rn+1,
the products ei1 ∧ · · · ∧ eik (i1 < · · · < ik) form an orthonormal basis of∧k(Rn+1). We still denote by ‖·‖ the associated norm.

If W is a subspace of Rn+1 defined over Q, we define its height H(W ) as
the co-volume inW of the lattice of integer pointsW ∩Zn+1. If dimW = k,
this is given by

H(W ) = ‖x1 ∧ · · · ∧ xk‖
for any Z-basis (x1, . . . ,xk) of W ∩ Zn+1. Schmidt proved the following
result [14, Chapter 1, Lemma 8A].

Theorem 2.1 (Schmidt). There exists a positive constant c which depends
only on n such that for any subspaces A,B of Rn+1 defined over Q, we
have

H(A+B)H(A ∩B) ≤ cH(A)H(B).

If f, g : I → [0,+∞) are two functions on a set I, we write f = O(g)
or f � g or g � f to mean that there is a positive constant c such that
f(x) ≤ cg(x) for each x ∈ I. We write f � g when both f � g and g � f .

When S ⊆ Zn+1 is such that limX→∞ Lξ(X;S) = 0, there exists a se-
quence (xi)i≥0 of non-zero points in S satisfying

(a) ‖x0‖ < ‖x1‖ < ‖x2‖ < . . .
(b) Lξ(x0) > Lξ(x1) > Lξ(x2) > . . .
(c) For any i ≥ 0 and any non-zero point z ∈ S with ‖z‖ < ‖xi+1‖, we

have Lξ(z) ≥ Lξ(xi).
We say that such a sequence is a sequence of minimal points for ξ with
respect to S. Minimal points are a standard tool for studying rational ap-
proximation. The usual choice is to take S = Zn+1.
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3. Families of vector subspaces

The goal of this section is to prove the following key-theorem established
by the first author in her thesis [8, Section 2.3] in the case where S = Zn+1.
The proof in the general case is the same. In this section n is an integer
> 1.

Theorem 3.1. Let ξ ∈ Rn+1 with Q-linearly independent coordinates. Sup-
pose that for some S ⊆ Zn+1 we have limX→∞ Lξ(X;S) = 0. Let (xi)i≥0
be a sequence of minimal points for ξ with respect to S. For each i ≥ 0, set

Xi = ‖xi‖ and Li = Lξ(Xi;S) = Lξ(xi).

Fix also an index i0 ≥ 0. Then for each t = 1, . . . , n − 1 there exists a
largest integer it with it ≥ i0 such that

(3.1) dim〈xi0 ,xi0+1, . . . ,xit〉R = t+ 1.

For these indices i0 < i1 < · · · < in−1, we have

Xi1 · · ·Xin−1 ≤ cLi0Xi0+1 · · ·Lin−1Xin−1+1

with a constant c > 0 depending only on ξ and not on i0.

We first note that under the conditions of Theorem 3.1, each subsequence
(yi)i∈N of (xi)i∈N spans Rn+1. Indeed, suppose by contradiction that a
subsequence (yi)i∈N spans a proper subspace W of Rn+1. Since (yi)i∈N
converges to ξ projectively, we deduce that ξ ∈ W , which is impossible
since W is defined by linear equations with coefficients in Q while the
coordinates of ξ are linearly independent over Q. In particular, (xi)i≥i0
spans Rn+1 for the given index i0, and the existence of i1, . . . , in−1 follows.

Clearly we have i0 < i1 < · · · < in−1. For simplicity, we set

V[i, j] := 〈xi,xi+1, . . . ,xj〉R
for each pair of integers i, j with 0 ≤ i ≤ j. Then, for each t = 0, 1, . . . , n−1,
we have

dimV[i0, it] = t+ 1 and dimV[i0, it + 1] = t+ 2,

thus xit+1 /∈ V[i0, it]. By comparing dimensions, we deduce that

Rn+1 = V[i0, in−1 + 1] and V[i0, it−1 + 1] = V[i0, it] (1 ≤ t ≤ n− 1).

For each (t, k) ∈ N2 with 1 ≤ k ≤ t+ 1 ≤ n, we define

V k+1
t = V[s(t, k), it + 1] and Ukt = V[s(t, k), it],

where s(t, k) is the largest integer with s(t, k) ≤ it for which we have
dimV k+1

t = k+1. By varying k for fixed t, we obtain a decreasing sequence

s(t, 1) = it > s(t, 2) > · · · > s(t, t+ 1) ≥ i0.
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Thus Ukt is contained in V[i0, it], so xit+1 /∈ Ukt and therefore dimUkt = k.
Moreover, when 2 ≤ k ≤ t+ 1, we have s(t, k) < s(t, k − 1) ≤ it, thus

(3.2) V k+1
t = Ukt + V k

t

is the sum of two distinct k-dimensional subspaces. Since Ukt and V k
t both

contain Uk−1
t , we deduce that

(3.3) Uk−1
t = Ukt ∩ V k

t ,

as both sides have dimension k−1. Finally, we note that, for t = 1, . . . , n−1,
the subspaces U t+1

t and V t+1
t−1 are both contained in V[i0, it] = V[i0, it−1+1].

Since all of these have dimension t+ 1, we conclude that
(3.4) U t+1

t = V[i0, it−1 + 1] = V t+1
t−1 .

The proof of Theorem 3.1 relies on the following lemma relating the heights
of the above families of subspaces.

Lemma 3.2. For each k = 1, . . . , n− 1, we have
(3.5) H(Ukk )H(Ukk+1) · · ·H(Ukn−1)� H(V k+1

k−1 )H(V k+1
k ) · · ·H(V k+1

n−1 )
with an implicit constant depending only on n.

Proof. We proceed by descending induction on k. By (3.2), we have

Rn+1 = V n+1
n−1 = Unn−1 + V n

n−1.

Since (3.3) gives Un−1
n−1 = Unn−1∩V n

n−1, it follows from Schmidt’s Theorem 2.1
that

H(Un−1
n−1 )� H(Unn−1)H(V n

n−1)
because H(Rn+1) = 1.As (3.4) gives H(Unn−1) = H(V n

n−2), this proves (3.5)
for k = n− 1.

Assume that (3.5) holds for some k with 1 < k ≤ n−1. By Theorem 2.1,
the relations (3.2) and (3.3) imply that

H(V k+1
t )� H(Ukt )H(V k

t )
H(Uk−1

t )
for each t = k−1, . . . , n−1. Combining this with the induction hypothesis,
we obtain

H(Ukk ) · · ·H(Ukn−1)�
H(Ukk−1)H(V k

k−1)
H(Uk−1

k−1 )
· · ·

H(Ukn−1)H(V k
n−1)

H(Uk−1
n−1)

.

After simplification, this leads to
H(Uk−1

k−1 ) · · ·H(Uk−1
n−1)� H(Ukk−1)H(V k

k−1) · · ·H(V k
n−1).

Since Ukk−1 = V k
k−2 by (3.4), this yields (3.5) with k replaced by k−1. Thus,

by induction, (3.5) holds for all k = 1, . . . , n− 1. �
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Proof of Theorem 3.1. By Lemma 3.2 applied with k = 1, we have
H(U1

1 )H(U1
2 ) · · ·H(U1

n−1)� H(V 2
0 )H(V 2

1 ) · · ·H(V 2
n−1)

where U1
t = 〈xit〉R and V 2

t = 〈xit ,xit+1〉R for t = 0, . . . , n− 1. The conclu-
sion follows since

H(U1
t ) = ‖xit‖ = Xit and H(V 2

t ) ≤ ‖xit ∧ xit+1‖ � Xit+1Lit

for t = 0, . . . , n− 1, with implicit constants depending only on ξ. �

4. Proof of Theorem 1.3

Suppose that ξ ∈ Rn+1, S ⊆ Rn+1, A ∈ I and ϕ,ψ, ϑ : I → (0,∞) satisfy
the hypotheses of Theorem 1.3, and let (xi)i≥0 be a sequence of minimal
points for ξ with respect to S. Since Φ0 is monotonically increasing, the
case n = 1 of Theorem 1.3 is trivial. Thus we may suppose that n > 1. As in
Section 3, we write Xi = ‖xi‖ and Li = Lξ(xi) = Lξ(Xi;S) for each i ≥ 0.
Choose k0 ≥ 0 such that Xk0 ≥ A. Then, for each i ≥ k0 and ε ∈ (0, 1] we
have

ψ(Xi) ≤ Li = Lξ(Xi;S) = Lξ(Xi+1 − ε;S) ≤ ϕ(Xi+1 − ε)
by definition of minimal points. Letting ε tend to 0, we deduce that
(4.1) Li ≤ ϕ(Xi+1) and Xi ≥ ϑ(Xi+1) (i ≥ k0),
because ϕ = ψ ◦ϑ is continuous and ψ is strictly decreasing. Then, for each
i0 ≥ k0, the sequence of integers i0 < · · · < in−1 given by Theorem 3.1
satisfies
(4.2) Xi1 · · ·Xin−1 ≤ cΦ0(Xi0+1) · · ·Φ0(Xin−1+1),
where c = c(ξ) > 0 and Φ0(X) = Xϕ(X) as in (1.12).

Lemma 4.1. Suppose that the functions Φ0, . . . ,Φm−2 are monotonically
increasing for some integer m with 2 ≤ m ≤ n, and let j0, . . . , jm−1 be
integers with k0 ≤ j0 < · · · < jm−1. Then we have
(4.3) Φ0(Xj0+1) · · ·Φ0(Xjm−1+1) ≤ Xj1 · · ·Xjm−1Φm−1(Xjm−1+1).

Proof. For simplicity set Yk = Xjk and Zk = Xjk+1 for k = 0, . . . ,m − 1.
By induction on k, we show that

(4.4)
m−1∏
`=0

Φ0(Z`) ≤
(
k−1∏
`=1

Y`

)
Φk−1(Zk−1)

(
m−1∏
`=k

Φ0(Z`)
)

(k = 1, . . . ,m).

The case k = 1 is an equality; there is nothing to prove. Suppose that (4.4)
holds for some k with 1 ≤ k < m. We have Zk−1 ≤ Yk since jk−1 < jk. We
also have ϑ(Zk) ≤ Yk by (4.1). Since Φk−1 is monotonically increasing and
ϕk−1 is monotonically decreasing, we deduce that

Φk−1(Zk−1) ≤ Φk−1(Yk) = Ykϕk−1(Yk) ≤ Ykϕk−1(ϑ(Zk)).(4.5)
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Since ϕk−1(ϑ(Zk))Φ0(Zk) = Φk(Zk), we conclude that (4.4) holds as well
with k replaced by k + 1. The inequality (4.3) corresponds to the case
k = m. �

Lemma 4.2. The functions Φ0, . . . ,Φn−2 are monotonically increasing.

Proof. Otherwise there is a largest integer m with 2 ≤ m < n such that
Φ0, . . . ,Φm−2 are monotonically increasing. By our choice ofm, the function
Φm−1 is monotonically decreasing. It is thus bounded from above. Let i0 <
i1 < · · · < in−1 be integers satisfying (4.2) for a choice of i0 ≥ k0. For
simplicity we write Yk = Xik and Zk = Xik+1 (k = 0, . . . , n − 1). Then,
Lemma 4.1 applied to j0 = in−m, . . . , jm−1 = in−1 implies that

Φ0(Zn−m) · · ·Φ0(Zn−1) ≤ Yn−m+1 · · ·Yn−1Φm−1(Zn−1)
= O(Yn−m+1 · · ·Yn−1),

with an implicit constant depending only on Φm−1, not on i0. Furthermore
for k = 0, . . . , n−m−1 we have Φ0(Zk) = ϕ(Zk)Zk ≤ ϕ(Zk)Yk+1 = o(Yk+1)
as i0 tends to infinity. Putting these inequalities together yields

Φ0(Z0) · · ·Φ0(Zn−1) = o(Y1 · · ·Yn−1)
as i0 tends to infinity. This contradicts (4.2). �

Proof of Theorem 1.3. Fix i0 < · · · < in−1 satisfying (4.2) for some i0 ≥
k0. According to Lemma 4.2, we may apply Lemma 4.1 with m = n and
j0 = i0, . . . , jm−1 = in−1. This gives

Φ0(Xi0+1) · · ·Φ0(Xin−1+1) ≤ Xi1 · · ·Xin−1Φn−1(Xin−1+1),

which together with (4.2) yields Φn−1(Xin−1+1) ≥ c−1. Since the function
Φn−1 is monotonic, we deduce that Φn−1(X) ≥ c−1 for eachX large enough,
by letting i0 go to infinity. �

5. Proof of Theorem 1.5

First, note that (1.18) follows from Theorem 1.2. So it only remains to
prove the second part of Theorem 1.5. Let (xi)i≥0 be a sequence of minimal
points for ξ with respect to S. For each i ≥ 0, we write

Xi = ‖xi‖ and Li = Lξ(Xi;S) = Lξ(xi).
The sequence (yi)i≥0 will be constructed as a subsequence of (xi)i≥0 so
that Condition (iv) of Theorem 1.5 will be automatically satisfied. In this
section, all implicit constants depend only on ξ, a, b, α, β. For each X > 0,
we set

(ψ,ϕ, ϑ)(X) =
(
bX−β, aX−α,

(a
b

)−1/β
Xα/β

)
,

as in (1.14). Then, for k = 0, . . . , n−1, we denote by ϕk and Φk the functions
defined on (0,∞) by the formulas (1.10)–(1.12) from Theorem 1.3. We also
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fix an index `0 such that the main hypothesis (1.17) is satisfied for each
X ≥ X`0 .

Consider the sequence i0 < i1 < · · · < in−1 given by Theorem 3.1 for a
choice of i0 ≥ `0. For each k = 0, . . . , n− 1, we set

(5.1) (yk, Yk) = (xik , Xik) and (zk, Zk) = (xik+1, Xik+1).

By construction, we have

(5.2) 〈y0, z0〉R = 〈y0,y1〉R and 〈y0, . . . ,yn−1, zn−1〉R = Rn+1.

Using (1.15), we also find that

Φk(X) = Xϕk(X) = ckX
εk with εk = 1− α− · · · − αk+1

βk
,(5.3)

for each k = 0, . . . , n − 1 and each X > 0, where ck > 0 depends only on
a, b, α, β. Note that

ε0 > · · · > εn−1 = ε ≥ 0
where ε is given by (1.18). We find

c−1
n−1∏
k=1

Yk ≤
n−1∏
k=0

ZkLξ(yk) by Theorem 3.1,

≤
n−1∏
k=0

Φ0(Zk) by (4.1),

≤
(
n−1∏
k=1

Yk

)
Φn−1(Zn−1) by Lemma 4.1 with m = n,

=
(
n−1∏
k=1

Yk

)
cn−1Z

ε
n−1 by (5.3).

This uses sequentially the inequalities

Lξ(yk) ≤ ϕ(Zk) (0 ≤ k < n),

coming from (4.1) as well as the inequalities

Φk−1(Zk−1) ≤ Φk−1(Yk) and ϕk−1(Yk) ≤ ϕk−1(ϑ(Zk)) (1 ≤ k < n)

coming from (4.5) in the proof of Lemma 4.1 with m = n. In each of
these inequalities the ratio of the right-hand side divided by the left-hand
side is therefore at most ccn−1Z

ε
n−1. Using (5.3) and the fact that for k =

1, . . . , n− 1 we have

εk−1 = ε+ αk+1

βk
+ · · ·+ αn

βn−1 ≥ α
(
α

β

)k
and 1− εk−1 ≥ α,
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we thus get the following estimates∣∣logLξ(yk) + α logZk
∣∣ ≤ O(1) + ε logZn−1 (0 ≤ k < n),(5.4) ∣∣log Yk − logZk−1
∣∣ ≤ O(1) + ε

α

(
β

α

)k
logZn−1 (1 ≤ k < n),(5.5) ∣∣log Yk −

α

β
logZk

∣∣ ≤ O(1) + ε

α
logZn−1 (1 ≤ k < n).(5.6)

Suppose from now on that ε satisfies the inequality (1.19) of Theorem 1.5.
We distinguish two cases.

First case: α < β. We start by noting that

logZn−1 ≤ O(1) + 2
(
β

α

)n−k
logZk−1 (1 ≤ k < n).(5.7)

Indeed, (5.5) and (5.6) imply that

logZk ≤ O(1) + β

α
logZk−1 + 2ε

α

(
β

α

)k+1
logZn−1 (1 ≤ k < n),

and by descending induction starting with k = n− 1, we obtain

logZn−1 ≤ O(1) +
(
β

α

)n−k
logZk−1 + 2(n− k)ε

α

(
β

α

)n
logZn−1

for k = 1, . . . , n − 1. This yields (5.7) since by (1.19) the coefficient of
logZn−1 in the right-hand side is less than 1/2.

Combining (5.6) and (5.7) together with Zk−1 ≤ Yk, we obtain

(5.8)
∣∣α logZk − β log Yk

∣∣ ≤ O(1) + 2ε
(
β

α

)n−k+1
log Yk (1 ≤ k < n).

Thus there exists a constant C > 0 (depending only on ξ, a, b, α, β) such
that

(5.9)
∣∣∣∣logXi+1 −

β

α
logXi

∣∣∣∣ ≤ C + 2 ε
α

(
β

α

)n
logXi

for each i among {i1, i2, . . . , in−1}. By (5.5) and (5.7), we also have

(5.10)
∣∣log Yk − logZk−1

∣∣ ≤ O(1) + 2 ε
α

(
β

α

)n
logZk−1 (1 ≤ k < n).

For the intermediate indices i with ik−1 < i < ik for some k ∈ {1, . . . , n−1},
we have Zk−1 ≤ Xi < Xi+1 ≤ Yk, and the above estimate yields

(5.11)
∣∣logXi+1 − logXi

∣∣ ≤ C + 2 ε
α

(
β

α

)n
logXi,

at the expense of replacing C by a larger constant if necessary.
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By the hypothesis (1.19) on ε and the fact that β/α > 1, the inequali-
ties (5.9) and (5.11) cannot hold simultaneously for any sufficiently large
integer i, say for any i ≥ `1 where `1 ≥ `0. Define I to be the set of all inte-
gers i ≥ `1 for which (5.9) holds. Then, for a sequence i0 < i1 < · · · < in−1
as above, with i0 ≥ `1, we have I ∩ (i0, in−1] = {i1, i2, . . . , in−1}. In partic-
ular, the set I is infinite and, if we choose i0 ∈ I, then i0, i1, . . . , in−1 are n
consecutive elements of I.

Denote by i0 < i1 < · · · the elements of I and define yk, Yk, zk and Zk
by (5.1) for each k ≥ 0. By the above, the relations (5.2) extend to

〈yk, zk〉R = 〈yk,yk+1〉R and 〈yk, . . . ,yk+n−1, zk+n−1〉R = Rn+1

for each k ≥ 0. Thus {yk, . . . ,yk+n−1,yk+n} spans Rn+1 for each k ≥ 0 and
so (yk)k≥0 satisfies Condition (iii) of the theorem. Applying (5.4), (5.7),
(5.8) and (5.10) with k = n − 1 (which is possible since n ≥ 2), we also
obtain that ∣∣logLξ(yk) + α logZk

∣∣ ≤ O(1) + ε logZk,(5.12)

logZk ≤ O(1) + 2
(
β

α

)
logZk−1,(5.13)

∣∣α logZk − β log Yk
∣∣ ≤ O(1) + 2ε

(
β

α

)2
log Yk,(5.14)

∣∣log Yk − logZk−1
∣∣ ≤ O(1) + 2 ε

α

(
β

α

)n
logZk−1,(5.15)

for each k ≥ n− 1. Combining the first three inequalities (5.12)–(5.14), we
find

∣∣logLξ(yk) + β log Yk
∣∣ ≤ O(1) + 2ε

(
β

α

)
logZk−1 + 2ε

(
β

α

)2
log Yk

≤ O(1) + 4ε
(
β

α

)2
log Yk

since Zk−1 ≤ Yk. Thus Condition (ii) is fulfilled. Finally, replacing k by
k + 1 in (5.15) and using (5.14), we find

∣∣α log Yk+1 − β log Yk
∣∣ ≤ O(1) + 2ε

(
β

α

)n
logZk + 2ε

(
β

α

)2
log Yk

≤ O(1) + 4ε
(
β

α

)n
log Yk+1

since Yk ≤ Zk ≤ Yk+1. Thus Condition (i) is satisfied as well.
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Second case: α = β. Then we have ε = 0 and α = β = 1/n. Moreover, the
hypothesis (1.17) implies that

(5.16) Lξ(xi) � X−1/n
i (i ≥ 0).

Thus the estimate (5.4) with k = 0 yields Y0 � Z0, while (5.5) and (5.6)
simplify to

Z0 � Y1 � Z1 � · · · � Yn−1 � Zn−1.

Thus {xi0 ,xi1 , . . . ,xin−1 ,xin−1+1} is a basis of Rn+1 with
(5.17) ‖xi0‖ � ‖xi1‖ � · · · � ‖xin−1‖ � ‖xin−1+1‖.

We now construct recursively a subsequence (yk)k≥0 of (xi)i≥0 such that

‖yk‖ � ‖yk+1‖ and 〈yk, . . . ,yk+n〉R = Rn+1

for each k ≥ 0. To start, we simply choose i0 = `0 and set
(y0, . . . ,yn) = (xi0 , . . . ,xin−1 ,xin−1+1).

Now suppose that y0, . . . ,yk have been constructed for an index k ≥ n.
Then W = 〈yk−n+1, . . . ,yk〉R is a subspace of Rn+1 of dimension n. We
take i0 to be the index for which yk = xi0 . By the above there exists
a point yk+1 among xi1 , . . . ,xin−1 ,xin−1+1 which lies outside of W . Then
{yk−n+1, . . . ,yk+1} spans Rn+1, and by (5.17) we have ‖yk+1‖ � ‖yk‖.

This sequence (yk)k≥0 has all the requested properties since it also sat-
isfies Lξ(yk) � ‖yk‖−1/n for each k ≥ 0 by (5.16).

6. Applications

The following result is implicit in the thesis of the first author. It follows
from the proof of Theorem 2.1.3 of [8] although the theorem by itself is a
weaker assertion. We give a short proof based on Theorem 1.2.

Theorem 6.1. Let ϑ be a real algebraic number of degree n ≥ 2 and let
ξ ∈ R \Q(ϑ). Then the point ξ = (1, ϑ, . . . , ϑn−1, ξ) ∈ Rn+1 satisfies

(6.1) λ̂(ξ) ≤ λn
where λn is the unique positive solution of

x+ (n− 1)x2 + · · ·+ (n− 1)n−1xn = 1.
Moreover precisely, we have
(6.2) lim sup

X→∞
XλnLξ(X) > 0.

Proof. By Liouville’s inequality, there exists a constant c1 = c1(ϑ) > 0 such
that the system

max
1≤k≤n−1

|yk| ≤ X1/(n−1) and |y0 + ϑy1 + · · ·+ ϑn−1yn−1| ≤ c1X
−1
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admits no non-zero integer solution (y0, . . . , yn−1) for any X ≥ 1. By Khint-
chine’s transference principle [13, Theorem 5A], there is therefore a constant
c2 = c2(ϑ) > 0 such that the dual system

|x0| ≤ X and max
1≤k≤n−1

|xk − ϑkx0| ≤ c2X
−1/(n−1)(6.3)

admits no non-zero integer solution (x0, . . . , xn−1) for each X ≥ 1. Thus,
we have

(6.4) c2X
−1/(n−1) ≤ Lξ(X)

for each X ≥ 1. If Lξ(X) ≥ X−λn for arbitrarily large values of X,
then (6.2) is immediate. Otherwise, Condition (1.6) of Theorem 1.2 is ful-
filled with α = λn and β = 1/(n − 1). As this yields an equality in (1.7),
we again get (6.2) as a consequence of (1.8). �

In the case n = 2, the number λ2 ∼= 0.618 is the inverse of the golden ratio
and it follows from [12] – which more generally deals with approximation to
real points on conics in P2(R)– that the upper bound (6.1) is best possible:
for any quadratic number ϑ ∈ R \ Q, there exists ξ ∈ R \ Q(ϑ) such that
ξ = (1, ϑ, ξ) satisfies lim supXλ2Lξ(X) <∞ and λ̂(ξ) = λ2. For n ≥ 3 the
optimal upper bound is not known.

In [9], the second and the third authors apply Theorems 1.2 and 1.5 to
extend the results of [4] and [12] to points on general quadratic hypersur-
faces of Pn(R) defined over Q.
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