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The Minkowski chain and Diophantine
approximation

par Nickolas ANDERSEN et William DUKE

Résumé. La chaîne de Hurwitz donne une suite de paires d’approximations
de Farey d’un nombre réel irrationnel. Minkowski a donné un critère d’algé-
braicité d’un nombre en utilisant une certaine généralisation de la chaîne de
Hurwitz. Nous appliquons cette généralisation (la chaîne de Minkowski) pour
donner des critères pour qu’une forme linéaire réelle soit mal approchable ou
singulière. Les preuves reposent sur des propriétés des minima successifs et
des bases réduites de réseaux.

Abstract. The Hurwitz chain gives a sequence of pairs of Farey approxima-
tions to an irrational real number. Minkowski gave a criterion for a number to
be algebraic by using a certain generalization of the Hurwitz chain. We apply
Minkowski’s generalization (the Minkowski chain) to give criteria for a real
linear form to be either badly approximable or singular. The proofs rely on
properties of successive minima and reduced bases of lattices.

1. Introduction
Every irrational α ∈ R has a unique expansion as an infinite regular

continued fraction
α = a0 + 1

a1+
1
a2+

1
a3+ · · ·

where aj are integers called the partial quotients of α with aj > 0 for
j ≥ 1. A striking result of elementary number theory, going back to Euler
and Lagrange, is that α is algebraic of degree two over Q if and only if this
expansion is eventually periodic.

More generally, suppose that α ∈ R is such that {αn, αn−1, . . . , α, 1} are
linearly independent over Q. The n = 1 case above leads naturally to the
following problem. Find an algorithm, like the regular continued fraction,
which provides a criterion for α to be algebraic of degree ` = n+ 1 over Q.
Since Jacobi [13], most investigations of multi-dimensional generalizations
of continued fractions, as applied to characterizing algebraic numbers, have
concentrated on periodicity. This approach has had only limited success.
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However, already in 1899 Minkowski [19]1 found such an algorithm that
produces a sequence of nonsingular `× ` integral matrices, the Minkowski
chain, which characterizes algebraic α not through periodicity but rather
a certain finiteness condition. The Minkowski chain generalizes the Hur-
witz chain, itself a refinement of the regular continued fraction. In a speech
appearing as the preface to Minkowski’s collected papers,2 Hilbert said
that “Der Minkowskische Algorithmus ist nicht ganz einfach. . . ”. One goal
of our paper is to revive interest in the Minkowski chain and its applica-
tions. In particular, Minkowsi’s criterion for an algebraic number has not
received the attention we think it deserves. Another goal is to supplement
Minkowsi’s criterion by characterizing badly approximable and singular real
linear forms in several variables in terms of the Minkowski chain.

In the next section we recall the definitions of the Hurwitz and Minkowski
chains, formulate their relationships to each other and to the regular contin-
ued fraction and state Minkowski’s criterion. We also give some illustrative
examples. Then in Section 3 we state our results on Diophantine approxi-
mations by linear forms. The remainder of the paper contains the proofs.
We have tried to make the presentation as self-contained as is feasible and
we provide proofs of all numbered theorems, corollaries and lemmas.

2. The Minkowski chain
Suppose that α ∈ (0, 1) is irrational. A natural way to approximate α by

rational numbers, while controlling the size of the denominators, is to use
Farey fractions. For m ∈ Z+ let Fm be the mth Farey set, which consists
of all rational numbers in [0, 1] in increasing order whose denominators are
at most m. Thus

F1 =
{0

1 ,
1
1
}
, F2 =

{0
1 ,

1
2 ,

1
1
}
, F3 =

{0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1
}
,

F4 =
{0

1 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1
}
, . . .

For a fixed m let (pq ,
p′

q′ ) be the unique pair of successive Farey fractions
in Fm with p

q < α < p′

q′ . After m = 2 the pair of surrounding fractions
might not change as m increases to m + 1, but when it does one fraction
will remain and the new one will be p+p′

q+q′ . This process was studied in some
detail by Hurwitz [12] in 1894 and the sequence of (distinct) Farey pairs is
called the Hurwitz chain for α by Philippon in [23].

We can encode the Hurwitz chain of an irrational α ∈ (0, 1) by a unique
infinite word in the letters R and L. We label a pair with R if within the
pair the old fraction is to the right of the new one and L if it is to the left.

1 A translation (with additions) of this paper into English is given in Vol. 1 Chap. IX of [11].
2 See p. XV. of Vol. I of the Gesammelte Abhandlungen.
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We label the first pair (0
1 ,

1
1) with L and the next with R if it is (1

2 ,
1
1) and

with L if it is (0
1 ,

1
2).

For example, the Hurwitz chain for α = 1
2(−1 +

√
5) begins

(2.1) (0
1 ,

1
1), (1

2 ,
1
1), (1

2 ,
2
3), (3

5 ,
2
3), (3

5 ,
5
8), ( 8

13 ,
5
8), . . .

with corresponding word LRLRLR . . . .
The word corresponding to the Hurwitz chain for α ∈ (0, 1) determines

the partial quotients aj in the regular continued fraction

(2.2) α = 1
a1+

1
a2+

1
a3+ · · · .

It follows from standard properties of the convergents of the continued
fraction that aj is given by the number of successive L’s or R’s in the jth
block of the word. Thus the partial quotients for α = 1

2(−1+
√

5) are aj = 1
for all j. Clearly α is quadratic over Q if and only if the word associated
to the Hurwitz chain for α is eventually periodic.

Minkowski discovered that to detect algebraic numbers of degree greater
than two it is better to abandon periodicity. His algorithm is readily de-
scribed. We give it in a slightly generalized form that we need later. Suppose
that (α1, α2, . . . , αn) ∈ Rn is such that {α1, . . . , αn, 1} are linearly indepen-
dent over Q. Set

` = n+ 1.

Define for any real matrix A = (ai,j) the norm ‖A‖∞ = max(|ai,j |). For
` ≥ 2 and m ∈ Z+ let Am consist of all integral ` × ` matrices A with
detA 6= 0 and ‖A‖∞ ≤ m. Write

(2.3) A(α1, . . . , αn, 1)> = (β1, β2, . . . , β`)>.

Let Am,1 ⊂ Am be those A ∈ Am that minimize ‖A(α1, . . . , αn, 1)>‖∞
and for which the minimum is |β1|. This fixes the first row of A by the
linear independence assumption, provided we make some sign convention,
for example that the first non-zero entry in the first row is positive. Next
let Am,2 ⊂ Am,1 be those A ∈ Am,1 for which |β2| gives the minimal
value thereby with the corresponding convention fixing the second row of
A. Continue this process of defining rows of A. Then Am,` contains exactly
one element which we will call Am. The matrices Am need not change as m
goes to m + 1. Let Bk = Amk

, where k = 1, 2, . . . , define the subsequence
of distinct matrices starting with B1 = A1. The sequence {B1, B2, . . .} of
matrices is what we will call the Minkowski chain for (α1, . . . , αn).

When n = 1 and α ∈ (0, 1) the Minkowski chain corresponds to the
Hurwitz chain for α. More precisely, we have the following result.
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Theorem 1. Let the kth matrix in the Minkowski chain for an irrational
α ∈ (0, 1) be

Bk =
(
q −p
q′ −p′

)
.

Then the kth pair in the Hurwitz chain is either (pq ,
p′

q′ ) or (p
′

q′ ,
p
q ).

An immediate corollary is the following fact which, as far as we know,
need not hold in general for n > 1.

Corollary 1. When n = 1 we have that |detBk| = 1 for all k.

Let any `× ` matrix B = (bi,j) act on an n-tuple (x1, x2, . . . , xn) projec-
tively as a linear fractional map:

B[(x1, . . . , xn)] =
(∑n

j=1 b1,jxj+b1,`∑n

j=1 b`,jxj+b`,`
, . . . ,

∑n

j=1 bn,jxj+bn,`∑n

j=1 b`,jxj+b`,`

)
.

For each k ∈ Z+ set

(2.4) Bk[(α1, . . . , αn)] = (αk,1, . . . , αk,n) =
(
βk,1
βk,`

, . . . ,
βk,n

βk,`

)
where Bk is the kth matrix in the Minkowski chain for (α1, . . . , αn) and
where

Bk(α1, . . . , αn, 1)> = (βk,1, βk,2, . . . , βk,`)>.
Clearly we have that

0 < |αk,1| < |αk,2| < · · · < |αk,n| < 1.

We are mostly interested in properties of the sequence {(αk,1, . . . , αk,n)}k≥1
of n-tuples attached to (α1, . . . , αn).Minkowski realized that it is the finite-
ness of the set of n-tuples Bk[(αn, . . . , α)], rather than periodicity deter-
mined by the chain, which characterizes algebraic α of degree `.

Theorem 2 (Minkowski [19]). Suppose that α ∈ R and that {αn, αn−1, . . . ,
α, 1} are linearly independent over Q. Then α is algebraic of degree ` = n+1
over Q if and only if the sequence {Bk[(αn, αn−1, . . . , α)]}k≥1 contains only
finitely many different n-tuples.

Actually, Minkowski’s formulation allows α to be complex. He also did
not assume that {αn, . . . , α, 1} are linearly independent over Q, but by
using the algorithm with smaller n we may assume this without any loss and
with uniqueness of the expansion. In another paper [20] he considered when
there can exist subsequences of {Bk+1B

−1
k } that are eventually periodic and

found that for real α this is possible only when Q(α) is quadratic or real
cubic with negative discriminant.
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Examples.
(i) The Minkowski chain for α = −1+

√
5

2 is

B1 =
( 1 −1

1 0
)
, B2 =

(
2 −1
1 −1

)
, B3 =

(
3 −2
2 −1

)
, . . . , Bk =

(
Fk+1 −Fk

Fk −Fk−1

)
, . . . ,

which corresponds to (2.1). Here Fk is the kth Fibonnaci number
and for each k

Bk[(−1+
√

5
2 )] = 1−

√
5

2 .

(ii) Let θ = 2 cos
(

2π
7

)
so that Q(θ) is the real cubic field of discriminant

49, i.e. the splitting field of x3 + x2 − 2x− 1. The Minkowski chain
for (θ2, θ) begins

B1 =
(

0 1 −1
1 −1 0
1 −1 −1

)
, B2 =

(
1 −2 1
2 −1 −2
0 1 −1

)
, B3 =

(
1 −2 1
3 −3 −1
2 0 −3

)
,

B4 =
(

1 2 −4
1 −2 1
3 −3 −1

)
, . . . .

By Theorem 2 we know that the set of values {Bk[(θ2, θ)]} is finite.
Among the first 30 terms there are only six distinct pairs up to sign,
namely

(0.15883..., 0.64310...), (0.24698..., 0.55496...), (0.35690..., 0.44504...),
(0.44504..., 0.80194...), (0.55496..., 0.69202...), (0.64310..., 0.80194...).

(iii) Suppose that α is transcendental, so {αn, . . . , α, 1} are linearly in-
dependent over Q for any positive integer n. For a fixed n let
Bk[(αn, . . . , α)] = (αk,1, . . . , αk,n) come from the Minkowski chain
for (αn, . . . , α) as above. By Theorem 2 we know that

{(αk,1, . . . , αk,n)}k≥1

is an infinite set.
Recall that α ∈ R is a Liouville number if, for every positive

integer m, there exist infinitely many relatively prime integers p, q
with q > 0 such that

0 < |α− p
q | < q−m.

Liouville’s theorem on Diophantine approximation implies that a
Liouville number α is transcendental. If α is a Liouville number
and n ∈ Z+ is fixed, Theorem 3 below implies that not only is
{(αk,1, . . . , αk,n)}k≥1 infinite, but also |αk,1| gets arbitrarily close to
zero as k →∞. For the Liouville constant

λ =
∑
m≥1

10−m! = 0.11000100000000000000000100 . . .
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Figure 2.1. The sequences |λk,1| for n = 1, 2, 3.

and the cases n = 1, 2, 3, the behavior of |λk,1| is shown in Fig-
ure 2.1.

3. Applications to Diophantine approximation
We now turn to the application of the Minkowski chain to Diophantine

approximation by badly approximable and by singular real linear forms in
two or more variables.

Associate to any α = (α1, . . . , αn) ∈ Rn the linear form3

Lα(x) = α1x1 + · · ·+ αnxn.

Those {α1, . . . , αn, 1} that give a basis over Q for a real number field
have the following well-known Diophantine approximation property [25,
Thm. 4A p. 42]. There is a constant c = cα > 0 so that for any non-zero
q = (q1, . . . , qn) ∈ Zn

(3.1) ‖Lα(q)‖ ≥ c‖q‖−n∞ .

Here ‖t‖ denotes the distance from a real t to the nearest integer. For
any α ∈ Rn if the form Lα(x) satisfies (3.1) then Lα is said to be badly
approximable. For simplicity we shall also sometimes say that α is badly
approximable. It is known that the set of all badly approximable α ∈ Rn
has Lebesgue measure zero [15] yet has full Hausdorff dimension n, hence
includes α for which {α1, . . . , αn, 1} does not give a Q-basis for a number
field [24]. For more on the history of these results see [25] and its references.

A natural problem presents itself; can we formulate a criterion for a real
linear form in n variables to be badly approximable using the Minkowski
chain?

Theorem 3. Suppose that {α1, . . . , αn, 1} are linearly independent over Q
and that αk,1 is given by the Minkowski chain for α. Then the form Lα is
badly approximable if and only if |αk,1| is bounded away from 0.

3 Our abuse of notation in using α as an n-tuple of real numbers and as a number, depending
on the context, is convenient and should not cause confusion.
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Theorem 3 generalizes the well-known characterization of badly approx-
imable numbers in case n = 1 that an irrational α ∈ R is badly approx-
imable if and only if the partial quotients in its regular continued fraction
expansion are bounded (see Lemma 4.2). For the standard direct proof
see [25, Thm. 5F p. 22].

For a Liouville number α it is well-known that L(αn,...,α) is not badly
approximable for any n (see e.g. [1]). The claim made in example (iii) from
the previous section, that for any fixed positive integer n the value |αk,1|
gets arbitrarily close to zero as k →∞, is thus a consequence of Theorem 3.

An important property of any badly approximable Lα, discovered by
Davenport and Schmidt, is that Dirichlet’s approximation theorem can be
improved for it (see [9]). By this we mean that there exists a µ < 1 such
that for every sufficiently large Q there exists a q ∈ Zn such that

0 < ‖q‖∞ ≤ Q and ‖Lα(q)‖ ≤ µQ−n.
When n = 1 every irrational α for which Dirichlet’s theorem can be im-
proved is badly approximable. However, for n > 1 there exist Lα with
{α1, . . . , αn, 1} linearly independent over Q that are not badly approx-
imable but for which Dirichlet’s theorem can be improved. In fact, Dirich-
let’s theorem can sometimes be “infinitely improved”. More precisely say
Lα (or α) is singular if for any ε > 0 there is a Qε so that if Q ≥ Qε there
is a q ∈ Zn with

0 < ‖q‖∞ ≤ Q such that ‖Lα(q)‖ ≤ εQ−n.
Such forms are clearly not badly approximable. Starting with work of Khin-
chine [14] it is known that singular Lα with {α1, . . . , αn, 1} linearly indepen-
dent over Q exist if n > 1. It has recently been shown that when n > 1 the
set of singular α ∈ Rn has Hausdorff dimension n2

n+1 (see [3], [4], and [6]).
The Minkowski chain also gives a criterion for Lα to be singular.

Theorem 4. Suppose that {α1, . . . , αn, 1} are linearly independent over Q.
Then the form Lα is singular if and only if |αk,1| → 0 as k →∞.

Remarks.
(i) Theorems 3 and 4 differ substantially from the dynamical criteria

for bad approximability and singularity given (more generally for
systems of forms) by Dani [5]. Roughly speaking, he showed that
badly approximable systems of forms correspond to certain bounded
trajectories in the space of unimodular lattices while singular sys-
tems correspond to divergent trajectories. A version of these criteria
in the case of a single form is one ingredient in our proofs of The-
orems 3 and 4. More generally, the fact that the βk,j coming from
Minkowski’s algorithm are not the successive minima of the nat-
ural corresponding convex body must be dealt with. This kind of
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problem is familiar in the subject and is treated in the parametric
geometry of numbers (see [26]). For completeness we give indepen-
dent proofs.

(ii) In all cases that we have checked numerically, each matrix in the
Minkowski chain has been in GL(`,Z). In connection with this as a
possible general property see [17].

(iii) It was shown by Khintchine [14] that the linear form Lα is badly
approximable if and only if α is a badly approximable n-tuple. See
also [25, p. 100]. Davenport and Schmidt [8, Thm. 2] gave the deeper
result that Dirichlet’s theorem can be improved for the linear form
Lα if and only if it can be improved in the form of simultaneous
approximation of α by n rationals.

4. The Hurwitz chain
In this section we prove Theorem 1 and a lemma relating the partial

quotients of α ∈ (0, 1) to the Minkowski chain of α when n = 1. We
require an elementary lemma about Farey fractions. We always assume
that rational fractions are in lowest form.

Lemma 4.1. Suppose that p
q <

p′

q′ is a pair of successive fractions in Fm
and that α ∈ (pq ,

p′

q′ ) is irrational. Then

(i) |qα− p| < |q′α− p′| if and only if α ∈ (pq ,
p+p′
q+q′ )

(ii) The fraction p+p′
q+q′ is the unique fraction with the smallest denomi-

nator greater than m that is closer to α than at least one of p
q ,

p′

q′ .

Proof.

(i). If α ∈ (pq ,
p+p′
q+q′ ) then |α−

p′

q′ | > |
p+p′
q+q′−

p′

q′ | =
1

q′(q+q′) so |q
′α−p′| > 1

(q+q′) .
Similarly |qα− p| < 1

(q+q′) so |qα− p| < |q′α− p′| in this case. The converse
is similar using α ∈ (p+p

′

q+q′ ,
p′

q′ ).

(ii). It is well-known (see e.g. [25, p. 4]) that p+p′
q+q′ is the unique fraction

with the smallest denominator greater than m that is between p
q and p′

q′ .

Thus we need only show that p+p′
q+q′ is closer to α than any other p′′

q′′ with
m < q′′ ≤ q + q′ and either p′′

q′′ <
p
q or p′′

q′′ >
p′

q′ .
Suppose that p′′

q′′ <
p
q . If α >

p+p′
q+q′ we are done so assume that

(4.1) p
q < α < p+p′

q+q′ .

Now
|α− p′′

q′′ | > |
p′′

q′′ −
p
q | ≥

1
q′′q ≥

1
q(q+q′)



The Minkowski chain and Diophantine approximation 511

while by (4.1)
|α− p+p′

q+q′ | < |
p+p′
q+q′ −

p
q | =

1
q(q+q′) .

The case p′′

q′′ >
p′

q′ is similar. �

Proof of Theorem 1. We want to show that if

Bk =
(
qk −pk
q′k −p′k

)
then the kth pair in the Hurwitz chain is either (pk

qk
,
p′k
q′

k
) or (p

′
k
q′

k
, pk
qk

).
This follows by induction on k. It holds for k = 1. Suppose it holds for

some k ≥ 1. Thus pk
qk
,
p′k
q′

k
or p′k

q′
k
, pk
qk

are successive Farey fractions in Fm
where m = max(qk, q′k).

By the definition of the Minkowski chain given around (2.3) we know
that the first row of Bk (the one with |qkα − pk| minimal) must appear
in Bk+1 as either the first row or the second row. Now (i) of Lemma 4.1
implies that the fraction associated to the row retained is the one retained
by the Hurwitz chain.

Thus we must show that the new row of Bk+1, say (q′′,−p′′), is precisely
(qk + q′k,−(pk + p′k)). By the definition of the Minkowski chain q′′ > m and
certainly

|q′′α− p′′| < |q′kα− p′k|.

Thus |α− p′′

q′′ | < |α−
p′k
q′

k
| so by (ii) of Lemma 4.1 we know that q′′ ≥ qk+q′k.

Now

(4.2) |(qk + q′k)α− (pk + p′k)| = |(qkα− pk) + (q′kα− p′k)|.

Also, α − pk
qk

and α − p′k
q′

k
have different signs hence so do qkα − pk and

q′kα − p′k. By construction of Bk we know that |qkα − pk| < |q′kα − p′k|.
Therefore by (4.2) we have that

|(qk + q′k)α− (pk + p′k)| < |q′kα− p′k|.

It follows that (q′′,−p′′) = (qk + q′k,−(pk + p′k)). This completes the proof
of Theorem 1. �

It is easy to give a formula for the kth pair in the Hurwitz chain for
α ∈ (0, 1) in terms of the partial quotients aj of α. For a fixed k ∈ Z+ write
k = a1 + · · · + aj + a where 0 ≤ a < aj+1. Set R = ( 1 1

0 1 ) and L = ( 1 0
1 1 )

and let A = L if j is even and A = R if j is odd. Then the kth pair in the
Hurwitz chain for α ∈ (0, 1) is given by (pk

qk
,
p′k
q′

k
), where

(4.3)
(
p′k pk

q′k qk

)
= La1Ra2 · · ·Aa.
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Let b = a if a > 0 and b = aj otherwise. Then by Theorem 1 we have for
Bk from the Minkowski chain the formula Bk = MBk−b, where M is either
Lb, Rb, ( 0 1

1 0 )Lb, or ( 0 1
1 0 )Rb.

The following consequence of these formulas gives the usual characteri-
zation of badly approximable irrationals.

Lemma 4.2. An equivalent criterion for the boundedness of the partial
quotients of an irrational α ∈ (0, 1) is that |αk,1| from the Minkowski chain
for α is bounded away from zero.

Proof. If M = Lb =
( 1 0
b 1
)
then

αk,1 = qkα− pk
q′kα− p′k

= qk−bα− pk−b
(qk−bα− pk−b) + b(q′k−bα− p′k−b)

= 1
1 + bαk−b,1

.

The other three cases are similar. In each case we see that |αk,1| is bounded
below if and only if sup{aj} is finite. �

Remark. The original paper by Hurwitz [12] is still a good reference for the
Hurwitz chain. A modern reference is [23], which also details its relation to
semi-regular continued fractions. The dynamical properties of the Hurwitz
chain are discussed in [16], where it is called the additive continued fraction.

5. Successive minima
In this section we will give what is essentially Minkowski’s proof of The-

orem 2. A crucial ingredient is his theorem on successive minima in the
geometry of numbers.

For a general norm F on R` and any full lattice Λ ⊂ R` let

µ1 ≤ µ2 ≤ · · · ≤ µ`

be the successive minima of Λ with respect to F . This means that µj is the
infimum over all µ > 0 such that there are j linearly independent points
v ∈ Λ with F (v) ≤ µ. There exist (not necessarily unique) minimizing
vectors w1, . . . , w` ∈ Λ, which means that they are linearly independent
and satisfy F (wj) = µj for j = 1, . . . , `. Note that {w1, . . . , w`} do not
necessarily form a Z-basis for Λ.

The following fundamental result was first proved in [22, Kap. V]. Shorter
proofs were given by Davenport [7] and Weyl [28]. See also [2].

Theorem (Minkowski’s Theorem on Successive Minima). Suppose that Λ
has determinant one. Then

vol(B)µ1 · · ·µ` ≤ 2`,

where vol(B) is the volume of B = {x ∈ R`;F (x) < 1}.
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We remark that for the proof of Theorem 2 we can get by with a weaker
result that replaces 2` by a larger constant. In fact, Minkowski gives a proof
of this result in his paper with the constant 2``! in place of 2`. See also [25,
Cor. 2B p. 88] for a proof with the constant 2``

`
2 , which is based on the

case of an ellipsoid and a theorem of Jordan.
For r = (q1, . . . , qn, p) ∈ Z` define

(5.1) ξ(r) def= p+ Lα(q1, . . . , qn).
For m ∈ Z+ recall the integral ` × ` matrix Am = (ai,j) defined above.
From (2.3) we have for each i = 1, . . . , ` that
(5.2) βi(m) = βi = ξ(ai,1, . . . , ai,`).
Note that we will often suppress in the notation the dependence of βi on
m (or on k).

Lemma 5.1. Fix m ∈ Z+ and suppose that r1, . . . , r` ∈ Z` are linearly
independent and satisfy ‖ri‖∞ ≤ m for i = 1, . . . , `. Let them be ordered so
that
(5.3) |ξ(r1)| ≤ |ξ(r2)| ≤ · · · ≤ |ξ(r`)|.
Then for each i = 1, . . . ` we have that

|βi| ≤ |ξ(ri)|.

Proof. For a fixed m ∈ Z+ let wj = (ai,1, . . . ai,`) denote the ith row of Am,
which is the integral vector produced by the Minkowski algorithm. Thus
for j = 1, . . . , `, we know that |βj | gives the smallest value of |ξ(w)| for any
w ∈ Z` with ‖w‖∞ ≤ m that is linearly independent of {w1, . . . , wj−1}.

Note that at least ` − 1 of the {r1, . . . , r`} are independent of w1 and
so each of those rk satisfies |ξ(rk)| ≥ |β2|. At least ` − 2 of the rk are
independent of {w1, w2} and so these rk satisfy |ξ(rk)| ≥ |β3|. Continue this
process until we have at least one rk that satisfies |ξ(rk)| ≥ |β`|. By (5.3) we
know that this last set of r′s must contain r` and so |ξ(r`)| ≥ |β`|. Working
backward we can finish the proof. �

Lemma 5.2. Fix m ∈ Z+ and let Am = (ai,j) and β1, . . . , β` be from the
Minkowski algorithm. Let Λ = Z` and define the norm on R` by

Gm(x1, . . . , x`) = max
(
|x1|, . . . , |x`|, m

|β`| |Lα(x1, . . . , xn) + x`|
)
.

Let µ1 ≤ µ2 ≤ · · · ≤ µ` be the successive minima of Gm. Then
(5.4) µ` ≥ m.

Proof. Note that for r = (q1, . . . , qn, p) ∈ Z` we have

(5.5) Gm(r) = max
(
|q1|, . . . , |qn|, |p|, |ξ(r)|m|β`|

)
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where ξ(r) was defined in (5.1). Suppose that {r1, . . . , r`} are independent
and such that for each j we have Gm(rj) = µj . By (5.5) we see that if
‖rj‖∞ > m for any j = 1, . . . , ` then µ` > m. Otherwise apply Lemma 5.1
to {r1, . . . , r`} to conclude that |ξ(rj)| ≥ |βj | for each j = 1, . . . , `. Therefore
in particular for j = ` we get by (5.5) again that µ` = Gm(r`) ≥ m. Thus
in any case we have (5.4). �

Minkowski only proved the following result for L(α,...,αn) where α is al-
gebraic of degree `, but his proof extends naturally.

Lemma 5.3. Suppose that α = (α1, . . . , αn) ∈ Rn. If Lα is badly approx-
imable then there are constants c, C > 0 depending only on α such that
(5.6) cm−n < |β1| < · · · < |β`| < Cm−n.

Proof. In this proof and those that follow we usually name and keep track
of constants that depend only on α, even though it would be cleaner to use
the � or � notation. We do this to help the reader verify inequalities.

Fix m ∈ Z+ and let Am = (ai,j) and β1, . . . , β` be from the Minkowski
algorithm. Let now Λ = Z` and Gm the norm on R` in Lemma 5.2. The
form Lα being badly approximable means that there is a c > 0 so that
(5.7) |ξ(r)| > c‖q‖−n∞
for all r = (q1, . . . , qn, p) ∈ Z`, where q = (q1, . . . , qn). By the definition of
β1 and (5.7) we have that
(5.8) |β1| = min

‖r‖∞≤m
|ξ(r)| ≥ min

‖q‖∞≤m
|ξ(r)| > c

mn .

Now Gm(r1) = µ1 and so (5.5) implies that

(5.9) |ξ(r1)| ≤ µ1|β`|
m

and also that ‖r1‖∞ ≤ µ1. Thus by (5.7) again we also have that
(5.10) |ξ(r1)| ≥ c

µn
1
.

By (5.9) and (5.10) we conclude that

(5.11)
(µ`1|β`|

m

)n
≥ cn,

which is the form we will need.
A straightforward calculation shows that

vol({x ∈ R`;Gm(x) < 1}) ≥ V |β`|
m ,

where V > 0 is a constant depending only on α. By Minkowski’s theorem
on successive minima we have

V |β`|
m µn1µ` ≤ 2`
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so that using (5.11) we have for M = 2`2V −` that

cn |β`|
m µ`` ≤

(
|β`|
m µn1µ`

)`
≤M.

Thus |β`| ≤ Cm
µ`

`

for C = M
cn . Finally, from Lemma 5.2 we derive that

|β`| ≤ C
mn . Together with (5.8), this finishes the proof of Lemma 5.3. �

Proof of Theorem 2. The proof of the implication algebraic implies finite
works the same for the Minkowski chain for any Q-basis {α1, α2, . . . , αn, 1}
of a real number field K. Recall that for each k we have

(β1, . . . , β`) = Bk[(α1, . . . , αn, 1)],
where again we suppress the dependence of βj on k in the notation. Clearly
βj ∈ K and there is a positive integer b such that bβj is an algebraic integer
for any j, k, so we must have NK/Q(bβj) ≥ 1. Denote by {β(j)

i ; j = 1, . . . , `}
the set of Galois conjugates of βi = β

(1)
i . Set C1 = maxj=1,...,`(1 + |α(j)

1 |+
· · ·+ |α(j)

n |). Clearly

(5.12) |β(j)
i | ≤ C1m,

where m = mk from the algorithm.
We know that L(α1,...,αn) is badly approximable so by Lemma 5.3 we have

that for each i
(5.13) |βi| ≤ Cm−n.
Therefore we have that

(5.14) b−` ≤ |NK/Q(βi)| = |
∏̀
j=1

β
(j)
i | ≤ C C

n
1 .

From the first inequality of (5.14), (5.12) and (5.13) we get that for k > 1

(5.15) |β(k)
i | ≥ C2m

for some constant C2 > 0 depending only on α. Here we have used (5.13)
for the first factor in the product and (5.12) for all of the remaining factors
except for the kth. Recall from (2.4) that

(αk,1, . . . , αk,n) = (β1
β`
, . . . , βn

β`
) ∈ Kn.

Let γk,i = b`NK/Q(β`)αk,i. Then γk,i is an algebraic integer inK. From (5.6),
(5.12), (5.14) and (5.15) we have for each i, j, k that |γ(j)

k,i | ≤ C3 for some
C3 > 0 that depends only on α. It follows that there are only finitely many
such (γk,1, . . . , γk,n) hence only finitely many (αk,1, . . . , αk,n).

For the converse, we need to assume that (α1, α2, . . . , αn) = (αn,
. . . , α) and suppose that there are only finitely many values of the sequence
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{Bk[(αn, . . . , α)]}k≥1. Then for some k′ > k we have Bk[(αn, . . . , α)] =
Bk′ [(αn, . . . , α)]. Hence

B−1
k Bk′ [(αn, . . . , α)] = (αn, . . . , α),

which implies that

(5.16) B−1
k Bk′(αn, . . . , α, 1)> = θ(αn, . . . , α, 1)>

for some θ ∈ R with |θ| ≤ 1. Write B−1
k Bk′ = (ci,j) so that for each

k = 1, . . . , n we can write two successive rows of (5.16) as

ck,1α
n + · · ·+ (ck,k − θ)αn−k+1 + · · ·+ ck,nα+ ck,` = 0

ck+1,1α
n + · · ·+ (ck+1,k+1 − θ)αn−k + · · ·+ ck+1,nα+ ck+1,` = 0.

Multiply the first equation by α and subtract rows to get for each k =
1, . . . , n that

ck,1α
` + (ck,2 − ck+1,1)αn + · · ·+ (ck,k − ck+1,k+1)αn−k

+ · · ·+ (ck,` − ck+1,n)α− ck+1,` = 0.

Unless all of these vanish identically we see that α is algebraic of degree `,
upon using that we are assuming that {αn, . . . , α, 1} are linearly indepen-
dent over Q. If they all vanish it follows easily that ci,j = δi,jc for some
c ∈ Q. Thus c = θ and Bk′ = θBk with |θ| < 1, which contradicts that
k′ > k. �

6. Reduced bases
In this section we present several well-known results from the theory of

reduced bases that we need. Perhaps the best reference for this material is a
set of unpublished notes from a seminar given at IAS in 1949 [29]. Because
these notes might not be readily available we have included here all proofs.
Another reference is [10].

Let Λ ⊂ R` be a full lattice and F a norm on R`. The lattice points in Λ
taking on the successive minima on F are linearly independent but do not
necessarily form a basis for Λ. Minkowski’s second theorem implies, with
some extra work, a substitute that bounds the product of values of F of
the elements of a reduced basis. In case F is a positive definite quadratic
form the theory was developed by Minkowski [21].

Suppose that {v1, . . . , v`} is an ordered Z-basis for Λ. Define for k =
1, . . . , `

(6.1) Rk = {a1v1+· · ·+a`v`; aj ∈ Z with gcd(ak, ak+1, . . . , a`) = 1} ⊂ Λ.

Note that vj /∈ Rk for j < k.
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In general, an (ordered) Z-basis {v1, . . . , v`} for Λ is reduced with respect
to F if for each k = 1, . . . , ` we have that for all v ∈ Rk

F (v) ≥ F (vk).

It follows that if {v1, . . . , v`} is reduced with respect to F and λk = F (vk)
then

λ1 ≤ λ2 ≤ · · · ≤ λ`.

Lemma 6.1. For any norm F and full lattice Λ ⊂ R` reduced bases
{v1, . . . , v`} exist.

Proof. The beginning of the proof is similar to the construction of the Am in
Minkowski’s algorithm except that now we demand that A ∈ GL(`,Z). Let
{u1, . . . , u`} be any Z-basis for Λ. We construct A = (r1, . . . , r`) ∈ GL(`,Z)
where ri is a column vector. Choose r1 so that

λ1 = F (v1) = F
(
(u1, . . . , u`)r1

)
is minimal. Note that this exists by convexity. Now choose r2 to minimize
λ2 = F (v2) = F ((u1, . . . , u`)r2). Thus λ1 ≤ λ2. Continue this process to
determine A and the basis {v1, . . . , v`} where for λk = F (vk) we have that
λ1 ≤ λ2 ≤ · · · ≤ λ`. We want to show that {v1, . . . , v`} is reduced.

Fix k with 1 ≤ k ≤ `. By construction if s is any column of a matrix in
GL(`,Z) that is linearly independent of {r1, . . . , rk−1} then

(6.2) F
(
(u1, . . . , u`)s

)
≥ F

(
(u1, . . . , u`)rk

)
.

Let q> = (q1, . . . , q`) ∈ Z` be any integral vector such that gcd(qk, . . . , q`) =
1. Fix a matrix of the form

A′ =
(
I B
0 C

)
∈ GL(`,Z)

where I is the (k − 1)× (k − 1) identity matrix and where the kth column
of A′ is q. This is possible by our assumption on q. Clearly the first k − 1
columns of AA′ coincide with those of A. Hence if s is the kth column of
AA′ then by (6.2)

F (vk) = F
(
(u1, . . . , u`)rk

)
≤ F

(
(u1, . . . , u`)s

)
= F

(
(u1, . . . , u`)Aqk

)
= F

(
(v1, . . . , v`)qk

)
.

It follows that {v1, . . . , v`} is reduced. �

The statement of Part (i) of the following lemma is given in [27, Lem. 2
p. 100] with a different proof than the one we give below. Our proof is
adapted from the proof of Part (ii) given in [29].
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Lemma 6.2. Let F : R` → [0,∞) be a norm and Λ ⊂ R` be a full lattice.
Suppose that v1, . . . , v` is a reduced basis for Λ with respect to F so that for
λi = F (vi)

λ1 ≤ λ2 ≤ · · · ≤ λ`.
(i) If u1, . . . , u` ∈ Λ is any linearly independent set in Λ ordered so

that for νj = F (uj)
ν1 ≤ ν2 ≤ · · · ≤ ν`

then for each k = 1, . . . , ` we have that λk ≤ (3
2)k−1νk.

(ii) If w1, . . . , w` ∈ Λ are minimizing vectors in Λ with successive min-
ima µj = F (wj)

µ1 ≤ µ2 ≤ · · · ≤ µ`
then λ1 = µ1 and for each k = 2, . . . , ` we have that λk ≤ (3

2)k−2µk.

Proof. Let’s first prove (i). There are ai,j ∈ Z such that for each i

ui =
∑

1≤j≤`
ai,jvj .

Fix k with 1 ≤ k ≤ `. Since {u1, . . . , u`} are linearly independent there is
a j with 1 ≤ j ≤ k so that

aj,k, aj,k+1, . . . , aj,`

are not all zero. Thus for any such j let d = gcd(aj,k, aj,k+1, . . . , aj,`) > 0.
If d = 1 then uj ∈ Rk and hence

λk ≤ F (uj) = νj ≤ νk.

If d > 1 define for m = 1, . . . , k − 1 the integer rm with |rm| ≤ d
2 so that

aj,m + rm ≡ 0 (mod d).
Then y = 1

d(vj + r1v1 + · · ·+ rk−1vk−1) ∈ Rk. Hence we have

λk ≤F (y) ≤ 1
dF (uj) + r1

d λ1 + · · ·+ rk−1
d λk−1

≤νk
2 + 1

2(λ1 + · · ·+ λk−1).
Therefore in any case for k = 1, . . . ` we have

λk ≤ νk + 1
2(λ1 + · · ·+ λk−1).(6.3)

Suppose now that for j = 1, . . . , k − 1
λj ≤ (3

2)j−1νj .

Then by (6.3) we deduce that
λk ≤ νk + 1

2
(
(3

2)0 + (3
2)1 + · · ·+ (3

2)k−2)νk = (3
2)k−1νk.

Since λ1 ≤ ν1 the result (i) follows by induction.
The proof of (ii) is similar except that we use the fact that λ1 = µ1. �
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The following result was found independently by Mahler [18] and
Weyl [28].

Theorem 5 (First Finiteness Theorem). Let Λ ⊂ R` be a full lattice with
determinant 1. For a reduced basis {v1, . . . , v`} with λk = F (vk) we have

(6.4) 2`

`! ≤ vol(B)λ1 · · ·λ` ≤ 2`(3
2)

(`−1)(`−2)
2 ,

where vol(B) is the volume of B = {x ∈ R`;F (x) < 1}.

Proof. The first inequality is a consequence of the fact that the closure of
B contains the octahedron with vertices at the points

{± v1
λ1
, . . . ,± v`

λ`
}

and this octahedron has volume 2`

`!λ1···λ`
, which is easily found by computing

the determinant of the linear transformation that maps the kth standard
unit vector to vk

λk
for each k.

The second inequality is an immediate consequence of (ii) of Lemma 6.2
and Minkowski’s Second Theorem. �

We remark that we could also apply (i) of Lemma 6.2 to get the second
inequality in (6.4) with the right hand side multiplied by 3

2 , which would
be sufficient for our purposes.

7. Criteria for badly approximable and singular forms
In this section we will prove Theorems 3 and 4. We make use of the

lattice Λt(α) ⊂ R` defined in terms of α for a fixed parameter t > 0 by

(7.1) Λt = Λt(α) = (t−1, 0, . . . , 0, α1t
n)Z + · · ·+ (0, 0, . . . , t−1, αnt

n)Z
+ (0, 0, . . . , 0, tn)Z.

Clearly det(Λt) = 1. Consider the norm on R` given by

(7.2) F∞(x1, . . . , xn, y) = ‖(x1, . . . , xn, y)‖∞.

The next lemma follows as a special case from results of [5]. For conve-
nience we give the proof here, which for our case is quite simple.

Lemma 7.1. For the lattice Λt(α) defined above let

λ1(t) = min
v∈Λt(α)
v 6=0

F∞(v).

(i) The form Lα is badly approximable if and only if there is a c > 0
depending only on α such that λ1(t) > c for all t ≥ 1.

(ii) The form Lα is singular if and only if λ1(t)→ 0 as t→∞.
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Proof.

Part (i). First suppose that α is badly approximable, so that (3.1) holds
with some cα > 0. Fix t ≥ 1 and v = (x1, . . . , xn, y) ∈ Λt(α). If x1, . . . , xn =
0 then yt−n is a non-zero integer so F∞(v) ≥ 1. Thus suppose that x =
(x1, . . . , xn) 6= 0, set c = c

1
`
α and µ = ‖x‖∞ > 0.

If µ ≤ c then tn‖Lα(tx)‖ > c, so that F∞(v) > c. If µ > c then again
F∞(v) > c. In either case it follows that λ1(t) > c.

For the converse assertion, suppose that λ1(t) > c. Fix non-zero q =
(q1, . . . , qn) ∈ Zn. Assume that c < 1. Next choose t = c−1‖q‖∞ so that
t > 1 and t−1‖q‖∞ = c. For any integer p we have (t−1q1, . . . , t

−1qn, t
n(p+

Lα(q))) ∈ Λt(α) hence tn|Lα(q) + p| > c, which implies that

‖Lα(q)‖ > c`‖q‖−n∞ ,

so Lα is badly approximable.

Part (ii). Suppose that Lα is singular and ε > 0 is fixed. For sufficiently
large t there exists q ∈ Zn and p ∈ Z such that ‖q‖∞ ≤ tε

1
` and

|p+ Lα(q)| ≤ t−nε1−n
` = t−nε

1
` .

Let v = (t−1q1, . . . , t
−1qn, t

n(p+Lα(q))) ∈ Λt(α); for sufficiently large t we
have F∞(v) ≤ ε

1
` , proving that λ1(t)→ 0 as t→∞.

The converse is similar and is left to the reader. �

Proof of Theorem 3. We have shown in Lemma 5.3 that if Lα is badly ap-
proximable then

|β1|
|β`|
≥ c

C
.

Now suppose that Lα is not badly approximable. By (i) of Lemma 7.1,
for any ε > 0 there exists some t ≥ 1 and v ∈ Λt(α) so that F (v) < ε where
again

F (v) = F∞(v) = ‖v‖∞.
Let {v1, v2, . . . , v`} be a reduced basis for Λt(α) with respect to F and such
that for λi = F (vi) we have λ1 ≤ · · · ≤ λ`.

Now v1 = (t−1q1, . . . , t
−1qn, t

nξ(r)) for some non-zero r= (q1, . . . , qn, p)∈
Z`, where ξ(r) was defined in (5.1). Clearly we have
(7.3) λ1 = F (v1) ≤ F (v) < ε

so from the definition of F
(7.4) t−1|qj | < ε for j = 1, . . . , n and tn|ξ(r)| < ε.

Next set m = dκtεe, where κ is a constant depending only on α chosen
to be large enough so that max(|q1|, . . . , |qn|, |p|) ≤ m, which is possible
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by (7.4). For Am = (ai,j) from Minkowski’s algorithm let for each i =
1, . . . , `
(7.5) ui = (t−1ai,1, . . . , t

−1ai,n, t
nβi) ∈ Λt(α).

By the definition of β1 and (7.4) again we have that
(7.6) |β1| ≤ |ξ(r)| < t−nε.

By construction
(7.7) tn|β1| < tn|β2| < · · · < tn|β`|,
but we do not know that necessarily

F (u1) ≤ F (u2) ≤ · · · ≤ F (u`).
Let k ∈ {1, . . . , `} be such that F (uk) = max(F (u1), . . . , F (u`)). Since
{u1, . . . , u`} are linearly independent in Λt(α), by (i) of Lemma 6.2 we
have that
(7.8) F (uk) ≥ (2

3)nF (v`).
By the first inequality of the First Finiteness Theorem and (7.3) we see
that F (v`) > ( 1

`!ε)
1/n and therefore by (7.8)

(7.9) F (uk) > (2
3)n( 1

`!ε)
1/n.

Now
max(t−1|ak,1|, . . . , t−1|ak,n|) ≤ m

t ≤ κε+ t−1 < (2
3)n( 1

`!ε)
1/n

for ε > 0 sufficiently small. Hence by this, (7.9) and (7.7) we have

(7.10) |β`| ≥ |βk| > t−n(2
3)n( 1

`!ε)
1/n,

after referring again to (7.5). By (7.6) we conclude that for sufficiently
small ε

|β1
β`
| < (3

2)n(`!ε)1/nε.

It follows that if Lα is not badly approximable then |β1
β`
| can be made

arbitrarily small for some m, hence |αk,1| can be made arbitrarily small for
some k. �

Proof of Theorem 4. Suppose that α is singular and let ε ∈ (0, 1). Then
there exists a t0 such that

λ1(t) < ε for all t ≥ t0.
This is the analogue of (7.3) but now the inequality holds for all sufficiently
large t. Let m be any positive integer greater than t0 and let t = m/ε ≥ t0.
If Am = (ai,j) is the m-th matrix from Minkowski’s algorithm, then by
following the argument between (7.5) and (7.10) above we find that

|β1| <
ε

tn
and |β`| >

c

tnε1/n
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for some c > 0. It follows that
∣∣∣β1
β`

∣∣∣ can be made arbitrarily small for all
sufficiently large m, hence |αk,1| can be made arbitrarily small for all suffi-
ciently large k.

Conversely, suppose that α is not singular. Then there exists a c > 0 and
a sequence {Qj} tending to infinity such that for each j there are infinitely
many q ∈ Zn with

‖q‖∞ ≤ Qj and ‖Lα(q)‖ ≥ cQ−nj .

Fix one of these Qj and let m = Qj . Then

β1 = min
q∈Zn\{0}
‖q‖∞≤m

|ξ(q)| ≥ c

mn
.

This is analogous to (5.8) but now the lower bound only holds for a se-
quence of m tending to infinity. Note that (5.4) is true for these m, and
following (5.9)–(5.11) we find that |β`| ≤ C

m holds here as well. It follows
that for infinitely many m we have

∣∣∣β1
β`

∣∣∣ ≥ c′ for some c′ > 0 and thus |αk,1|
is bounded away from zero for infinitely many k. �
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