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The characteristic masses of Niemeier lattices

par Gaëtan CHENEVIER

Résumé. Soient L un réseau entier d’un espace euclidien E de dimension n et
W une représentation irréductible du groupe orthogonal de E. Nous donnons
un algorithme calculant la dimension du sous-espace des éléments de W inva-
riants par le groupe O(L) des isométries de L. Une étape clef est de déterminer,
pour tout polynôme P , la proportion des éléments de O(L) de polynôme ca-
ractéristique P , une collection de nombres rationnels que nous appelons les
masses caractéristiques de L. En guise d’application, nous déterminons les
masses caractéristiques de tous les réseaux de Niemeier, et plus généralement
de tous les réseaux pairs de déterminant ≤ 2 en dimension n ≤ 25.

Pour les réseaux de Niemeier, en guise de vérification, nous donnons une
méthode alternative (et humaine) pour calculer leurs masses caractéristiques.
L’ingrédient principal est la détermination, pour chaque réseau de Niemeier L
de système de racines R non vide, des G(R)-classes de conjugaison d’éléments
du sous-groupe « ombral » O(L)/W(R) de G(R), où G(R) est le groupe des
automorphismes du diagramme de Dynkin de R, et W(R) son groupe de Weyl.

Ces résultats ont des applications à l’étude des espaces de formes auto-
morphes des groupes orthogonaux de formes quadratiques sur Q définies po-
sitives: nous donnons des formules concrètes pour la dimension de ces espaces
en niveau 1, comme fonction du poids W , en tout rang n ≤ 25.

Abstract. Let L be an integral lattice in an n-dimensional Euclidean space
E and W an irreducible representation of the orthogonal group of E. We
give an implemented algorithm computing the dimension of the subspace of
invariants in W under the isometry group O(L) of L. A key step is the deter-
mination, for any polynomial P , of the proportion of elements in O(L) with
characteristic polynomial P , a collection of rational numbers that we call the
characteristic masses of L. As an application, we determine the characteristic
masses of all the Niemeier lattices, and more generally of any even lattice of
determinant ≤ 2 in dimension n ≤ 25.

For Niemeier lattices, as a verification, we provide an alternative (human)
computation of the characteristic masses. The main ingredient is the deter-
mination, for each Niemeier lattice L with non-empty root system R, of the
G(R)-conjugacy classes of the elements of the “umbral” subgroup O(L)/W(R)
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of G(R), where G(R) is the automorphism group of the Dynkin diagram of
R, and W(R) its Weyl group.

These results have consequences for the study of the spaces of automorphic
forms of the definite orthogonal groups in n variables over Q. As an example,
we provide concrete dimension formulas in the level 1 case, as a function of
the weight W , up to n = 25.

1. Introduction

1.1. A motivation: dimension of spaces of level 1 automorphic
forms for On. Let n be an integer ≡ 0 mod 8 and let Ln be the set of all
even unimodular lattices in the standard Euclidean space Rn. A standard
example of an element of Ln is the lattice En = Dn+Z1

2(1, 1, . . . , 1), where
Dn denotes the subgroup of elements (xi) in Zn with

∑
i xi ≡ 0 mod 2. The

orthogonal group O(Rn) naturally acts on Ln, with finitely many orbits,
and we set

(1.1) Xn
det= O(Rn)\Ln.

Representatives of this set Xn have been determined so far for n ≤ 24 only:
we have X8 = {E8} (Mordell), X16 = {E8⊕E8,E16} (Witt) and |X24| = 24
(Niemeier): see [18, 32, 38, 44]. The elements of L24, to which we shall refer
as the Niemeier lattices, will play a major role in this paper. Similarly, for
n ≡ ±1 mod 8 we define Ln as the set of all even lattices with covolume

√
2

in Rn, as well as Xn by the same Formula (1.1). In this case, representatives
of Xn are known up to n = 25, this last (and most complicated) case being
due to Borcherds [3], and we have

|X1| = |X7| = |X9| = 1, |X15| = 2, |X17| = 4, |X23| = 32 and |X25| = 121.

For any n ≡ −1, 0, 1 mod 8, and any complex, finite dimensional, con-
tinuous, linear representation W of O(Rn), we consider the complex vector
space of W -valued O(Rn)-equivariant functions on Ln:

(1.2) MW (On) = {f : Ln →W | f(gL) = gf(L) ∀ L ∈ Ln, ∀ g ∈ O(Rn)}.

This space has a natural interpretation as a space of level 1 and weight W
automorphic forms for the orthogonal group scheme On of any element of
Ln. In particular, it has a very interesting action of the Hecke ring of On

(see e.g. [8, §4]), which is a first indication of our interest in it.
If L is a lattice in the Euclidean space Rn, we denote by O(L) = {g ∈

O(Rn) | gL = L} its (finite) isometry group. If W is a representation of
O(Rn), we denote by WΓ = {w ∈ W | γw = w, ∀ γ ∈ Γ} ⊂ W the
subspace of invariants of the subgroup Γ of O(Rn). Fix representatives
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L1, . . . , Lh of the classes in Xn. Then the map f 7→ (f(Li)) induces a C-
linear isomorphism

(1.3) MW (On) ∼→
h∏
i=1

WO(Li).

It follows that MW (On) is finite dimensional. Our main aim in this work,
which is of computational flavor, is to explain how to compute dim MW (On)
for all n ≤ 25 and W arbitrary. The special cases n = 7, 8, 9 and n = 16,
more precisely their SO-variants1, had been respectively previously consid-
ered in [9, Ch. 2] and in [8, Ch. IX Prop. 5.13]. In a different direction, see
Appendix B for an asymptotic formula for dim MW (On) (for any n).

Our main motivation for these computations is the relation between the
spaces MW (On) and geometric `-adic representations of Gal(Q/Q) of Artin
conductor 1 (or pure motives overQ with good reduction everywhere) which
follows from the general yoga and point of views of Langlands and Arthur
on automorphic representations. This circle of ideas has been studied in
great details in the recent works [8, 9], and pursued in [11, 43], to which
we refer to for further explanations. As a start, the reader may consult the
preface of [8]. Let us simply say here that in a forthcoming work of Taïbi
and the author, we shall use the results of the present paper as an ingredi-
ent to extend to higher dimensions d, hopefully up to d = 24, the counting
of level 1, algebraic, essentially selfdual cuspidal automorphic representa-
tions of GLd over Q started in the aforementioned works. One alternative
motivating goal of these works is to obtain new information on the size of
X31 and X32 (see e.g. [8, Thm. IX.6.1] for a direct proof of the equality
|X24| = 24 not relying on any lattice computation).

1.2. Dimension of invariants and characteristic masses. Consider
now an arbitrary integral lattice L in the standard Euclidean space Rn of
arbitrary dimension n, and a finite dimensional representationW of O(Rn).
Motivated by the previous paragraph, we are interested in algorithms to
determine the dimension of the subspace WO(L) ⊂ W of O(L)-invariants
in W . Of course, our requirement will be that these algorithms be efficient
for the even lattices of determinant ≤ 2, as in Section 1.1.

Obviously, we may and do assume thatW is irreducible. It will be conve-
nient to parameterize the isomorphism classes of irreducible complex rep-
resentations of O(Rn), following Weyl’s original approach [46], by the n-
permissible2 (integer) partitions: see Appendix A for a brief reminder of

1 We define MW (SOn) by replacing O(Rn) with SO(Rn) in (1.2), andW with a representation
of SO(Rn). We have then MW (SOn) ' MW ′ (On) where W ′ is the representation of O(Rn)
induced from W [8, §4.4.4]. The question of computing dimensions in the SO-case is thus a
special case of the same question in the O-case (the one considered here).

2 This means that the first two columns of the Young diagram of the partition have at most
n boxes in total.
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this parameterization and its relation with the highest weight theory for
SO(Rn). This parameterization not only allows to deal with the two con-
nected components of O(Rn) in a very concise way, but it is also especially
relevant for the character formulas we shall use.

We denote by Wλ an irreducible representation of O(Rn) associated
with the n-permissible partition λ = (λ1 ≥ · · · ≥ λn ≥ 0). The element
− idn acts on Wλ by the sign (−1)|λ|, with |λ| =

∑
i λi, so WO(L)

λ vanishes
for |λ| ≡ 1 mod 2. Our starting point is the trivial formula dim WO(L)

λ =
1

|O(L)|
∑
γ∈O(L) Trace(γ; Wλ), that we rewrite as

(1.4) dim WO(L)
λ =

∑
P∈Carn

mO(L)(P ) Trace( cP ; Wλ )

where:
(i) Carn ⊂ Z[t] denotes the (finite) subset of polynomials of degree

n which are products of cyclotomic polynomials. This subset is3
also the set of characteristic polynomials of the elements of O(Rn)
preserving some lattice in Rn. Using the irreducibility of cyclotomic
polynomials in Q[t], it is straightforward to enumerate the elements
of Carn for small n with the help of a computer: see Table 1.1 for the
cardinality of Carn for n ≤ 27 (sequence A120963 on the OEIS [42]).

Table 1.1. The cardinality of Carn for n ≤ 27.

n 1 2 3 4 5 6 7 8 9

|Carn| 2 6 10 24 38 78 118 224 330

n 10 11 12 13 14 15 16 17 18

|Carn| 584 838 1420 2002 3258 4514 7134 9754 15010

n 19 20 21 22 23 24 25 26 27

|Carn| 20266 30532 40798 60280 79762 115966 152170 217962 283754

(ii) For any finite subset S ⊂ O(Rn), and any P in R[t], we denote
by mS(P ) the number of elements g in S with det(t idn−g) = P ,
divided by |S|. This is an element of Q≥0 that we call the mass of
P in S. By definition, we have∑

P∈R[t]
mS(P ) = 1.

3 Set ζ = e
2iπ
m for m ≥ 1. The symmetric bilinear form (x, y) 7→ TraceQ(ζ)/Q(xy) on the free

abelian group L = Z[ζ] defines a inner product on L⊗R. The multiplication by ζ is an isometry
preserving L, with characteristic polynomial the m-th cyclotomic polynomial.
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(iii) For P in R[t] a monic polynomial of degree n whose complex roots
are on the unit circle (e.g. P ∈ Carn), we denote by cP ⊂ O(Rn)
the unique conjugacy class whose characteristic polynomial is P .

We now discuss the problem of evaluating Formula (1.4). The main un-
known, which contains all the required information about L and which does
not depend on λ, is of course the collection of masses mO(L)(P ) for P in
Carn. This collection will be called the characteristic masses of L, or some-
times simply4 the masses of L, and we will go back to it later. We rather
discuss first the question of evaluating, given an arbitrary polynomial P as
in (iii), the quantity Trace( cP ; Wλ). This question does not depend on L.

Evaluation of Trace( cP ; Wλ). We will use for this the “determinantal”
character formula for Wλ proved by Weyl in [46, Ch. VII §9]. This formula
applies to arbitrary elements of O(Rn), possibly of determinant −1. We
found it useful to actually use the following alternative expression proved
by Koike and Terada in [33] in the spirit of the famous Jacobi–Trudi formula
for the Schur polynomials in terms of elementary symmetric polynomials
(see Appendix A). Write tnP (1/t) =

∑
i∈Z(−1)ieiti (so ei = 0 for i < 0 or

i > n). Denote by µ1 ≥ µ2 ≥ · · · ≥ µm with m = λ1 the partition which is
dual to λ, and set δ1 = 0 and δj = 1 for j > 1. Then we have the equality

(1.5) Trace(cP ; Wλ) = det(eµi−i+j + δj eµi−i−j+2)1≤i,j≤m

This formula is clearly efficient when m = λ1 is small, which suits well for
instance the application to |X32| mentioned in Section 1.1, as it requires all
λ’s with λ1 ≤ 4 for n = 24. Let us note that in this range, the use of the
crude degenerate Weyl character formula as in [9, §2] would be impracti-
cable as the Weyl group of SO(R24) is much too big. Actually, the whole
tables of invariants obtained in [9, §2] for the subgroup of determinant 1
elements in the Weyl groups of type E7, E8 and E8

∐
A1 (with respec-

tively n = 7, 8, 9) can be recomputed essentially instantly using rather
Formula (1.5).

Determination of the characteristic masses of L. This is the re-
maining and most important5 unknown. In dimension n as large as 24, it is
impossible in general to enumerate the elements of O(L) with a computer,
hence to naively list their characteristic polynomials. For instance when L
is a Niemeier lattice then the size of O(L) is always at least 1014, and it is

4 Beware not to confuse the masses of L in this sense with the mass of the genus of L, which
traditionally appears in the study of the Minkowski–Siegel–Smith mass formula.

5 It is equivalent to determine the finitely many mO(L)(P ) for all P in Carn, and the
dim WO(L)

λ
for all λ, as the Carn×Λ-matrix (Trace( cP ; Wλ))P,λ has rank |Carn | for general

reasons.
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about 1030 for L = E24. However, those groups have of course much fewer
conjugacy classes. Write

Conj O(L) = {ci(L)}i∈I
the set of conjugacy classes of O(L). Assuming that we know represen-
tatives of the ci(L), as well as each |ci(L)|, then the enumeration of the
characteristic polynomials of O(L) may become straightforward. Of course,
if we do not know representatives of ci(L), but still the trace of the latter
in Rn as well as the power maps on the ci(L), this may similarly allow to
determine the characteristic masses of L.

Example 1.3 (Leech lattice). Consider for instance the case where L =
Leech is “the” Leech lattice in R24. The group O(Leech) is the Conway
group Co0 [15], also denoted 2 .Co1 in the ATLAS [16, p. 180]. The char-
acter of its natural representation on R24 is the character χ102 in the table
loc. cit. This character, as well as Newton’s relations and the power maps
of the ATLAS (implemented in GAP [26]), allow to compute the characteris-
tic polynomial of each conjugacy class in O(Leech), hence the characteristic
masses of Leech: they are gathered in Table C.5. Note that despite the huge
order ' 8 ·1018 of O(Leech), this group only has 167 conjugacy classes, and
160 distinct characteristic polynomials. This is actually the minimum for
a Niemeier lattice, and makes the table above printable. An interesting
consequence of this computation is the observation

1
|O(Leech)|

∑
g∈O(Leech)

det( t id24−g) = t24 + t16 + t12 + t8 + 1.

This asserts the existence of a line of O(Leech)-equivariant alternating g-
multilinear form Leechg −→ Z for each g in {8, 12, 16, 24}. We refer to [10]
for a study of these forms and of the weight 13 pluriharmonic Siegel theta
series for Sp2g(Z) that they allow to construct. The results of this paper
suggest several other intriguing constructions to study in the same spirit, for
instance whenever a 1 appears as a dimension for MWλ

(O24) in Table C.6
(the case discussed here corresponding to λ = ∅, 18 and 112).

1.4. Algorithms for computing characteristic masses. Let us give
now a first algorithm, called Algorithm A in the sequel, which takes as
input the Gram matrix G of some Z-basis of L and returns for each con-
jugacy class ci(L) some representative and its cardinality |ci(L)|, hence in
particular the characteristic masses of L. The idea, certainly classical in
computational group theory, is to:

A1. Apply the Plesken–Souvignier algorithm [40] to G (implemented
e.g. as qfauto(G) in PARI/GP [39]) to obtain a set G of generators
of O(L),
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A2. Choose a (small) finite subset S ⊂ L stable under O(L), generat-
ing L ⊗ R, and view O(L) as the subgroup of permutations of S
generated by G,

A3. Apply permutation groups algorithms implemented in GAP (such
as [30]) to deduce cardinality and representatives of the conjugacy
classes of O(L).

A canonical choice of S is the following: for any lattice L set (inductively)
S(L) = M(L)

∐
S(L′) where M(L) is the subset of elements of L with

minimal nonzero length, and where L′ is the orthogonal of M(L) in L. The
choice S = S(L) has proved efficient enough for us in practice. We will say
more about a PARI/GP implementation of the whole algorithm later, when
discussing an improvement of it: see Section 4.3.

Algorithm A is very efficient in small dimension. For instance, when L is
a root lattice of type E6,E7 or E8, it returns the characteristic masses of L
in a few seconds only.6 It turns out that it is still terminates for most of the
even lattices of determinant ≤ 2 and dimension ≤ 25, with running time
varying from a few minutes to a few days in dimensions 23, 24 and 25 when
terminates. For instance, in the case L = Leech it allows to re-compute
Table C.5 from scratch, without relying at all on the ATLAS: it requires
about 3 minutes for step A1, nothing for A2, and 42 minutes for A3. On the
other hand, it does not terminate for instance on our computer for lattices L
in L25 with root system7 A1 D4 2D6 D8 or A1 D6 D8 D10 (memory issue).
Algorithm A is typically very slow (and memory consuming) if either L has
too many vectors v of length v · v = Gi,i for some i = 1, . . . , n, because of
step A1, or if O(L) has too many conjugacy classes, because of step A3. It
is also quite sensitive to the choice of Gram matrix G of L in step A1.

In Section 4, we will explain a significant improvement of Algorithm A
when L has a non trivial root system. The basic idea of this Algorithm B is
to first write

O(L) = W(R) o O(L)ρ
where R is the root system of L, W(R) its Weyl group, ρ a Weyl vector
of R and O(L)ρ the stabilizer of ρ in O(L). As we shall see, we may ac-
tually reduce the computation of the characteristic masses of L to that of
representatives γj , and sizes, of the conjugacy classes of the smaller group
O(L)ρ, an information which can be obtained by replacing O(L) with O(L)ρ
in steps A1 and A3 of Algorithm A. There are two ingredients for this reduc-
tion. The first is the determination, for each rank r irreducible root system

6 All the computations in this paper have been made on a processor Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz with 65 GB of memory. Nevertheless, all the computations involving either
Algorithm B, or Algorithm A in small dimension, are equally efficient on our personal computer
(processor 1,8 GHz Intel Core i5 with 8 GB of memory).

7 For n ≤ 25, it follows from the classification of Xn recalled in Section 1.1 that two lattices
in Ln are isometric if, and only if, they have isomorphic root systems.
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R′ of type ADE, of the map mS : Carr → Q, where S is any coset of W(R′)
in the full isometry group O(R′) of the root system R′: see Section 3 for
this step (which does not depend on L). The second is the determination,
for each j, of the conjugacy class of γj viewed as an element of the auto-
morphism group of the Dynkin diagram of R. See Section 4 for a detailed
discussion of Algorithm B and of its implementation.

Remark 1.5 (Generalizations). In this paper, we use a restricted notion of
root which suits well our applications to the lattices in Ln. A minor mod-
ification of Algorithm B allows to consider the most general roots, namely
the elements α of a lattice L such that the orthogonal symmetry about
α preserves L. In a different direction, it would be useful to extend the
algorithms above to the context of hermitian or quaternionic positive def-
inite lattices, possibly over totally real number fields, using the theory of
complex or quaternionic reflection groups (see e.g. [13, 14]). That should
help extending to higher ranks and weights the computations of dimen-
sion spaces of automorphic forms for definite unitary groups (hermitian or
quaternionic) started in the literature (e.g. in [19, 20, 27, 35, 36]).

1.6. Main results. Using Algorithm B, it only takes a few seconds to the
computer to compute all the characteristic masses of each Niemeier lattices
with roots, except in the case (trivial anyway) of E24 for which the Plesken–
Souvignier algorithm needs about 2 minutes. It is equally efficient in any
dimension ≤ 25: the characteristic masses are computed in a few seconds,
except for ten lattices (in dimension 23 or 25) for which it requires less than
5 minutes, and for the lattice A1⊕Leech in L25 (about 35 minutes). We refer
to the homepage [6] for the gram matrices we used in our computations.
Our main result is then the following.

Theorem 1.
(i) Assume n ≤ 25. The characteristic masses of all L ∈ Ln are those

given8 in [6].
(ii) The nonzero values of dim Mλ(O24) for λ1 ≤ 3 are given in Ta-

ble C.6.

Table C.6 is deduced from assertion (i) for n = 24 using observation
(b) and Formulas (1.4) & (1.5). This step is very efficient: once the masses
in (i) are computed, it takes only 5 minutes about to produce this table. The
format of the table is as follows. The notation nm1

1 . . . nmrr for a partition
λ means that the diagram of λ has exactly mi rows of size ni for i =
1, . . . , r, and no other row. Set dλ = dim MWλ

(O24) and denote by ass(λ)
the associate of λ (see Section A). The column dim gives the integer dλ in

8 They cannot be printed here: there are 53204 polynomials P with mO(L)(P ) 6= 0 for some
L in L24, that is about half |Car24|.
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the case λ = ass(λ), and the two integers dλ : dass(λ) otherwise. See [6] for
more extensive tables, including for instance all λ with λ1 = 4 and arbitray
n ≤ 25.
Remark 1.7. Fix L in Ln, γ in O(L), and write det(t − γ) = (t − 1)a ×
(t+1)bQ(t) with Q in Z[t] and Q(−1)Q(1) 6= 0. Then Proposition 3.7 in [11],
generalizing a result of Gross and McMullen [28], shows9 that for a = 0
(resp. b = 0) the integer Q(1) (resp. Q(−1)) is a square. This constraint is in
agreement with our computations. The question of the existence of an even
unimodular lattice having an isometry of given characteristic polynomial
has been studied by several authors: see e.g. [1, 2, 28, 37].
1.8. A direct computation in the case of Niemeier lattices. In
Section 5, we will explain an alternative (and human) computation of the
characteristic masses of Niemeier lattices. By the results of Section 3, we are
left to determine, for each Niemeier lattice L with non-empty root system
R, the G(R)-conjugacy classes of the elements of the subgroup O(L)/W(R)
of G(R), where G(R) is the automorphism group of the Dynkin diagram of
R. We do so using a tedious case by case analysis.

We found it useful to gather first in Section 2 some elementary results
about the hyperoctahedral group Hn = {±1}n o Sn. This group is both a
typical direct summand of the G(R) above, and closely related to the Weyl
groups of type Dn studied in Section 3.2. In particular, we introduce and
characterize directly in Section 2.5 and Section 2.7 a few specific subgroups
of Hn that will play a role in the analysis of Niemeier lattices in Section 5.

Although more interesting (at least to us) from a mathematical point of
view, it will be eventually clear that this nonautomatized method is too
complicated to be used systematically: it would even require some work to
attack the dimensions 23 and 25 along the same lines. Nevertheless, it pro-
vides an important check that the masses returned by the implementation
of our algorithms are correct.

1.9. General notations and conventions. In this paper, all group ac-
tions will be on the left. We denote by |X| the cardinality of the set X. For
n ≥ 1 an integer, we denote by Sn the symmetric group on {1, . . . , n}, by
Altn ⊂ Sn the alternating subgroup, and we set Z/n := Z/nZ.

If V is an Euclidean space, we usually denote by x · y its inner product,
with associated quadratic form q : V → R defined by q(x) = x·x

2 . A lattice
in V is a subgroup generated by a basis of V , or equivalently, a discrete
subgroup L with finite covolume, denoted covolL.

If L is a lattice in the Euclidean space V , its dual lattice is the lattice L]
defined as {v ∈ V | v · x ∈ Z, ∀ x ∈ L}. We say that L is integral (resp.
even) if we have L ⊂ L] (resp. q(L) ⊂ Z). An even lattice is integral. If L is

9 If det γ = −1 (so b is odd) and a = 0 (so n is odd), apply that proposition to −γ.
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integral, we have (covolL)2 = |L]/L|. This integer is also the determinant
detL of the Gram matrix Gram(e) = (ei · ej)1≤i,j≤n of any Z-basis e =
(e1, . . . , en) of L. The orthogonal group of L is the finite group O(L) =
{γ ∈ O(V ), γ(L) = L}.

2. Preliminaries on the hyperoctahedral groups

2.1. The hyperoctahedral group. Let n ≥ 1 be an integer. The sym-
metric group Sn on the set {1, . . . , n} acts on the elementary abelian 2-group
{±1}n by permuting coordinates. The hyperoctahedral group on n letters is
defined as the semi-direct product

Hn = {±1}n o Sn.
Equivalently, Hn is the wreath product {±1} o Sn. It is isomorphic to
several familiar groups: the Weyl group of a root system of type Bn or Cn,
the subgroup of monomial matrices in GLn(Z), the orthogonal group of the
standard unimodular lattice In, the subgroup of the symmetric group on
{±1,±2, . . . ,±n} of permutations σ with σ(−i) = −σ(i) for all i, etc.

In this paper, we will encounter Hn first when discussing O(Dn) and
again when studying automorphism groups of isotypic root systems. Certain
subgroups of the hyperoctahedral groups will play a role in the study of
Niemeier lattices. Here is an example of an interesting subgroup that will
occur in the case n = 4. We denote by π : Hn → Sn the canonical projection.

Example 2.2. The group GL2(Z/3) acts on the 8-elements set (Z/3)2−{0}
by permuting the 4 disjoint pairs of the form {v,−v}. By the universal
property of wreath products, the choice of elements v1, v2, v3, v4 such that
(Z/3)2 − {0} =

∐
i{vi,−vi} defines an embedding ι : GL2(Z/3) → H4 (a

different choice leading to an H4-conjugate embedding). We have ι(− Id2) =
−1; the morphism π ◦ ι has kernel ± Id2 and induces “the” exceptional
isomorphism PGL2(Z/3) ' S4. The restriction of π ◦ ι to the stabilizer of vi
in GL2(Z/3) is an isomorphism onto the stabilizer (' S3) of i in {1, 2, 3, 4}.

We end this paragraph with a few notations and remarks about the basic
structure of Hn. We denote by εi the element of {±1}n whose jth-component
is 1 for j 6= i and −1 for j = i. The center of Hn is generated by the element
−1 =

∏n
i=1 εi. The signature ε : Sn → {±1}, composed with the natural

projection π : Hn → Sn, defines a morphism Hn → {±1} that we will still
denote by ε. Another important morphism s : Hn → {±1} is defined by

(2.1) s(vσ) =
n∏
i=1

vi, for all σ ∈ Sn and v = (vi) ∈ {±1}n.

The product character ε s coincides with the determinant when we view
Hn as a the subgroup of monomial matrices in GLn(Z). We now recall the
classical description of the conjugacy classes of Hn (see e.g. [5, Prop. 25]).
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2.3. Conjugacy classes of Hn. Let Σ be a nonempty subset of {1, ..., n}.
A cycle in Hn with support Σ is an element of the form h = vc, where c ∈ Sn
permutes transitively the elements of Σ and fixes its complement, and where
v = (vi) ∈ {±1}n satisfies vi = 1 for i /∈ Σ. Such a cycle has a length l(h)
defined as |Σ|, and a sign s(h) (an element in {±1}). This sign is also the
i-th coordinate of hl(h) for any i in Σ, and l(h) is the order of c. One easily
checks that two cycles are conjugate in Hn if, and only if, they have the
same length and the same sign.

Just as for Sn, any element h of Hn may be written as a product of
cycles hi with disjoint supports, this decomposition being unique up to
permutation of those cycles. The sum of the lengths of the cycles hi with
s(hi) = 1 (resp. s(hi) = −1) is an integer denoted n+(h) (resp n−(h)); the
collection of the length l(hi) of those hi defines a integer partition of n+(h)
(resp. n−(h)) that we denote by p+(h) (resp. p−(h)). We have n+(h) +
n−(h) = n. The type of h is defined as the couple of integer partitions
(p+(h),p−(h)). Two elements of Hn are conjugate if, and only if, they have
the same type.

In the sequel, we will have to determine the type of all the elements
of certain specific subgroups G ⊂ Hn. For instance, when G is the group
ι(GL2(Z/3)) of Example 2.2, this information is given in Table 2.1, the
row size giving the number of elements of the corresponding type divided
by |G|:

Table 2.1. The H4-conjugacy classes of the elements of GL2(Z/3).

type 14 14 1 1 2 22 1 3 1 3 4
size 1/48 1/48 1/4 1/8 1/6 1/6 1/4

In this table, and in others that we will give later, we use standard nota-
tions for partitions, and print p+ in black and p− in cyan. So the sequence
of symbols 1a1 1b1 2a2 2b2 . . . iai ibi . . . stands for the couple (p+, p−) where
p+ is the partition of

∑
i ai in a1 times 1, a2 times 2, and so on, and p−

is the partition of
∑
i bi in b1 times 1, b2 times 2, and so on. The symbol

“im” (resp. “im”) is omitted for m = 0, and replaced by “i ” (resp. “i ”) for
m = 1.

Remark 2.4. Table 2.1 is easily deduced from the conjugacy classes of
GL2(Z/3). To fix ideas, define the embedding ι in Example 2.2 by choosing
v1, v2, v3 and v4 to be respectively [ 0

1 ], [ 1
0 ], [ 1

1 ] and
[ 1
−1
]
. Then the images

under ι of the elements ±I2,
[ 1 0

0 −1
]
,
[ 0 −1

1 0
]
,± [ 1 1

0 1 ] and ± [ 0 1
1 1 ] of GL2(Z/3)

are respectively ± 1, ε1 (34), ε2 (12) ε4 (34), ± ε1 ε4 (134) and ± ε2 (1342).

2.5. Digression: subgroups of certain wreath products. Let G be a
group, X a set equipped with a transitive action of G, and A an abelian
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group. The group G acts in a natural way on the abelian group AX of all
functions X → A, so we can form the semi-direct product H := AX oG.

We denote by π : H → G the canonical projection, with kernel kerπ =
AX . We have a “diagonal” map δ : A→ AX , defined by δ(a)(x) = a for all
a in A and x in X. This map δ is an embedding of G-modules if we view
the source A as a trivial G-module: the image of δ is a central subgroup of
H. Our aim in this paragraph is to study:

• the set C of subgroups C ⊂ H with π(C) = G and kerπ ∩ C = 1,
• the set G of subgroups G̃ ⊂ H with π(G̃) = G and kerπ∩G̃ = δ(A).

The group H acts both on C and G by conjugation. We start with two
simple observations:

• For any group morphism χ : G→ A, the set Gχ := {δ(χ(g)) ·g, g ∈
G} is a subgroup of H isomorphic to G, and Gχ is an element of C.
• There is a natural map c2 : G → H2(G,A), sending G̃ in G to the
equivalence class of the central extension 1 → A

δ→ G̃
π→ G → 1.

Two elements of G which are H-conjugate are also AX -conjugate,
hence define the same class in H2(G,A).

We fix some x ∈ X and denote by Gx ⊂ G the isotropy group of x. For
each integer m ≥ 0, we denote by rm : Hm(G,A) −→ Hm(Gx, A) the usual
restriction map on the cohomology groups of the trivial G-module A.

Proposition 2.6.
(i) For χ, χ′ ∈ Hom(G,A), the subgroups Gχ and Gχ′ of H are conju-

gate if, and only if, χ and χ′ coincide on Gx.
(ii) If r1 is surjective then any subgroup C ∈ C is conjugate to Gχ for

some χ ∈ Hom(G,A).
(iii) If r1 is surjective then the map c2 : H\G → H2(G,A) is injec-

tive, and its image is the subgroup ker r2 of extensions which split
over Gx.

Proof. We shall use twice the following classical facts. Let Γ be a group
acting on an abelian group V and denote by π : V o Γ → Γ the natural
projection. Let K be the set subgroups K ⊂ V o Γ with π(K) = Γ and
kerπ ∩ V = 1. Any K ∈ K has the form {s(γ) γ, γ ∈ Γ} for a unique 1-
cocyle s ∈ Z1(Γ, V ), that we denote sK . The map K 7→ sK , K → Z1(Γ, V ),
is bijective; two elements K,K ′ in K are conjugate by an element of V if,
and only if, sK and sK′ have the same class in H1(Γ, V ). Last but not least,
note that K,K ′ in K are conjugate by an element of V if, and only if, they
are conjugate in V o Γ: if we have K ′ = gKg−1 with g ∈ V o Γ, we may
write g = vk with v ∈ V and k ∈ K, and we have K ′ = vKv−1.

We apply this first to Γ = G and V = AX . The map Hom(G,A) =
Z1(G,A) → Z1(G,AX) defined by δ sends χ to the 1-cocycle defining Gχ.
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The choice of x ∈ X identifies the G-module AX with the co-induced
module of the trivial Gx-module A to G. By Shapiro’s lemma, we obtain for
each integer m ≥ 0 a natural isomorphism sh : Hm(G,AX) ∼−→ Hm(Gx, A).
Concretely, if f : Gm → AX is an m-cocycle, then sh(f) is the class of the
m-cocycle f ′ : Gmx → A defined by f ′(g1, . . . , gm) = f(g1, . . . , gm)(x). It
follows that the composition of the maps

Hm(G,A) Hm(δ)−→ Hm(G,AX)
sh
∼−→ Hm(Gx, A)

coincides with the map rm. For m = 1, this proves assertions (i) and (ii).
Let us prove assertion (iii). Let Q be the cokernel of δ. By applying the

first paragraph above to Γ = G and V = Q, we obtain a natural bijection
c1 : H\G ∼−→ H1(G,Q). The long exact sequence of cohomology groups
associated to 0→ A

δ→ AX → Q→ 0 contains a piece of the form

H1(G,A) H1(δ)−→ H1(G,AX) −→ H1(G,Q) η−→ H2(G,A) H2(δ)−→ H2(G,AX).
By the second paragraph, the kernel of η is isomorphic to the cokernel of
r1, and the image of η is the kernel of r2. As it is straightforward to check
from the definition of c2 that we have η ◦ c1 = c2, this concludes the proof
of assertion (iii). �

2.7. Applications to Hn. The group Hn is of course the special case of
the construction of Section 2.5 with G = Sn, X = {1, . . . , n} and A = {±1}
(multiplicative group). The signature ε gives rise to the subgroup Sεn of Hn

whose elements have the form ε(σ)σ, σ ∈ Sn. For any transposition τ in Sn
we have n−(ε(τ)τ) = n − 2, whereas n−(σ) = 0 for all σ in Sn: this shows
that Sεn is not conjugate to Sn in Hn for n > 2 (a fact which also follows
from assertion (i) below).

Proposition 2.8.
(i) Let G be a subgroup of Hn of order n! with π(G) = Sn. Then G is

either conjugate to Sn or to Sεn. Moreover, Sn and Sεn are conjugate
in Hn if, and only if, we have n ≤ 2.

(ii) Let G be a subgroup of Hn of order 2n! with π(G) = Sn. Then −1
is in G and exactly one of the following properties holds:
(a) G is conjugate to {±1} · Sn,
(b) n = 2 and G ' Z/4,
(c) n = 4 and G is conjugate to the group GL2(Z/3) embedded in

H4 as in Example 2.2.

Proof. Note first that in case (ii), {±1}n∩G is a normal subgroup of order 2
of G, hence it is central and generated by −1 by the assumption π(G) = Sn.

The stabilizer of n in Sn is naturally identified with Sn−1, with the con-
vention S0 = 1. The signature ε is a generator of H1(Sn, {±1}), so the
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restriction map H1(Sn, {±1}) → H1(Sn−1, {±1}) is clearly surjective, and
bijective for n 6= 2. Moreover, we know form Schur that the restriction map
r2 : H2(Sn, {±1})→ H2(Sn−1, {±1}) is surjective as well for all n > 1, and
that the dimension of the Z/2-vector space H2(Sn, {±1}) is 2 for n ≥ 4,
1 for n = 3 and 2, and 0 for n = 1 [41]. The kernel of r2 is thus 0 for
n 6= 2, 4, isomorphic to Z/2 otherwise. We conclude by Proposition 2.6 and
Example 2.2. �

Remark 2.9. The natural map Hi(Alt4,Z/2)→ Hi(Alt3,Z/2) is 0→ 0 for
i = 1 and Z/2→ 0 for i = 2. By Proposition 2.6(iii), there is thus a unique
conjugacy class of nonsplit central extensions of Alt4 by {±1} in H4 (or in
{±1}4 oAlt4). As Alt4 does not embed in GL2(Z/3), one such extension is
the inverse image of Alt4 in the extension described in Example 2.2.

We now give another example. As is well-known, the group S5 has a
unique isomorphism class of transitive actions on the set {1, . . . , 6}, ob-
tained from the conjugation action on its 6 subgroups of order 5. We fix such
an action and consider the associated semi-direct product {±1}6oS5, as in
Section 2.5. We have a defined loc. cit. a set G of subgroups of {±1}6 o S5
which are central extensions of S5 by {±1}.
Proposition 2.10. The set G is the disjoint union of two conjugacy classes:
the one of the split extension {±1} · S5, and another one consisting of
nonsplit extensions which are split over the alternating subgroup Alt5 of S5.
Proof. Let N ⊂ S5 be the normalizer of the subgroup S = 〈(12345)〉. Then
N is the semi-direct product of 〈(2354)〉 ' Z/4 by S ' Z/5, so we have
Hi(N,Z/2) ' Z/2 for each i ≥ 0 and the restriction map H1(S5,Z/2) →
H1(N,Z/2) is an isomorphism. We observe from the presentation given
by Schur of the two Schur-covers of S5 that they are non split over the
subgroups of S5 containing a double transposition, such as N or Alt5. This
implies that the kernel of the restriction map H2(S5,Z/2)→ H2(N,Z/2) is
generated by the remaining nonzero class in H2(S5,Z/2), namely the one
which splits over Alt5 (recall H2(Alt5,Z/2) ' Z/2), and we conclude by
Proposition 2.6. �

A homomorphism S5 → S6 as above can alternatively be constructed
from the natural action of PGL2(Z/5) ' S5 on the projective line P1(Z/5).
The action of GL2(Z/5) on the 12-elements set ((Z/5)2 − {0})/{±1} per-
mutes the 6 disjoint pairs of the form {v, 2v}, which defines a natural con-
jugacy class of embeddings
(2.2) ι : GL2(Z/5)/{±I2} −→ {±1}6 o S5.

The group ι(GL2(Z/5)/{±I2}) belongs to the second class of Proposi-
tion 2.10 (recall PSL2(Z/5) ' Alt5). The map ι is explicit enough to
allow the computation of the conjugacy classes of the elements of
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ι(GL2(Z/5)/{±I2}) viewed as a subgroup of H6 ⊃ {±1}6 o S5: they are
gathered in Table 2.2.

Table 2.2. The H6-conjugacy classes of the elements of GL2(Z/5)/{±I2}.

type 16 16 1222 1222 23 32 32 1 1 4 1 5 1 5 6

size 1/240 1/240 1/16 1/16 1/12 1/12 1/12 1/4 1/10 1/10 1/6

3. Characteristic masses of root lattices

3.1. Root systems and root lattices. Let V be an Euclidean space. By
a root of V we mean an element α ∈ V with α·α = 2; we denote by R(V ) the
set of roots of V (a sphere). For each α ∈ R(V ), the orthogonal reflection
about α is an element sα of O(V ), given by the formula sα(x) = x−(α ·x)α.

An ADE root system in V is a finite set R ⊂ R(V ) generating V as a real
vector space, and such that for all α, β ∈ R we have α·β ∈ Z and sα(β) ∈ R.
In particular, R is a root system in the sense of Bourbaki [4], and each
irreducible component of R is of type An with n ≥ 1, Dn with n ≥ 4, or En

with n = 6, 7, 8. The root lattice of R is the lattice Q(R) det=
∑
α∈R Zα ⊂ V

generated by R. This is an even lattice, and we have the important equality
(3.1) R(V ) ∩Q(R) = R.

If L ⊂ V is any integral lattice, we denote by R(L) = L∩R(V ) the set of
roots of L. It follows at once from the definitions that R(L) is an ADE root
system in the Euclidean subspace U of V generated by R(L). We say that
L is a root lattice if R(L) generates L as an abelian group, i.e. if we have
L = Q(R(L)) (hence U = V ). By definitions and (3.1), the map R 7→ Q(R)
is a bijection between the set of ADE root systems of V and the set of root
lattices of V , whose inverse is L 7→ R(L).

We shall always use a bold font to denote an isomorphism class of root
systems, and reserve the normal font for a root lattice with the correspond-
ing root system. For instance, if for n ≥ 2 we set Dn = {(xi) ∈ Zn,

∑
i xi ≡

0 mod 2} as in the introduction, then R(Dn) is a root system of type Dn in
the standard Euclidean space Rn. We have also defined loc. cit. the lattice
En for n ≡ 0 mod 8. It is easy to check R(En) = R(Dn) for n > 8 and
that R(E8) is of type E8. We choose in an arbitrary way root lattices An

for n ≥ 1, as well as E6 and E7, whose root systems are of type An, E6
and E7.

Let L be an integral lattice in V and set R = R(L). The sα with α in R
generate a subgroup of O(L) called theWeyl group of L, and denoted W(L).
This is a normal subgroup of O(L), and we denote by G(L) = O(L)/W(L)
the quotient group. Assume first that L is the root lattice Q(R); in this
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case we also set W(R) := W(L), O(R) := O(L) (this latter group is also
denoted A(R) by Bourbaki) and G(R) = G(L). As is well-known, G(R) is
isomorphic to the automorphism group of the Dynkin diagram of R, and
we have

(3.2) G(R) '


1 for R ' A1,E7,E8,

S3 for R ' D4,

Z/2 otherwise.

Moreover, W(R) permutes the positive root systems10 R+ of R, or equiv-
alently the Weyl vectors11of R, in a simply transitive way. Let us now go
back to the case of an arbitrary L. The set R is a root system in the Eu-
clidean space U generated by R, and the restriction σ 7→ σ|U induces a
morphism O(L) → O(R) and an isomorphism W(L) ∼→ W(R). It follows
that O(L) permutes the Weyl vectors of R, and that W(L) permutes them
simply transitively. So for any Weyl vector ρ of R, the stabilizer O(L)ρ of
ρ in O(L) is naturally isomorphic to G(L) and we have
(3.3) W(L) ∩O(L)ρ = 1, O(L) = W(L) ·O(L)ρ and W(L) 'W(R),
so that O(L) is the semi-direct product of O(L)ρ by W(L).

3.2. Characteristic masses of irreducible root lattices. In this para-
graph, we letR ⊂ V be an ADE root system and L = Q(R). Set n = dimV .
Our aim is to determine the characteristic masses of O(L) and, more gen-
erally, the map mS : Carn → Q≥0 where S is any subset of the form σW(L)
with σ ∈ O(L) (see Section 1.2(ii) for the definition of mS). We assume
first R irreducible, and argue case by case.

(A) Case R ' An with n ≥ 1. Wemay assume that V is the hyperplane
of sum 0 vectors in Rn+1 and R = {±(εi − εj), 1 ≤ i < j ≤ n+ 1}, where
ε1, . . . , εn+1 denotes the canonical basis of Rn+1, and L = An. The group
W(An) may be identified with the symmetric group Sn+1, acting on V by
permuting coordinates.

Let S denote the set of integer sequences m = (mi)i≥1 with mi ≥ 0 for
each i, and mi = 0 for i big enough. Let An ⊂ S denote the subset of m
such that

∑
i imi = n+ 1. For any m in An, the elements of Sn+1 whose

cycle decomposition contains mi cycles of length i for each i form a single
conjugacy class Cm ⊂ Sn+1. We have furthermore |Cm| = (n+1)!/nm with

nm =
∏
i

mi! imi .

10 Recall that a positive root system in R is a subset of the form {α ∈ R, ϕ(α) > 0} where
ϕ : V → R is a linear form with 0 /∈ ϕ(R).

11 A Weyl vector of R is a vector of the form ρ = 1
2
∑

α∈R+ α for R+ a positive root system
of R. In particular we have 2ρ ∈ Q(R).
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The characteristic polynomial of Cm acting on V is

Pm = (t− 1)−1 ∏
i

(ti − 1)mi ,

since Rn+1/V is the trivial representation of Sn+1. The following trivial
lemma even shows that we have Pm 6= Pm′ for m 6= m′.

Lemma 3.3. The polynomials tl−1, with l ≥ 1, are Z-linearly independent
in the multiplicative group of the field Q(t).

As a consequence, we obtain the:

Corollary 3.4. For n ≥ 1, we have mW(An)(Pm) = 1/ nm for m in An,
and mW(An)(P ) = 0 for all other P in Carn.

As is easily seen, the element −1 = − idV is in W(An) if and only if n = 1,
and we have O(An) = W(An)∪−W(An) (this fits of course Formula (3.2)).
The map mS for the coset S = −W(An) is deduced from mW(An) by the
following trivial lemma:

Lemma 3.5. Let S be a finite subset of O(V ) with dimV = n. Then for
all P ∈ R[t] we have m−S(P ) = mS(Q) with Q(t) = (−1)nP (−t).

(D) Case R ' Dn with n ≥ 3. We may assume V = Rn, R = {±εi ±
εj , 1 ≤ i < j ≤ n} where ε1, . . . , εn denote again the canonical basis of V ,
and L = Dn. The lattice Dn is the largest even sublattice of the standard
lattice

In = Zn = ⊕ni=1Zεi,
and thus O(In) is a subgroup of O(Dn). This group O(In) is nothing else
than the hyperoctahedral group Hn already introduced in Section 2.1: we
have

O(In) = Hn = {±1}n o Sn
where Sn (resp. {±1}n) acts on Rn by permuting coordinates (resp. sign
changes). As is well-known, W(Dn) is the index 2 subgroup ker s of O(In)
(recall s is defined by Formula (2.1)). By (3.2) we also have
(3.4) O(In) = O(Dn) for n 6= 4 and G(D4) ' S3 (triality).
The conjugacy classes of Hn have been recalled in Section 2.3. Let Dn ⊂
S × S be the subset of (m+,m−) with

∑
i i (m+

i + m−i ) = n. For any
(m+,m−) in Dn the elements of Hn whose cycle decomposition containsm+

i

(resp.m−i ) cycles of length i with sign +1 (resp. −1) for each i form a single
conjugacy class Cm+,m− ⊂ Hn. We easily check |Cm+,m− | = 2nn!/ nm+,m−

with
nm+,m− =

∏
i

m+
i ! m−i ! (2i)m

+
i +m−i ,
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and s(Cm+,m−) = (−1)|m−| where we have set |m| =
∑
imi for m ∈ S. The

characteristic polynomial of Cm+,m− acting on V is

Pm+,m− =
∏
i

(ti − 1)m
+
i (ti + 1)m

−
i =

∏
i

(ti − 1)m
+
i −m

−
i +m−

i/2 ,

where we have set m−i/2 = 0 for i odd, and used for i ≥ 1 the relation
(ti− 1)(ti + 1) = (t2i− 1). In contrast with the An case, we may thus have
Pm+,m− = Pn+,n− for distinct (m+,m−) and (n+, n−) in Dn. This leads us
to introduce the subset

D′n = {(m+,m−) ∈ Dn | m+
i m
−
i = 0 for all i ≥ 1}.

Lemma 3.3 shows that we have Pm+,m− 6= Pn+,n− for (m+,m−) 6= (n+, n−)
inD′n. We reduce toD′n as follows. Consider the following map φ : Dn → Dn:

(i) if (m+,m−) ∈ D′n set φ(m+,m−) = (m+,m−),
(ii) otherwise there is a smallest j ≥ 1 with m+

j m
−
j 6= 0 and we set

φ(m+,m−) = (n+, n−) with (n+
i , n

−
i ) = (m+

i ,m
−
i ) for i 6= j or

i 6= 2j, and with (n+
j , n

−
j ) = (m+

j − 1, n+
j − 1) and (n+

2j , n
−
2j) =

(m+
2j + 1,m−2j).

It is clear that we have Pφ(m+,m−) = Pm+,m− for all (m+,m−) in Dn, and
that for each m = (m+,m−) ∈ Dn the sequence m,φ(m), φ2(m), . . . is
eventually constant and equal to some element of D′n, that we denote by
ψ(m).

Corollary 3.6. Let σ ∈ O(In). For all (m+,m−) in D′n we have

mσW(Dn)(Pm+,m−) =
∑ 1

nn+,n−

the sum being over all the (n+, n−) in Dn with ψ(n+, n−) = (m+,m−) and
(−1)|m−| = s(σ). We have mσW(Dn)(P ) = 0 for all other P in Carn.

We have G(D4) ' S3 so it remains to determine mσW(D4) for the 6
possible classes σW(D4). A first general reduction is the following lemma:

Lemma 3.7. Let L be an integral lattice, as well as elements σ1, σ2 in O(L)
whose images in G(L) are conjugate. Then we have mσ1W(L) = mσ2W(L).

Proof. Write σ2 = γσ1γ
−1w0 with γ in O(L) and w0 in W(L). For w ∈

W(L) we have det(t − σ2w) = det(t − σ1γ
−1w0wγ). We conclude as w 7→

γ−1w0wγ is a bijection of the normal subgroup W(L) of O(L). �

In particular, mσW(D4) is already given by Lemma 3.6 whenever the image
of σ in G(D4) ' S3 has order 1 or 2, and does not depend on σ if this image
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has order 3. There are many ways to determine mσW(D4) in this latter case.
One way is to consider first the set

R′ = {v ∈ D4, v · v = 4} = {±2εi | i = 1, . . . , 4} ∪
{ 4∑
i=1
±εi

}
and observe that we have α ·x ∈ 2Z for all α ∈ R′ and x ∈ D4. In particular,

1√
2R
′ is a root system (of type D4) in R4 and we have W( 1√

2R
′) ⊂ O(D4).

The two roots α =
√

2ε1 and β = 1√
2(ε1 + ε2 + ε3 + ε4) are in 1√

2R
′ with

α · β = 1, and the order 3 element

σ0 := sβ ◦ sα = 1
2


−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


of O(D4) does not belong to W(D4). It is trivial to enumerate with a com-
puter the 23 4! = 384 elements of σ0W(D4) and to list their characteristic
polynomials. We obtain:

Corollary 3.8. Let σ be an element of order 3 in G(D4). The mσW(D4)(P )
with P ∈ Car4 are given by Table C.1.

In fact, the reasoning above can be pushed a little further: it turns out
that R′′ = R

∐
R′ is a root system of type F4 in R4 (not ADE of course)

and that we have W(R′′) = 〈W(R),W( 1√
2R
′)〉 = O(D4). But the conjugacy

classes of W(S), with S any irreducible root system of exceptional type,
have been listed and studied in a conceptual way by Carter in [5], including
their characteristic polynomials (see [5, p. 22 & 23]). The map mO(D4) may
be deduced in particular from Table 8 of [5]. The map mσ0W(D4) follows
then from the equality mO(D4) = −1

3 mW(D4) + 1
2 mO(I4) + 1

3 mσ0W(D4).

Remark 3.9. Assume R is an irreducible root system. It follows from (3.2)
that two elements of G(R) are conjugate if and only if they have the same
order, which is always 1, 2 or 3. In particular, Lemma 3.7 shows that for σ
in O(R) the map mσW(R) only depends on the order of σ in G(R).

(E) Cases R ' En with n = 6, 7 and 8. The aforementioned results
of Carter also allow to deduce mW(En) for n = 6, 7 and 8 (using Tables 9,
10 and 11 loc. cit). Alternatively, and as a useful check, these masses can
also be computed directly using a variant of the Algorithm A explained in
Section 1.4. Indeed, choosing a positive system R+ ⊂ R, we may view W(R)
as the subgroup of O(V ) generated by the n reflections sα, with α a simple
root in R+. As W(R) acts faithfully and transitively on R, it is also the
subgroup of the permutation group of R generated by these n permutations
sα, with |R| = 72 (case n = 6), |R| = 126 (case n = 7) or |R| = 240 (case
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n = 8). Applying GAP’s ConjugacyClasses algorithm to this permutation
group, we obtain representatives and cardinalities of the conjugacy classes
of W(R), and it only remains to compute their characteristic polynomials.
All in all, these computations only take a few seconds for the computer.
Both methods lead to the:

Corollary 3.10. For n = 6, 7 and 8, the mW(En)(P ) with P ∈ Carn are
given by Tables C.2, C.3 and C.4.

Note that for n = 7, 8 we have O(En) = W(En) (no non trivial diagram
automorphism). For n = 6, we have O(E6) = W(E6)

∐
−W(E6), but the

map m−W(E6) is deduced from mW(E6) using Lemma 3.5.

3.11. The non irreducible case. Assume now R is a non necessarily
irreducible ADE root system in V , set L = Q(R) and fix σ in O(R). Our
aim is to give a formula for mσW(R). Write R as the disjoint union of its
irreducible components R =

∐
i∈I Ri. We have

L =
⊥⊕
i∈I

Q(Ri) and W(R) =
∏
i∈I

W(Ri).

The element σ induces a permutation of the set {Ri | i ∈ I} of irreducible
components of R. We write σ = c1 c2 · · · cr the cycle decomposition of this
permutation. For each j = 1, . . . , r, we choose an irreducible component Sj
of R in the support of cj , denote by sj = dim Q(Sj) the rank of Sj and by
lj the length of the cycle cj . For each j we have σlj (Sj) = Sj and we denote
by τj the restriction of σlj to Q(Sj); so τj is an element of O(Sj).

Proposition 3.12. In the setting above, we have for all P in Carn

mσW(R)(P ) =
∑

(P1,...,Pr)

r∏
j=1

mτjW(Sj)(Pj)

summing over all (P1, . . . , Pr)∈Cars1× · · ·×Carsr with
∏r
j=1 Pj(tlj )=P (t).

The first ingredient in the proof is the following trivial lemma.

Lemma 3.13. For i = 1, 2, let Vi be an Euclidean space and Γi ⊂ O(Vi) a
finite subset. Set V = V1 ⊥ V2 and view Γ = Γ1 × Γ2 as a subset of O(V ).
For all monic polynomials P in R[t] of degree dimV we have

mΓ(P ) =
∑

(P1,P2)
mΓ1(P1) mΓ2(P2),

the sum being over the (P1, P2), with Pi ∈ R[t] monic of degree dimVi, and
with P1P2 = P .
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Proof of Proposition 3.12. Applying Lemma 3.13, we may and do assume
r = 1, i.e. that σ permutes transitively the irreducible components of R.
In this case, we simply write (S, s, l, τ) instead of (S1, s1, l1, τ1). We may
also assume that we have I = {0, . . . , l − 1} and Ri = σi(S) for 0 ≤ i < l.
In particular, we have W(R) =

∏
0≤i<l σi W(S)σ−i. Choose a Z-basis

e = (e1, . . . , es) of Q(S) and consider the following Z-basis of L:

f = (e1, . . . , es, σ(e1), . . . , σ(es), . . . , σl−1(e1), . . . , σl−1(es)).
For all w = (σiwiσ−i)0≤i<l in W(R), the matrix of σw in the basis f is

(3.5)


MWl−1

W0
W1

. . .
Wl−2


where Wi is the matrix of wi ∈W(S) in the basis e, andM is the matrix of
τ = σl in the basis e. By Lemma 3.14 below, it follows that the multiset of
polynomials det(t−σw) (counted with their multiplicities) when w varies in
W(R), coincides with that of polynomials det(ts − τwl−1wl−2 · · ·w0) when
the l-tuple (w0, w1, . . . , wl−1) varies in W(S)l. As W(S) is a group, this
multiset is also |W(S)|l−1 times the multiset of the det(ts − τw) when w
varies in W(S), and we are done. �

Lemma 3.14. For any W0,W1, . . . ,Wl−1 and M in Ms(C), the character-
istic polynomial of the matrix (3.5) of size sl is det(ts−MWl−1Wl−2 · · ·W0).

Proof. By continuity, we may assumeWi ∈ GLs(C) for each i. Up to conju-
gating (3.5) by the diagonal matrix (1,W0,W1W0, . . . ,Wl−2 · · ·W1W0) we
may assume W0 = W1 = · · · = Wl−1 = ids. But in this case, the entries
of (3.5) commute and we conclude by [31] and the following well-known
fact (applied to Q = ts − a): the characteristic polynomial of the compan-
ion matrix of a given monic polynomial Q is the polynomial Q itself. �

4. An algorithm computing characteristic masses

4.1. Algorithm B. Consider the following algorithm, which takes as input
an integral lattice L in the standard Euclidean space V = Rn:

B1. Compute the root system R = R(L), a positive root system R+ ⊂ R
and the associate Weyl vector ρ = 1

2
∑
α∈R+ α.

B2. Determine a set G of generators of the stabilizer O(L)ρ of ρ in O(L).
B3. Compute the set S = S(L) defined on p. 551 and view O(L)ρ as the

subgroup of permutations of S generated by G.
B4. Use permutation groups algorithms to determine the sizes (mj)j∈J

and representatives (γj)j∈J of the conjugacy classes (cj)j∈J of O(L)ρ.
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B5. Compute the set Irr(R) of irreducible components of R, the isomor-
phism class of each such component, and a basis of the orthogonal
R⊥ of R in V .

B6. For each j in J , compute:
• the characteristic polynomial Pj of γj on R⊥,
• a set of representatives Irrj ⊂ Irr(R) of the orbits for the action
of γj on Irr(R),
• for each S ∈ Irrj , the size lS of its γj-orbit and the order dS ∈
{1, 2, 3} of the permutation γlSj of S.

B7. For each (S, dS) ∈ Irr(R) × {1, 2, 3} found in B6, compute mτW(S)
using the results of Section 3.2, where τ is any element of order dS
in O(S)/W(S) (see Remark 3.9).

B8. Using Proposition 3.12 and step B7, deduce for each j in J the map
mγjW(R).

B9. For each j in J , define Mj : Carn → Q by setting Mj(P ) =
mγjW(R)(Q) if we have P = QPj , and Mj(P ) = 0 otherwise.

B10. Return
∑

j∈J mjMj∑
j∈J mj

.

We will say more about each step of this algorithm in Section 4.3. Recall
from (3.3) that we have a semi-direct product O(L) = W(L) o Oρ(L)
and that the restriction to the subspace U = Q(R) ⊗ R of V induces a
morphism res : O(L) → O(R), an isomorphism W(L) ∼→ W(R) and a
morphism O(L)ρ → O(R)ρ. Together with (3.2), this explains why the
elements dS introduced in the step B6 are indeed in {1, 2, 3}. Moreover, the
more correct notation for γjW(R) in B8 should be res(γj)W(R). For j in
J , we haveMj = mγjW(L) as W(L) acts trivially on R⊥. Last but not least,
Lemma 3.7 shows

mO(L) =
∑
j∈J mj mγjW(L)∑

j∈J mj
.

We have proved the:

Proposition 4.2. Algorithm B returns mO(L).

4.3. Precisions and an implementation. We now discuss more pre-
cisely the steps of Algorithm B, as well as some aspects of our implemen-
tation: see [6] for the source code and a documentation of the PARI/GP
function masses_calc (requiring GAP) that we developped. Its input is a
Gram matrix G of the lattice L, which is thus viewed as the lattice Zn
equipped with the inner product defined by G.

B1. Apply the Fincke–Pohst algorithm [23] to G to compute R ⊂ Zn. In
PARI’s implementation, qfminim(G)[3] returns a set T ⊂ Zn with T∪−T =
R consisting of all the elements of R lying in a certain half-space of Rn:
this is a positive system, and we simply choose R+ = T .
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B2. Let b be the Gram matrix of the Z-valued bilinear form (x, y) 7→
4(ρ · x)(ρ · y) in the canonical basis of Zn. Apply the Plesken–Souvignier
algorithm [40] to the pair of matrices (G, b). This is implemented in PARI/GP
as qfauto([G,b])[2] (following Souvignier’s C code). It returns a set G′ ⊂
GLn(Z) of generators of the subgroup of O(L) whose elements g satisfy
gρ = ±ρ. For each g ∈ G′, determine the sign εg with gρ = εgρ. Define12 G
as the set of εgg with g ∈ G′.

B3. Apply recursively the Fincke–Pohst algorithm to find S ⊂ Zn, as
explained on p. 551. Choose arbitrarily an ordering ψ : S ∼→ {1, . . . , N}.
For each g in G, compute the permutation σg = ψ◦g◦ψ−1 in the symmetric
group SN . For later use, also extract a basis S0 ⊂ S of Rn.

B4. Apply GAP’s ConjugacyClasses algorithm to the subgroup H of SN
generated by the σg with g in G. It returns a list of representatives (rj)j∈J
of the conjugacy classes of H, as well as their cardinalities (mj)j∈J . Each
rj is a permutation of {1, . . . , N}. Using the subset S0 introduced in B3,
compute the matrix γj ∈ GLn(Z) of the element of O(L)ρ corresponding to
rj under the natural isomorphism H ' O(L)ρ.

B5. Compute first the basis B of the root system R associated to R+,
using B = {α ∈ R+ | α · ρ = 1}. Define a graph with set of vertices B,
and with an edge between b, b′ ∈ B if and only if we have b · b′ 6= 0.
Determine the connected components B =

∐
i∈I Bi of this graph. For i in

I define R+
i as the subset of elements α in R+ with α · Bi 6= 0. We have

Irr(R) = {Ri | i ∈ I}. The isomorphism class of the ADE root system
Ri = R+

i ∪−R
+
i is uniquely determined by its rank |Bi| and its cardinality

2|R+
i |.

B6. Use i 7→ Ri to identify I with Irr(R). Compute the Weyl vector ρi =
1
2
∑
α∈R+

i
α of Ri for each i in I. Fix j ∈ J . There is a unique permutation

τj of I such that γj(ρi) = ρτj(i) for all i in I. Compute τj and determine its
cycle decomposition.

Steps B7–B10 are theoretically straightforward. Nevertheless, the effi-
cient implementation of these steps depends on the way the maps mS are
represented: see the documentation in [6] for more about the (imperfect)
way we proceed in gp. In the end, masses_calc(G) returns the vector
[a, b, c, d] where:

• a is the vector of all [P,m] with P in Carn and m = mO(L)(P ) with
m 6= 0,
• b is the isomorphism class of the root system R(L),

12 An alternative (cleaner) method to compute the stabilizer in O(L) of a given element x of
L would be to simply add the condition vi · x = bi · x for all i ≤ k in the definition of a k-partial
automorphism in [40, §3], as well as a similar constraint in the definition of their fingerprint
in [40, §4]. The main advantage of the trick we use is that we do not have to modify the code of
the PARI port of Souvignier’s program.
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• c is the vector (cj)j∈J where cj encodes both the cycle decomposi-
tion of γj on Irr(R) and the integers dS for each S in Irrj ,
• d is the vector (dj)j∈J with dj = [Pj ,mj/M ] and M =

∑
j∈J mj .

5. The characteristic masses of Niemeier Lattices with roots

The aim of this section is to explain a way to determine the characteristic
masses of the Niemeier lattices with roots which does not use the compu-
tationally heavy steps B1 and B4 in Algorithm B, by rather determining
directly the information of step B6 (and then using of course the elemen-
tary results of Section 3). We will use for this the case by case descriptions
of these lattices given by Venkov [44] or Conway and Sloane [18, Ch. 16],
based on the classical connections between lattices and codes [18, 21], and
study their automorphism groups in slightly more details than what we
could find in the literature. To keep this section short, we assume some
familiarity with Niemeier lattices and mostly follow the exposition in [8,
Ch. 2.3] to which we refer for more details.

5.1. Linking modules, Venkov modules and even unimodular lat-
tices. We first gather some definitions and notations.

(a) A (quadratic) linking module13 is a finite abelian group A equipped
with a quadratic map q : A → Q/Z whose associated symmetric
Z-bilinear map b(x, y) := q(x + y) − q(x) − q(y), A × A → Q/Z,
is a perfect pairing. The isometry group of A is denoted O(A). If
I ⊂ A is a subgroup, we denote by I⊥ the orthogonal of I with
respect to b. We say that I is isotropic if we have q(I) = 0 (this is
usually stronger than I ⊂ I⊥). We say that I is a Lagrangian if it
is isotropic and if we have I = I⊥ (or equivalently |A| = |I|2).

(b) A Venkov module is a linking module A equipped with a (set the-
oretic) map qm : A → Q≥0 such that for all a ∈ A we have
qm(a) ≡ q(a) mod Z, qm(0) = 0 and qm(a) > 0 for a 6= 0. Venkov
modules form an additive category Ven in an obvious way; in par-
ticular we have an obvious notion of orthogonal direct sum of such
objects, denoted ⊕. A root of a Venkov module A is an element
a ∈ A such that qm(a) = 1.

(c) Assume L is an even lattice in the Euclidean space V . Recall that we
set q(x) = x·x

2 for x ∈ V . The finite abelian group L]/L, equipped
with the well-defined quadratic map (that we shall still denote by
q) L]/L→ Q/Z, x+L 7→ q(x) mod Z, is a linking module that we
shall denote by resL (sometimes also called the discriminant group
or glue group of L). This linking module has a canonical structure

13 Such a module is also called a qe-module in [8, Ch. 2.3].
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of Venkov module defined by
qm(x) = inf

y∈x+L
q(y).

Let π : L] → resL be the canonical projection. The map I 7→ π−1I
is a bijection between the set of isotropic subspaces I of resL and
the set of even lattices of V containing L. In this bijection, π−1 I
is unimodular if, and only if, I is a Lagrangian. Moreover, we have
R(π−1I) = R(L) if, and only if, I does not contain any root of resL.

(d) We now focus on the case L = Q(R) with R an ADE root system
in V . In this case Q(R)] is called the weight lattice of R and we set
resR = resL. The group O(R) naturally acts on resR, with W(R)
acting trivially, so we have a morphism G(R) → AutVen(resR).
The Venkov module resR is the orthogonal sum of the resS with
S an irreducible component of R. Assume now R is irreducible.
Canonical representatives for the nonzero elements of resR are given
by the so-called minuscule weights of R, that we denote by $i

following Bourbaki’s conventions [4] for the indices. A key prop-
erty is qm($i + Q(R)) = q($i) (see Table 5.1). We also have
G(R) ∼→ AutVen(resR). In particular, the element − id of O(R)
is in W(R) if, and only if, resR is a Z/2-vector space.

Table 5.1. The Venkov module resR for R an irreducible
ADE root system.

R An Dn, n even Dn, n odd E6 E7 E8

resR Z/(n+ 1) Z/2× Z/2 Z/4 Z/3 Z/2 0
min.wts $i, i = 1, . . . , n $n, $1, $n−1 $n, $1, $n−1 $1, $6 $7

class i mod n+ 1 ω, 1, ω 1, 2, 3 mod 4 1, 2 mod 3 1 mod 2
qm i(n+1−i)

2(n+1)
n
8 ,

1
2 ,

n
8

n
8 ,

1
2 ,

n
8

2
3 ,

2
3

3
4

Remark 5.2. In the case R ' Dn with n even, some authors (e.g. [18])
identify the Z/2-vector space resR with the finite field F4 = {0, 1, ω, ω}. Us-
ing this identification, the automorphism group AutVen(resR) is generated
by the Frobenius f(x) = x2, as well as m(x) = ωx for n = 4 (triality).
5.3. The Niemeier lattices with roots. Niemeier and Venkov have
shown that L 7→ R(L) induces a bijection between the isomorphism
classes of Niemeier lattices with roots, and the isomorphism classes of
equi-Coxeter14 ADE root systems in R24. Fix such a root system R in

14 A root system R is called equi-Coxeter if its irreducible components have the same Coxeter
number, then called the Coxeter number of R and denoted h(R). The Coxeter numbers of An,
Dn, E6, E7 and E8 are respectively n+ 1, 2n− 2, 12, 18 and 30.
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R24. By Section 5.1, there is thus a unique O(R)-orbit of Lagrangians I
in resR containing no root (the “codes”). For any such I, the associated
Niemeier lattice with root system R is L = π−1I, we have | resR| = |I|2 and
G(L) = O(L)/W(R) is the stabilizer of I ⊂ resR in G(R). In particular,
the conjugacy class of G(L) in G(R) does not depend on the choice of I.
Goal. For each of the 23 possible isomorphism classes of R, determine the
G(R)-conjugacy class of the elements of G(L) (with their multiplicity).

This is exactly the information actually needed to apply Proposition 3.12
to each coset σW(R) in O(L). We will use information on G(L) given by
Venkov [44] and Conway–Sloane [18, Table 16.1] (see also [22]), such as
their order and a composition series. Note that those G(L) are also exactly
the umbral groups studied in [12].15 We may assume that the decomposition
of R as a union of its irreducible components has the form16

R = N1R1 N2R2 . . . NgRg,

with Ri 6' Rj for i 6= j, andNi ≥ 1 for all i. We have natural decompositions

resR =
⊕
i

(resRi)Ni , G(R) =
∏
i

G(NiRi) and G(NiRi) = G(Ri) o SNi .

By (3.2), each G(NiRi) is naturally isomorphic either to the symmetric
group SNi , to the hyperoctahedral group HNi , or to TNi := S3 o SNi in the
exceptional case Ri ' D4. The natural exact sequence 1→

∏
i G(Ri)Ni →

G(R) →
∏
i SNi → 1 induces an exact sequence 1 → G1(L) → G(L) →

G2(L) → 1. The orders of G1(L) and G2(L) are given in [18, Table 16.1].
Moreover, the image of G2(L) in SNi is always a transitive subgroup for
each i.

We denote by η ∈ G(L) the class of the element − id of O(L). It is a
central element which does not depend on the choice of I, and satisfies
η2 = 1. Its image in G(NiRi) is trivial if Ri has type A1, D2n, E7 or E8,
and equal to the element −1 of G(NiRi) = HNi otherwise (Section 2.1 and
Table 5.1). An inspection of Table [18, Table 16.1] shows that we always
have G1(L) = 〈η〉, except in the case R ' D6

4 for which we have G1(L) '
Z/3 (and η = 1).
Notation. A conjugacy class C ⊂ G(R) has the form

∏
iCi where Ci is

a conjugacy class in Gi = G(NiRi). So C is uniquely determined by the
collection (ti) where ti is the type of Ci : a partition of Ni in the case
Gi = SNi , a couple of partitions as in Section 2.3 in the case Gi = HNi , and
similarly a triple of partitions in the case Gi = TNi . In this last case, and as
in Section 2.3, we use the sequence of symbols · · · iai ibi ici · · · to denote the

15 Although we will not use it, as this not the information we need, let us mention that the
character tables of umbral groups have been listed in [12, Appendix 2] (and computed using GAP).

16 This is a short notation for
∐g

i=1

∐Ni
j=1 Ri.
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conjugacy class whose elements have a cycle decomposition with ai (resp.
bi, ci) cycles of length i whose i-th power has order 1 (resp. 2, 3), with same
conventions as loc.cit.

We now start the description of the G(R)-conjugacy classes of the el-
ements of G(L). In the non trivial cases, we list their type and give the
number of elements of any given type divided by |G(L)| (the size of the
type):

• R ' D24, D16 E8, A24, A17 E7, A15 D9 and A11 D7 E6. We have
G2(L) = 1, so G(L) = G1(L) = 〈η〉.
• R ' 3E8. We have G(R) = S3 and resR = 0, so G(L) = G(R) = S3.
• R ' 2D12. We have G(R) = H2, G1(L) = 1 and G2(L) = S2. We
may take for I the subgroup {0, (1, ω), (ω, 1), (ω, ω)} (note q(I) =
{0, 2, 3}). For this I, G(L) is the natural subgroup S2 of H2.
• R ' D10 2E7. We have G(R) = H1 × H2, G1(L) = 1 and G2(L) =

S2. We may take I = {0, (ω, 1, 0), (ω, 0, 1), (1, 1, 1)} (note qm(I) =
{0, 2}). So G(L) ' Z/2 is generated by the element (ε1, (1 2)) of
G(R), whose type is (1,2).
• R ' 3D8. We have G(R) = H3, G1(L) = 1 and G2(L) = S3. We
may take for I the subgroup generated by the S3-orbit of (1, 1, ω)
(it contains (0, ω, ω), (ω, ω, ω) and we have |I| = 8 and qm(I) =
{0, 2, 3}). For this I, G(L) is the natural subgroup S3 of H3.
• R ' 2A12. We have G(R) = H2, η = −1 and G2(L) = S2. We
may take I = 〈a〉 ' Z/13 with a = (1, 5) (note qm(I) = {0, 2, 3}).
The order 4 element σ = ε1(1 2) of H2 satisfies σa = −5a, hence
generates G(L). The type of the elements of G(L) are thus 12, 12

and 2, with respective size 1/4, 1/4 and 1/2.
• R ' 4E6. We have G(R) = H4, η = −1 and G2(L) = S4: G(L)
is a central extension of S4 by Z/2. Let I be the Lagrangian of
resR ' (Z/3)4 with π−1I = L. The stabilizer of I in O(resR) is
the semi-direct product of GL(I) ' GL2(Z/3) and of a Z/3-vector
space. The natural morphism G(L)→ GL(I) is thus injective, hence
bijective. In particular, G(L) is not isomorphic to S4 ×Z/2 and we
are in case (ii.c) of Proposition 2.8: G(L) is H4-conjugate to the
subgroup of Example 2.2. The H4-conjugacy classes of G(L) are
thus given by Table 2.1.
• R ' 4D6. We have G(R) = H4, G1(L) = 1 and G2(L) = S4. We
claim that G(L) does not contain the natural subgroup S4 of H4.
Indeed, assume that the Lagrangian I of resR = (res D6)4 defining
L is stable under S4. For any x = (x1, x2, x3, x4) ∈ I and any
1 ≤ i 6= j ≤ 4, we have x + (i j)x in I, hence 2 qm(xi + xj) is
either 0 or an integer ≥ 2. This forces xi + xj = 0 by Table 5.1,
hence |I| ≤ 4: a contradiction. By Proposition 2.8, the subgroup
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G(L) ⊂ H4 is thus H4-conjugate to the subgroup Sε4, and we are
done.
• R ' 2A9 D6. We have G(R) = H2 × H1, η = (−1, 1) and G2(L) =

S2×S1. We may take for I the subgroup generated by the elements
a = (2, 4, 0), b = (5, 0, ω) and c = (0, 5, ω), of respective orders 5,
2 and 2 (check qm(I) = {0, 2, 3}). Observe that I is stable by the
element σ = (ε2(1 2),−1) of G(R): we have σ(a) = (4,−2, 0) = 2a,
σ(b) = (0,−5, ω) = c and σ(c) = (5, 0, ω) = b. This shows G(L) =
〈σ〉 ' Z/4, the types of its elements being (12, 1), (12, 1) and (2, 1),
with respective size 1/4, 1/4 and 1/2.
• R ' 3A8. We have G(R) = H3, η = −1 and G2(L) = S3. By
Proposition 2.8, G(L) is H3-conjugate to the subgroup {±1} · S3
of H3.
• R ' 2A7 2D5. We have G(R) = H2×H2, η = (−1,−1) and G2(L) =

S2×S2. We may take for I the subgroup generated by the elements
a = (1, 1, 1, 2) and b = (1,−1, 2, 1) of order 8 (check qm(I) =
{0, 2, 3}). Note that I is stable under σ1 = ((1 2), ε2) and σ2 =
(ε2, (1 2)): we have σ1(a) = a, σ1(b) = (−1, 1, 2, 3) = −b, and σ2
exchanges a and b. This shows G(L) = 〈σ1, σ2〉 (dihedral of order
8), with types (12, 12), (12, 12) of size 1/8, and types (2, 1 1), (1 1, 2)
and (2, 2) of size 1/4.
• R ' 4A6. We have G(R) = H4, η = −1 and |G2(L)| = 12. So G(L)
is a central extension of G2(L) = Alt4 by Z/2. It has an injective
morphism to GL(I) = GL2(Z/7) (same argument as for 4E6): this
is a non split extension. By Remark 2.9, the types of the elements
of G(L) follow thus from Table 2.1: they are 14, 14, 22, 1 3 and 1 3,
with respective sizes 1/24, 1/24, 1/4, 1/3 and 1/3.
• R ' 6D4. We have G(R) = T6, |G1(L)| = 3 and G2(L) = S6. We
identify res D4 with F4 as in Remark 5.2. Following Conway and
Sloane, I is an hexacode in F6

4. By [18, §11.2], we may choose for
I the F4-vector space generated by the K-orbit of (ω, ω, ω, ω, ω, ω),
where K is the subgroup of Alt6 preserving {{1, 2}, {3, 4}, {5, 6}}.
For this choice, G(L) contains K and G1(L) is generated by the
element (m,m,m,m,m,m) of AutZ/2(F4)6 = (S3)6. Two other el-
ements of G(L) are for instance (f, f, f, f, f, f)(12) and (1, 1, 1, 1,
m2,m)(1 2 3) (for the latter, recall that (ω, ω, ω, ω, 1, 1) is in I). As
K, (1 2) and (1 2 3) generate S6, a straightforward computation al-
lows to list the types of the elements of G(L): we obtain Table 5.2.
• R ' 4A5 D4. We have G(R) = H4 × T1, η = (−1, 1) and G2(L) =

S4 × S1. We identify res D4 with F4 as in Remark 5.2. The first
projection pr1 : G(L) → H4 is injective, and its image H(L) is a
central extension of S4 by Z/2. By Proposition 2.8, H(L) is either
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Table 5.2. The T6-conjugacy classes of the elements of 3.S6.

type 16 16 14 2 12 22 12 22 23 1 12 3 32

size 1/2160 1/1080 1/48 1/48 1/24 1/48 1/18 1/18

type 12 4 2 4 2 4 1 5 1 5 6 1 2 3

size 1/8 1/24 1/12 2/15 1/15 1/6 1/6

conjugate to {±1} × S4 or to the group GL2(Z/3) embeded as in
Example 2.2. By [18, §11.2], we may take for I the subgroup gen-
erated by the σ-orbit of a = (2, 0, 2, 4, 0) and b = (3, 3, 0, 0, w),
where σ = ((2 3 4),m). In order to determine H(L) it is enough to
find the unique ±v ∈ {±1}4 such that v(1 2) ∈ H(L). Note that 2I
is the Z/3-vector space generated by (2, 0, 2, 4, 0) and (2, 4, 0, 2, 0).
We deduce v = ±(1, 1, 1,−1): we have G(L) ' H(L) ' GL2(Z/3).
On the other hand, the second projection pr2 : G(L) → T1 is triv-
ial on η hence factors through a morphism µ : S4 → S3. We have
σ ∈ G(L) and pr2(σ) = m has order 3: µ is “the” classical surjective
morphism from S4 to S3. The types of G(L) are thus immediately
deduced from Table 2.1.
• R ' 6A4. We have G(R) = H6, η = −1 and G2(L) is a tran-
sitive subgroup of S6 of order 120, so G2(L) is isomorphic to S5
and G(L) is a central extension of S5 by Z/2 in H6. We claim that
G(L) does not contain the triple transposition τ = (12) (34) (56).
Indeed, otherwise the Lagrangian I defining L would be invariant
by τ . Set I± = {x ∈ I, τ(x) = ±x}. A nonzero element of I+ has
the form (a, a, b, b, c, c) with 2 qm(a) + 2 qm(b) + 2 qm(c) an integer
6= 1. This forces {±a,±b,±c} = Z/5 since qm(res A4) = {0, 2

5 ,
3
5}.

But the nondegenerate conic a2 + b2 + c2 = 0 in (Z/5)3 contains all
those vectors: we have dimZ/5 I

+ ≤ 1. A similar argument shows
dimZ/5 I

− ≤ 1. This is a contradiction as I = I+ ⊕ I− has di-
mension 3, hence the claim. By Proposition 2.10 and the discussion
after this proposition, G(L) is H6-conjugate to the image of the
map (2.2). The type of its elements are thus given by Table 2.2.
• R ' 8A3. We have G(R) = H8, η = −1 and |G2(L)| = 1344. In
this case, I ⊂ resR = (Z/4)8 is a so-called octacode [18]. The sub-
group C := I/2I a Hamming code in resR ⊗ Z/2 = (Z/2)8 and
G2(L) is the automorphism group of this code. In particular, C
is included in the hyperplane H of (Z/2)8 defined by

∑
i xi = 0

and V := H/C is a hyperplane in the 4-dimensional Z/2-vector
space W := (Z/2)8/C. The (easy) theory of Hamming codes shows
that the map ι : {1, . . . , 8} → W, sending j to the class of the
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canonical basis element δj of (Z/2)8, is injective with image an
affine hyperplane under V , and identifies G2(L) with the affine
group of {1, . . . , 8} for this affine structure. In particular, G2(L)
is isomorphic to GA3(Z/2) = (Z/2)3 o GL3(Z/2). To go further
we choose some I: following [18, Table 16.1] we take the subgroup
generated by the c-orbit of the element (3, 2, 0, 0, 1, 0, 1, 1) where c
is the 7-cycle (2 3 4 5 6 7 8) (we have qm(I) = {0, 2, 3, 4}). With this
choice of I, we have c ∈ G(L) and checks that τ = (3 4 6)(5 8 7) and
σ = ε3ε6ε7ε8 (2 3)(4 5 6 8) lie in G(L) as well. The images in G2(L)
of 1, c, c−1, τ, σ and σ2 are representatives of the conjugacy classes of
the stabilizer G2(L)1 of 1 in {1, . . . , 8}, with resp. sizes 1/168, 1/7,
1/7, 1/3, 1/4 and 1/8 (recall G2(L)1 ' GL3(Z/2)). But c, τ and σ
belong to the stabilizer G(L)1 of 1 ∈ {±1}8 in G(L): the natural
map G(L)→ G2(L) induces an isomorphism G(L)1

∼→ G2(L)1. An
inspection of C shows that the translation by the class of δ1− δ2 in
V is the element (1 2) (3 7) (4 5) (6 8) of S8. One deduces from these
information representatives of the conjugacy classes of G(L): their
types are gathered in Table 5.3.
Table 5.3. The H8-conjugacy classes of the nontrivial ele-
ments of 2.GA3(Z/2).

type 18 121222 24 24 1232 1232 1 1 2 4 42 42 2 6 1 7 1 7

size 1/2688 1/32 1/192 1/32 1/12 1/12 1/8 1/16 1/8 1/6 1/7 1/7

• R ' 12A2. We have G(R) = H12, η = −1 and G2(L) is isomorphic
to the Mathieu group M12. The Lagrangian I ⊂ resR = (Z/3)12 is a
ternary Golay code, whose automorphism group G(L) is the central
extension of M12 by Z/2 denoted 2.M12 in the ATLAS. We know
since Frobenius [24, p. 11] the cycle decompositions, and cardinality,
of all the conjugacy classes of M12. The inverse image in 2.M12 of
such a class c is the union of one or two conjugacy classes c′ ∪ −c′,
the cycle decomposition of c′ being the same as that of c except that
each cycle of c now has a sign to be determined. It is an amusing
exercise17 to extract these signs from the lines χ2 and χ18, and from
the power maps, of the character table of 2.M12 in the ATLAS. We
obtain Table 5.4.18

17 That such an exercise is possible follows from the following fact: if we have an equality of
polynomials

∏
i
(ti − 1)ai (ti + 1)bi =

∏
i
(ti − 1)a

′
i (ti + 1)b

′
i with ai + bi = a′i + b′i for each i,

then ai = a′i and bi = b′i for each i (use t
i + 1 = (t2i − 1)/(ti − 1) and Lemma 3.3).

18 An alternative way to proceed is to use the description of 2.M12 given by Hall in [29], as the
automorphism group of a 12× 12 Hadamard matrix (a subgroup of H12). Using the 4 generators
given by Hall loc. cit., and applying GAP’s ConjugacyClasses algorithm to the permutation group
on 24 letters they generate, we confirm Table 5.4.
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Table 5.4. The H12-conjugacy classes of the nontrivial el-
ements of 2.M12.

type 112 26 1424 1424 1333 1333 34 34 2242 121242

size 1/190080 1/240 1/384 1/384 1/108 1/108 1/72 1/72 1/32 1/32

type 1252 1252 62 1 2 3 6 1 2 3 6 4 8 1 1 2 8 2 10 1 11 1 11

size 1/20 1/20 1/12 1/12 1/12 1/8 1/8 1/10 1/11 1/11

• R ' 24A1. We have G(R) = S24 and G(L) is a Mathieu group M24.
The cycle decompositions and cardinality of the conjugacy classes
of M24 are given by Frobenius in [24, p. 12-13]: see Table 5.5.

Table 5.5. The S24-conjugacy classes of the nontrivial el-
ements of M24.

type 18 28 212 16 36 38 24 44 14 22 44 46 14 54 12 22 32 62 64

mass 1/21504 1/7680 1/1080 1/504 1/384 1/128 1/96 1/60 1/24 1/24

type 1373 12 2 4 82 22 102 12 112 2 4 6 12 122 1 2 7 14 1 3 5 15 3 21 1 23

mass 1/21 1/16 1/20 1/11 1/12 1/12 1/7 2/15 2/21 2/23

Comparison with the output of Algorithm B. For each of the 23 root
systems R above, we verified that the types and sizes of the G(R)-conjugacy
classes of G(L) found are exactly those returned (from scratch, and in a few
seconds!) by Algorithm B (components 3 and 4 returned by masses_calc,
see Section 4.3). The natural isomorphism O(L)ρ ' G(L) and Algorithm B
provide thus a rather useful tool to study the groups G(L).

Appendix A. Irreducible characters of compact orthogonal
groups

Let n ≥ 1 be an integer. We denote by O(n) the isometry group of the
standard Euclidean space V = Rn. We know since Weyl that the complex,
irreducible, continuous representations of the compact group O(n) are all
defined over R and parameterized in a natural way by the n-permissible
(integer) partitions λ. In this section, we recall this parameterization and
discuss formulas for the irreducible characters due to Weyl and Koike–
Terrada.

A.1. The n-permissible partitions. Recall that a partition λ is a non-
increasing integer sequence λ1 ≥ λ2 ≥ · · · with λi ≥ 0 for all i ≥ 1 and
λi = 0 for i big enough. We also say that λ is a partition of the integer
|λ| :=

∑
i λi. The diagram of λ is the Young diagram whose i-th row has
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λi boxes for each i ≥ 1. The dual of λ is the partition λ∗ defined by
λ∗i = |{j ≥ 1 |λj ≥ i}| (with “transpose” diagram).

Following Weyl, the partition λ is called n-permissible if the first two
columns of its diagram contain at most n boxes, or equivalently if we have
λ∗1 + λ∗2 ≤ n. If λ is n-permissible, there is a unique n-permissible partition
µ with λ∗i = µ∗i for i > 1 and λ∗1 + µ∗1 = n, called the associate of λ
and denoted ass(λ). The map λ 7→ ass(λ) is an involution of the set of
n-permissible integer partitions.

An partition λ is called n-positive if we have λ∗1 ≤ n/2 (hence λi = 0 for
i > n/2). If λ is n-admissible but not n-positive, then ass(λ) is n-positive.

A.2. Weyl’s construction. For any integer d ≥ 0, we consider following
Weyl the kernel Kd(V ) of the direct sum of the d(d−1)/2 contraction maps19
ci,j : V ⊗d → V ⊗(d−2), defined for 1 ≤ i < j ≤ d by ci,j(v1⊗ v2⊗· · ·⊗ vd) =
(vi · vj) v1 ⊗ v2 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vd. This kernel has a natural
linear action of O(n)×Sd, hence decomposes as

Kd(V ) '
⊕

{λ | |λ|=d}
Kλ(V )⊗ Rλ

where Rλ is “the” irreducible representation of Sd classically parameterized
by λ, and Kλ(V ) is a real representation of O(n). Set Wλ = Kλ(V )⊗ C.

Weyl shows that Wλ is either 0 or an irreducible representation of O(n)
[46, Thm. 5.7.D]. Moreover, Wλ is nonzero if and only if λ is n-permissible
[46, Thm. 5.7.A & C]. Moreover, he shows that λ → Wλ is a bijection
between the set of n-permissible partitions and the isomorphism classes of
irreducible representations of O(n) [46, Thm. 5.7.H & 7.9.B]. The element
−1n clearly acts as multiplication by (−1)d on Wλ. Weyl shows

(A.1) Wass(λ) 'Wλ ⊗ det

and studies the restriction of Wλ to the index two subgroup SO(n) ⊂ O(n)
in Chap. V.9 & VII.9. We may assume λ is n-positive. There are two cases:

(i) λ 6= ass(λ). The restriction of Wλ to SO(n) is then irreducible
with highest weight

∑
i≤n/2 λi εi, using the classical notations of

Bourbaki [4, Pl. IV]. Moreover, the natural action of O(n)/ SO(n) =
Z/2 on the highest weight lines of Wλ is trivial (and non trivial on
those of Wass(λ) ⊗ C).

(ii) λ = ass(λ). This forces n ≡ 0 mod 2 and λn/2 > 0. The restriction
of Wλ to SO(n) is then the sum of the two irreducible represen-
tations, conjugate under O(n), with highest weights ±λn/2 εn/2 +∑n/2−1
i=1 λi εi.

19 All tensor products are taken over R in Section A.2.
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A.3. Character formulas. Weyl gives a determinantal formula for the
character of Wλ in [46, Thm. 7.9.A]. Contrary to the standard so-called
Weyl character formula, which applies to any connected compact Lie
groups, that formula equally applies to elements in any of the two con-
nected components20 of O(n). Assume g is in O(n) and write det(1−tg)−1 =∑
i∈Z pit

i in Z[[t]] (so pi = 0 for i < 0). Weyl shows loc. cit. that for any
n-permissible partitions λ we have

(A.2) Trace(g ; Wλ) = det(pλi−i+j − pλi−i−j)1≤i,j≤λ∗1 .

If we write det(1 + tg) =
∑
i∈Z eit

i (so ei = 0 for i < 0 or i > n), and set
δ1 = 0 and δj = 1 for j > 1, then [33, Thm. 2.3.3(6)] implies

(A.3) det(pλi−i+j −pλi−i−j)1≤i,j≤λ∗1 = det(eλ∗i−i+j + δj eλ∗i−i−j+2)1≤i,j≤λ1 ,

See also the equivalence of (ii) and (iv) in [25, Cor. A.46] for a direct
alternative proof of this equality.

Remark A.4. In the case λ1=0, or equivalently |λ| = 0 or λ is the empty
diagram, then Wλ is the trivial representation and both determinants above
are indeed 1 by convention. Moreover, the formula en−i = (det g)ei for i ∈ Z
shows that the determinant on the right-hand side of (A.3) is multiplied by
det g if λ is replaced by ass(λ) (it amounts to multiply by det g the first line
of the matrix inside the determinant), in agreement with Formula (A.1).

Appendix B. An asymptotic formula

Proposition B.1. Let L be a lattice in the Euclidean space Rn and λ an
n-permissible partition with |λ| ≡ 0 mod 2. Then we have

dim WO(L)
λ ∼ 2

|O(L)| dim Wλ

for λ→∞, in the sense that λi − λi+1 → +∞ for each 1 ≤ i ≤ n/2.

Proof. As we have λ → ∞ we may assume λ is positive and λ[n/2] >
0. Denote by Vλ the irreducible constituent of (Wλ)| SO(n) with highest
weight

∑
i≤n/2 λi εi. Set SO(L) = O(L) ∩ SO(n). If n is odd, we have

(Wλ)|SO(n) = Vλ, O(L) = {± id} × SO(L) and WO(L)
λ = VSO(L)

λ . If n is
even, then (Wλ)| SO(n) is the direct sum of Vλ and of its outer conjugate
V′λ, and Wλ is induced from Vλ: we have thus WO(L)

λ = VSO(L)
λ in the case

O(L) 6= SO(L) and WO(L)
λ = VSO(L)

λ ⊕ (V′λ)SO(L) otherwise. We conclude
from the degenerate form of Weyl’s character formula for SO(n) given in [7,
Prop. 1.9]. �

20 Let us mention that there exists also a variant of the Weyl character formula which applies
to the irreducible characters of non connected compact Lie groups: see e.g. [34, 45].
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Assume now n ≡ −1, 0, 1 mod 8 and set µn =
∑

[L]∈Xn
1

|O(L)| . The
mass formula of Minkowski–Siegel–Smith asserts that we have µn =∣∣∣Bn/2

n

∏n/2−1
j=1

B2j
4j

∣∣∣ for n ≡ 0 mod 8, and µn =
∣∣∣∏(n−1)/2

j=1
B2j
4j

∣∣∣ for n ≡ ±1 mod
8, where the Bm are the Bernouilli numbers [17].

Corollary B.2. For n ≡ −1, 0, 1 mod 8, |λ| ≡ 0 mod 2 and λ → ∞ we
have dim MWλ

(On) ∼ 2µn dim Wλ.

For instance, in the case n = 24 of main interest here we have µ24 ≈
8 · 10−15, quite a small number compared to |X24| = 24, and of course we
expect dim MWλ

(O24) to be small for small values of λ.

Appendix C. Tables

In the following tables, we use the notation 1a1 2a2 . . . mam for the poly-
nomial ϕa1

1 ϕ
a2
2 · · ·ϕamm , where ϕn is the n-th cyclotomic polynomial and

where the symbol “ia” is omitted for a = 0, and shorten as “i” for a = 1.

Table C.1. The 7 nonzero m = mσW(D4)(P ) for P in Car4,
where σ in G(D4) has order 3.

P m P m P m P m P m P m P m

32 1/24 62 1/24 123 1/12 226 1/12 1 2 3 1/4 12 1/4 1 2 6 1/4

Table C.2. The 25 nonzero m = mW(E6)(P ) for P in Car6.

P m P m P m P m P m

16 1/51840 1422 1/192 3 62 1/72 132 4 1/32 3 12 1/12
152 1/1440 1232 1/108 132 3 1/36 12223 1/24 125 1/10
1224 1/1152 1242 1/96 12226 1/36 12224 1/16 1 2 5 1/10
33 1/648 1323 1/96 1 2 32 1/36 1 2 4 6 1/12 9 1/9
143 1/216 1 234 1/96 223 6 1/36 1 2 3 6 1/12 1 2 8 1/8
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Table C.3. The 54 nonzero m = mW(E7)(P ) for P in Car7.

P m P m P m P m P m P m

17 1/2903040 2 63 1/1296 12233 1/288 12236 1/96 122 4 6 1/48 2 6 12 1/24
27 1/2903040 1342 1/768 142 3 1/288 1 2262 1/72 122 3 4 1/48 1 2210 1/20

1 26 1/46080 2342 1/768 1 2242 1/256 122 32 1/72 1 228 1/32 122 5 1/20
162 1/46080 1324 13/9216 122 42 1/256 135 1/60 1 4 8 1/32 1 223 6 1/18
153 1/4320 1423 13/9216 1332 1/216 2310 1/60 122 8 1/32 1 9 1/18
256 1/4320 1 244 1/384 2362 1/216 13224 7/384 2 4 8 1/32 122 3 6 1/18
1522 1/3072 142 4 1/384 1 3 62 1/144 12234 7/384 1 3 5 1/30 2 18 1/18
1225 1/3072 13226 1/288 2 326 1/144 1 223 4 1/48 2 6 10 1/30 1 7 1/14
1 33 1/1296 1 246 1/288 13223 1/96 1 224 6 1/48 1 3 12 1/24 2 14 1/14

Table C.4. The 106 nonzero m = mW(E8)(P ) for P in Car8.

P m P m P m P m P m

18 1/696729600 12243 1/6912 13236 1/576 226 12 1/144 1 2 3 12 1/48
28 1/696729600 1424 37/221184 132 4 6 1/576 124 8 1/128 1 2 6 8 1/48

1 27 1/5806080 1 2 33 1/2592 123 42 1/576 224 8 1/128 1 2 6 12 1/48
172 1/5806080 1 2 63 1/2592 22426 1/576 1 2310 1/120 1 2 4 5 1/40
163 1/311040 1432 1/2592 1 2362 1/432 132 5 1/120 1 2 4 10 1/40
266 1/311040 2462 1/2592 132 32 1/432 122242 9/1024 1 2 9 1/36
1622 1/184320 3262 1/1728 1 238 1/384 129 1/108 1 2 18 1/36
1226 1/184320 1 2342 1/1536 132 8 1/384 2218 1/108 12223 6 1/36
64 1/155520 132 42 1/1536 1 2 326 1/288 12224 6 1/96 15 1/30
34 1/155520 145 1/1200 1 2 3 62 1/288 12223 4 1/96 30 1/30
44 1/46080 2410 1/1200 122262 1/288 122210 1/80 1 2 7 1/28

1325 1/18432 14223 1/1152 6212 1/288 12225 1/80 1 2 14 1/28
1523 1/18432 12246 1/1152 122 1/288 1 2 3 4 6 1/72 127 1/28
1442 1/18432 123 62 1/864 122232 1/288 4212 1/72 2214 1/28
2442 1/18432 22326 1/864 3212 1/288 12228 1/64 1 2 4 12 1/24
1 254 1/15360 1 2 43 1/768 13234 19/4608 1 2 3 5 1/60 24 1/24
152 4 1/15360 14224 1/768 1 234 6 1/192 1 2 6 10 1/60 20 1/20
1 256 1/8640 12244 1/768 132 3 4 1/192 123 5 1/60 1 2 4 8 5/64
152 3 1/8640 102 1/600 82 1/192 226 10 1/60
2263 1/7776 52 1/600 1 233 6 1/144 6 18 1/54
1233 1/7776 1 233 4 1/576 132 3 6 1/144 3 9 1/54
14226 1/6912 13233 1/576 123 12 1/144 1 2 3 8 1/48
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Table C.5. The 160 nonzero m = mO(Leech)(P ) for P in Car24.

P m P m P m P m

124 1/8315553613086720000 14223663 1/31104 243 1/864 12226 9 182 1/108
224 1/8315553613086720000 1455 1/30000 14244482 1/768 123 6 9218 1/108
312 1/2690072985600 24105 1/30000 122242 1/576 223 6 9 182 1/108
612 1/2690072985600 52104 1/19200 14243464 1/576 326212224 1/96

18216 1/178362777600 54102 1/19200 12243263122 1/576 84 1/84
11628 1/178362777600 162646 1/15360 123 4262123 1/576 82242 1/72
412 1/2012774400 144284 1/12288 14223362122 1/576 3 9 12 36 1/72
1848 1/743178240 244284 1/12288 2232426 123 1/576 6 12 18 36 1/72
2848 1/743178240 153 1/10800 12223 446 122 1/576 35 1/70

112212 1/389283840 303 1/10800 14243 426312 1/576 70 1/70
11236 1/117573120 3262124 1/9216 142433426 12 1/576 3233 1/66
21266 1/117573120 142484 1/6144 212 1/504 6266 1/66
1639 1/25194240 123342123 1/5184 422 1/504 12228 162 1/64
2669 1/25194240 224263123 1/5184 3 629 182 1/432 12260 1/60
3468 1/19906560 3464122 1/4608 326 9218 1/432 20 60 1/60
3864 1/19906560 3393 1/3888 3212 242 1/384 123 5 152 1/60
56 1/6048000 63183 1/3888 6212 242 1/384 226 10 302 1/60
106 1/6048000 143244122 1/3456 52152 1/360 123 5 15 30 1/60

1621044 1/1474560 16263363 1/3456 102302 1/360 226 10 15 30 1/60
1102644 1/1474560 244462122 1/3456 132 1/312 12223 5 6 10 15 1/60
142448 1/1179648 1673 1/2352 262 1/312 12223 5 6 10 30 1/60
1838 1/1088640 26143 1/2352 142432426212 1/288 12427 28 1/56
2868 1/1088640 12224284 1/2048 15 302 1/240 224214 28 1/56
126 1/483840 34152 1/1800 15230 1/240 52 1/52

163564 1/311040 64302 1/1800 14325215 1/180 12223 6 8224 1/48
263465 1/311040 14264382 1/1536 246210230 1/180 1222324262122 1/48

16263 65 1/311040 16244382 1/1536 282 1/168 12223 4 6212 24 1/48
1626356 1/311040 44124 1/1440 142452102 1/160 1222324 6 12 24 1/48
182844 1/294912 203 1/1200 428212 24 1/144 12327 21 1/42
34124 1/276480 44202 1/1200 14112 1/132 226214 42 1/42
64124 1/276480 1453102 1/1200 24222 1/132 20 40 1/40
4484 1/92160 2452103 1/1200 124 8 162 1/128 12225 10220 1/40
1854 1/72000 14245 103 1/1200 224 8 162 1/128 12225210 20 1/40
28104 1/72000 14245310 1/1200 7221 1/126 1222425 10 20 1/40

86 1/48384 123293 1/972 14242 1/126 39 1/39
14283264 1/41472 143 93 1/972 15 60 1/120 78 1/39
18243462 1/41472 2262183 1/972 30 60 1/120 56 1/28

74 1/35280 246 183 1/972 12247 142 1/112 1223 1/23
144 1/35280 52202 1/960 14227214 1/112 2246 1/23

12243366 1/31104 102202 1/960 12223 9218 1/108 122211 22 1/22
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Table C.6. The nonzero dimensions of MWλ
(O24) for λ1 ≤ 3.

λ dim λ dim λ dim λ dim λ dim

24 : 1 32 4 : 0 33241 181 : 0 3428 148 3626 276

18 1 : 1 3212 19 : 0 332413 97 : 0 351 27 : 0 371 174 : 0

112 1 322 3 : 0 332415 1 3513 94 : 1 3713 333 : 17

2 9 : 0 32212 19 : 0 33251 251 : 1 3515 20 : 0 3715 211

22 27 : 0 3222 15 : 0 332513 120 : 1 3517 1 3721 512 : 17

23 26 : 0 322212 50 : 0 33261 265 : 1 3521 140 : 0 37213 801 : 342

24 43 : 0 3223 18 : 0 332613 100 35213 242 : 1 37221 905 : 253

2418 1 322312 58 : 0 33271 219 : 51 35215 82 : 1 372213 927

25 35 : 0 3224 46 : 0 33281 134 35221 308 : 0 37231 1042 : 683

2514 1 : 1 322412 97 : 0 34 28 : 0 352213 417 : 1 37241 675

26 67 : 1 322416 1 3412 28 : 0 352215 87 38 191 : 34

2614 1 : 1 3225 48 : 0 3414 53 : 1 35231 546 : 1 3812 476 : 137

2616 1 322512 91 : 0 3418 1 352313 551 : 111 3814 530

27 42 : 0 3226 97 : 0 342 30 : 0 35241 672 : 58 382 327 : 51

28 69 : 1 322612 123 : 1 34212 80 : 0 352413 525 38212 881 : 552

2814 1 322614 1 34214 51 : 0 35251 659 : 325 3822 660 : 333

29 37 : 0 3227 70 : 0 34216 1 : 1 35261 398 382212 1047

210 48 : 0 322712 74 : 0 3422 112 : 1 36 36 : 0 3823 500 : 364

211 11 : 0 3228 104 : 0 342212 202 : 1 3612 217 : 1 3824 346

212 37 322812 86 342214 132 : 2 3614 180 : 0 391 307 : 133

31 1 : 0 3229 39 : 8 342216 1 3616 91 3913 496

321 7 : 0 32210 54 3423 155 : 0 362 79 : 0 3921 651 : 491

3221 11 : 0 331 8 : 0 342312 291 : 0 36212 474 : 0 39221 542

3231 31 : 0 3313 6 : 0 342314 126 : 1 36214 367 : 61 310 158 : 121

3241 33 : 0 3321 25 : 0 3424 293 : 1 3622 270 : 0 31012 406

3251 56 : 0 33213 33 : 0 342412 432 : 1 362212 902 : 93 3102 177 : 160

3261 61 : 0 33221 67 : 0 342414 156 362214 551 31022 161

3271 63 : 0 332213 49 : 0 3425 270 : 0 3623 386 : 16 3111 93

3281 59 : 0 332215 1 : 1 342512 387 : 75 362312 988 : 418 312 74

32813 1 33231 122 : 0 3426 380 : 73 3624 563 : 197

3291 53 : 0 332313 102 : 1 342612 362 362412 948

32101 18 332315 1 : 1 3427 192 : 89 3625 371 : 286
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See the discussion after Theorem 1 for instructions to read Table C.6.
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