
Toufik ZAÏMI

Quartic Salem numbers which are Mahler measures of non-reciprocal
2-Pisot numbers
Tome 32, no 3 (2020), p. 877-889.

<http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_3_877_0>

© Société Arithmétique de Bordeaux, 2020, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique
l’accord avec les conditions générales d’utilisation (http://jtnb.
centre-mersenne.org/legal/). Toute reproduction en tout ou partie
de cet article sous quelque forme que ce soit pour tout usage autre
que l’utilisation à fin strictement personnelle du copiste est con-
stitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/

http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_3_877_0
http://jtnb.centre-mersenne.org/
http://jtnb.centre-mersenne.org/legal/
http://jtnb.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 32 (2020), 877–889

Quartic Salem numbers which are Mahler
measures of non-reciprocal 2-Pisot numbers

par Toufik ZAÏMI

Résumé. Motivé par une question de M. J. Bertin, on obtient des paramé-
trisations des polynômes minimaux des nombres de Salem quartiques, disons
α, qui sont des mesures de Mahler des 2 -nombres de Pisot non-réciproques.
Cela nous permet de déterminer de tels nombres α, de trace donnée, et de
déduire que pour tout entier naturel t (resp. t ≥ 2), il y a un nombre de Salem
quartique, de trace t, qui est (resp. qui n’est pas) une mesure de Mahler d’un
2 -nombre de Pisot non-réciproque.

Abstract. Motivated by a question of M. J. Bertin, we obtain parametriza-
tions of minimal polynomials of quartic Salem numbers, say α, which are
Mahler measures of non-reciprocal 2-Pisot numbers. This allows us to deter-
mine all such numbers α with a given trace, and to deduce that for any natural
number t (resp. t ≥ 2) there is a quartic Salem number of trace t which is
(resp. which is not) a Mahler measure of a non-reciprocal 2-Pisot number.

1. Introduction

A Salem number, named after R. Salem [12, 13], is a real algebraic integer
greater than 1 whose other conjugates are of modulus at most 1, with at
least one conjugate of modulus 1; the set of such numbers is traditionally
denoted by T [1]. An algebraic integer θ is said to be a j-Pisot number
if it has j conjugates, including θ, with modulus greater than 1, and no
conjugate with modulus 1. This is a generalization of the classical notion
of Pisot numbers, where j = 1 and θ ∈ R is positive. It seems it was
Cantor [6] who came up with a similar definition (he called such numbers
k-PV “tuples”). Cases where j = 2 and θ ∈ C \ R are called complex
Pisot numbers; they were considered by Kelly [11] and then investigated
in more detail by Chamfy [7]. Some results on complex Pisot numbers in
a given algebraic number field may be found in [2]. Imaginary Gaussian
Pisot numbers are examples of complex Pisot numbers. A Gaussian Pisot
number is an algebraic integer with modulus greater than 1 whose other
conjugates, over the Gaussian field Q(i), where i :=

√
−1, are of modulus

less than 1. Some properties of the set of Gaussian Pisot numbers may be
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found in [16, 17], and [18, Proposition 1] says that a complex Pisot number
θ such that i ∈ Q(θ) is an imaginary Gaussian Pisot.

Recall also that the Mahler measureM(θ) of a non–zero algebraic integer
θ is the absolute value of the product of the conjugates of θ with modulus
at least 1, and the number θ is said to be reciprocal whenever 1/θ is a
conjugate of θ. In particular, a reciprocal algebraic integer is a unit, and
a Salem number, say α, is reciprocal and has (deg(α) − 2) ≥ 2 conjugates
with modulus 1.

Throughout, when we speak about conjugates, the minimal polynomial,
the trace and the degree of an algebraic number θ, without mentioning the
basic field, this is meant over Q. As usual, we denote by deg(θ), Γθ, Gθ,
tr(θ), and Irr(θ,K, x) the degree of θ, the normal closure of the extension
Q ⊂ Q(θ), the Galois group of Γθ realized as a subgroup of the symmetric
group Sdeg(θ), the trace of θ, and the minimal polynomial of θ over a number
field K, respectively. Also, if we designate by Pj and U the sets of non-
reciprocal j-Pisot numbers and non-reciprocal totally imaginary quartic
units with modulus greater than 1, respectively, then U ⊂ P2 and any
element of U is a complex Pisot number.

Initiated by Boyd [3], several authors studied the question of whether a
given algebraic integer is a Mahler measure of an algebraic number, and
some related results may be found in [4], [8] and [9]. To answer a more
specific question raised also by Boyd, Dubickas showed in [10] that there
are families of Salem numbers for every degree of the form 2 + 4n (n ∈ N)
and also for degree 4 which are Mahler measures of non-reciprocal algebraic
integers.

In this context, we have recently investigated Salem numbers which are
Mahler measures of non-reciprocal 2-Pisot numbers [15, 19]. We proved,
in particular, that if α ∈ T satisfies α = M(θ) for some θ ∈ P2, then
deg(α) ∈ {4, 6} and θ ∈ U [19]. Also, we obtained a characterization of
such numbers α with deg(α) = 6, implying that Gα is isomorphic to S4 or
to A4 [15].

The above mentioned result of [19] may be completed as follows.

Theorem 1.1. Let θ ∈ C. Then, θ ∈ P2 and M(θ) ∈ T ⇔θ ∈ Uand one
of the following equivalent criteria holds:

(i) deg(M(θ)) ∈ {4, 6};
(ii) θ /∈ Q(θ);
(iii) Q(θ) is non-normal;
(iv) Gθ is the symmetric group S4, the alternating group A4, or the

dihedral group D4.

Whenever we write Gθ = D4 we mean, with an abuse of notation, that
Gθ = D4 for an appropriate labelling of the conjugates of θ. In fact the first
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equivalence in Theorem 1.1, namely
(1.1) (θ ∈ P2 and M(θ) ∈ T )⇐⇒(θ ∈ U and deg(M(θ)) ∈ {4, 6}),
is contained in [19, Theorem 1.1]. This theorem also yields

(1.2) θ∈U
=⇒ (deg(M(θ))∈{2, 4, 6}, and deg(M(θ))=6⇔ Gθ∈{S4, A4}).

From (1.2) and Theorem 1.1 we easily deduce:
Corollary 1.2. Let θ ∈ U . Then we have the following.

(i) M(θ) is a Salem number of degree 6 ⇔ deg(M(θ)) = 6 ⇔ Gθ ∈
{S4, A4}.

(ii) M(θ) is a Salem number of degree 4⇔ deg(M(θ)) = 4⇔ Gθ = D4.
(iii) M(θ) is not a Salem number ⇔ deg(M(θ)) = 2⇔ Q(θ) is normal.

Proof. The first (resp. second, last) assertion follows immediately from the
relations (1.1) and (1.2) (resp. the relations (1.1), (1.2) and the equivalence
(i) ⇔ (iv) in Theorem 1.1, the relations (1.1), (1.2) and the equivalence
(i)⇔ (iii) in Theorem 1.1). �

Explicit examples of numbers θ ∈ U satisfying Gθ = D4 (and so by Corol-
lary 1.2(ii), M(θ) ∈ T with deg(M(θ)) = 4) are given in [19, Theorem 1.2]
and in [19, Theorem 1.3]. These theorems describe all non-reciprocal Gauss-
ian Pisot numbers θ satisfying M(θ) ∈ T , and in a private communication
M. J. Bertin proposed me to determine the minimal polynomials of such
numbers M(θ). In fact Theorem 3.4, below, gives parametrizations of the
minimal polynomials of all elements of

T := {α ∈ T | deg(α) = 4 and α = M(θ) for some θ ∈ P2},
yielding a simple algorithm to determine all α ∈ T with a given trace. This
is the major result of the present note from which we obtain the following.
Theorem 1.3. For any natural number t (resp. t ≥ 2) there is a quartic
Salem number of trace t which is (resp. which is not) a Mahler measure
of a non-reciprocal 2-Pisot number. Furthermore, if mt (resp. nt) denotes
the number of quartic Salem numbers of trace t which are (resp. which are
not) Mahler measures of non-reciprocal 2-Pisot numbers, then limt→∞mt =
limt→∞ nt/mt =∞.

The proofs of Theorem 1.1 and Theorem 1.3 are presented in the next and
the last section, respectively. As mentioned above Section 3 contains also
parametrizations of the minimal polynomials of all quartic Salem numbers
which are Mahler measures of non-reciprocal 2-Pisot numbers. All compu-
tations are performed using PARI [14].

To end this section let us show the following simple generalization of the
direct implication in the third equivalence in Theorem 1.1.
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Proposition 1.4. If θ ∈ Pj and M(θ) ∈ T , then θ is a unit, deg(θ) =
2j ≥ 4, and Q(θ) is non-normal whenever j is odd or j = 2.

Proof. Let θ ∈ Pj such that M(θ) ∈ T . If the conjugates θ1, . . . , θd of θ are
labelled so that

|θ1| ≥ · · · ≥ |θj | > 1 > |θj+1| ≥ · · · ≥ |θd|,
then M(θ) = εθ1 . . . θj for some ε ∈ {−1, 1}, j ≥ 2, d ≥ j + 1 (d = j ⇒
M(θ) ∈ N), and M(θ) is a unit, as M(θ) is reciprocal; thus θ is a unit.
Writing 1/M(θ) = εθk1 . . . θkj

for some 1 ≤ k1 < · · · < kj ≤ d we see that
θ1 · · · θjθk1 . . . θkj

= 1 = |θ1 . . . θjθj+1 . . . θd|,
|θk1 . . . θkj

| = |θj+1 . . . θd|,
and so d = 2j, since otherwise the inequalities |θkj

| ≥ |θd|, |θkj−1 | ≥
|θd−1|, . . . , |θk1 | ≥ |θd−j+1| imply |θk1 . . . θkj

| ≥ |θd−j+1 . . . θd| > |θj+1 . . . θd|.
Also, if Q(θ) is normal, then θ is totally imaginary (recall that M(θ) has a
non-real conjugate with modulus 1), and so the number of conjugates of θ
with modulus greater than 1, namely j, must be even. Finally, we have by
Theorem 1.1 that Q(θ) is non–normal when j = 2. �

2. Proof of Theorem 1.1

As mentioned above the relation (1.1) follows from [19, Theorem 1.1].
Hence we have to show that the assertions (i)–(iv) are equivalent for any
θ ∈ U . Using (1.2) and the fact that the transitive subgroups of S4 with
cardinality greater than 4 are S4, A4 and the three isomorphic copies of
D4, it is enough to prove
(2.1) deg(M(θ)) = 2⇐⇒ θ∈Q(θ)⇐⇒ Q(θ) is normal⇐⇒ Card(Gθ)=4,
i.e.,
(2.2) deg(M(θ)) = 2⇐⇒ θ ∈ Q(θ)
and
(2.3) Q(θ) is normal⇐⇒ θ ∈ Q(θ),
∀ θ ∈ U , as the last equivalence in (2.1) is always true.

Let θ, θ, θ2, θ2 be the conjugates of θ. Then, the conjugates ofM(θ) = θθ
are among the algebraic integers
(2.4) θθ, θθ2, θθ2, θθ2, θθ2, θ2θ2 = 1/M(θ),
and 1/M(θ) is necessarily one of them, sinceM(θ)> 1 = |θ||θ2|> 1/M(θ)>
0; thus deg(M(θ)) ≥ 2, and deg(M(θ)) = 2⇔ P (x) := (x− θθ)(x− 1/θθ)
is the minimal polynomial of M(θ).

Clearly, if θ ∈ Q(θ), then θθ ∈ Q(θ) ∩ R and so deg(M(θ)) = 2. To
complete the proof of (2.2) suppose deg(M(θ)) = 2 and on the contrary θ /∈
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Q(θ). Then,M(θ) /∈ Q(θ) and so P (x) = Irr(M(θ),Q(θ), x). By considering
the embedding, say σ, of the fieldQ(θ,M(θ)) into C, which sends θθ to 1/θθ,
and whose restriction to Q(θ) is the identity, we see that σ(θ) = σ(θθ/θ) =
σ(θθ)/σ(θ) = 1/θ2θ and this leads immediately to a contradiction, because
|1/θθ2| = 1/|θ|3 < 1/|θ| and θ has no conjugate with modulus less than
1/|θ|.

Similarly, the direct implication in (2.3) is trivial. To prove the converse,
suppose θ ∈ Q(θ). Then, the identity idQ(θ) of Q(θ) and the restriction
cQ(θ) of the complex conjugation to Q(θ) send the pair (θ, θ) to (θ, θ) and
(θ, θ), respectively. Also, the image of θ under the action of the embedding
of Q(θ) into C sending θ to θ2 (resp. to θ2) is θ2 (resp. is θ2), because
this embedding is distinct from idQ(θ) and cQ(θ). Therefore the conjugates
the algebraic integer θ/θ ∈ Q(θ), namely θ/θ, θ/θ, θ2/θ2, θ2/θ2, are all of
modulus 1, and so θ/θ is a root of unity.

It follows, when deg(θ/θ) = 4, that the field Q(θ) = Q(θ/θ) is cyclotomic,
and hence Q(θ) is normal. Also, if deg(θ/θ) = 1, then θ = −θ, θ2 =
−θ2, and so there are two real numbers y and z such that θ = iy and
θ2 = iz. As |θ2| = 1/|θ| there is ε ∈ {−1, 1} such that yz = ε; thus
θ2 = iε/y = −ε/iy = −ε/θ ∈ Q(θ), and Q(θ) is normal. Finally, suppose
deg(θ/θ) = 2. Then, Q(θ/θ) is a non-real quadratic subfield of Q(θ) (in fact
Q(θ/θ) ∈ {Q(i),Q(i

√
3)}). Moreover, as θθ ∈ Q(θ) ∩ R and deg(θθ) = 2,

we have that Q(θθ) is a real quadratic subfield of Q(θ), Q(θ) = Q(θ/θ, θθ)
is a composite of two quadratic fields, and so Q(θ) is normal. �

3. Quartic Salem numbers which are Mahler measures of
elements of U

As it was observed, by Boyd [5], a polynomial

S(a,b)(x) := x4 − ax3 + bx2 − ax+ 1 ∈ Z[x]

is the minimal polynomial of a quartic Salem number α(a,b) if and only if
|b+ 2| < 2a and b /∈ {1− a, 2, 1 + a}.

Therefore, the trace of a quartic Salem is a natural number, and for each
a ∈ N with a ≥ 4 (resp. with a ≤ 3) there are 4(a − 1) (resp. 3a) quartic
Salem numbers α with tr(α) = a.

Also, notice that if
(3.1) α1 := α, α2, α3 := 1/α1, α4 := 1/α2 = α2

designate the conjugates of a quartic Salem number α, then the conjugates
of the unit α1α2 are β1 := α1α2, β2 := α1α2, β3 := α2/α1 = 1/β1, β4 :=
α2/α1 = 1/β2, since Γα = Q(α1, α2) and Gα = D4 (for more details see the
proof of Lemma 3.1 below), tr(1/β1) = tr(β1) =

∑
1≤j<k≤4 αjαk−2 = b−2,
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β1β2β3β4 = 1,
∑

1≤j<k≤4 βjβk = tr(α2) + 2 = tr2(α) − 2 tr(β1) − 2 =
a2 − 2b+ 2, and so

(3.2) S(a,b)(x) = Irr(α,Q, x)
=⇒ Irr(α1α2,Q, x) = x4−(b− 2)x3 +(a2−2b+2)x2−(b− 2)x+1.

Now, consider an element θ ∈ U with conjugates θ, θ, θ2, θ2. As it was
indicated in the proof of Theorem 1.1, 1/θθ is a conjugate ofM(θ) = θθ, and
the conjugates of M(θ) are among the numbers given by (2.4). It follows,
when deg(M(θ)) = 4, that one the two numbers θθ2 and θθ2 is a conjugate
of M(θ), and the other is a root of unity with degree at most 2, since the
set {θθ, θθ2, θθ2, θθ2, θθ2, θ2θ2} is closed under complex conjugation.

Replacing, if necessary, θ by θ we may assume without loss of generality
that θθ2 is a conjugate of M(θ). Therefore,

ζ := θθ2 ∈ {−1,±i, e±i2π/3, e±iπ/3},
θ2 ∈ {−1/θ,±i/θ, e±i2π/3/θ, e±iπ/3/θ}, and this leads to a partition of set

V = {θ ∈ U |M(θ) ∈ T} = {θ ∈ U | deg(M(θ)) = 4}
as stated by the following lemma.

Lemma 3.1. Let V1 (resp. V2, V3, V4) be the collection of elements θ of
U such that the set of conjugates of θ is {θ, θ,−1/θ,−1/θ} (resp. {θ, θ, i/θ,
−i/θ}, {θ, θ, ei2π/3/θ, e−i2π/3/θ}, {θ, θ, eiπ/3/θ, e−iπ/3/θ}) and deg(M(θ))=
4. Then

V = V1 ∪ V2 ∪ V3 ∪ V4.

Furthermore, if α ∈ T and θ ∈ V such that α = M(θ), then Gθ = D4 and
Γθ = Q(θ, θ) = Q(α1, α2) = Γα.

Proof. The first statement in Lemma 3.1 follows trivially from the compu-
tation above, Theorem 1.1 and Corollary 1.2. It is also clear that (for any
quartic Salem number α) Γα = Q(α1, α2), α2 /∈ Q(α), Irr(α2,Q(α), x) =
(x − α2)(x − 1/α2), [Γα : Q] =8, and Gα = D4 (for the ordering of the
conjugates of α given by (3.1)). Also, Corollary 1.2(ii) yields Gθ = D4 and
[Γθ : Q] =8; thus Γα = Γθ, since {α1, α2} ⊂ {θθ, θθ2, θθ2} ⊂ Γθ (recall that
ζ = θθ2 and ζ = θθ2). Finally, we have by the implication (i) ⇒ (ii) in
Theorem 1.1 that θ /∈ Q(θ), [Q(θ, θ) : Q] ≥8 and so Q(θ, θ) = Γθ. �

The lemma below is the main tool in the proof of Theorem 3.4.

Lemma 3.2. The polynomial S(a,b) is the minimal polynomial of a Salem
number α satisfying α = M(θ) for some θ ∈ V1 if and only if b /∈ {1− a,
2, 1 + a} and there is a quadratic algebraic integer s such that Im(s2) 6= 0
and (a, b) = (|s|2,−s2− s2− 2). If one of these two assertions is true, then
(3.3) Irr(θ,Q, x) = x4 − (s+ s)x3 + (|s|2 − 2)x2 + (s+ s)x+ 1.
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Similarly, the polynomial S(a,b) is the minimal polynomial of a Salem num-
ber α satisfying α = M(θ) for some θ ∈ V2 (resp. θ ∈ V3, θ ∈ V4) if and
only if b /∈ {1 − a, 2, 1 + a} and there is an algebraic integer s ∈ Q(ζ),
where ζ := i (resp. ζ := ei2π/3, ζ := eiπ/3), such that Im(ζs2) 6= 0 and
(a, b) = (|s|2, ζs2 + ζs2 − 2). If one of these two assertions is true, then

(3.4) Irr(θ,Q, x) = x4 − (s+ s)x3 + (|s|2 + ζ + ζ)x2 − (sζ + sζ)x+ 1.

Proof. To show the direct implication in Lemma 3.2 consider an element
α ∈ T such that α = M(θ) for some θ ∈ V . Then, Lemma 3.1 says that the
conjugates of θ are θ, θ, ζ/θ, ζ/θ, where ζ := −1 when θ ∈ V1 and ζ is as in
the second statement of Lemma 3.2 for θ /∈ V1. Hence, {θθ, θζ/θ, θζ/θ, 1/θθ}
is the set of conjugates of α = θθ, α2 ∈ {θζ/θ, θζ/θ} and

α1α2 ∈ {ζθ2, ζθ2}.
It is clear when θ ∈ V1 that the conjugates of the algebraic integer

s := θ − 1/θ ∈ Q(θ)
are θ − 1/θ and θ − 1/θ = s, and so [Q(s) : Q] ≤ 2. Because θ is a root
of the polynomial x2 − sx − 1 ∈ Q(s)[x], we have [Q(s)(θ) : Q(s)] ≤ 2. It
follows by the equations Q(θ) = Q(θ, s) and [Q(θ, s) : Q(s)][Q(s) : Q] = 4
that [Q(θ, s) : Q(s)] = [Q(s) : Q] = 2, s is a quadratic imaginary algebraic
integer and

Irr(θ,Q(s), x) = (x− θ)(x− 1/θ) = x2 − sx− 1.
Suppose now θ /∈ V1. If ζ /∈ Q(θ), then ζ is the other conjugate of ζ, over
Q(θ), i.e., Irr(ζ,Q(θ), x) = Irr(ζ,Q, x), and by considering the embedding,
say σ, ofQ(θ, ζ) into C which sends the ordered pair (θ, ζ) to (θ, ζ) we obtain
the contradiction σ(ζ/θ) = ζ/θ, since ζ/θ is not a conjugate of θ. Therefore,
ζ ∈ Q(θ), Q(θ) = Q(θ, ζ), [Q(θ, ζ) : Q(ζ)] = 4/[Q(ζ) : Q] = 2, and so θ is
quadratic over Q(ζ). It is also easy to see that the other conjugate, say θ′,
of θ, over Q(ζ), is ζ/θ. If not, θ′ ∈ {θ, ζ/θ}, θθ′ ∈ {θθ, θζ/θ}, deg(θθ′) = 4
(recall that θζ/θ is a conjugate of the quartic number θθ) and so θθ′ /∈ Q(ζ);
hence

Irr(θ,Q(ζ), x) = (x− θ)(x− ζ/θ) = x2 − sx+ ζ ∈ Q(ζ)[x],
where

s := θ + ζ/θ ∈ Q(ζ).
Consequently, we have (for ζ = −1 or ζ imaginary)

Irr(θ,Q, x) = (x2 − sx+ ζ)(x2 − sx+ ζ),
and so (3.3) and (3.4) are true.

Setting K := Q(θ − 1/θ) for ζ = −1, and K := Q(ζ) otherwise, we
see that the conjugates of ζθ2, over K, are ζθ2 and ζ/θ2 (recall that the
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conjugates of θ, over K, are θ and ζ/θ), Irr(ζθ2,K, x) = x2− (ζs2−2)x+1,
since ζθ2 6= ζ/θ2,

Irr(ζθ2,Q, x) = (x2 − (ζs2 − 2)x+ 1)(x2 − (ζs2 − 2)x+ 1),

and so

Irr(α1α2,Q, x) = x4−(ζs2+ζs2−4)x3+(2+|ζs2−2|2)x2−(ζs2+ζs2−4)x+1,

as (it was mentioned above) α1α2 ∈ {ζθ2, ζθ2}. Finally, if S(a,b) denotes the
minimal polynomial of α, then b /∈ {1−a, 2, 1 +a}, the relation (3.2) yields

b = ζs2+ζs2−2 and a2 = |ζs2−2|2+2b = |ζs2−2|2+2ζs2+2ζs2−4 = |s|4,

and the inequality Im(ζs2) 6= 0 follows from the fact that |b + 2| < 2a ⇔
|ζs2 + ζs2| < 2|s|2 = 2|ζs2|.

To unify the notation in the proof of the “if” part of the two equivalences
in Lemma 3.2, set again ζ := −1 and K := Q(s) (resp. ζ := i and K :=
Q(i), ζ := ei2π/3 and K := Q(ei2π/3), ζ := eiπ/3 and K := Q(eiπ/3)).
Then, K is an imaginary quadratic field. Because b /∈ {1 − a, 2, 1 + a},
(a, b) = (|s|2, ζs2 + ζs2 − 2) and

|b+2| < 2a⇐⇒ |ζs2+ζs2| < 2|s|2 ⇐⇒ |ζs2+ζs2| 6= 2|s|2 ⇐⇒ Im(ζs2) 6= 0,

we see that S(a,b) is the minimal polynomial of a Salem number α.
To show that α = M(θ) for some θ ∈ V1 (resp. V2, V3, V4) consider a

root, say again θ, of the polynomial x2−sx+ζ ∈ K[x]. Then, x2−sx+ζ =
(x− θ)(x− ζ/θ),

s = θ + ζ/θ,

x2 − sx+ ζ = (x− θ)(x− ζ/θ), θ is a root of

C(x) := (x2 − sx+ ζ)(x2 − sx+ ζ)
= x4 − (s+ s)x3 + (|s|2 + ζ + ζ)x2 − (sζ + sζ)x+ 1,

and so deg(θ) ≤ 4, as C(x) ∈ Z[x].
Assume, without loss of generality, that |θ| ≥ 1. Then, |θ| > 1, since

otherwise 1/θ = θ, s = θ + ζθ, s = θ + ζθ = ζs, ζs2 = ss ∈ R and
Im(ζs2) = 0. Therefore, 0 < |ζ/θ| < 1, x2 − sx + ζ is irreducible over K,
ζ/θ is a conjugate of θ over K, deg(θ) ≥ 2 and ζ/θ is a conjugate of θ over
K. Moreover, because (s, ζ) 6= (s, ζ), we have x2−sx+ζ 6= x2−sx+ζ, θ 6= θ
and so deg(θ) = 4. Hence, the polynomial C is the minimal polynomial of
θ, the conjugates of θ are θ, ζ/θ, θ, ζ/θ, and θ ∈ V1 (resp. V2, V3, V4). Also,
K ⊂ Q(θ), as Q(θ) ⊂ K(θ) and [K(θ) : Q] = [K(θ) : K][K : Q] = 4, and
similarly as in the proof of direct implication, we see that the conjugates
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of ζθ2, over K, are ζθ2 and ζ/θ2, Irr(ζθ2,K, x) = x2 − (ζs2 − 2)x+ 1, and
so ζθ2 is a root of

D(x) := (x2−(ζs2−2)x+1)(x2−(ζs2−2)x+1)
= x4− (ζs2 +ζs2−4)x3 + (2+ |ζs2−2|2)x2− (ζs2 +ζs2−4)x+1.

It follows by (3.2) that

D(x) = x4 − (b− 2)x3 + (a2 − 2b+ 2)x2 − (b− 2)x+ 1 = Irr(α1α2,Q, x),

ζθ2 ∈ {α1α2, α1α2}, M(θ)2 = (θθ)2 = (ζθ2)(ζθ2) = α1α2α1α2 = α2 and
M(θ) = α. �

Remark 3.3. It is easy to see from the proof of Lemma 3.2 that if α ∈ T
and α = M(θ) for some θ ∈ V1, then θ2 ∈ {−α1α2,−α1α2}. It follows when
M(θ′) = α for some θ′ ∈ V1 that θ′ ∈ {±θ,±θ}. It is also worth noting that
it may happen that α = M(θ) = M(θ′′) for some θ′′ ∈ Vj , where j ≥ 2 (see
Remark 3.5 below).

Theorem 3.4. The polynomial S(a,b) is the minimal polynomial of a Salem
number α, satisfying α = M(θ) for some θ ∈ V1 (resp. V2, V3, V4) if and
only if b /∈ {1− a, 2, 1 + a} and there is c ∈ N such that

c < 2
√
a and 2(a− 1)− b = c2

(resp. there is (k, l) ∈ Z2 such that

(a, b) = (k2 + l2, 4kl − 2) and l 6= ±k,

there is (k, l) ∈ Z2 such that

(a, b) =
(

(2k + l)2 + 3l2

4 , 2l2 + 2kl − k2 − 2
)

and k(k + 2l) 6= 0,

there is (k, l) ∈ Z2 such that

(a, b) =
(

(2k + l)2 + 3l2

4 , l2 + 4kl + k2 − 2
)

and l 6= ±k).

Furthermore, if m(1,a) (resp. m(2,a), m(3,a), m(4,a)) designates the number
of quartic Salem numbers α with tr(α) = a ∈ N which are Mahler measures
of elements of V1 (resp. V2, V3, V4), then m(1,4) = 0, and

(3.5) max{1, [
√

4a− 1]− 3} ≤ m(1,a) ≤ [
√

4a− 1],

(where [ · ] is the integer part function) for all a 6= 4 (resp. then

m(2,a) ≤ 1 +
√

2a− 1, m(3,a) < 4
√
a

3 + 2, m(4,a) < 4
√
a

3 + 2).
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Proof. To consider the case corresponding to the set V1 it is enough, by
Lemma 3.2, to prove that the two assertions below are equivalent for any
(a, b) ∈ Z2.

(i) There is a quadratic integer s such that (a, b) = (|s|2,−s2− s2− 2)
and Im(s2) 6= 0.

(ii) There is a natural number c such that c < 2
√
a and 2(a−1)−b = c2.

Clearly, the direct implication (i)⇒ (ii) holds with c := 2|Re(s)|, because
2(a − 1) − b = 2|s|2 + s2 + s2 = (2 Re(s))2, Im(s2) 6= 0 ⇒ (Re(s) 6= 0 and
Im(s) 6= 0) ⇒ |Re(s)| < |s| =

√
a, and s is the other conjugate of s so

that 2 Re(s) = s + s ∈ Z. To prove the converse, notice first that there is
a unique pair (d,m), where d ∈ N and m is a squarefree negative rational
integer, such that 4a = c2 −md2, as c ∈ N ∩ [1, 2

√
a). It follows, when c is

odd, that md2 ≡ 1 mod 4, d2 ≡ 1 mod 4, m ≡ 1 mod 4, and if we set

s := c+ d
√
m

2 ,

then s is a quadratic algebraic integer (c ≡ d ≡ 1 mod 2), dc 6= 0 ⇒
Im(s2) 6= 0, a = (c2 −md2)/4 = |s|2, and the assumption 2(a− 1)− b = c2

implies that b = 2a−2−c2 = −(c2+md2)/2−2 = −s2−s2−2. Similarly, we
obtain, for c being even, that md2 ≡ 0 mod 4, d is even, s := (c+ d

√
m)/2

is a quadratic algebraic integer, Im(s2) 6= 0, and the pair (a, b) satisfies the
required conditions.

To show the relation (3.5) suppose that a is a fixed natural number. From
the above we may define a bijection f from {b ∈ Z |(a, b) satisfies (ii)} to
N ∩ [1, 2

√
a), as follows:

(3.6) f(b) =
√

2(a− 1)− b.

Consequently, the cardinality of {b ∈ Z |(a, b) satisfies (ii)} is [
√

4a− 1]
and so [

√
4a− 1]− 3 ≤ m(1,a) ≤ [

√
4a− 1], as b /∈ {1− a, 2, 1 + a}, leading

to (3.5), when a ≥ 5. Also, we have, for a = 4 (resp. a = 3, a = 2, a = 1)
that f(b) ∈ N ∩ [1, 2

√
a) = {1, 2, 3} (resp. {1, 2, 3}, {1, 2}, {1}) and so,

by (3.6), m(1,4) = 0 as b ∈ {−3 = 1 − a, 2, 5 = 1 + a} (resp. m(1,3) = 3
as b ∈ {−5, 0, 3}, m(1,2) = 2 as b ∈ {−2, 1}, m(1,1) = 1 as b ∈ {−1}).
Finally, notice that the unique Salem number α obtained for a = 1, namely
α = α(1,−1) = 1.722 . . . (root of x4−x3−x2−x+ 1) is the smallest quartic
Salem number, and the number θ ∈ V1, satisfying M(θ) = α, is a root of
the polynomial x4− x3− x2 + x+ 1 (defined by (3.4) with s = (1 + i

√
3)/2

and ζ = −1).
The proof of the remaining part of Theorem 3.4 follows immediately

from the second statement in Lemma 3.2. Indeed, a short computation
shows that S(a,b) is the minimal polynomial of a Salem number α satisfying
α = M(θ) for some θ ∈ V2 (resp. V3, V4) if and only if b /∈ {1− a, 2, 1 + a}
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and there is a pair (k, l) ∈ Z2 such that (a, b) = (k2 + l2, 2(2kl − 1)) and
l 6= ±k (resp. (4a, b) = ((2k+ l)2 +3l2, 2l2 +2kl−k2−2) and k(k+2l) 6= 0,
(4a, b) = ((2k + l)2 + 3l2, l2 + 4kl + k2 − 2) and l 6= ±k).

Moreover, since the pairs (k, l), (l, k) and (−k,−l) (resp. (k, l) and
(−k,−l), (k, l) and (−k,−l)) yield the same values of (a, b) we may assume,
without loss of generality, that 0 ≤ l < |k|; thus (l+ 1)2 + l2 ≤ k2 + l2 = a,
l ≤ (−1 +

√
2a− 1)/2 and so m(2,a) ≤ 1 +

√
2a− 1, as k takes at most the

values ±
√
a− l2 (resp. that 0 ≤ l ≤ 2

√
a/3; thus m(3,a) < 4

√
a/3 + 2, that

0 ≤ l ≤ 2
√
a/3; thus m(4,a) < 4

√
a/3 + 2, as (2k + l) takes at most the

values ±
√

4a− 3l2), when (a, l) is fixed. �

Proof of Theorem 1.3. Recall, by Theorem 1.1, that if a quartic Salem num-
ber is a Mahler measure of a non-reciprocal 2-Pisot number θ, then θ ∈ V .
Let qa be the number of quartic Salem numbers α with tr(α) = a. Then,
qa = na + ma, where ma is (also) the cardinality of T, and the above
mentioned remark of Boyd says that qa = 4(a− 1) whenever a ≥ 4.

From Lemma 3.1 we have
(3.7) m(1,a) ≤ ma ≤ m(1,a) +m(2,a) +m(3,a) +m(4,a),

and it follows by (3.5) that lima→∞ma = lima→∞m(1,a) = ∞, and ma ≥
m(1,a) ≥ 1 when a 6= 4. For a = 4 the table below gives that m(2,4) = 1 (and
also m(3,4) = m(4,4) = 1); hence for any natural number a there is α ∈ T
with tr(α) = a.

Using the relation (3.7) and the upper bounds of m(1,a), . . . ,m(4,a), given
in Theorem 3.4, a simple calculation gives

(3.8) ma < 16
√
a/3 + 8,

for a being sufficiently large, and
(3.9) a ≥ 8⇒ ma < 4(a− 1) = qa.

From the last column in the table below we see that ma < qa for a ∈
{2, 3, . . . , 7}, and it follows by (3.9) that na ≥ 1 for all a ≥ 2. Finally,
(3.8) yields na > 4(a− 1)− 16

√
a/3− 8 when a is sufficiently large, and so

lima→∞ na/ma =∞. �

The following table gives for each a ∈ {1, 2, . . . , 7} the possible values of
b, so that α(a,b) = M(θ) for some θ ∈ V . The corresponding values of b are
exhibited in the second column (resp. the third column, the forth column,
the fifth column) when θ ∈ V1 (resp. θ ∈ V2, θ ∈ V3, θ ∈ V4).

To explain how to determine the content of the table, consider for ex-
ample the case a = 3. We know, from the above mentioned observation of
Boyd that q3 = 9, i.e., there are 9 quartic Salem numbers of the form α(3,b),
where b ∈ {−7,−6, . . . , 3} \ {−2, 2}. To determine the values of b so that
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α(3,b) = M(θ) for some θ ∈ V1, we use Theorem 3.4 and solve the equation
4 − b = c2, where c ∈ N ∩ [1, 2

√
3) = {1, 2, 3}, yielding b ∈ {−5, 0, 3};

thus α(3,−5), α(3,0) and α(3,3) are Mahler measures of elements of V1 and so
m(1,3) = 3. Similarly, to find the values of b that make α(3,b) = M(θ) for
some θ ∈ V2, we use the related parametrization in Theorem 3.4 and solve
the equation 3 = k2 + l2. Since this equation has no solution (k, l) ∈ Z2,
the corresponding set of values of b is empty and m(2,3) = 0. In a similar
manner we treat the case α(3,b) = M(θ), where θ ∈ V3 (resp. θ ∈ V4),
giving b = 1 and m(3,3) = 1 (resp. b = −5 and m(3,4) = 1). Consequently,
b ∈ {−5,−3, 0, 1} and m3 = 4.

a {b} ↪→ V1 {b} ↪→ V2 {b} ↪→ V3 {b} ↪→ V4 ma/qa
1 {−1} {−2} {−3} {−1} 3/3
2 {−2, 1} ∅ ∅ ∅ 2/6
3 {−5, 0, 3} ∅ {1} {−5} 4/9
4 ∅ {−2} {−6} {−10} 3/12
5 {−8,−1, 4, 7} {−10} ∅ ∅ 5/16
6 {−6, 1, 6, 9} ∅ ∅ ∅ 4/20
7 {−13,−4, 3, 11} ∅ {−15, 0, 9} {−13,−4, 11} 7/24

Remark 3.5. A short computation gives that there are eight quartic Salem
numbers less than 3 :

α(1,−1) < α(2,1) ' 1.88 < α(1,−2) ' 2.08

< · · · < α(1,−3) ' 2.36 < α(2,−2) < α(3,1).

From the table above we see that among these numbers two, namely α(3,3) '
2.15 and α(2,0) ' 2.29, are not Mahler measures of non-reciprocal 2-Pisot
numbers. On the contrary, α(1,−1) is simultaneously a Mahler measure of an
element of V1 and of an element of V4 (the same property holds for α(3,−5),
α(7,−13), α(7,−4) and α(7,11)).
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