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Moments and One level density of certain unitary
families of Hecke L-functions

par Peng GAO et Liangyi ZHAO

Résumé. Dans cet article, nous étudions les moments des valeurs centrales
de certaines familles unitaires de fonctions L de Hecke sur le corps des ration-
nels de Gauss et prouvons un résultat quantitatif de non-annulation de leurs
valeurs centrales. Nous établissons aussi un résultat de densité portant sur les
petits zéros dans ces familles de fonctions L de Hecke.

Abstract. In this paper, we study the moments of central values of cer-
tain unitary families of Hecke L-functions of the Gaussian field, and establish
quantitative non-vanishing result for their central values. We also establish
a one level density result for the low-lying zeros of these families of Hecke
L-functions.

1. Introduction
The non-vanishing of central values of L-functions is of central impor-

tance in number theory. In the classical case of Dirichlet L-functions,
S. Chowla [5] conjectured that L(1/2, χ) 6= 0 for every primitive Dirich-
let character χ. One typical way to investigate this non-vanishing problem
is to study the moments of a family of L-functions. By considering the
first and second mollified moments of L(1/2, χ), B. Balasubramanian and
V. K. Murty [1] showed that L(1/2, χ) 6= 0 for at least 4% of Dirichlet char-
acters χ mod q. For primitive characters, the proportion was improved to
1/3 by H. Iwaniec and P. Sarnak in [13], to 34.11% by H. M. Bui [4] and
most recently to 3/8 by R. Khan and H. T. Ngo [16].

Instead of mollified moments, one may be only interested in the moments
of Dirichlet L-functions. The first moment of the family of primitive Dirich-
let L-functions of modulus q has long been known while the second moment
is due to R. E. A. C. Paley [20]. In [10], D. R. Heath-Brown obtained an
asymptotic formula for the fourth moment of the family of L-functions
associated with primitive Dirichlet characters modulo q, provided q does
not have too many distinct prime divisors. The formula was extended to
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all integers by K. Soundararajan in [23]. An asymptotic formula for prime
moduli with power savings was obtained by M. P. Young in [25] and this
result was later improved by V. Blomer, E. Fouvry, E. Kowalski, P. Michel
and D. Milićević [3].

As an analogue of Dirichlet L-functions, T. Stefanicki [24] obtained the
first and second moments of Dirichlet twists of modular L-functions. The
formula for the second moment is valid for a density zero set and is extended
to almost all integers in [6].

Motivated by the result of Stefanicki, we consider in this paper a family
of Hecke L-functions in the Gaussian field. Throughout this paper, we let
K = Q(i) and OK = Z[i] for the ring of integers in K. We also denote
UK = 〈i〉 for the group of units in OK . Let q ∈ OK with (q, 2) = 1 and χ
be a homomorphism:

χ : (OK/(q))∗ → S1 := {z ∈ C | |z| = 1}.(1.1)

We shall say χ is a character modulo q. Note that in OK , every ideal co-
prime to 2 has a unique generator congruent to 1 modulo (1 + i)3 (see the
paragraph above Lemma 8.2.1 in [2]). Such a generator is called primary.
When q is co-prime to 2, χ induces a character χ̃ modulo (1 + i)3q. To
see this, note that the ring (OK/(1 + i)3q)∗ is isomorphic to the direct
product of the group of units UK and the group Nq formed by elements in
(OK/(1 + i)3q)∗ and congruent to 1 (mod (1 + i)3) (i.e., primary). Under
this isomorphism, any element n ∈ (OK/(1+i)3q)∗ can be written uniquely
as n = un ·n0 with un ∈ UK , n0 ∈ Nq. We can now define χ̃ (mod (1+ i)3q)
such that for any n ∈ (OK/(1 + i)3q)∗,

χ̃(n) = χ(n0).

We say that χ is a primitive character modulo q if it does not factor through
(OK/(q′))∗ for any proper divisor q′ of q. When χ is primitive and χ(−1) =
−1, we will show in Section 2.1 that the character χ̃ is also primitive modulo
(1+i)3q. As χ̃ is primitive and trivial on units, it follows from the discussions
on [12, p. 59–60] that χ̃ can be regarded as a primitive Hecke character
(mod (1+i)3q) of trivial infinite type. We denote χ̃ for this Hecke character
as well. In the rest of the paper, unless otherwise specified, we shall always
regard χ̃ as a Hecke character.

Let ψ∗(q) denote the number of primitive characters χ (mod q) satisfy-
ing χ(−1) = −1 and let ω(q) denote the number of distinct prime ideals
dividing (q). Our first result is the following
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Theorem 1.1. For q ∈ OK , (q, 2) = 1 and any ε > 0, we have, as N(q)→
∞,

(1.2)
∑∗

χ mod q
χ(−1)=−1

L

(1
2 , χ̃

)
= 1

2ψ
∗(q) +O

(
2ω(q)N(q)1/2+ε),

and

(1.3)
∑∗

χ mod q
χ(−1)=−1

∣∣∣∣L(1
2 , χ̃

)∣∣∣∣2

=

 π

16
ϕ(q)
N(q) logN(q) + π

8
ϕ(q)
N(q)

∑
p|2q

logN(p)
N(p)− 1 + ϕ(q)

N(q)C0

ψ∗(q)
+O

(
N(q)3/4+ε

)
.

Here the ∗ on the sum over χ restricts the sum to primitive characters,
C0 > 0 is an explicitly computable constant and ϕ(q) = #(OK/(q))∗.

We note here the asymptotic formulas in Theorem 1.1 are valid for all
large N(q) because of the lower bound for ψ∗(q) given in (2.1) and if N(q) ≥
3, then (see [21, (2.1)])

ω(q)� logN(q)
log logN(q) .(1.4)

We readily deduce from Theorem 1.1 via a standard argument using
Cauchy’s inequality (see [1, p. 568]), the following

Corollary 1.2. For q ∈ OK , (q, 2) = 1, we have as N(q)→∞,

#
{
χ̃ : χ mod q, χ(−1) = −1, χ primitive, L

(1
2 , χ̃

)
6= 0

}
� ψ∗(q)

logN(q) .

Note that Corollary 1.2 does not establish that L(1
2 , χ̃) 6= 0 for a positive

proportion of the characters χ to a given modulus. To obtain a positive pro-
portion result, other than studying the mollified moments, we can also study
the 1-level densities of low-lying zeros of families of L-functions. The density
conjecture of N. Katz and P. Sarnak [14, 15] suggests that the distribution
of zeros near 1/2 of a family of L-functions is the same as that of eigenvalues
near 1 of a corresponding classical compact group. This conjecture implies
that L(1/2, χ) 6= 0 for almost all primitive Dirichlet L-functions. Assuming
the generalized Riemann hypothesis (GRH), M. R. Murty [18] showed that
at least 50% of both primitive Dirichlet L-functions and Dirichlet twists
of modular L-functions do not vanish at the central point. The result of
Murty can be regarded as the 1-level density of low-lying zeros of the corre-
sponding families of L-functions for test functions whose Fourier transforms
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being supported in [−2, 2]. In [11], H. P. Hughes and Z. Rudnick studied
the 1-level density of low-lying zeros of the family of primitive Dirichlet
L-functions of a fixed prime modulus. Their work shows that this family is
a unitary family.

Our next result concerns the 1-level density of low-lying zeros of the
family {L(s, χ̃)} of Hecke L-functions in Q(i). Here χ runs over primitive
characters modulo q satisfying χ(−1) = −1 with q ∈ Z[i], (q, 2) = 1. We
denote the non-trivial zeroes of the Hecke L-function L(s, χ̃) by 1/2+ iγχ̃,j .
Without assuming GRH, we order them as

. . . ≤ <γχ̃,−2 ≤ <γχ̃,−1 < 0 ≤ <γχ̃,1 ≤ <γχ̃,2 ≤ . . . .

We set

γ̃χ̃,j =
γχ̃,j
2π logN(q)

and define for an even Schwartz class function φ,

S(χ̃, φ) =
∑
j

φ(γ̃χ̃,j).

Following [11, Definition 2.1], we say a function f(x) is an admissible
function if it is a real, even function, whose Fourier transform f̂(u) is com-
pactly supported, and such that f(x)� (1 + |x|)−1−δ for some δ > 0. Our
result is

Theorem 1.3. Let φ(x) be an admissible function whose Fourier transform
φ̂(u) has compact support in (−2, 2). Then for q ∈ Z[i], (q, 2) = 1, we have

lim
N(q)→∞

1
ψ∗(q)

∑∗

χ mod q
χ(−1)=−1

S(χ̃, φ) =
∫
R
φ(x) dx.(1.5)

Here the ∗ on the sum over χ restricts the sum to primitive characters.

Theorem 1.3 can be regarded as an analogue to the above mentioned
result of H. P. Hughes and Z. Rudnick in [11]. The left-hand side expression
of (1.5) is known as the 1-level density of low-lying zeros of the family
{L(s, χ̃)}. In connection with the random matrix theory (see the discussions
in [7]), the right-hand side expression of (1.5) shows that the family is also
a unitary family.

Using the argument in the proof of [9, Corollary 1.4], we deduce readily a
positive proportion non-vanishing result for the family of Hecke L-functions
under our consideration.
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Corollary 1.4. Suppose that the GRH is true and that 1/2 is a zero of
L (s, χ̃) of order nχ̃ ≥ 0. As N(q)→∞,

∑∗

χ mod q
χ(−1)=−1

nχ̃ ≤
(1

2 + o(1)
)
ψ∗(q).

Moreover, as N(q)→∞

#
{
χ̃

∣∣∣∣χ mod q, χ(−1) = −1, χ primitive, L
(1

2 , χ̃
)
6= 0

}
≥
(1

2 + o(1)
)
ψ∗(q).

Notations. The following notations and conventions are used throughout
the paper.

• e(z) = exp(2πiz) = e2πiz.
• f = O(g) or f � g means |f | ≤ cg for some unspecified positive
constant c.
• f = o(g) means limx→∞ f(x)/g(x) = 0.
• K = Q(i),OK = Z[i].
• µ[i] denotes the Möbius function on OK .
• ϕ denotes Euler’s totient function on OK .
• $ denotes a prime in K.

2. Preliminaries
2.1. Orthogonality relations and primitive Hecke characters. Let
q ∈ OK , (q, 2) = 1 and let χ be a primitive character modulo q defined
in (1.1) satisfying χ(−1) = −1. We note the following orthogonality rela-
tions. As the proof is similar to the classical case (see [23, Lemma 1]), we
omit it here.

Lemma 2.1. Let q ∈ OK , (q, 2) = 1. Let a = ±1, we have for (nm, q) = 1

∑∗

χ mod q
χ(−1)=(−1)a

χ(n)χ(m) = 1
2

∑
d|q

n≡m mod d

µ[i](q/d)ϕ(d)

+ (−1)a

2
∑
d|q

n≡−m mod d

µ[i](q/d)ϕ(d).

By setting n = m = 1 in Lemma 2.1, we deduce immediately the follow-
ing
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Corollary 2.2. Let q ∈ OK , (q, 2) = 1 and let ψ∗(q) denote the number of
primitive characters χ (mod q) satisfying χ(−1) = −1, then

ψ∗(q) = 1
2ψ(q)− 1

2µ[i](q),

where ψ(q) denotes the number of primitive characters χ (mod q). More-
over, ψ(q) is a multiplicative function given by ψ($) = N($)−2 for primes
$, and ψ($k) = N($)k(1− 1/N($))2 for k ≥ 2.

We note that Corollary 2.2 implies that for (q, 2) = 1, we have

ψ∗(q), ψ(q)� N(q)
(
ϕ(q)
N(q)

)2
� N(q)

log logN(q) .(2.1)

Now we show that the induced character χ̃ modulo (1 + i)3q is also
primitive. Suppose that χ̃ is induced by a character modulo (1 + i)3q′ for
some proper divisor q′ of q. Then as χ is primitive, there exists a c ≡ 1
(mod q′) such that χ(c) 6= 1. By the Chinese Remainder Theorem, we can
then find a c0 such that c0 ≡ 1 (mod (1 + i)3) and c0 ≡ c (mod q). It
follows from our definition that χ̃(c0) = χ(c) 6= 1. This contradiction shows
that χ̃ can only be possibly induced by a character χ′ modulo (1 + i)2q.
But in this case, we can again apply the Chinese Remainder Theorem to
find a c0 such that c0 ≡ −1 (mod (1 + i)3) and c0 ≡ 1 (mod q). As −1 ≡ 1
(mod (1+ i)2), we have c0 ≡ 1 (mod (1+ i)2q) so that χ′(c0) = 1. However,
it follows from the definition that χ̃(c0) = χ(−c0) = −1. This implies that
χ̃ can not be induced by χ′ either and hence is primitive.

2.2. The approximate functional equation. Let χ̃ be given as in the
previous section regarding as a primitive Hecke character modulo (1 + i)3q
of trivial infinite type. The Hecke L-function associated with this Hecke
character χ̃ is defined for <(s) > 1 by

L(s, χ̃) =
∑

06=A⊂OK

χ̃(A)(N(A))−s,

where A runs over all non-zero integral ideals in K and N(A) is the norm
of A. As shown by E. Hecke, L(s, χ̃) admits analytic continuation to an
entire function and satisfies a functional equation (see [19, Corollary 8.6]):

(2.2) Λ(s, χ̃) = g(χ̃)(N((1 + i)3q))−1/2Λ(1− s, χ̃),
where DK = −4 is the discriminant of K, g(χ̃) is the Gauss sum defined
by

g(χ̃) =
∑

x mod (1+i)3q

χ̃(x)ẽ
(

x

(1 + i)3q

)
, ẽ(z) = e

(
tr
(
z

2i

))
,

and
Λ(s, χ̃) = (|DK |N((1 + i)3q))s/2(2π)−sΓ(s)L(s, χ̃).
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We refer the reader to [19] for a more detailed discussion of the Hecke
characters and L-functions.

Note that we have |g(χ̃)| = (N((1+ i)3q))1/2 (see [12, Exercise 12, p. 61])
and that it follows from the definition that g(χ̃) = χ̃(−1)g(χ̃) = g(χ̃), as
χ̃(−1)(−1) = 1. From this and (2.2), we get that

(2.3) Λ
(1

2 + s, χ̃

)
Λ
(1

2 + s, χ̃

)
= Λ

(1
2 − s, χ̃

)
Λ
(1

2 − s, χ̃
)
.

For c > 1/2 we consider

I := 1
2πi

∫
(c)

Λ(1/2 + s, χ̃)Λ(1/2 + s, χ̃)
Γ(1/2)2

ds
s
.

We move the line of integration to Re(s) = −c and use the relation (2.3) to
see that I = |L(1/2, χ̃)|2− I, so that |L(1/2, χ̃)|2 = 2I. On the other hand,
expanding L(1/2+s, χ̃)L(1/2+s, χ̃) into its Dirichlet series and integrating
termwise, we get I = A(χ̃), where

A(χ̃) :=
∑

06=A,B⊂OK

χ̃(A)χ̃(B)(N(A)N(B))−1/2W

(
N(A)N(B)

N(q)

)
,(2.4)

with

W (x) = 1
2πi

∫
(c)

(Γ(s+ 1/2)
Γ(1/2)

)2 (2|Dk|
π2

)s
x−s

ds
s
,

for any positive x, c. Similar to [23, (1.3a), (1.3b)], we have for any j ≥ 0,

W (x) = 1 +O(x1/2−ε), W (j)(x) = Oc(x−c).(2.5)

On the other hand, we note the following expression for L(1/2, χ̃) (see [8,
Section 2.3]):

(2.6) L

(1
2 , χ̃

)
=

∑
06=A⊂OK

χ̃(A)
N(A)1/2V

(
N(A)
x

)

+ g(χ̃)
N((1+ i)3q)1/2

∑
06=A⊂OK

χ̃(A)
N(A)1/2V

(
N(A)x

|DK |N((1+ i)3q)

)
,

where x > 0 and

V (ξ) = 1
2πi

∫
(2)

Γ(s+ 1/2)
Γ(1/2)

(2πξ)−s

s
ds.

We note (see [22, Lemma 2.1]) the following estimation for the j-th de-
rivative of V (ξ):

(2.7) V (ξ) = 1 +O(ξ1/2−ε) for 0 < ξ < 1

and V (j) (ξ) = O(e−ξ) for ξ > 0, j ≥ 0.
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2.3. The explicit formula. Our approach of Theorem 1.3 relies on the
following explicit formula, which essentially converts a sum over zeros of an
L-function to a sum over primes. As it is similarly to that of [7, Lemma 2.3],
we omit its proof here.

Lemma 2.3. Let φ(x) be an admissible function whose Fourier transform
φ̂(u) has compact support in [−2, 2]. Let ΛK be the von Mangoldt function
in K. Then for q ∈ OK , (q, 2) = 1 and any primitive character χ modulo q
satisfying χ(−1) = −1, we have

S(χ̃, φ) =
∫ ∞
−∞

φ(t) dt− 1
logX

∑
(n)

ΛK(n)√
N(n)

φ̂

( logN(n)
logN(q)

)(
χ̃(n) + χ̃(n)

)
+O

( 1
logN(q)

)
.

3. Proof of Theorem 1.1
3.1. Evaluation of the first moment. Since any integral non-zero ideal
A co-prime to 2 in OK has a unique primary generator a, we apply the
approximate functional equation (2.6) and the orthogonality relations Lem-
ma 2.1 to get that∑∗

χ mod q
χ(−1)=−1

L

(1
2 , χ̃

)

=
∑

n≡1 mod (1+i)3

1√
N(n)

V

(
N(n)
x

) ∑∗

χ mod q
χ(−1)=−1

χ̃(n)

+ 1
(8N(q))1/2

∑
n≡1 mod (1+i)3

1√
N(n)

V

(
N(n)x
32N(q)

) ∑∗

χ mod q
χ(−1)=−1

χ̃(n)g(χ̃)

= S1,1 + S1,2 + S1,3 + S1,4,

where

S1,1 = 1
2

∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)
∑

n≡1 mod (1+i)3d
(n,q)=1

1√
N(n)

V

(
N(n)
x

)
,

S1,2 = −1
2

∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)
∑

n≡−1 mod d
n≡1 mod (1+i)3

(n,q)=1

1√
N(n)

V

(
N(n)
x

)
,
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S1,3 = 1
2 ·

1
(8N(q))1/2

∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)
∑

n≡1 mod (1+i)3

1√
N(n)

× V
(
N(n)x
32N(q)

) ∑
x mod (1+i)3q
x≡n mod d

ẽ

(
x

(1 + i)3q

)
,

S1,4 = −1
2 ·

1
(8N(q))1/2

∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)
∑

n≡1 mod (1+i)3

1√
N(n)

× V
(
N(n)x
32N(q)

) ∑
x mod (1+i)3q
x≡−n mod d

ẽ

(
x

(1 + i)3q

)
.

As ẽ(c)� 1 for c ∈ OK , we have that∑
x mod (1+i)3q
x≡n mod d

ẽ

(
x

(1 + i)3q

)
�

∑
x mod (1+i)3q
x≡n mod d

1� N(q)
N(d) .

It follows that

S1,3 � N(q)1/2 ∑
d|q

d≡1 mod (1+i)3

µ2
[i](q/d) ϕ(d)

N(d)

×
∑

n≡1 mod (1+i)3

1√
N(n)

V

(
N(n)x
32N(q)

)

� N(q)1+ε

x1/2 2ω(q).

Similarly, we also have

S1,4 �
N(q)1+ε

x1/2 2ω(q).

In the evaluation of S1,1, we write n = td + 1 with t ∈ OK . The term
t = 0 gives the main term:

M1 = 1
2

∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)V
(1
x

)

= 1
2

∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)
(
1 +O

(
x−1/2+ε

))

= 1
2ψ
∗(q) +O

(
N(q)x−1/2+ε

)
,
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where we have used Corollary 2.2 and the fact that∑
d|q

d≡1 mod (1+i)3

ϕ(d) = N(q).(3.1)

To treat the contribution from the terms n 6= 1 in S1,1, we need the
following lemma.

Lemma 3.1. Let m,n ∈ Z[i] satisfying N(m+ n) ≥ N(n), then we have

N(m+ n) ≥ N(m)
64 .(3.2)

Proof. The assertion of the Lemma is clearly true when N(n) ≥ N(m)
64 . We

may therefore assume that N(n) ≤ N(m)
64 . Writing m = a + bi, n = c + di

with a, b, c, d ∈ Z, we see that N(n) ≤ N(m)
64 is equivalent to

a2 + b2

64 ≥ c2 + d2.

We deduce from this that

max{|c|, |d|} ≤
√
a2 + b2

8 .(3.3)

Writing (3.2) in terms of a, b, c, d, we find that it suffices to show

a2 + 2ac+ b2 + 2bd ≥ a2 + b2

64 .(3.4)

Applying (3.3), we see that

a2 + 2ac+ b2 + 2bd ≥ a2 + b2 − (|a|+ |b|)
√
a2 + b2

4 .

As the above inequality implies inequality (3.4), the assertion of the lemma
now follows. �

Applying Lemma 3.2 to the case n = td + 1 with t 6= 0, we see that in
this case N(td + 1) ≥ N(td)/64. In view of the rapid decay of V in (2.7),
we may further assume that N(n) ≤ x1+ε for any ε > 0. This implies
that N(td) ≤ 64x1+ε. We then deduce that the terms with t 6= 0 in S1,1
contribute an amount that is

�
∑
d|q

d≡1 mod (1+i)3

µ2
[i](q/d)ϕ(d)

∑
06=N(td)≤64x1+ε

1√
N(td)

� 2ω(q)x1/2+ε.

Thus, we have

S1,1 = 1
2ψ
∗(q) +O

(
N(q)x−1/2+ε + 2ω(q)x1/2+ε

)
.
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Now, to estimate S1,2, we write n = td − 1 with t ∈ OK . Note that in
this case t 6= 0 since −1 is not primitive. The treatment of the contribution
from these t 6= 0 terms is similar to that of S1,1 and we arrive at

S1,2 � 2ω(q)x1/2+ε.

We then conclude that∑∗

χ mod q
χ(−1)=−1

L

(1
2 , χ̃

)

= 1
2ψ
∗(q) +O

(
N(q)x−1/2+ε + 2ω(q)x1/2+ε + N(q)1+ε

x1/2 2ω(q)
)
.

By setting x = N(q), we obtain (1.2).

3.2. The main term of the second moment. To establish (1.3), we
note that it is shown in Section 2.2 that |L(1/2, χ̃)|2 = 2A(χ̃) with A(χ̃)
given in (2.4). Again writing any integral non-zero ideal A co-prime to 2
in OK in term of its unique primary generator a and applying Lemma 2.1,
we have∑∗

χ mod q
χ(−1)=−1

|L(1/2, χ̃)|2

= 2
∑
n,m

n,m primary

1√
N(n)N(m)

W

(
N(nm)
N(q)

) ∑∗

χ mod q
χ(−1)=−1

χ̃(n)χ̃(m)

= S2,1 − S2,2,

where

S2,1 =
∑
d|q

d primary

µ[i](d)ϕ(q/d)
∑

n≡m mod q/d
n,m primary

(mn,q)=1

1√
N(n)N(m)

W

(
N(nm)
N(q)

)
,

S2,2 =
∑
d|q

d primary

µ[i](d)ϕ(q/d)
∑

n≡−m mod q/d
n,m primary

(mn,q)=1

1√
N(n)N(m)

W

(
N(nm)
N(q)

)
.

We consider the terms n = m in S2,1. These terms contribute

M2 =
∑
d|q

d primary

µ[i](d)ϕ(q/d)
∑

n primary
(n,q)=1

1
N(n)W

(
N(n)2

N(q)

)
.
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We then apply Mellin inversion to get

(3.5)
∑

n primary
(n,q)=1

1
N(n)W

(
N(n)2

N(q)

)

= 1
2πi

∫
(2)

∑
n primary
(n,q)=1

1
N(n)1+2sN(q)sŴ (s)ds

= 1
2πi

∫
(2)
ζK(1 + 2s)

∏
p|2q

(
1−N(p)−(1+2s)

)N(q)sŴ (s)ds.

Here and in what follows, we use ζK(s) to denote the Dedekind zeta function
of K and p to denote prime ideals in OK . Moreover, Ŵ (s) is the Mellin
transform of W (t), so that

Ŵ (s) =
∫ ∞

0
W (t)tsdt

t
.

Using (2.5) and integration by parts implies that for <(s) > 0,

Ŵ (s) = 1
s
I(s), I(s) =

∫ ∞
0

W ′(t)tsdt.(3.6)

Note that (2.5) further implies that I(0) = 1 and integration by parts
implies that I(s) is clearly analytic for <(s) > −1 and satisfies

I(s)� 1
|1 + s|

.

It follows that (3.6) gives an analytic extension of Ŵ (s) to <(s) > −1
with a simple pole at s = 0 with residue 1 such that when <(s) > −1,

(3.7) Ŵ (s)� 1
|s||1 + s|

.

We now shift the line of integration in (3.5) to <(s) = −1/4 + ε and we
encounter a double pole at s = 0. The residue is easily seen (by taking note
that the residue of ζK(s) at s = 1 is π/4) to be

π

16
ϕ(q)
N(q) logN(q) + π

8
ϕ(q)
N(q)

∑
p|2q

logN(p)
N(p)− 1 + ϕ(q)

N(q)C0,(3.8)

where C0 is an explicitly computable positive constant.
Since

∑
p|q

logN(p)
N(p)−1 is the largest when q is of the form

∏
N($)≤y$ for

primes$, it follows from this and the prime ideal theorem [17, Theorem 8.9]
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that ∑
p|q

logN(p)
N(p)− 1 � 1 + logω(q).(3.9)

To estimate the remaining integral at <(s) = −1/4 + ε, we shall use the
convexity bound that (see [12, Exercise 3, p. 100]) for <(s) = −1/4 + ε,

ζK(1 + 2s)�
(
1 + |s|2

)1/4+ε
.

Applying this and (3.7) gives that the integral on the line <(s) = −1/4+ε
is � N(q)−1/4+ε. From this and (3.8), we get

M2 =

 π

16
ϕ(q)
N(q) logN(q) + π

8
ϕ(q)
N(q)

∑
p|2q

logN(p)
N(p)− 1 + ϕ(q)

N(q)C0


×

∑
d|q

d primary

µ[i](d)ϕ(q/d) +O

N(q)−1/4+ε∑
d|q

µ2
[i](d)ϕ(q/d)

 .
We then deduce using (3.1) and (3.9) that

(3.10) M2 =

 π

16
ϕ(q)
N(q) logN(q)+ π

8
ϕ(q)
N(q)

∑
p|2q

logN(p)
N(p)−1 + ϕ(q)

N(q)C0

ψ∗(q)
+O

(
N(q)3/4+ε

)
.

3.3. The error term of the second moment. We first note that the
terms n = m in S2,2 can occur if and only if 2n ≡ 0 (mod q/d). As (q, 2) =
1, this occurs if and only if q/d|n. It follows readily from this that the terms
n = m in S2,2 contribute

� 2ω(q) logN(q).(3.11)

To treat the contributions from the terms n 6= m in S2,1 and S2,2, we
note the following

Lemma 3.2. We have for any ε > 0,∑
n6=m

n≡m mod `
(nm,q)=1

1√
N(n)N(m)

W

(
N(nm)
N(q)

)
� N(q)1/2+ε

N(l) .(3.12)

Proof. We may assume that N(m) ≥ N(n). In view of the rapid decey of
W shown in (2.5), we may further assume that N(nm) ≤ N(q)1+ε for any
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ε > 0. We then have

(3.13)
∑
n6=m

n≡m mod `
(nm,q)=1

1√
N(n)N(m)

W

(
N(nm)
N(q)

)

�
∑

N(n)≤N(q)1+ε

1√
N(n)

∑
m6=n

m≡n mod `
N(n)≤N(m)≤N(q)1+ε/N(n)

1√
N(m)

.

We write m = n+ kl with k ∈ OK and we apply Lemma 3.1 to see that
N(kl) ≤ 64N(m) ≤ 64N(q)1+ε/N(n). Thus, we have

∑
m6=n

m≡n mod `
N(n)≤N(m)≤N(q)1+ε/N(n)

1√
N(m)

� 1√
N(l)

∑
06=N(k)≤64N(q)1+ε/N(n)

1√
N(kl)

� 1
N(l)

√
N(n)

N(q)1/2+ε.

Applying this in (3.13), we readily deduce (3.12) and this completes the
proof of the lemma. �

It follows from Lemma 3.2 that the terms n 6= m contribute in S2,1, S2,2

� 2ω(q)N(q)1/2+ε.(3.14)

Using (1.4) and combining (3.10), (3.11) and (3.14), the proof of (1.3) is
complete.

4. Proof of Theorem 1.3
Applying Lemma 2.3, we see that it suffices to show that for any φ̂

supported in (−2 + ε, 2− ε) with any 0 < ε < 1,

lim
N(q)→∞

S̃(q, φ̂)
N(q) logN(q) = 0,(4.1)

where

S̃(q, φ̂) =
∑∗

χ mod q
χ(−1)=−1

∑
n primary

ΛK(n)√
N(n)

φ̂

( logN(n)
logN(q)

)(
χ̃(n) + χ̃(n)

)
.
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Applying Lemma 2.1, we see that

S̃(q, φ̂) =
∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)
∑

n primary
n≡1 mod d

ΛK(n)√
N(n)

φ̂

( logN(n)
log q

)

−
∑
d|q

d≡1 mod (1+i)3

µ[i](q/d)ϕ(d)
∑

n primary
n≡−1 mod d

ΛK(n)√
N(n)

φ̂

( logN(n)
log q

)
.

Similar to the treatment of the case n 6= 1 in S1,1 in Section 3.1, we have∑
n primary
n≡±1 mod d

ΛK(n)√
N(n)

φ̂

( logN(n)
log q

)
�

∑
n primary

1<N(n)≤q2−ε

n≡±1 mod d

logN(q)√
N(n)

� N(q)1−ε/2 logN(q)
N(d) .

It follows that

S̃(q, φ̂)�
∑
d|q

d≡1 mod (1+i)3

µ2
[i](q/d)ϕ(d)N(q)1−ε/2 logN(q)

N(d)

� 2ω(q)N(q)1−ε/2 logN(q).

In view of (1.4), the desired limit in (4.1) follows from the above estima-
tion and this completes the proof of Theorem 1.3.
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