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Special values of Goss L-series attached to
Drinfeld modules of rank 2

par Oğuz GEZMİŞ

Résumé. Inspiré par le cadre classique, Goss a défini des séries L attachées
aux modules de Drinfeld. Dans cet article, pour une puissance fixée q d’un
nombre premier et un module de Drinfeld donné φ de rang 2 avec une certaine
condition sur ses coefficients, nous donnons des formules explicites pour les
valeurs de la série L de Goss attachée à φ aux entiers positifs n tels que 2n+1 ≤
q en termes de polylogarithmes et coefficients de la série logarithmique de φ.

Abstract. Inspired by the classical setting, Goss defined L-series attached
to Drinfeld modules. In this paper, for a fixed choice of a power q of a prime
number and a given Drinfeld module φ of rank 2 with a certain condition on its
coefficients, we give explicit formulas for the values of Goss L-series attached
to φ at positive integers n such that 2n + 1 ≤ q in terms of polylogarithms
and coefficients of the logarithm series of φ.

1. Introduction

1.1. Background and Motivation. One of the major sources of con-
structing L-functions is related to Galois representations. For a number
field F , let F be its algebraic closure and GF be its absolute Galois group.
Let l be a prime number. Consider a collection ρ := (ρl) of l-adic repre-
sentations which are continuous homomorphisms ρl : GF → GL(Vl) where
Vl is a finite dimensional Ql-vector space. Then we say ρ forms a strictly
compatible system if there exists a finite set U of places of F such that

(i) For all µ 6∈ U and all l relatively prime to µ, ρl is unramified at µ.
(ii) For such µ and l, the polynomial

Pµ(X) := det(1−Xρl(Frobµ) |Vl)

has coefficients in Q and is independent of l.
For example, let E be an abelian variety of dimension g over F and for any
i ∈ Z≥0, E[li] be the group of all li-torsion points of E in F . Then one can
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consider Vl as the following vector space

Vl := lim←−
i

E[li]⊗Zl Ql
∼= Q2g

l

to see that the family ρ = (ρl) of representations ρl : GF → GL2g(Vl) in-
duced from the continuous action of GF on E[li] forms a strictly compatible
system (see [17] and [30] for details).

For each such system ρ = (ρl) of Galois representations, one can assign
the L-function

LU (ρ, s) :=
∏
µ

Pµ(Nµ−s)−1

where µ runs over all finite places not in U and Nµ is the norm of the place
µ of F . The function LU (ρ, s) converges to an analytic function for s ∈ C
when the real part <(s) of s is sufficiently large. We refer the reader to [17]
and [33] for further details about the subject.

1.2. Drinfeld A-modules and L-series. In the present paper, we fo-
cus on the special values of an analogue of aforementioned L-series in the
positive characteristic case whose construction is due to Goss [23]. Let Fq
be the finite field with q elements and θ be an independent variable over
Fq. We define A to be the set of polynomials in θ with coefficients in Fq
and A+ to be the set of monic polynomials in A. Let K be the fraction
field of A and K∞ be the completion of K at the infinite place with respect
to the norm | · |∞ normalized so that |θ|∞ = q. We also set C∞ to be the
completion of a fixed algebraic closure of K∞.

Let Ksep be the separable closure of K in C∞. Let t be another indepen-
dent variable and set A := Fq[t]. For any monic irreducible polynomial w
of A, we define Kw to be the completion of Fq(t) at w. Consider a family
ρ = (ρw) of continuous representations of Gal(Ksep/K) on a finite dimen-
sional Kw-vector space Vw. For any prime element v of A+, let us set Frobv
to be the geometric Frobenius at v. We say ρ forms a strictly compatible
system if there is a finite set U ′ of primes of A+ such that

(i) For all v 6∈ U ′ and all w|t=θ ∈ A relatively prime to v, ρw is unram-
ified at v.

(ii) For such v and w, the polynomial
Pv(X) := det(1−Xρw(Frobv) |Vw)

has coefficients in Fq(t) and is independent of w.
Analogously, we define the L-function LU ′(ρ, n) corresponding to a strictly
compatible system ρ = (ρw) of representations ρw : Gal(Ksep/K)→GL(Vw)
by

(1.1) LU ′(ρ, n) :=
∏
v 6∈U ′

Pv(v−n|θ=t)
−1
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where v runs over prime elements of A+ not in U ′. For integer values of n,
the function LU ′(ρ, n) converges in the Laurent series ring Fq((1/t)) when
n is sufficiently large. For further details, we refer the reader to [7] and [39].

We point out that throughout the paper, by a slight abuse of notation,
we continue to denote the value constructed by setting t = θ in LU ′(ρ, n)
by the same notation and hence our L-values will converge in K∞.

Let L be a field extension of K in C∞. We define the twisted power series
ring L[[τ ]] with the rule τc = cqτ for all c ∈ L and set L[τ ] to be the subring
of L[[τ ]] containing only polynomials in τ .

A Drinfeld A-module φ of rank r is an Fq-linear ring homomorphism
φ : A→ L[τ ] defined by
(1.2) φθ = A0 +A1τ + · · ·+Arτ

r

so that A0 = θ and Ar 6= 0. For each 0 ≤ i ≤ r, we call Ai the i-th coefficient
of φ.

One can assign the exponential series expφ =
∑
i≥0 ξiτ

i ∈ L[[τ ]] to φ
subject to the condition that ξ0 = 1 and expφ θ = φθ expφ. The logarithm
series of φ

logφ =
∑
i≥0

γiτ
i ∈ L[[τ ]]

is defined with respect to the condition that γ0 = 1 and θ logφ = logφ φθ.
It is also the formal inverse of the exponential series expφ in L[[τ ]].

One of the examples of Drinfeld A-modules is the Carlitz module C
given by

Cθ = θ + τ

and its relation with the class field theory has been studied by Carlitz [10,
11] and Hayes [27].

For any non-negative integer n, we set [n] := 1 if n = 0 and [n] := θq
n−θ

otherwise. The exponential series expC of the Carlitz module is defined by

expC =
∑
i≥0

τ i

Di
∈ K[[τ ]]

where D0 := 1 and Di := [i]Dq
i−1 for i ≥ 1. Furthermore the logarithm

series logC can be given by

logC =
∑
i≥0

τ i

Li
∈ K[[τ ]]

where L0 := 1 and Li = (−1)i[i][i − 1] . . . [1] when i ≥ 1. Using the coef-
ficients of logC , one can also define the n-th polylogarithm function logn
given by

logn(z) =
∑
i≥0

zq
i

Lni
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whenever |z|∞ < nq/(q− 1). For more information on Drinfeld A-modules,
we refer the reader to [24, §§3 and 4] and [40, §§2 and 3].

Taelman [36] introduced effective t-motives which can be seen as a gener-
alization of Anderson t-motives defined in [1]. Using Anderson’s theory [1],
one can show that for every Drinfeld A-module φ, there exists a unique cor-
responding effective t-motive Mφ up to isomorphism. Furthermore in [21],
Gardeyn proved that one can construct a strictly compatible system of Ga-
lois representations ρ = (ρw) attached to Mφ with a certain choice of the
Kw-vector space Vw (see Section 2.3 for definitions and details).

Let n be a positive integer and LU ′(Mφ, n) be the value of the L-function
defined as in (1.1) corresponding to the system of Galois representations
ρ = (ρw) attached to Mφ. Our main purpose in the present paper is to
study certain special values of the L-function L(Mφ, n) := LU ′(Mφ, n) when
φ is a Drinfeld A-module of rank 2 defined under some conditions on its
coefficients. To motivate our main result, we first explain the well-known
Carlitz module case: Consider the q-expansion of n given by n =

∑
njq

j

where 0 ≤ nj ≤ q − 1 and nj = 0 for j � 0. Set Γn+1 :=
∏
j≥0D

nj
j ∈ A.

Thanks to the results of Hsia and Yu [28, Thm. 3.1] and Anderson and
Thakur [2, Thm. 3.8.3], we know that

L(MC , n+ 1) =
∑
a∈A+

1
an

= 1
Γn

m∑
i=0

hj logn(θj)

for some hj ∈ A and m < nq/(q − 1).

1.3. The Main Result. Let φ be a Drinfeld A-module of rank 2 defined
by

(1.3) φθ = θ + aτ + bτ2

where a ∈ L and b ∈ L\{0}. For any finite set S ⊂ Z≥0 and a non-negative
integer j, let us define S + j := {i + j : i ∈ S}. Set P2(0) := {(∅, ∅)} and
for any n ≥ 1, we define

P2(n) := {(S1, S2) : S1 ∩ S2 = ∅ and Si ⊂ {0, 1, . . . , n− 1}, i = 1, 2}

to be the set of tuples (S1, S2) such that S1, S2 and S2 + 1 are distinct and
form a partition of {0, 1, . . . , n−1}. We call the elements of P2(n) shadowed
partitions. For any positive integer n, we also set P1

2 (n) to be the set of
shadowed partitions (S1, S2) ∈ P2(n) such that 0 ∈ S1.

Define w1(S) := 0 if S = ∅ and w1(S) :=
∑
i∈S q

i otherwise. Furthermore,
for any finite set S ⊂ Z≥0 with 0 ∈ S, we let w2(S) := 0 if S = {0} and
w2(S) :=

∑
i∈S\{0} q

i if {0} ( S. For any U = (S1, S2) ∈ P2(n), we define
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the component CU of γn corresponding to U by

CU :=


aw1(S1)bw1(S2)∏

i∈S1
(−[i+1])

∏
i∈S2

(−[i+2]) if U = (S1, S2) ∈ P2(n) \ P1
2 (n)

aw2(S1)bw1(S2)∏
i∈S1

(−[i+1])
∏
i∈S2

(−[i+2]) if U = (S1, S2) ∈ P1
2 (n).

We set F0 := 0 and T0 := 1. For n ≥ 1, define

Fn :=
∑

U∈P1
2 (n)
CU

and
Tn :=

∑
U∈P2(n)\P1

2 (n)
CU .

El-Guindy and Papanikolas [18, Thm. 3.3] showed that for any n ≥ 0, the
n-th coefficient γn of the logarithm series logφ can be given by

γn = aFn + Tn.

We now further assume that φ is the Drinfeld A-module as in (1.3) such
that a ∈ Fq and b ∈ F×q . Let φ̃ be another Drinfeld A-module given by
φ̃θ = (−b−1)−1/(q−1)φθ(−b−1)1/(q−1) = θ−ab−1τ+b−1τ2 for a fixed (q−1)-
st root of −b−1. The class number formula [38, Thm. 1] of Taelman yields
that

L(Mφ, 1) = logφ̃(1)

where logφ̃ is the logarithm function of φ̃ induced by its logarithm series
(see Remark 5.6 for details).

Our main result which concerns special values of L(Mφ, n) at integers n ≥
2 in a certain domain can be stated as follows (later stated as Theorem 5.9).

Theorem 1.1. Let φ be a Drinfeld A-module of rank 2 given by

φθ = θ + aτ + bτ2

such that a ∈ Fq and b ∈ F×q . Then for any positive integer n satisfying
2n+ 1 ≤ q, we have

L(Mφ, n+ 1) =
( ∞∑
i=0

(−1)ib−iγi
Lni

)(
1 +

∞∑
i=1

(−1)ib−(i−1)Fi−1
Lni

)

−
( ∞∑
i=1

(−1)ib−(i−1)γi−1
Lni

)( ∞∑
i=0

(−1)ib−iFi
Lni

)
.
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The strategy of the proof of Theorem 1.1 and the outline of the paper
can be explained as follows:

(I) After introducing some preliminaries and notation used throughout
the paper, we define, in Section 2.2, the t-module Gn given by the
tensor product of a Drinfeld A-module φ of rank 2 and the n-th
tensor power of the Carlitz module. We also discuss effective t-
motives, Taelman t-motives and their L-series (see Sections 2.3, 2.4
and 2.5 for details).

(II) In Section 3, we analyze the certain entries of the coefficients of
the logarithm series LogGn of Gn. Using Papanikolas’ method [32,
§4.3] as well as Lemma 3.1 and Proposition 3.2, we relate them
to shadowed partitions and Carlitz logarithm coefficients (Corol-
lary 3.3). We also detect some elements living in the convergence
domain of the function LogGn induced by the logarithm series of
Gn (Theorem 3.5).

(III) In Section 4, we introduce the unit module U(Gn/A) of Gn (see
Definition 4.9) and recall some results on invertible lattices which
are due to Debry [16, §2]. Combining them with Theorem 3.5, we
give the generators of the unit module U(Gn/A) as an A-module
in terms of the values of the logarithm function LogGn at some
algebraic points (Theorem 4.11).

(IV) In Section 5, we apply the work of Anglès, Ngo Dac and Tavares
Ribeiro [4] to our construction. We also study the Taelman L-
values and show how they are related to the special values of Goss
L-series (Proposition 5.7). Finally, we formulate the special value
L(Mφ, n+ 1) and prove Theorem 1.1 by using Theorem 4.11.

Remark 1.2. Assume that % is a Drinfeld A-module of r ≥ 2 given by
%θ = θ + A1τ + · · · + Arτ

r. Although our arguments introduce a way to
generalize Theorem 1.1 when % is defined with respect to the condition
that Ai ∈ Fq for all 1 ≤ i ≤ r − 1 and Ar ∈ F×q , our current method
does not allow us to prove similar results when some of the coefficients of
% is in A \ Fq. This is due to the difficulty of understanding the generators
of U(Gn/A) in that case. One can also generalize Theorem 1.1 for larger
values of n, if a version of Proposition 5.8 for such values of n is understood
(see §5.3 for details). We hope to tackle these problems in the near future.

2. Preliminaries

2.1. Hyperderivatives. For any non-negative integers i and j, the bino-
mial coefficient

(i
j

)
is given by(

i

j

)
:=
{

i!
(i−j)!j! if i ≥ j
0 if i < j.
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Furthermore, when k = −i is a negative integer, we define(
k

j

)
= (−1)j

(
i+ j − 1

j

)
.

We now define the j-th hyperdifferential operator ∂jθ : K∞ → K∞ with
respect to θ by

∂jθ

∑
k≤k0

ckθ
k

 :=
∑
k≤k0

ck

(
k

j

)
θk−j , ck ∈ Fq.

Note that if j = 0, then ∂0
θ (g) = g for all g ∈ K∞. Let C∞((t)) be the

field of formal Laurent series in t with coefficients in C∞. For any j ∈ Z≥0,
we define the j-th hyperdifferential operator ∂jt : C∞((t)) → C∞((t)) with
respect to t by

∂jt

 ∞∑
i=i0

git
i

 :=
∞∑
i=i0

gi

(
i

j

)
ti−j , gi ∈ C∞.

Furthermore, when j = 0, we have ∂0
t (f) = f for any f ∈ C∞((t)) and if

f1, f2 ∈ C∞((t)) and n ≥ 0, we have the following product rule:

(2.1) ∂nt (f1f2) =
∑

j1,j2≥0
j1+j2=n

∂j1t (f1)∂j2t (f2).

For more details on hyperderivatives, we refer the reader to [8, 15, 20].
The next proposition is useful to deduce our results relating to the hy-

perderivatives.

Proposition 2.1 ([41, Cor. 2.7], [13, Prop. 3.3.2]). Consider the power se-
ries f =

∑∞
i=0 ai(t−θ)i ∈ C∞[[t]] so that, as a function of t, it is convergent

in Dq := {z ∈ C∞ | |z|∞ ≤ q}. Then for any j ≥ 0, we have

aj = ∂jt (f)|t=θ.

2.2. The t-module Gn. We start with the definition of t-modules and
then analyze the tensor product of certain t-modules which takes our inter-
est throughout the paper. For further details on t-modules and their tensor
products, we refer the reader to [9, 25, 26, 29].

Let m, k ∈ Z≥1. For any matrix B = (Bi,j) ∈ Matm×k(L) and integer d,
set B(d) := (Bqd

i,j). Furthermore, we extend the norm | · |∞ to Matm×k(L)
by setting |B|∞ := supi,j |Bi,j |∞. We define the twisted power series ring
Matm×k(L)[[τ ]] := {

∑
i≥0Biτ

i |Bi ∈ Matm×k(L)} by the rule τB = B(1)τ
for all B ∈ Matm×k(L)[[τ ]] and set Matm×k(L)[τ ] ⊂ Matm×k(L)[[τ ]] to be
the subring of polynomials in τ .
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Definition 2.2.
(i) A t-module of dimension d is a tuple G := (Gd

a/L, ψ) where Gd
a/L

is the d-dimensional additive algebraic group over L and ψ is an
Fq-linear ring homomorphism ψ : A→ Matd(L)[τ ] defined by

(2.2) ψ(θ) := A0 +A1τ + · · ·+Amτ
m

such that A0 = θ Idd +N where Idd is the d×d identity matrix and
N is a nilpotent matrix. For each 0 ≤ i ≤ m, if Ai is in Matd(R)
where R is a subring of L, then we say G is defined over R.

(ii) Morphisms between t-modules G = (Gd1
a/L, ψ1) and G′ = (Gd2

a/L, ψ2)
are given by any element Ψ ∈ Matd2×d1(C∞)[τ ] satisfying

Ψψ1(θ) = ψ2(θ)Ψ.

We also denote the category of t-modules by G.

Example 2.3.
(i) Any Drinfeld A-module φ defined as in (1.2) can be considered as

a t-module of dimension one defined over L.
(ii) Let n be a positive integer. Another example of t-modules can be

given by the Carlitz n-th tensor power C⊗n := (Gn
a/K , ψ) where ψ

is the Fq-linear ring homomorphism given by

ψ(θ) =


θ 1

. . . . . .
θ 1

θ

+


0 . . . . . . 0
...

...

0
...

1 0 . . . 0

 τ .
Note that when n = 1, the definition of C⊗1 coincides with the
Carlitz module. We refer the reader to [2] for further details.

Let R be an Fq-algebra containing each entry of A0, A1, . . . , Am. The
A-module action on Matd×1(R) induced by G = (Gd

a/L, ψ) is given as

θ · x := ψ(θ)x := A0x+A1x
(1) + · · ·+Amx

(m), x ∈ Matd×1(R)

and denote such A-module by G(R). Furthermore, we set ∂ψ(θ) := A0 and
define the A-module action on Matd×1(R) via the map ∂ψ : A→ Matd(R)
so that

(2.3) θ · x := ∂ψ(θ)x := A0x = (θ Idd +N)x, x ∈ Matd×1(R)

and denote such A-module by Lie(G)(R).
When L = K and R′ is any subring of C∞ containing K∞, by using [19,

Lem. 1.7], the A-module action induced by ∂ψ as in (2.3) can be uniquely
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extended to a K∞-vector space action on Matd×1(R′) via the map ∂ψ :
K∞ → Matd(K∞) defined by

(2.4) ∂ψ

∑
i≥i0

ciθ
−i

 =
∑
i≥i0

ci(θ Idd +N)−i , ci ∈ Fq

so that f · x := ∂ψ(f)x for any f ∈ K∞ and x ∈ Matd×1(R′). We denote
such K∞-module by Lie(G)(R′).

One can assign an exponential series ExpG ∈ Matd(L)[[τ ]] to any t-module
G given by

ExpG :=
∞∑
i=0

Qiτ
i, Q0 = Idd, Qi ∈ Matd(L)

subject to the condition that ExpG ∂ψ(θ) = ψ(θ) ExpG. The exponential
series ExpG induces to an everywhere convergent and vector valued Fq-
linear homomorphism ExpG : Lie(G)(C∞)→ G(C∞) defined by

ExpG(u) =
∑
i≥0

Qiu
(i), u ∈ Matd×1(C∞).

The logarithm series LogG ∈ Matd(L)[[τ ]] of G which is the formal inverse
of ExpG is given by

LogG :=
∞∑
i=0

Piτ
i, P0 = Idd, Pi ∈ Matd(L)

with respect to the condition

(2.5) ∂ψ(θ) LogG = LogG ψ(θ).

Similar to the exponential series, the logarithm series LogG induces to an
Fq-linear homomorphism LogG : D→ Lie(G)(C∞) defined by

LogG(u) =
∑
i≥0

Piu
(i), u ∈ D

where D is the domain of convergence of LogG inG(C∞) (see [26, Lem. 2.5.4]
for more details on D).

We now fix a positive integer n and the Drinfeld A-module φ of rank 2
defined by

(2.6) φθ = θ + aτ + bτ2

for a ∈ A and b ∈ A \ {0}. We introduce the t-module Gn = (G2n+1
a/K , φn),

constructed from φ and C⊗n, where φn is the Fq-linear ring homomorphism
φn : A→ Mat2n+1(K)[τ ] given by

(2.7) φn(θ) = θ Id2n+1 +N + Eτ
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such that N ∈ Mat2n+1(Fq) and E ∈ Mat2n+1(A) are defined as

N :=



0 0 1 . . . . . . 0
0 0 1 . . . 0

. . . . . . . . . ...
0 0 1

0 0
0


, E :=



0 . . . . . . . . . 0
...

...

0
...

1 0 . . . . . .
...

a b 0 . . . 0


.

For any f ∈ K∞, we also set dn[f ] ∈ Mat2n+1(K∞) given by

dn[f ] :=



f 0 ∂θ(f) 0 ∂2
θ (f) . . . 0 ∂nθ (f)

f 0 ∂θ(f)
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

f 0 ∂θ(f)
f 0

f


.

Remark 2.4. It is important to emphasize that our definition for the
matrix dn[f ] is slightly different than the d-matrices of Papanikolas defined
in [32, Eq. (2.5.1)].

Lemma 2.5. For any a ∈ A, we have ∂φn(a) = dn[a].

Proof. By the Fq-linearity of the action ∂φn on A and hyperdifferential
operators with respect to θ, it is enough to prove the lemma for a = θi for
i ∈ Z≥0. We do induction on i. If i = 0, then we are done. Assume that the
assumption holds for all i. Note that for positive integers i and j such that
i ≥ j we have

(2.8)
(
i

j

)
+
(

i

j − 1

)
=
(
i+ 1
j

)
.

Using (2.8), we obtain

(2.9) θ∂jθ(θ
i) + ∂j−1

θ (θi) = ∂jθ(θ
i+1).

Using the fact that φn is an Fq-linear ring homomorphism, we obtain
∂φn(θi+1) = ∂φn(θ)∂φn(θi). Thus the equality in (2.9) implies the assump-
tion for i+ 1 as desired. �

2.3. Effective t-motives over K. We define K[t] to be the commutative
polynomial ring consisting of polynomials in t with coefficients in K and
K(t) to be its quotient field. For any f =

∑
i≥0 cit

i ∈ K[t] and j ∈ Z, we set
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f (j) :=
∑
i≥0 c

qj

i t
i. We define the non-commutative ring K[t, τ ] := K[t][τ ]

subject to the condition
τf = f (1)τ, f ∈ K[t].

Definition 2.6.
(i) An effective t-motive M defined over K is a left K[t, τ ]-module

which is free and finitely generated over K[t] such that the deter-
minant of the matrix representing the τ -action on M with respect
to any chosen K[t]-basis is equal to c(t− θ)s for some c ∈ K× and
s ∈ Z≥0.

(ii) The morphisms between effective t-motives are left K[t, τ ]-module
homomorphisms and we let M be the category of effective t-motives
defined over K. For any M1,M2 ∈ M, we denote the set of mor-
phisms between M1 and M2 by HomM(M1,M2).

Now for a given effective t-motive M which is also free and finitely gen-
erated over K[τ ], let {v1, . . . , vd} be a fixed K[τ ]-basis of M . Then there
exists a matrix Φθ ∈ Matd(K)[τ ] such that

t

v1
...
vd

 = Φθ

v1
...
vd

 .
Thus we can define an Fq-linear ring homomorphism Φ : A→ Matd(K)[τ ]
by Φ(θ) := Φθ so that (Gd

a/K ,Φ) forms a t-module of dimension d. We
call the t-module (Gd

a/K ,Φ) formed via this process an abelian t-module
corresponding to M .

By [37, Thm. 1] (see also [34, Thm. 10.8]), we know that there is an anti-
equivalence of categories between the subcategory of effective t-motives over
K which are also finitely generated over K[τ ] and the category of abelian t-
modules defined over K. We now see some examples of such correspondence
between effective t-motives and abelian t-modules.

Example 2.7.
(i) Let φ be the Drinfeld A-module of rank 2 given as in (2.6). We

set a left K[t, τ ]-module Mφ := K[t]m1⊕K[t]m2 with some chosen
K[t]-basis {m1,m2} of Mφ whose τ -action is given by

τ · (f1m1 + f2m2) = f
(1)
2 (t− θ)b−1m1 + (f (1)

1 − f (1)
2 ab−1)m2

for any f1, f2 ∈ K[t]. It is the effective t-motive corresponding to φ.
One can also easily see that {m1} is a K[τ ]-basis for Mφ.

(ii) Let M be an effective t-motive which is free of rank r over K[t].
The r-th exterior power of M is called the determinant of M and is
denoted by det(M). One can easily prove that det(M) is an effective
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t-motive of rank 1 over K[t]. For instance, let φ be the Drinfeld A-
module of rank 2 defined as in (2.6). Then det(Mφ) = K[t]m1 ∧m2
so that τ acts on m1 ∧m2 by

τ · f(m1 ∧m2) = −f (1)b−1(t− θ)(m1 ∧m2) , f ∈ K[t].

Observe that det(Mφ) is also a freeK[τ ]-module with theK[τ ]-basis
{m1 ∧m2}.

(iii) Let n be a non-negative integer. We now define the left K[t, τ ]-
module C⊗n := K[t]m whose τ -action is given by τ · (fm) =
f (1)(t − θ)nm for any f ∈ K[t]. It is free of rank one with the
K[t]-basis {m} and free of rank n over K[τ ] with the basis {m,
(t− θ)m, . . . , (t− θ)n−1m}. One can see that the abelian t-module
corresponding to C⊗n is given by C⊗n defined in Example 2.3(ii).
When n = 1, we also set C := C⊗1.

Consider the left K[t, τ ]-module Mn := Mφ ⊗K[t] C⊗n on which τ acts
diagonally. Using Example 2.7, we see that Mn is an effective t-motive
which is free of rank 2 over K[t] with the basis {v1,0, v2,0} introduced as
v1,0 := m1 ⊗ m and v2,0 := m2 ⊗ m. For any 1 ≤ j ≤ n, we further
let v1,j := m1 ⊗ (t − θ)jm and similarly, set v2,j := m2 ⊗ (t − θ)jm for
1 ≤ j ≤ n− 1. Thus using the K[t]-basis {v1,0, v2,0} of Mn, we see that the
set {v1,0, . . . , v1,n, v2,0, . . . , v2,n−1} is a K[τ ]-basis for Mn and hence Mn is
free of finite rank over K[τ ]. Moreover, the following identities hold:

(t− θ)v1,j = v1,j+1 for 0 ≤ j ≤ n− 1,
(t− θ)v2,j = v2,j+1 for 0 ≤ j ≤ n− 2,
(t− θ)v2,n−1 = τv1,0,

(t− θ)v1,n = aτv1,0 + bτv2,0.

Thus we see that the multiplication by t on Mn is given by

t



v1,0
v2,0
...

v1,n−1
v2,n−1
v1,n


= φn(θ)



v1,0
v2,0
...

v1,n−1
v2,n−1
v1,n


which shows that Gn = (G2n+1

a/K , φn) is the t-module corresponding to Mn.
Hence Gn is an abelian t-module.

Let w be a monic irreducible polynomial in A and Aw be the completion
of A at w. Let M be an effective t-motive over K and set

MKsep := M ⊗K Ksep
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which is a left Ksep[t, τ ]-module and the τ -action on MKsep is given by
τ(f ⊗ g) = τ(f) ⊗ gq for all f ∈ M and g ∈ Ksep. For any Fq[t, τ ]-module
I, let Iτ=1 be the set of elements of I fixed by the action of τ . We define
the Aw-module

Tw(M) := lim←−
i

(MKsep/wiMKsep)τ=1.

Furthermore we set

Vw(M) := Tw(M)⊗Aw Kw

which is a finite dimensional Kw-vector space with a continuous action
of Gal(Ksep/K) (see [37, Prop. 1]). Let ρ = (ρw) be the family of ho-
momorphisms ρw : Gal(Ksep/K) → GL(Vw(M)) induced by the action of
Gal(Ksep/K) on Vw(M). The next theorem is due to Gardeyn (see also [37,
Prop. 2]).

Theorem 2.8 ([21, Thm. 3.3]). The following statements hold.
(i) We have dimKw Vw(M) = rankK[t]M .
(ii) The family ρ = (ρw) forms a strictly compatible system.

Throughout the present paper, we call ρ = (ρw) in Theorem 2.8 the
family of representations attached to the effective t-motive M .

2.4. Taelman t-motives. We review the properties of a certain category
T , which is a rigid A-linear pre-abelian tensor category [36, Thm. 2.3.7]
(see also [35, §2.2.5]), consisting of Taelman t-motives introduced in [36].

LetM1 andM2 be effective t-motives defined overK. The tensor product
M1 ⊗ M2 := M1 ⊗K[t] M2 is also an effective t-motive on which τ acts
diagonally.

We define Hom(M1,M2) := HomK[t](M1,M2). Taelman [36, Prop. 2.2.3]
showed that for sufficiently large n, Hom(M1,M2⊗C⊗n) induces the struc-
ture of an effective t-motive whose K[τ ]-module structure can be described
in what follows.

For i = 1, 2, let Bi ∈ Matsi(K[t]) be defined so that τ · mtr
i = Bim

tr
i

wheremi := [mi,1, . . . ,mi,si ] consists of aK[t]-basis elementsmi,1, . . . ,mi,si

of Mi. Let K be the algebraic closure of K in C∞. We consider the dual
K[t]-basis {fi,j ∈ Hom(M1,M2 ⊗C⊗n) | i ∈ {1, . . . , s1}, j ∈ {1, . . . , s2}} of
Hom(M1,M2 ⊗C⊗n) given by

fi,j(m1,k) :=
{
m2,j ⊗ 1 if k = i

0 otherwise.

Note that after the extension of scalars, we have

Hom(M1,M2 ⊗C⊗n) ⊂ HomK(t)(M1 ⊗K(t),M2 ⊗C⊗n ⊗K(t)).
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Let Si,j ∈ Mats2×s1(K[t]) be the representation matrix of fi,j with respect
to m1 and m2. Then we define τ · fi,j : M1 → M2 ⊗C⊗n to be the K(t)-
module homomorphism whose representation matrix with respect to m1
and m′2 := {m2,1 ⊗ 1, . . . ,m2,s2 ⊗ 1} is given by (t − θ)nB2Si,j(B−1

1 )tr.
Since the determinant of B1 is some power of (t − θ) times a unit in K,
for sufficiently large n, the matrix (t − θ)nB2Si,j(B−1

1 )tr will have coeffi-
cients in K[t]. Hence τ · fi,j is indeed a K[t]-module homomorphism in
Hom(M1,M2 ⊗C⊗n).

We are now ready to give the definition of Taelman t-motives.

Definition 2.9.
(i) A Taelman t-motive M is a tuple (M,n) where M is an effective

t-motive defined over K and n ∈ Z.
(ii) We define the set of morphisms between Taelman t-motives (M1, n1)

and (M2, n2) by

HomT ((M1, n1), (M2, n2)) := HomM(M1 ⊗C⊗(n+n1),M2 ⊗C⊗(n+n2))
where n ≥ max{−n1,−n2}.

(iii) For any c ∈ K×, we define c1 := (c1, 0) to be the Taelman t-motive
where c1 = K[t] on which τ acts as τ · f = cf (1) for any f ∈ 1.
When c = 1, we call 1 the trivial Taelman t-motive.

Remark 2.10.
(i) It is important to point out that for effective t-motivesM1 andM2,

the canonical isomorphism
HomM(M1,M2) ∼= HomM(M1 ⊗C,M2 ⊗C)

actually shows that the definition of morphisms between the objects
of T is independent of n.

(ii) The category M of effective t-motives can be embedded into T as
a subcategory via the fully faithful functor M → (M, 0) and by the
abuse of notation, we continue to denote the image ofM under this
functor by the same notation.

For any Taelman t-motive M1 := (M1, i1) and M2 := (M2, i2), we define
(2.10) M1 ⊗M2 := (M1 ⊗M2, i1 + i2).
Note that M1 ⊗ M2 = M2 ⊗ M1 and moreover, for M ∈ T , we obtain
M⊗ 1 = 1⊗M = M.

We define the internal hom in T by
Hom(M1,M2) = Hom((M1, i1), (M2, i2)) := (Hom(M1,M2⊗C⊗i2−i1+i),−i)
where i ∈ Z≥0 is sufficiently large. For an effective t-motiveM , we have the
natural isomorphism between M ⊗ Cj ⊗ C and M ⊗ Cj+1 for any j ≥ 0
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which implies that
(2.11) (M ⊗C, i) ∼= (M, i+ 1), i ∈ Z
by Definition 2.9(ii). Moreover for sufficiently large i and M1,M2 ∈M, we
have

Hom(M1,M2 ⊗Ci)⊗C ∼= Hom(M1,M2 ⊗Ci+1).
Thus one can show that the definition of the internal hom above is actually
independent of i and well-defined up to isomorphism of Taelman t-motives.

For Taelman t-motives M1, . . . ,M4, we have
(2.12) Hom(M1,M3)⊗Hom(M2,M4) ∼= Hom(M1 ⊗M2,M3 ⊗M4).

Furthermore, we define the dual M∨ of the Taelman t-motive M by
M∨ := Hom(M,1).

Taking dual of Taelman t-motives is also reflexive in the sense that
(M∨)∨ = M for any M ∈ T .

Remark 2.10(ii) explains how to identify an effective t-motive inside the
category T . Now we briefly discuss such identification for Hom(M1,M2)
when M1,M2 ∈ M up to isomorphism of Taelman t-motives: We already
know that for sufficiently large n,M ′ := Hom(M1,M2⊗C⊗n) is an effective
t-motive. Thus, by the definition of internal hom, we see that Hom(M1,M2)
can be identified by the tuple (M ′,−n) inside T . Some examples are in
order.

Example 2.11.
(i) For any positive integer n, consider the effective t-motive C⊗n. One

can easily show that
Hom(C⊗n,C⊗n) ∼= 1.

In other words, (C⊗n)∨ = Hom(C⊗n,1) can be identified by (1,−n)
in T . We also note that by (2.11), C⊗n can be also identified by
(1, n) ∼= (C⊗(n−i), i) for any i ∈ {0, . . . , n − 1}. Furthermore, us-
ing (2.10), one can see that

(2.13) (C⊗n)∨ ⊗C⊗m = (1,m− n) , m ∈ Z≥0.

(ii) Let φ̃ be the Drinfeld A-module given by φ̃θ = θ − ab−1τ + b−1τ2

such that a ∈ Fq and b ∈ F×q . Using the K[τ ]-module structure on
Hom(Mφ̃,C), one can see that Hom(Mφ̃,C) ∼= Mφ where φ is the
Drinfeld A-module as in (2.6) with a ∈ Fq and b ∈ F×q . Thus, M∨φ̃ is
identified by (Mφ,−1) = Mφ ⊗C∨ where the equality follows from
the previous example and (2.10). Moreover, since Mφ̃ ⊗ (−b−11) ∼=
Mφ, using (2.10), one further sees that

(2.14) M∨
φ̃

= (Mφ,−1) = (Mφ̃, 0)⊗ (−b−11,−1) = Mφ̃ ⊗ det(Mφ̃)∨.
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2.5. L-series of Taelman t-motives and Taelman L-values. Using
Theorem 2.8 and the tensor compatibility of the functor Vw defined in
Section 2.3 for any monic irreducible element w ∈ A, in [37, §2.8], Taelman
was able to introduce the L-function L(M, · ) corresponding to a Taelman
t-motive M satisfying the property

(2.15) L(M⊗C, s+ 1) = L(M, s), s ∈ Z

provided that both sides of the identity converge.
As our first example, for any s ∈ Z, we define the L-series L(1, s) corre-

sponding to the trivial Taelman t-motive 1 by

L(1, s) :=
∏
v∈A+

(1− v−s)−1 =
∑
a∈A+

1
as
∈ K∞

where the product runs over irreducible elements in A+ and it converges
for any positive integer s (see [24, §8]).

In this subsection and the rest of the paper, for any positive integer n, we
are mainly interested in the L-function L(Mn, · ) of the effective t-motive
Mn defined in Section 2.3 corresponding to Gn given in (2.7). Let ρ = (ρw)
be the family of homomorphisms ρw : Gal(Ksep/K) → GL2(Vw(Mn)) in-
duced by the action of Gal(Ksep/K) on Vw(Mn). We know by Theorem 2.8
that ρ indeed forms a strictly compatible system and hence one can define
the L-function L(Mn, · ) := L((Mn, 0), · ) = LU ′(ρ, · ) as in (1.1). We recall
that the values of our L-function converge in K∞ simply after replacing the
variable t with θ as explained in Section 1.2. Furthermore one can check
that the exceptional set U ′ of primes of A+ in this case is empty.

Since Mn
∼= (M ′,m) for some effective t-motive M ′ and m ∈ Z, by

using (2.15), one can recover values of L(M∨n , s) in terms of L(M ′, s) when-
ever they are convergent. Indeed by [38, Prop. 8], we know that L(M∨n , s)
converges to an element in K∞ for any integer s ≥ 0.

Before we finish this subsection, we introduce the Taelman L-value corre-
sponding to an abelian t-module G = (Gd

a/K , ψ) which plays a fundamental
role to prove our main result. We refer the reader to [19, 38] for further
details.

For any finite A-module M , we set

|M |A := det
Fq [X]

(
(1⊗X) Id−(θ ⊗ 1)

∣∣∣M ⊗Fq Fq[X]
)
|X=θ

which is the characteristic polynomial of the map θ⊗ 1 on M evaluated at
X = θ.

Let B = (bi,j) ∈ Matd(A) and v ∈ A+ be a prime. We define the matrix
B := (bi,j) ∈ Matd(A/vA) where bi,j ≡ bi,j (mod v). For any 1 ≤ j ≤ m

and x = [x1, . . . , xd]tr ∈ (A/vA)d, we set x(j) := [xq
j

1 , . . . , x
qj

d ]tr.
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We define Lie(G)(A/vA) to be the direct sum (A/vA)d of d-copies of
A/vA equipped with the A-module action given by

θ · x := ∂ψ(θ)x, x ∈ (A/vA)d.

Similarly, we define G(A/wA) as (A/wA)d with the A-module action given
by

θ · x := A0x+ · · ·+Amx
(m), x ∈ (A/vA)d.

Now following [19], we define the Taelman L-value L(G/A) by the infinite
product

L(G/A) :=
∏
v

|Lie(G)(A/wA)|A
|G(A/wA)|A

∈ 1 + 1
θ
Fq
[[1
θ

]]
where v runs over all irreducible elements in A+.

3. The Analysis on the Logarithm series LogGn

We fix a positive integer n and a Drinfeld A-module φ of rank 2 given
by φθ = θ+ aτ + bτ2 where a ∈ A and b ∈ A \ {0} unless otherwise stated.
We recall the definition of the t-module Gn = (G2n+1

a/K , φn) from (2.7) and
denote its logarithm series LogGn by

LogGn =
∞∑
i=0

Piτ
i, P0 = Id2n+1, Pi = (Pi,(j,k)) ∈ Mat2n+1(K).

In this section, we analyze the coefficients Pi and using Papanikolas’ method
in [32, §§4.1 and 4.3], we determine certain elements lying in the conver-
gence domain of the function LogGn induced by the logarithm series of Gn
if the coefficients of φ have certain conditions.

Lemma 3.1 (cf. [32, Lem. 4.1.1]). For any i ≥ 1 and j = 0, 1, we consider
r1,j,i−1 := Pi−1,(2n+j,2n) + aq

i−1
Pi−1,(2n+j,2n+1) ∈ K and define r2,j,i−1 :=

bq
i−1
Pi−1,(2n+j,2n+1) ∈ K. Let Ri,j ∈ Mat1×2n+1(K) be given as

Ri,j :=
[

(−1)
[i] r1,j,i−1,

(−1)
[i] r2,j,i−1, . . . ,

(−1)n

[i]n r1,j,i−1,
(−1)n

[i]n r2,j,i−1,
(−1)n+1

[i]n+1 r1,j,i−1

]
.

Then the (2n)-th and (2n + 1)-st row of Pi are given by Ri,0 and Ri,1
respectively.



528 Oğuz Gezmiş

Proof. Recall that φn(θ) = θ Id2n+1 +N+Eτ . For any two matricesB1, B2∈
Mat2n+1(K), set [B1, B2] := B1B2−B2B1. Then we define ad(B1)0(B2) :=
B2 and for j ≥ 1, ad(B1)j(B2) = [B1, adj(B1)j−1(B2)]. Using [22, Lem. 3.4]
and a similar argument as in [14, Eq. 3.2.4], we have

Pi = −
2(n+1)−2∑

j=0

ad(N)j(Pi−1E
(i−1))

[i]j+1

= −
2(n+1)−2∑

j=0

j∑
m=0

(−1)j−m
(
j

m

)
NmPi−1E

(i−1)N j−m

[i]j+1 .

Note that Nm = 0 when m ≥ n + 1 and N j−m = 0 if j − m ≥ n + 1.
Therefore we see that

Pi = −
n∑

m=0

n+m∑
j=m

(−1)j−m
(
j

m

)
NmPi−1E

(i−1)N j−m

[i]j+1

=
n+1∑
l=1

n∑
m=0

(−1)l
(
l +m− 1

m

)
NmPi−1E

(i−1)N l−1

[i]l+m ,

(3.1)

where the last equality follows from setting l = j −m + 1. Since the last
two rows of N contain only zeros, one can notice from the direct calculation
that the multiplication NmPi−1E

(i−1)N l−1 has no contribution to the last
two rows of Pi if m ≥ 1. Thus we only consider the case when m = 0.
Observe that

Pi−1E
(i−1)N l−1 =


∗ . . . ∗ ∗ ∗ ∗ . . . ∗
...

...
...

...
...

...
∗ . . . ∗ ∗ ∗ ∗ . . . ∗
0 . . . 0 r1,0,i−1 r2,0,i−1 0 . . . 0
0 . . . 0 r1,1,i−1 r2,1,i−1 0 . . . 0


where the only non-zero elements occur in the 2(l−1)+1-st and 2(l−1)+2-
nd coordinates of the last two rows. We also mention that when l = n+ 1,
the non-zero terms appear only in the last coordinate of the last two rows
which are actually the terms corresponding to 2(l − 1) + 1-st coordinate
when n = l. Thus, applying (3.1) together with above observation finishes
the proof. �

Let
logφ =

∑
i≥0

γiτ
i

be the logarithm series of φ defined so that γ0 = 1 and

(3.2) θ logφ = logφ φθ.
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Recall that the logarithm series logC of the Carlitz module is defined by
logC =

∑
i≥0 L

−1
i τ i where L0 = 1 and Li = (−1)i[i][i− 1] . . . [1].

We also recall the definition of shadowed partitions and elements Fi for
all i ≥ 0 from Section 1.3 and prove the following proposition.

Proposition 3.2. For any i ≥ 2, we have

−1
[i] (bqi−2

Fi−2 + aq
i−1
Fi−1) = Fi.

Proof. Note that for any U1 = (S1,1, S1,2) ∈ P1
2 (i−2) and U2 = (S2,1, S2,2) ∈

P1
2 (i − 1) with corresponding components CU1 and CU2 respectively, the

elements −bqi−2CU1/[i] and −aq
i−1CU2/[i] are the corresponding components

to the shadowed partitions (S1,1, S1,2 ∪ {i − 2}) and (S2,1 ∪ {i − 1}, S2,2)
in P2(i) respectively and they are actually distinct elements of P1

2 (i) by
definition. Define the map α : P1

2 (i− 2) t P1
2 (i− 1)→ P1

2 (i) by

α(U) :=
{

(S1, S2 ∪ {i− 2}) if U = (S1, S2) ∈ P 1
2 (i− 2)

(S1 ∪ {i− 1}, S2) if U = (S1, S2) ∈ P 1
2 (i− 1).

By the above discussion α is injective. Furthermore, it is also surjective as
any element U = (S′1, S′2) of P1

2 (i) has the property that either {i−1} ∈ S′1
or {i− 2} ∈ S′2. For the former case we have α((S′1 \ {i− 1}, S′2)) = U and
for the latter case α((S′1, S′2 \ {i − 2})) = U . Thus the proof is completed
after summing the components of γi corresponding to shadowed partitions
in P1

2 (i). �

Using Lemma 3.1 and Proposition 3.2, we prove the following.

Corollary 3.3. Let 1 ≤ k ≤ n. For any i ≥ 1, the last row of Pi is given by[
(−1)n[i]nγi

Lni
,
(−1)n−1[i]n−1bq

i−1
γi−1

Lni
, . . . ,

(−1)n+1−k[i]n+1−kγi
Lni

,
(−1)n−k[i]n−kbqi−1

γi−1
Lni

, . . . ,
γi
Lni

]
,

and the (2n)-th row of Pi is given by[
(−1)n[i]nFi

Lni
,
(−1)n−1[i]n−1bq

i−1
Fi−1

Lni
, . . . ,

(−1)n+1−k[i]n+1−kFi
Lni

,
(−1)n−k[i]n−kbqi−1

Fi−1
Lni

, . . . ,
Fi
Lni

]
.
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Proof. We do induction on i. Note that if i = 1, then Lemma 3.1 shows
that the last row and the (2n)-th row of P1 are given by[

a

L1
,
b

L1
, . . . ,

a

Ln1
,
b

Ln1
,

a

Ln+1
1

]
and

[
1
L1
, 0, . . . , 1

Lni
, 0, 1

Ln+1
1

]

respectively. By using (3.2), we see that γ1 = a/(θ − θq) = a/L1 which
implies that the induction hypothesis holds for i = 1. Assume that it holds
for all i. We show that the hypothesis holds for i+ 1. Observe that for any
1 ≤ k ≤ n+ 1, using the functional equation (3.2), we have

(−1)k

[i+ 1]k

(
bq
i−1
γi−1 + aq

i
γi

Lni

)
= (−1)n+1−k[i+ 1]n+1−kγi+1

Lni [i+ 1]n(−1)n

= (−1)n+1−k[i+ 1]n+1−kγi+1
Lni+1

.

(3.3)

Similarly for 1 ≤ k ≤ n, we also obtain

(3.4) (−1)k

[i+ 1]k
bq
i
γi

Lni
= (−1)n−k[i+ 1]n−kbqiγi

Lni [i+ 1]n(−1)n = (−1)n−k[i+ 1]n−kbqiγi
Lni+1

.

Thus, using Lemma 3.1, (3.3) and (3.4), we obtain that the induction hy-
pothesis holds for the last row. For the (2n)-th row, by using the similar
calculations above replacing γi−1 with Fi−1 and γi with Fi and applying
Proposition 3.2 we also deduce that the latter statement of the corollary
holds. �

By definition, for i ≥ 1, we see that Fi is of the form

(3.5) Fi = aq
x1 by1

(−1)k1 [n11] . . . [n1k1 ] + · · ·+ aq
xr
byr

(−1)kr [nr1] . . . [nrkr ]

where xj , nj , yj ∈ Z≥0 for 1 ≤ j ≤ r. Recall that t is an independent
variable over C∞. Then for each Fi ∈ K of the form (3.5), we set,

F̃ i(t) := aq
x1 by1

(t− θqn11 ) . . . (t− θq
n1k1 )

+ · · ·+ aq
xr
byr

(t− θqnr1 ) . . . (t− θqnrkr )

and observe that F̃ i(θ) = Fi. Furthermore, we define T̃ i(t) in a similar
way using the definition of Ti in Section 1.3 so that T̃ i(θ) = Ti and for each
i ∈ Z≥0, set Υi(t) := aF̃ i(t)+T̃ i(t). It is now easy to notice that Υi(θ) = γi.
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Let g1(t), . . . , g2n+1(t) be elements in K(t). We define the matrices
∂1,t[g1(t), . . . , g2n+1(t)] and ∂2,t[g1(t), . . . , g2n+1(t)] in Mat2n+1(K(t)) by

∂1,t[g1(t), . . . , g2n+1(t)] :=



∂nt (g1(t)) . . . ∂nt (g2n+1(t))
0 . . . 0
...

...
∂t(g1(t)) . . . ∂t(g2n+1(t))

0 . . . 0
g1(t) . . . g2n+1(t)


and

∂2,t[g1(t), . . . , g2n+1(t)] :=



0 . . . 0
∂n−1
t (g1(t)) . . . ∂n−1

t (g2n+1(t))
...

...
0 . . . 0

g1(t) . . . g2n+1(t)
0 . . . 0


.

For any a(t) ∈ K(t) we also consider d̃n[a(t)] ∈ Mat2n+1(K(t)) given by

d̃n[a(t)] :=



a(t) 0 ∂t(a(t)) 0 ∂2
t (a(t)) ... 0 ∂nt (a(t))

a(t) 0 ∂t(a(t))
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

a(t) 0 ∂t(a(t))
a(t) 0

a(t)


.

Let L0(t) := 1 and for i ≥ 1, we define the deformation Li(t) of elements
Li by

Li(t) := (t− θqi) . . . (t− θq) ∈ K[t].
From the definitions, we have Li(θ) = Li. Finally, define P0(t) := Id2n+1
and for all i ≥ 1 and 1 ≤ k ≤ n, we set

Pi(t) : = ∂1,t

[
(t− θqi)nΥi(t)

Li(t)n
,
(t− θqi)n−1bq

i−1Υi−1(t)
Li(t)n

, . . . ,

(t− θqi)n+1−kΥi(t)
Li(t)n

,
(t− θqi)n−kbqi−1Υi−1(t)

Li(t)n
, . . . ,

Υi(t)
Li(t)n

]

+ ∂2,t

[
(t− θqi)nF̃ i(t)

Li(t)n
,
(t− θqi)n−1bq

i−1
F̃ i−1(t)

Li(t)n
, . . . ,

(t− θqi)n+1−kF̃i(t)
Li(t)n

,
(t− θqi)n−kbqi−1

F̃ i−1(t)
Li(t)n

, . . . ,
F̃i(t)
Li(t)n

]
.
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The next proposition will be useful to deduce some facts about the domain
of convergence of LogGn .

Proposition 3.4. For any i ≥ 0, we have that Pi(θ) = Pi.

Proof. Assume first that i ≥ 1. Using (2.1), we can obtain

(3.6) d̃n[t− θqi ]Pi(t)

= ∂1,t

[
(t−θqi)n+1Υi(t)

Li(t)n
,
(t−θqi)nbqi−1Υi−1(t)

Li(t)n
, . . . ,

(t−θqi)n+2−kΥi(t)
Li(t)n

,

(t−θqi)n+1−kbq
i−1Υi−1(t)

Li(t)n
, . . . ,

(t−θqi)Υi(t)
Li(t)n

]

+ ∂2,t

[
(t−θqi)n+1F̃ i(t)

Li(t)n
,
(t−θqi)nbqi−1

F̃ i−1(t)
Li(t)n

, . . . ,
(t−θqi)n+2−kF̃i(t)

Li(t)n
,

(t−θqi)n+1−kbq
i−1
F̃ i−1(t)

Li(t)n
, . . . ,

(t−θqi)F̃i(t)
Li(t)n

]
.

Note also that we have

(3.7) Pi(t)N

= ∂1,t

[
0, 0, (t−θqi)nΥi(t)

Li(t)n
,
(t−θqi)n−1bq

i−1Υi−1(t)
Li(t)n

, . . . ,

(t−θqi)n+1−kΥi(t)
Li(t)n

,
(t−θqi)n−kbqi−1Υi−1(t)

Li(t)n
, . . . ,

(t−θqi)Υi(t)
Li(t)n

]

+ ∂2,t

[
0, 0, (t−θqi)nF̃ i(t)

Li(t)n
,
(t−θqi)n−1bq

i−1
F̃ i−1(t)

Li(t)n
, . . . ,

(t−θqi)n+1−kF̃i(t)
Li(t)n

,
(t−θqi)n−kbqi−1

F̃ i−1(t)
Li(t)n

, . . . ,
(t−θqi)F̃ i(t)

Li(t)n

]
.

Thus, combining (3.6) and (3.7) we obtain

(3.8) d̃n[t− θqi ]Pi(t)− Pi(t)N

= ∂1,t

[
(t− θqi)n+1Υi(t)

Li(t)n
,
(t− θqi)nbqi−1Υi−1(t)

Li(t)n
, 0, . . . , 0

]

+ ∂2,t

[
(t− θqi)n+1F̃ i(t)

Li(t)n
,
(t− θqi)nbqi−1

F̃ i−1(t)
Li(t)n

, 0, . . . , 0
]
.
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On the other hand, again by using (2.1), we also have

(3.9) Pi−1E
(i−1)

= ∂1,t

[
Υi−2(t)bqi−2 + aq

i−1Υi−1(t)
Li−1(t)n ,

bq
i−1Υi−1(t)
Li−1(t)n , 0, . . . , 0

]

+ ∂2,t

[
F̃ i−2(t)bqi−2 + aq

i−1
F̃ i−1(t)

Li−1(t)n ,
bq
i−1
F̃ i−1(t)

Li−1(t)n , 0, . . . , 0
]
.

By the functional equation (3.2), we see that

Υi−2(t)bqi−2 + aq
i−1Υi−1(t)

Li−1(t)n

∣∣∣∣∣
t=θ

= (t− θqi)n+1Υi(t)
(t− θqi)nLni−1(t)

∣∣∣∣∣
t=θ

= (t− θqi)n+1Υi(t)
Li(t)n

∣∣∣∣∣
t=θ

.

(3.10)

Similarly, we also have

(3.11) bq
i−1(t− θqi)nΥi−1(t)
(t− θqi)nLi−1(t)n

∣∣∣∣∣
t=θ

= bq
i−1(t− θqi)nΥi−1(t)

Li(t)n

∣∣∣∣∣
t=θ

.

By Proposition 3.2, similar calculation as in (3.10) and (3.11) also gives

F̃ i−2(t)bqi−2 + aq
i−1
F̃ i−1(t)

Li−1(t)n

∣∣∣∣∣
t=θ

= (t− θqi)n+1F̃ i(t)
(t− θqi)nLni−1(t)

∣∣∣∣∣
t=θ

= (t− θqi)n+1F̃ i(t)
Li(t)n

∣∣∣∣∣
t=θ

(3.12)

and

(3.13) bq
i−1(t− θqi)nF̃ i−1(t)
(t− θqi)nLi−1(t)n

∣∣∣∣∣
t=θ

= bq
i−1(t− θqi)nF̃ i−1(t)

Li(t)n

∣∣∣∣∣
t=θ

.

Moreover, by definition, we have

(3.14) d̃n[t− θqi ]|t=θ = (θ − θqi) Id2n+1 +N.

Finally, evaluating both sides of (3.8) and (3.9) at t = θ together with
using (3.10), (3.11), (3.12), (3.13) and (3.14), we see that(

(θ − θqi) Id2n+1 +N
)
Pi(θ)− Pi(θ)N = Pi−1(θ)E(i−1)

which implies that the matrix Pi(θ) satisfies the same functional equa-
tion (2.5) as Pi does. Since such a solution is unique, we conclude that
Pi(θ) = Pi for i ≥ 1. Note that when i = 0, the proposition follows from
the definition of P0(t). Thus we finish the proof. �
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We are now ready to give the main result of this section.

Theorem 3.5. Let φ be the Drinfeld A-module of rank 2 defined as in (2.6)
such that a ∈ Fq and b ∈ F×q . Let Gn be the t-module constructed from φ

and C⊗n as in (2.7). Then the logarithm function LogGn of Gn converges
on the polydisc Dn := {x ∈ Lie(Gn)(C∞) | |x|∞ ≤ 1}.

Proof. For i ≥ 1, we first analyze the last two rows of Pi by using Corol-
lary 3.3. Since a, b ∈ Fq, by [18, Lem. 4.1], we see that |γi|∞ < 1. For any
1 ≤ k ≤ n+ 1 we have∣∣∣∣∣ [i]n+1−kγi

Lni

∣∣∣∣∣
∞

<

∣∣∣∣∣ [i]n+1−k

Lni

∣∣∣∣∣
∞

= qq
i(n+1−k)−n(qi+1−q)/(q−1)

= qq
i(−k+n+1−nq/(q−1))+nq/(q−1).

(3.15)

Since b ∈ Fq, for 1 ≤ k ≤ n, we also have∣∣∣∣∣ [i]n−kbq
i−1
γi−1

Lni

∣∣∣∣∣
∞

≤
∣∣∣∣∣ [i]n−kLni

∣∣∣∣∣
∞

= qq
i(n−k)−n(qi+1−q)/(q−1)

= qq
i(−k+n−nq/(q−1))+nq/(q−1).

(3.16)

Similar estimation can be also made for the elements [i]n+1−kFi/L
n
i and

[i]n−kbqi−1
Fi−1/L

n
i by using (3.15) and (3.16) respectively. Thus by Corol-

lary 3.3, we see that the norm of any element in one of the odd (resp. even)
entries in (2n)-th or the last row of Pi is bounded by the right hand side
of (3.15) (resp. (3.16)). By Proposition 3.4 and the definition of Li(t), we
see that for 0 ≤ l,m ≤ n, we have

Pi,(2n+1−2l,2m+1) = ∂lt

(
Υi(t)

(t− θq)n . . . (t− θqi−1)n(t− θqi)m

)∣∣∣∣∣
t=θ

,

and for 1 ≤ j ≤ n, we obtain

Pi,(2n+1−2l,2j) = ∂lt

(
bq
i−1Υi−1(t)

(t− θq)n . . . (t− θqi−1)n(t− θqi)j

)∣∣∣∣∣
t=θ

.

Moreover again by Proposition 3.4, for 0 ≤ s ≤ n − 1 and 0 ≤ r ≤ n, we
have

Pi,(2n−2s,2r+1) = ∂st

(
F̃i(t)

(t− θq)n . . . (t− θqi−1)n(t− θqi)r

)∣∣∣∣∣
t=θ

,

and for 1 ≤ j ≤ n, we obtain

Pi,(2n−2s,2j) = ∂st

(
bq
i−1
F̃ i−1(t)

(t− θq)n . . . (t− θqi−1)n(t− θqi)j

)∣∣∣∣∣
t=θ

.
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Thus, a small calculation implies that the norm of the elements in an odd
entry (resp. even) of each row of Pi is smaller than the bound obtained in
the right hand side of (3.15) (resp. (3.16)). Now let x be an element in D.
Then the bound on the norm of Pi implies that

|Pixq
i |∞ ≤ max

1≤k≤n
qq
i(−k+n+1−nq/(q−1))+nq/(q−1) −→ 0

as i → ∞. Since x ∈ Dn is arbitrary, the function LogGn converges on
Dn. �

Remark 3.6. Let Gn = (G2n+1
a/K , φn) be the abelian t-module as in the

statement of Theorem 3.5. For a fixed choice of (q − 1)-st root of −b−1,
set γ := (−b−1)1/(q−1) and let G̃n = (G2n+1

a/K , φ̃n) be the t-module given by
φ̃n(θ) = γ−1φn(θ)γ. It is easy to check by using the functional equation (2.5)
that LogG̃n = γ−1 LogGn γ. In other words, if P̃ i is the i-th coefficient of
LogG̃n , then we have P̃ i = (−1)ib−iPi for all i ≥ 0.Therefore one can also
obtain similar results for the logarithm series coefficients of G̃n and hence
sees that the function LogG̃n also converges on Dn.

4. Class and Unit modules

We fix an abelian t-module Gn which is constructed as the tensor product
of the n-th tensor power of the Carlitz module and a Drinfeld A-module φ
of rank 2 given by φθ = θ + aτ + bτ2 such that a ∈ Fq and b ∈ F×q . In this
section, our aim is to prove some properties of the class and unit module
of Gn. For more general description of class and unit modules, we refer the
reader to [6, 19, 38].

For 1 ≤ i ≤ 2n + 1, let ei ∈ Mat(2n+1)×1(Fq) be such that the i-th
coordinate of ei is 1 and the rest is equal to 0.
Lemma 4.1. The A-module Lie(Gn)(A) is free of rank 2n + 1 generated
by ei for i = 1, . . . , 2n+ 1.
Proof. Suppose that there exist elements a1, . . . , a2n+1 in A such that
(4.1)

∑
i≥0

∂φn(ai)ei = [0, . . . , 0]tr.

By Lemma 2.5, the equality in (4.1) is equivalent to

(4.2)
∑
i≥0

∂φn(ai)ei =



a1 + ∂θ(a3) + · · ·+ ∂nθ (a2n+1)
a2 + ∂θ(a4) + · · ·+ ∂n−1

θ (a2n)
...

a2n−2 + ∂θ(a2n)
a2n−1 + ∂θ(a2n+1)

a2n
a2n+1


=



0
0
...
0
0
0
0


.
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Thus we obtain that ai = 0 for 1 ≤ i ≤ 2n + 1 recursively. This im-
plies that the set {e1, . . . , e2n+1} is A-linearly independent. Using the first
equality in (4.2), one can show that the same set also spans the A-module
Lie(Gn)(A) and we leave the details to the reader. �

Let v∞( · ) be the valuation corresponding to the norm | · |∞ normalized
so that v∞(θ) = −1. Consider the Fq-module

m := {x ∈ Lie(Gn)(K∞) | v∞(x) ≥ 1}.

We have the following decomposition of Fq-modules:

(4.3) Lie(Gn)(K∞) = Lie(Gn)(A)⊕m.

Recall that LogGn =
∑
i≥0 Piτ

i is the logarithm series of Gn.

Proposition 4.2. For 1 ≤ i ≤ 2n + 1, let λi := LogGn(ei). Then the set
{λ1, . . . , λ2n+1} is A-linearly independent in Lie(Gn)(K∞).

Proof. By Theorem 3.5, we see that ei is in the domain of convergence
of LogGn for 1 ≤ i ≤ 2n + 1. Assume to the contrary that there exist
a1, . . . a2n+1 ∈ A not all zero satisfying

(4.4)
2n+1∑
i=1

∂φn(ai)λi = [0, . . . , 0]tr

and let T := max1≤i≤2n+1{degθ(ai)}. By using Proposition 3.4 and a simple
calculation on the valuation of the coefficients of LogGn , we see that for any
k ≥ 1 and j ∈ {1, . . . , 2n + 1}, Pkej ∈ m. Since all entries of Pk for k ≥ 1
has valuation bigger than 0, if we set gi :=

∑∞
k=1 Pkei, then we see that

gi ∈ m. Now dividing both sides of (4.4) by θT and using the fact that
P0 = Id2n+1, Lemma 2.5 yields

(4.5)
2n+1∑
i=1



aiT+a′i 0 θ−T ∂θ(ai) ... 0 θ−T ∂nθ (ai)
aiT+a′i 0 θ−T ∂θ(ai)

. . . . . . . . .
aiT+a′i 0 θ−T ∂θ(ai)

aiT+a′i 0
aiT+a′i

(ei+gi) =



0
...
...
...
0


where aiT ’s are the θT -th coefficient of ai’s some of which may possibly be
zero and a′i = ai/θ

T −aiT . We also note that v∞(a′i) ≥ 1 for 1 ≤ i ≤ 2n+1.
Thus by comparing both sides of (4.5), we see that

2n+1∑
i=1

aiT ei + g∗ = [0, . . . , 0]tr
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for some g∗ ∈ m. By the decomposition of Lie(Gn)(K∞) in (4.3) we have
that

2n+1∑
i=1

aiT ei = [0, . . . , 0]tr.

But it is only possible if aiT = 0 for all i. Using the similar argument for
the remaining coefficients of ai, inductively, we can show that ai = 0 for
all i. But this is a contradiction with the assumption on ai’s. Thus the set
{λ1, . . . , λ2n+1} is A-linearly independent. �

Let G be an abelian t-module and consider the exponential function
ExpG : Lie(G)(C∞)→ G(C∞) of G. The class module H(G/A) of G is the
A-module given by the quotient

H(G/A) := G(K∞)
ExpG(Lie(G)(K∞)) +G(A) .

We prove the following proposition.
Proposition 4.3. For any n ≥ 1, we have

H(Gn/A) = {0}.

Proof. By Theorem 3.5, we have that the set m is in the domain of conver-
gence of LogGn . Since LogGn is the formal inverse of ExpGn , the image of
ExpGn contains m. Thus by (4.3) we have that

ExpGn(Lie(Gn)(K∞)) +Gn(A) ⊇ Gn(K∞)
which implies that H(Gn/A) = {0}. �

Definition 4.4. Let V be a finite dimensional K∞-vector space. We say
that an A-module M ⊂ V is an A-lattice in V if it is free and finitely
generated over A such that the map M ⊗A K∞ → V is an isomorphism.
Remark 4.5. It is important to point out that by [6, Lem. 1], an A-lattice
in V is a free A-module of finite rank r = dimK∞(V ).

We now continue with the theory of invertible A-lattices introduced
in [16].
Definition 4.6 ([16, Def. 2.19]).

(i) An invertible A-lattice inK∞ is a tuple (J, α) consisting of a finitely
generated and locally free of rank one A-module J and an isomor-
phism α : J ⊗A K∞ → K∞ of K∞-modules.

(ii) Let IdK∞ be the identity map on K∞. We say (J1, α1) and (J2, α2)
are equivalent whenever there exists an isomorphism g : J1 → J2 of
A-modules satisfying

α2 ◦ (g ⊗ IdK∞) = α1

where g⊗ IdK∞ : J1⊗AK∞ → J2⊗AK∞ is the map induced by g.
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One can obtain that the relation between invertible A-lattices stated
in Definition 4.6(ii) is an equivalence relation and we denote the set of
equivalence classes of invertible A-lattices in K∞ by Pic(A,K∞).

Given two finitely generated locally free A-modules J̃1 and J̃2, we can
construct an invertible A-lattice J as follows: Let d1 and d2 be the rank
of J̃1 and J̃2 over A and α : J̃1 ⊗A K∞ → J̃2 ⊗A K∞ be an isomor-
phism of K∞-modules. For i = 1, 2, we define detA(J̃ i) to be the di-th
exterior power ∧di J̃ i of J̃ i. Since A is a Dedekind domain, we see that
HomA(detA(J̃1), detA(J̃2)) is a finitely generated and locally free A-module
of rank one. Moreover the tuple J := (HomA(detA(J̃1), detA(J̃2)), α̃) is an
element of Pic(A,K∞) where

α̃ : HomA

(
det
A

(J̃1),det
A

(J̃2)
)
⊗A K∞ → K∞

is the isomorphism induced by α.

Proposition 4.7 ([16, Prop. 2.38]). There exists a unique homomorphism
v : Pic(A,K∞) → Q whose composition with K×∞ → Pic(A,K∞) is the
valuation v∞.

We call an element g =
∑
j≤j0 cjθ

j ∈ K×∞ monic if the leading co-
efficient cj0 ∈ F×q is equal to 1. The monic generator of the A-module
HomA(detA(J̃1), detA(J̃2)) is denoted by [J̃1 : J̃2]A. Note that Proposi-
tion 4.7 actually implies that

v
(
HomA

(
det
A

(J̃1),det
A

(J̃2)
)
, α̃
)

= v∞([J̃1 : J̃2]A).

We continue with an observation due to Anglès and Tavares Ribeiro [6,
§2]. Let V ′1 and V ′2 be A-lattices in a finite dimensional K∞-vector subspace
V ′ in V defined by V ′i := Vi ∩ V ′ for i = 1, 2. Then V1/V

′
1 and V2/V

′
2 are

A-lattices in V/V ′ with the property that

(4.6)
[
V1/V

′
1 : V2/V

′
2

]
A

= [V1 : V2]A
[V ′1 : V ′2 ]A

.

Using the homomorphism v : Pic(A,K∞) → Q, Debry also proved the
following.

Lemma 4.8 ([16, Cor. 2.40]). Let Λ ⊂ Λ′ be two finitely generated locally
free A-modules of the same rank. Then we have

v∞([Λ′ : Λ]A) = −dimFq(Λ′/Λ).

Definition 4.9. Assume that G is an abelian t-module. We define the unit
module U(G/A) corresponding to G by

U(G/A) := {x ∈ Lie(G)(K∞) |ExpG(x) ∈ Lie(G)(A)} ⊂ Lie(G)(K∞).
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By [19, Thm. 1.10], we know that Lie(G)(A) and U(G/A) are A-lattices
in Lie(G)(K∞). Since A is a Dedekind domain, Lie(G)(A) and U(G/A) are
also locally free A-modules.

The following proposition is useful to determine the generators of the
unit module U(Gn/A).

Proposition 4.10 (cf. [16, Prop. 4.29]). Let Λ be a finitely generated
locally free A-submodule of U(G/A) of the same rank as Lie(G)(A). If
v∞([Lie(G)(A) : Λ]A) = 0 and H(G/A) = {0}, then Λ = U(G/A).

Proof. We first note that the inclusion of Λ in Lie(G)(K∞) induces an
isomorphism

ι : Λ⊗A K∞ → Lie(G)(K∞)⊗A K∞
and hence the tuple (HomA(detA(Lie(G)(A)),detA(Λ)), ι̃) is in Pic(A,K∞)
where

ι̃ : HomA(det
A

(Lie(G)(A)), det
A

(Λ))⊗A K∞ → K∞

is the isomorphism induced by ι. Recall the definition of L(G/A) from Sec-
tion 2.7. Note that v∞(L(G/A)) = 0. Thus by the assumption on H(G/A)
and [19, Thm. 1.10], we have v∞([Lie(G)(A) : U(G/A)]A) = 0. Moreover,
by [16, Lem. 2.23], we have the equality that
(4.7) [Lie(G)(A) : Λ]A = [Lie(G)(A) : U(G/A)]A[U(G/A) : Λ]A.
Note also that the tuple (HomA(detA(U(G/A)),detA(Λ)), α̃) is an element
in Pic(A,K∞) where

α̃ : HomA(det
A

(U(G/A)), det
A

(Λ))⊗A K∞ → K∞

is the isomorphism induced by
α : U(G/A)⊗A K∞ → Λ⊗A K∞.

Calculating the valuation of both sides of (4.7), we see that
v∞([Lie(G)(A) : Λ]A) = v∞([U(G/A) : Λ]A).

Thus by the assumption, we get v∞([U(G/A) : Λ]A) = 0. The proposition
now follows from Lemma 4.8. �

Observe that by [19, Thm. 1.10] and Proposition 4.3, we obtain
(4.8) L(Gn/A) = [Lie(Gn)(A) : U(Gn/A)]A.

We set

Λ :=
2n+1⊕
i=1

A · λi ⊂ Lie(Gn)(K∞),

to be the A-module generated by λi’s, where λi is as in Proposition 4.2
whose A-module structure is induced by ∂φn . By Proposition 4.2, we observe
that Λ is an A-submodule of U(Gn/A) which is free of rank 2n + 1 and
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therefore has the same rank as Lie(Gn)(A) by Lemma 4.1. It is also locally
free as it is a torsion free module over the Dedekind domain A. Moreover
one can note that the element [Lie(Gn)(A) : Λ]A ∈ K×∞ can be given by the
determinant of the matrix Π ∈ Mat2n+1(K∞) whose i-th column having the
coordinates of λi = LogGn(ei). Since the idea of the proof of Theorem 3.5
implies that the entries of Pi for i ≥ 1 has valuation bigger than 0, we obtain
[Lie(Gn)(A) : Λ]A = det(Π) = 1 + m′ where m′ ∈ m. Therefore we have
v∞([Lie(Gn)(A) : Λ]A) = v∞(1 +m′) = 0. Thus using Proposition 4.10, we
conclude the following.

Theorem 4.11.
(i) We have

U(Gn/A) =
2n+1⊕
i=1

A · λi ⊂ Lie(Gn)(K∞)

where λi = LogGn(ei) for all 1 ≤ i ≤ 2n+ 1.
(ii) Let G̃n = (G2n+1

a/K , φ̃n) be the t-module defined as in Remark 3.6.
Then G̃n is an abelian t-module. Furthermore we have

U(G̃n/A) =
2n+1⊕
i=1

A · λ̃i ⊂ Lie(G̃n)(K∞)

where λ̃i = LogG̃n(ei) for all 1 ≤ i ≤ 2n+ 1.

Proof. The first part follows from the previous discussion. For the second
part, we first show that G̃n is an abelian t-module. Let M ′ be the Taelman
t-motive defined asM ′ := Mφ⊗C⊗n+1⊗det(Mφ)∨ whereMφ is the effective
t-motive corresponding to φ. Note that

C⊗n+1 ⊗ det(Mφ)∨ = (C⊗n, 1)⊗ (−b1,−1) = (M0, 0)

where M0 is the effective t-motive K[t]m̃ with K[t]-basis {m̃} and whose
τ -action is given by τ · fm̃ = −bf (1)(t − θ)nm̃ for all f ∈ K[t]. Thus,
M ′ = (Mφ, 0) ⊗ (M0, 0) = (Mφ ⊗M0, 0) is indeed an effective t-motive.
By a similar calculation as in Section 2.3, we see that M ′ is free of rank
2n + 1 over K[τ ] and the t-module corresponding to M ′ is given by G̃n =
(G2n+1

a/K , φ̃n) which implies that G̃n is an abelian t-module. By Remark 3.6,
we know that the logarithm coefficients of G̃n are F×q -multiple of the loga-
rithm coefficients of Gn. Therefore one can obtain by using the idea of the
proof of Proposition 4.2 that the set {λ̃1, . . . , λ̃2n+1} is A-linearly indepen-
dent in Lie(G̃n)(K∞). On the other hand, since φ̃n(θ) = γ−1φn(θ)γ where
γ = (−b−1)1/(q−1), by using the same idea in the proof of Lemma 4.1 that
Lie(G̃n)(A) is free of rank 2n + 1 generated by ei for i = 1, . . . , 2n + 1.
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Now the second part follows by using Proposition 4.10 and obtaining the
formula

L(G̃n/A) = [Lie(G̃n)(A) : U(G̃n/A)]A
in a similar way used to deduce (4.8). �

5. The proof of the main result

Throughout this section, we let the t-module Gn = (G2n+1
a/K , φn) be con-

structed from φ given by φθ = θ + aτ + bτ2 such that a ∈ Fq and b ∈ F×q
and C⊗n as in (2.7).

5.1. The dual t-motive of Gn. Before giving the definition of the dual
t-motive of Gn, we require further setup. Assume that L is a perfect field
and is an extension ofK in C∞. We define the non-commutative polynomial
ring Matm×k(L)[σ] with the condition

σB = B(−1)σ, B ∈ Matm×k(L).

For any g = g0 + g1τ + · · · + glτ
l ∈ Matm×k(L)[τ ], we further define

g∗ ∈ Matk×m(L)[σ] by g∗ := gtr
0 + (g(−1)

1 )trσ + · · · + (g(−l)
l )trσl. Moreover

we set the ring L[t, σ] := L[t][σ] subject to the condition

ct = tc, σc = c(−1)σ, tσ = σt, c ∈ L.

Definition 5.1.
(i) A dual t-motive H over L is a left L[t, σ]-module which is free and

finitely generated over L[σ] satisfying

(t− θ)sH/σH = {0}

for some s ∈ Z≥0.
(ii) The morphisms between dual t-motives are left L[t, τ ]-module ho-

momorphisms and we denote the category of dual t-motives by H.
(iii) We define the dual t-motive HG of a t-module G = (Gd

a/L, ψ) as
the left L[t, σ]-module HG := Mat1×d(L)[σ] whose L[σ]-module
structure given by the free L[σ]-module Mat1×d(L)[σ] and the L[t]-
module action is given by

(5.1) cti · h = chψ(θi)∗, h ∈ HG, c ∈ L.

In his unpublished notes, Anderson proved that the category H of An-
derson dual t-motives over L is equivalent to the category G of t-modules
defined over L (see [26, §2.5] and [9, §4.4] for more details). In the above
definition, we see that one can correspond a t-module to a dual t-motive.
We now describe how we can relate a dual t-motive to a t-module.
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Let δ0, δ1 : L[σ]→ L be L-linear homomorphisms defined by

δ0

∑
i≥0

aiσ
i

 := a0, and δ1

∑
i≥0

aiσ
i

 :=
∑
i≥0

aq
i

i .

It is easy to observe that the kernel of δ0 (resp. δ1) is equal to σL[σ]
(resp. (σ − 1)L[σ]). By a slight abuse of notation, we further denote
the maps δ0, δ1 : Mat1×d(L)[σ] → Matd×1(L) given by δ0((f1, . . . , fd)) =
(δ0(f1), . . . , δ0(fd))tr and δ1((f1, . . . , fd)) = (δ1(f1), . . . , δ1(fd))tr for any
(f1, . . . , fd) ∈ Mat1×d(L)[σ].

Let H be a dual t-motive which is free of rank d over L[σ]. We consider
the map η : H → Matd×1(L) given by the composition of δ1 with the map
which gives the L[σ]-module isomorphism H ∼= Mat1×d(L)[σ]. One can see
that η induces the isomorphism

(5.2) H/(σ − 1)H ∼= Ld.

The Fq[t]-module structure on H/(σ−1)H allows us to put an Fq[t]-module
structure on Ld by using (5.2) which provides us an Fq-linear ring ho-
momorphism η′ : Fq[t] → Matd(L)[τ ]. This process induces a t-module
G = (Gd

a/L, ψ) where ψ : A→ Matd(L)[τ ] is given by setting ψ(θ) := η′(t),
and such G is called the t-module corresponding to H.

Our aim is to describe the dual t-motive corresponding to the t-module
Gn = (Ga/L, φn). Let Hn be the left L[t, σ]-module given by

Hn := L[t]h1 ⊕ L[t]h2

with the L[t]-basis {h1, h2} on which σ acts as

(5.3) σ · h1 = (t− θ)n

b
h2 and σ · h2 = (t− θ)n+1h1 −

a(t− θ)n

b
h2.

By the definition of the σ-action on Hn, we easily see that Hn is the dual
t-motive with the L[σ]-basis {(t− θ)nh1, (t− θ)n−1h2, . . . , (t− θ)h1, h2, h1}.

We consider an element f =
∑n
i=0 ai(t− θ)ih1 +

∑n−1
i=0 bi(t− θ)ih2 ∈ Hn

where ai, bi ∈ L. Then we compute

tf = (t− θ + θ)f

=
n∑
i=1

ai−1(t− θ)ih1 + an(t− θ)n+1h1

+
n−1∑
i=1

bi−1(t− θ)ih2 + bn−1(t− θ)nh2 +
n∑
i=0

θai(t− θ)ih1

+
n−1∑
i=0

θbi(t− θ)ih2
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=
n∑
i=1

ai−1(t− θ)ih1 +
n−1∑
i=1

bi−1(t− θ)ih2 + anσ · h2 + anaσ · h1

+ bn−1bσ · h1 +
n∑
i=0

θai(t− θ)ih1 +
n−1∑
i=0

θbi(t− θ)ih2

=
n∑
i=1

ai−1(t− θ)ih1 +
n−1∑
i=1

bi−1(t− θ)ih2 + (σ − 1) · (aqnh2) + aqnh2

+ (σ − 1) · (aqnah1) + aqnah1 + (σ − 1) · (bqn−1bh1) + bqn−1bh1

+
n∑
i=0

θai(t− θ)ih1 +
n−1∑
i=0

θbi(t− θ)ih2.

Thus we obtain
tf = (θan + an−1)(t− θ)nh1 + (θbn−1 + bn−2)(t− θ)n−1h2

+ (θan−1 + an−2)(t− θ)n−1h1 + · · ·+ (θb1 + b0)(t− θ)h2

+ (θa1 + a0)(t− θ)h1 + (θb0 + aqn)h2 + (θa0 + aaqn + bbqn−1)h1

+ (σ − 1) · (aqnh2 + aqnah1 + bqn−1bh1).
Therefore the Fq-linear ring homomorphism η′ : Fq[t] → Mat2n+1(L)[τ ]
described above is given by η′(t) = φn(θ) which proves that Gn is the t-
module corresponding to Hn under the equivalence between the categories
H and G.

For all i ∈ {1, . . . , 2n + 1}, we recall the definition of ei and then set
e∨i := etr

i ∈ Mat1×(2n+1)(Fq). Let HGn be the dual t-motive of Gn. We have
that Hn

∼= HGn as left L[t, σ]-modules. We now define a left L[t, σ]-module
isomorphism

ι : Hn → HGn

by ι(h1) = e∨2n+1 and ι(h2) = e∨2n. Using the L[t]-module action on Hn

defined as in (5.3) and the L[t]-module action onHGn defined as in (5.1), we
obtain ι((t−θ)n−jh1) = e∨2j+1 for 0 ≤ j ≤ n and ι((t−θ)n−1−jh2) = e∨2(j+1)
for 0 ≤ j ≤ n− 1.

Next proposition is crucial to deduce our main result.

Proposition 5.2. Let f1h1 + f2h2 be an arbitrary element in Hn for some
f1, f2 ∈ L[t]. Then

δ0 ◦ ι(f1h1 + f2h2) =
[
∂nt (f1)|t=θ, ∂n−1

t (f2)|t=θ, ∂n−1
t (f1)|t=θ, . . . ,

∂t(f2)|t=θ, ∂t(f1)|t=θ, f2|t=θ, f1|t=θ
]tr
.

Proof. For i = 1, 2, we can write fi =
∑di
j=0 gi,j(t − θ)j where di is a non-

negative integer and gi,j ∈ L. By the σ-action on Hn given as in (5.3), we
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see that (t− θ)nh2 ∈ σHn and (t− θ)n+1h1 = σh2 − aσh1 ∈ σHn. Thus we
have

δ0 ◦ ι(f1h1 + f2h2) = δ0 ◦ ι

 n∑
j=0

g1,j(t− θ)jh1 +
n−1∑
j=0

g2,j(t− θ)jh2

 .
Since both δ0 and ι are L-linear maps, we see that
(5.4) δ0 ◦ ι(f1h1 + f2h2) = (g1,n, g2,n−1, g1,n−1, . . . , g2,0, g1,0)tr.

By Proposition 2.1, we have ∂jt (fi)|t=θ = gi,j for i = 1, 2. Thus by (5.4), we
obtain

δ0 ◦ ι(f1h1 + f2h2) =
[
∂nt (f1)|t=θ, ∂n−1

t (f2)|t=θ, ∂n−1
t (f1)|t=θ, . . . ,

∂t(f2)|t=θ, ∂t(f1)|t=θ, f2|t=θ, f1|t=θ
]tr

which finishes the proof. �

5.2. Inverse of the Frobenius. In this subsection, for any j ∈ Z≥0,
we introduce a crucial map ϕj : Hn → Mat(2n+1)×1(L) for our purposes
(see [4, §2] for more details). We set p0(t) := 1 and for any j ∈ Z≥0, choose
pj(t) ∈ K[t] such that

(5.5) pj(t)(t− θq
j )n+1 ≡ 1 (mod (t− θ)n+1K[t]).

By the σ-action on Hn as in (5.3), we see that (t − θ)n+1Hn ⊂ σHn.
Thus for any h ∈ Hn, there exists a unique element x ∈ Hn such that∏j−1
k=0(t− θq−k)n+1h = σjx. We now set

ϕj(h) := δ0 ◦ ι(p0(t) . . . pj(t)x).
The map ϕj is called the j-th inverse of the Frobenius.

We define the K∞-vector space W given by
W := {c1 · ϕ1(h1) + c2 · ϕ1(h2) | c1, c2 ∈ K∞} ⊂ Lie(Gn)(C∞).

Note that the K∞-vector space structure onW is induced by the map given
in (2.4).

We now calculate ϕ1(h1) and ϕ1(h2). Note that by the property (5.5) of
the polynomial p1(t) ∈ K[t], we have
(5.6) p1(t)(t− θq)n+1 − r(t)(t− θ)n+1 = 1
for some r(t) ∈ K[t]. Hence, writing p1(t) =

∑n
i=0 yi(t− θ)i+ y(t)(t− θ)n+1

and (t−θq)n+1 = (t−θ+θ−θq)n+1 =
∑n
j=0 cj(t−θ)j +(t−θ)n+1 for some

y(t) ∈ K[t] and cj , yi ∈ K where 1 ≤ i, j ≤ n, we see that (5.6) becomes

(5.7)
(

n∑
i=0

yi(t− θ)i
) n∑

j=0
cj(t− θ)j

+ Y (t)(t− θ)n+1 = 1
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for some Y (t) ∈ K[t]. From (5.7), one can calculate ys for 0 ≤ s ≤ n
recursively using the equations

(5.8)
s∑
i=0

yicm−i =
{

1 if s = 0
0 otherwise.

Since equations in (5.8) to determine ys are also used to determine the
coefficient of (t− θ)s in the Taylor expansion of (t− θq)−(n+1) at t = θ, we
see that

(5.9) p1(t)(t− θq)j (mod (t− θ)n+1K[t])

≡ 1
(t− θq)n+1−j (mod (t− θ)n+1K[t])

for j = 0, 1. Using (5.3) and our assumption on the elements a and b, we
also observe that

(t− θ)n+1h2 = (t− θ)σbh1 = σb(t− θq)h1.

Thus by Proposition 2.1, Proposition 5.2 and (5.9), we have

ϕ1(h2) = δ0 ◦ ι(p0(t)p1(t)b(t− θ)qh1) =



∂nt

(
b

(t−θq)n
)
|t=θ

0
∂n−1
t

(
b

(t−θq)n
)
|t=θ

...
0

b
(t−θq)n |t=θ


.

On the other hand, by (5.3), we also have

(t− θ)n+1h1 = σh2 + aσh1 = σ(h2 + ah1).

Thus similar to the calculation of ϕ1(h2), we now obtain

ϕ1(h1) = δ0 ◦ ι(p0(t)p1(t)(h2 + ah1)) =



∂nt

(
a

(t−θq)n+1

)
|t=θ

∂n−1
t

(
1

(t−θq)n+1

)
|t=θ

∂n−1
t

(
a

(t−θq)n+1

)
|t=θ

...
1

(t−θq)n+1 |t=θ
a

(t−θq)n+1 |t=θ


.
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Theorem 5.3. For any positive integer n satisfying 2n+ 1 ≤ q, we have

W = K∞ · e2n ⊕K∞ · e2n+1 ∼=
Lie(Gn)(K∞)

(∂φn(θ)− θ Id2n+1) Lie(Gn)(K∞) .

In particular ϕ1(h1) and ϕ1(h2) are K∞-linearly independent.

Proof. We first prove the inclusion ⊇. To do this we need to find ci,j ∈ K∞
for i, j ∈ {1, 2} so that

2∑
j=1

∂φn(ci,j)ϕ1(hj) = e2n+2−i.

Note that by the properties of hyperderivatives (see [32, Lem. 2.3.23]) and
Proposition 2.1 we have

(t− θq)n =
n∑
i=0

∂it((t− θq)n)|t=θ(t− θ)i

=
n∑
i=0

(
n

i

)
(θ − θq)n−i(t− θ)i

=
n∑
i=0

∂iθ((θ − θq)n)(t− θ)i.

(5.10)

Thus, (5.10) implies that ∂it((t− θq)n)|t=θ = ∂iθ((θ− θq)n) for all 0 ≤ i ≤ n.
Therefore, using (2.1), we see that∑

i.j≥0
i+j=m

∂jθ((θ − θ
q)n)∂it

( 1
(t− θq)n

)
|t=θ

=
∑
i.j≥0
i+j=m

∂jt ((t− θq)n)|t=θ∂it
( 1

(t− θq)n
)
|t=θ

= ∂mt (1)
= 0

(5.11)

for all 1 ≤ m ≤ n. We now choose c1,2 = b−1(θ − θq)n and c1,1 = 0. Thus
by (5.11), one can obtain
(5.12) ∂φn(c1,2)ϕ1(h2) = dn[c1,2]ϕ1(h2) = e2n+1.

Similarly, if we choose c2,2 = −ab−1(θ− θq)n and c2,1 = (θ− θq)n+1, we see
that
(5.13) ∂φn(c2,1)ϕ1(h1) + ∂φn(c2,2)ϕ1(h2) = e2n.

Thus, we haveW ⊇ K∞·e2n⊕K∞·e2n+1. On the other hand, note that since
the matrices ∂φn(ci,j) = dn[ci,j ] has non-zero determinant when ci,j 6= 0,
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by using (5.12), we obtain ϕ1(h2) = dn[c1,2]−1e2n+1. Thus, by multiplying
both sides of (5.13) with dn[c2,1]−1, we can obtain ϕ1(h1) in terms of a
linear combination of e2n and e2n+1. Thus we have the desired inclusion
W ⊆ K∞ · e2n ⊕ K∞ · e2n+1. It also implies that ϕ1(h1) and ϕ1(h2) are
K∞-linearly independent. The isomorphism of the K∞-vector spaces in the
statement of the theorem follows from the definition of Gn and the details
are left to the reader. �

We recall the t-module G̃n = (G2n+1
a/K , φ̃n) defined as in Remark 3.6. To

prove the main result of the paper, we need some further analysis on G̃n
and its dual t-motive. Consider the left L[t, σ]-module

H̃n := L[t]h̃1 ⊕ L[t]h̃2

on which σ acts as
σ · h̃1 = −(t− θ)nh̃2 and σ · h̃2 = −b(t− θ)n+1h̃1 + a(t− θ)nh̃2.

By a straightforward modification of the calculations in the present sec-
tion, one can obtain that H̃n is the dual t-motive corresponding to G̃n.
Furthermore, we have ϕ1(h̃1) = −b−1ϕ1(h1) and ϕ1(h̃2) = −b−1ϕ1(h2).
Since b ∈ F×q , by Theorem 5.3, one can obtain

W̃ : =
{
c1 · ϕ1(h̃1) + c2 · ϕ1(h̃2)

∣∣∣ c1, c2 ∈ K∞
}

= K∞ · e2n ⊕K∞ · e2n+1

∼=
Lie(G̃n)(K∞)

(∂φ̃n(θ)− θ Id2n+1) Lie(G̃n)(K∞)
.

(5.14)

By using Theorem 5.3 and [4, Prop. 4.2, 4.3, Thm. 4.4], one can easily
deduce the following theorem.

Theorem 5.4.
(i) Let W̃ be the K∞-vector space as in (5.14) and let LogG̃n=

∑
i≥0 P̃ iτ

i

be the logarithm series of the t-module G̃n. Then for any natural
number n satisfying 2n+1 ≤ q, the K∞-vector space (via the action
of ∂φ̃n) generated by P̃ iτ i(x) for all i ≥ 1 and any x ∈ Lie(G̃n)(C∞)
is contained in W̃ .

(ii) U(G̃n/A) ∩ W̃ and Lie(G̃n)(A) ∩ W̃ are A-lattices in W̃ .

5.3. Taelman L-values and Goss L-series. For a given abelian t-
module G, we recall the definition of the dual of the Taelman t-motive
corresponding to G and the Taelman L-value L(G/A) from Section 2.4 and
Section 2.5.

We continue with letting φ to be the Drinfeld A-module of rank 2 given
by φθ = θ + aτ + bτ2 such that a ∈ Fq and b ∈ F×q and recall that Mφ is
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the effective t-motive corresponding to φ introduced as in Example 2.7(i).
We have by [38, Rem. 5] (see also [12, §2]) that

(5.15) L(M∨φ , 0) = L(φ/A).

Using Goss’ results [24, §5.6] on abelian t-modules and applying the
theory of Hom shtukas developed in [31, §8,12] on a suitable shtuka model
of G̃n, one can obtain that

L(M∨
G̃n
, 0) = L(G̃n/A).

We also refer the reader to [3] for another approach using the dual t-motive
H̃n of G̃n as well as [5, §4.1] and the references therein for more details.

Remark 5.5. Let φ̃ be the Drinfeld A-module given in Example 2.11(ii)
and Mφ̃ be the effective t-motive corresponding to φ̃. Since L(M∨

φ̃
, s) con-

verges for any integer s ≥ 0 by [38, Prop. 8], using (2.14) and (2.15), we
see that L(Mφ, s) converges for any integer s ≥ 1.

Remark 5.6. We briefly explain how one can obtain the value of L(Mφ, n)
at n = 1. Let φ̃ be the Drinfeld A-module given in Example 2.11(ii). Con-
sider the Fq-vector space

m′ := {x ∈ K∞ | v∞(x) ≥ 1}.

By [18, Cor. 4.2], we know that logφ̃ converges on m′. Thus, in a similar
way to the proof of Proposition 4.3, we get H(φ̃/A) = {0}. Moreover,
again by using [18, Cor. 4.2], we see that logφ̃ converges at 1. This implies
that logφ̃(1) ∈ U(φ̃/A). Since U(φ̃/A) is an A-lattice in K∞, using the
minimality of the norm of logφ̃(1) among the elements of U(φ̃/A), we see
that U(φ̃/A) = logφ̃(1)A. Thus by [38, Thm. 1], we have L(φ̃/A) = logφ̃(1).
By using Example 2.11(ii), (2.15) and (5.15), we obtain

L(Mφ, 1) = L(Mφ ⊗C∨, 0) = L(M∨
φ̃
, 0) = L(φ̃/A) = logφ̃(1).

We finish this subsection with the following proposition.

Proposition 5.7. For any n ≥ 1, we have

L(G̃n/A) = L(Mφ, n+ 1).

Proof. In a similar way to show (2.14), one can also obtain

(5.16) M∨φ = Mφ ⊗ det(Mφ)∨.

We also have

(5.17) det(Mφ)∨ ⊗ det(Mφ) = (−b1,−1)⊗ (−b−11, 1) ∼= 1.
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Now recall the effective t-motive M ′ = Mφ ⊗ C⊗n+1 ⊗ det(Mφ)∨ from
the proof of Theorem 4.11(ii) whose corresponding t-module is given by
G̃n = (G2n+1

a/K , φ̃n). By (2.12), (5.16) and (5.17), we have

(M ′)∨ = Mφ ⊗ det(Mφ)∨ ⊗ (C⊗n+1)∨ ⊗ det(Mφ) = Mφ ⊗ (C⊗n+1)∨.

Since C⊗n1 ⊗ C⊗n2 = C⊗(n1+n2) for any positive integers n1 and n2,
using the equality in (2.15) repeatedly together with (2.13), we obtain

L(G̃n/A) = L((M ′)∨, 0) = L(Mφ, n+ 1). �

5.4. Proof of Theorem 5.9. Using Theorem 5.4, we prove the next
proposition.

Proposition 5.8. For any positive integer n such that 2n+1 ≤ q, we have

U(G̃n/A) ∩ W̃ = A · LogG̃n(e2n)⊕A · LogG̃n(e2n+1)

and
Lie(G̃n)(A) ∩ W̃ = A · e2n ⊕A · e2n+1.

Proof. By Theorem 4.11(ii), we obtain U(G̃n/A)∩W̃ ⊂ ⊕2n+1
i=1 A·LogG̃n(ei).

By Theorem 5.4(i), we see that P̃ ie2n ∈ W̃ for i ≥ 1. Since the vectors e2n
and e2n+1 are in W̃ and W̃ is a finite dimensional normed vector space,
the sum e2n+j +

∑∞
i=1 P̃ ie2n+j = LogG̃n(e2n+j) is also in W̃ for j = 0, 1.

By Theorem 5.4(ii), we know that U(G̃n/A)∩ W̃ is an A-lattice in W̃ and
therefore is a free A-module of rank two by Remark 4.5. Thus we obtain
U(G̃n/A) ∩ W̃ = A · LogG̃n(e2n) ⊕ A · LogG̃n(e2n+1) as desired. The latter
equality in the statement of the proposition can be obtained similarly. �

Now we are ready to state our main result.

Theorem 5.9. Let φ be the Drinfeld A-module defined as in (2.6) such that
a ∈ Fq and b ∈ F×q . Then for any positive integer n such that 2n + 1 ≤ q,
we have

(5.18) L(Mφ, n+ 1) =
( ∞∑
i=0

(−1)ib−iγi
Lni

)(
1 +

∞∑
i=1

(−1)ib−(i−1)Fi−1
Lni

)

−
( ∞∑
i=1

(−1)ib−(i−1)γi−1
Lni

)( ∞∑
i=0

(−1)ib−iFi
Lni

)
.

where Fi is the sum of the components of γi corresponding to shadowed
partitions in P 1

2 (i) for all i ≥ 0.
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Proof. For 1 ≤ i ≤ 2n + 1, let λ̃i = LogG̃n(ei) be as in the statement of
Theorem 4.11(ii). By (4.6) and Theorem 5.4(ii), we have

[Lie(G̃n)(A)∩W̃ : U(G̃n/A)∩W̃ ]A = [Lie(G̃n)(A) : U(G̃n/A)]A[
Lie(G̃n)(A)

Lie(G̃n)(A)∩W̃ : U(G̃n/A)
U(G̃n/A)∩W̃

]
A

= L(G̃n/A)
β

(5.19)

where β :=
[

Lie(G̃n)(A)
Lie(G̃n)(A)∩W̃ : U(G̃n/A)

U(G̃n/A)∩W̃

]
A
∈ K×∞ and the last equality fol-

lows from (4.8). Theorem 5.4(i) implies that P̃ kei ∈ W̃ for all k ≥ 1 and
1 ≤ i ≤ 2n+1. Therefore we have by Theorem 4.11(ii) and Proposition 5.8
that U(G̃n/A)

U(G̃n/A)∩W̃
∼=
⊕2n−1
i=1 A · λ̃i is generated by P̃ 0ei = ei for 1 ≤ i ≤ 2n−1

as an A-module (via the action of ∂φ̃n) in Lie(G̃n)(K∞)
W̃

. Using Lemma 4.1
and Proposition 5.8, one can also obtain that Lie(G̃n/A)

Lie(G̃n/A)∩W̃
∼=
⊕2n−1

i=1 A ·ei is
generated by ei for 1 ≤ i ≤ 2n− 1 as an A-module (via the action of ∂φ̃n)
in Lie(G̃n)(K∞)

W̃
. Thus we have β = 1.

For i, j ∈ {0, 1}, let λ̃2n+i,2n+j be the (2n + j)-th coordinate of the
element LogG̃n(e2n+i). Consider the matrix

Ψ :=
[
λ̃2n,2n λ̃2n+1,2n
λ̃2n,2n+1 λ̃2n+1,2n+1

]
∈ Mat2(K∞).

Now by Proposition 5.8, after applying the projection map onto the last
two coordinates to the A-lattices in the left hand side of (5.19), we see that

L(G̃n/A)

= [Lie(G̃n)(A) ∩ W̃ : U(G̃n/A) ∩ W̃ ]A
= det(Ψ)

=
( ∞∑
i=0

(−1)ib−iγi
Lni

)(
1 +

∞∑
i=1

(−1)ib−(i−1)Fi−1
Lni

)

−
( ∞∑
i=1

(−1)ib−(i−1)γi−1
Lni

)( ∞∑
i=0

(−1)ib−iFi
Lni

)
(5.20)

where the last equality follows from combining Corollary 3.3 with the fact
that P̃ i = (−1)ib−iPi for i ≥ 0 and Pi is the i-th coefficient of the logarithm
series of Gn = (G2n+1

a/K , φn). Note that by Proposition 5.7, we have

L(G̃n/A) = L(Mφ, n+ 1).
Thus the result follows from (5.20). �
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