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Controlling λ-invariants for the double and triple
product p-adic L-functions

par Daniel DELBOURGO et Hamish GILMORE

Résumé. À la fin des années 1990, Vatsal a montré qu’une congruence modulo
pν entre deux formes modulaires implique une congruence entre leurs fonctions
L p-adiques. Nous prouvons des énoncés analogues pour les fonctions L p-
adiques Lp(f ⊗ g) et Lp(f ⊗ g⊗ h) associées aux produits double et triple de
formes modulaires : la première est de nature cyclotomique, tandis que l’autre
est définie sur l’espace des poids.

Comme corollaire, nous obtenons des formules de transition reliant les in-
variants λ analytiques des représentations de Galois congruentes pour Vf ⊗Vg
et Vf ⊗ Vg ⊗ Vh respectivement.

Abstract. In the late 1990s, Vatsal showed that a congruence modulo pν
between two modular forms implied a congruence between their respective
p-adic L-functions. We prove an analogous statement for both the double
product and triple product p-adic L-functions, Lp(f ⊗ g) and Lp(f ⊗ g ⊗ h):
the former is cyclotomic in its nature, while the latter is over the weight-space.
As a corollary, we derive transition formulae relating analytic λ-invariants of
congruent Galois representations for Vf⊗Vg, and for Vf⊗Vg⊗Vh, respectively.

1. Introduction
A major theme at the Iwasawa 2019 conference was recent progress on

the Iwasawa theory of motives arising from tensor products of newforms.
Fix a prime p > 2. The principal objects at play here are:

(i) the analytic p-adic L-function which interpolates the normalised
critical values, and

(ii) the algebraic p-adic L-function which is traditionally the character-
istic power series of some large Selmer group.

The so-called “Main Conjecture” predicts that they are equal, up to a unit
of course.

Question. How do the analytic and algebraic λ-invariants appearing in
the Main Conjecture vary as we switch between two pν-congruent GQ-
representations?
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We shall provide an answer for the analytic p-adic L-functions attached
to double and triple product Galois representations, in certain common
situations at least. The algebraic version of our transition formulae will be
addressed in future work.

For a pure motive M defined over Q that has good ordinary reduction
at p, there is a precise recipe of Coates and Perrin-Riou [3] describing the
(conjectural) behaviour of its analytic p-adic L-function, Lp(M, · , s), at a
critical point s = 1. Throughout we shall tacitly fix embeddings ι∞ : Q ↪→ C
and ιp : Q ↪→ Cp where Cp = Q̂p denotes the Tate field, both of which are
needed for p-adic interpolation. At each Dirichlet character χ of conductor
pnχ , the p-adic L-function should satisfy

Lp(M,χ, 1) = ιp ◦ ι−1
∞

(
Ep(M,χ−1, 1) · L(M,χ, 1)

Ωsign(χ)
∞ (M)

)
for a suitably chosen pair of archimedean periods Ω±∞(M) ∈ C×, and where
the multiplier term Ep(M,χ−1, s) is introduced fully in (4.14) of [3] and
consists of a Gauss sum, an Euler factor at p, and a power of the unit root
of Frobenius.
The Main Goal. Let (f (I),g(I),h(I)) and (f (II),g(II),h(II)) denote triples
of newforms of suitable weight, character and level. We want to prove an
implication
“Tp(M (I)) ≡ Tp(M (II)) mod pν =⇒ Lp(M (I), · , 1) ≡ Lp(M (II), · , 1) mod pν”

for the double product motives M (?) = M(f (?) ⊗ g(?)) and for the triple
product motives M (?) = M(f (?) ⊗ g(?) ⊗ h(?)), with Tp( · ) denoting their
p-adic realisations.

Note for M (?) = M(f (?)) with ? ∈ {I, II} the above is a theorem of Vat-
sal [24], who established the existence of canonical periods Ω±∞(M (?)) ∈ C×
such that if one normalises each Lp(M(f (?)), · ) using his periods, the con-
gruences hold modulo pν . It would therefore be worthwhile to recall Vatsal’s
congruences in a bit more detail, but we must outline some standard defi-
nitions and terminology first.

Let Qcyc denote the cyclotomic Zp-extension of Q. If one writes µpn for
the group of pn-th roots of unity, there is a decomposition

G∞ := Gal(Q(µp∞)/Q) ∼= Z×p ∼= F×p × (1 + pZp) ∼= ∆× Γcyc

where ∆ := Gal(Q(µp)/Q), and the group Γcyc := Gal(Qcyc/Q) ∼= Zp.
For a discrete valuation ring R of residue characteristic p, let us define

the (cyclotomic) Iwasawa algebras

Λcyc := R[[Γ]] = lim←−
n>1

R
[
Γ/Γpn

]
and R[[G∞]] := Λcyc[∆] ∼=

p−2⊕
j=0

R[[Γ]](ωj)
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with ω : ∆ ∼= F×p
∼→ µp−1 obtained from the Teichmüller character mod p.

Now fix a topological generator γ0 of Γ. By linearity and continuity, the
mapping γ0 7→ X + 1 induces isomorphisms Λcyc

∼→ R[[X]] and R[[G∞]] ∼→⊕p−2
j=0 R[[X]](ωj).

Definition 1.1. Let$ be a uniformiser ofR, and chooseβ(X)∈R[[X]][1/$].
(i) If the power series β(X) =

∑∞
n=0 cn(β) · Xn, then the integer in-

variant µ(β) = µ$(β) is the largest power of $ such that cn(β) ∈
$µ(β) ·R for all n > 0.

(ii) The non-negative integer λ(β) equals the number of zeroes (counted
with multiplicity) of β(X), viewed as a function on the open p-adic
unit disk inside Cp. One can also take

λ(β) := rankR/$[[X]]

(
R[[X]]

〈$,$−µ(β) · β(X)〉

)
,

and both are equivalent.
Suppose we are given two newforms f (I) and f (II) of weight k > 1, char-

acter ψ, and of levels N (I)
f and N

(II)
f respectively, such that their Fourier

coefficients satisfy

an(f (I)) ≡ an(f (II)) (mod pν) at each n ∈ N with gcd(n,N (I)
f N

(II)
f ) = 1.

By enlarging R if necessary, one may assume that R contains an(f (?)) for
all n. The following result concerns congruences between the Mazur–Tate–
Teitelbaum [20] p-adic L-functions Lp(f (?), ωj) ∈ Λcyc, and was instru-
mental in Greenberg and Vatsal’s subsequent work on the Iwasawa Main
Conjecture for elliptic curves [12].
Vatsal’s Theorem ([24, Proposition 1.7]). At each ωj-branch with j ∈
{0, . . . , p− 2}:

(i) Lp,Sf (f (I), ωj) ≡ Lp,Sf (f (II), ωj) mod pν · Λcyc, and
(ii) λ(Lp(f (I), ωj)) = λ(Lp(f (II), ωj)) +

∑
l∈Sf

v(II)
l (ωj)− v(I)

l (ωj)

where Sf consists of the primes dividing N (I)
f ·N

(II)
f , and v(?)

l (ωj) denotes
the λ-invariant of the power series that interpolates the Euler factor
Ll(f (?) ⊗ ωj , s) at a prime l.

Strictly speaking, this is not quite the statement that Vatsal proves in [24]
but it is an easy exercise, involving the Sf -depletions of the newforms f (I)

and f (II), to show that it follows from his congruences (e.g. see [7, Sec-
tions 4.1–4.2] for a discussion). He also assumes irreducibility of the resid-
ual Galois representations ρf (?) and the torsion-freeness of some H1-groups,
the details of which we ignore for brevity.

Emerton, Pollack and Weston [9] later generalised this construction to
allow f to vary within a Hida family, and showed that the λ-invariant was
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stable along the branches of a certain Hecke algebra, TΣ(ρ), parameterising
the deformation. Recently the theory has been extended to cover anticy-
clotomic λ-invariants in the work of Castella, Kim and Longo [1], and also
to treat non-commutative p-adic Lie extensions (with a meta-abelian struc-
ture) by the first-named author in [5, 6]. Further generalisations of Vatsal’s
original ideas can be found in [2, 7, 8, 19, 22].

1.1. Statement of the main results. There are three basic approaches
one can take in constructing p-adic L-functions for tensor products of mod-
ular forms:

• the Betti realisation approach adopted by Mazur–Tate–Teitelbaum,
Vatsal, and others [20, 24, 25], which utilises modular symbols;
• the étale realisation approach of Perrin-Riou [4, 18], which converts
Euler systems directly into p-adic L-functions; or
• the de Rham realisation approach of Hida and Panchishkin [14, 21],
which involves both the Rankin convolution and Petersson inner
product.

In the Betti approach, the two main ingredients are a “mod p multiplicity-
one” theorem and Ihara’s Lemma. The multiplicity-one result is used to
show that the µ-invariant is stable amongst families of p-congruent modular
symbols, whilst Ihara’s Lemma allows one to change between different level
structures.

This paper follows the de Rham approach, which has the advantage of
being completely explicit in nature. It also carries the disadvantage that the
associated periods may not be canonical with respect to the Iwasawa Main
Conjecture, hence the µ-invariants of our automorphic p-adic L-functions
can sometimes be negative. Here the rôle of mod pmultiplicity-one is played
by holomorphic projection [13], while Ihara’s Lemma is replaced with an
explicit calculation involving depletions of χ-twisted modular forms (see
Theorem 2.5 and Proposition 2.11, respectively).

1.1.1. The double product. Let (f ,g(I)) and (f ,g(II)) denote pairs of
newforms of weight (k1, k2) > 1 with k1 > k2, levels (Nf , N

(I)
g ), (Nf , N

(II)
g )

respectively, and nebentypes (ψ1, ψ2). We also assume they are p-ordinary,
i.e. ap(f), ap(g(?)) ∈ O×Cp . Using the results of Hida and Panchishkin [14, 21],
for each choice of ? ∈ {I, II} there exists a p-adic L-function Lp(f ⊗ g(?)) ∈
Λcyc[∆][1/p] interpolating

ιp ◦ ι−1
∞

(
Ep(f ⊗ g(?), χ−1, n+ k2) · L(f ⊗ g(?), n+ k2)

(2πi)1−k2 · Ω∞(f)

)
with Ω∞(f) =

〈
f , f
〉

Pet,
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at all integers n ∈ {0, . . . , k1 − k2 − 1} and special characters of the form
χκncyc where χ is of finite order, and κcyc : G∞

∼→ Z×p is the p-th cyclotomic
character.

Remark. If fE is the weight two newform arising from an elliptic curve E/Q,
then it is an easy exercise to show that

Ω∞(fE) = deg(X0(NfE )� E)
4π2√−1 · r2

E

×
∫
E(C)+

ωE ·
∫
E(C)−

ωE

where ωE is the differential associated to a minimal Weierstrass equation
for E/Z, and rE ∈ Q× denotes the Manin constant for the modular param-
eterisation.

Let ρg(?) : GQ → GL2(Qp) be the p-adic Galois representation attached
to g(?) by the work of Deligne if k2 > 2, and by Deligne–Serre if k2 = 1.
We assume that

ρg(I)

∣∣∣
GQl

∼= ρg(II)

∣∣∣
GQl

mod pν2 at all primes l - N (I)
g ·N (II)

g ,

which is equivalent to saying

an(g(I)) ≡ an(g(II)) mod pν2

if gcd(n,N (I)
g N

(II)
g ) = 1. For stupid reasons, we must also suppose that ψ1

is trivial or a quadratic character.

Theorem 1.2. At each branch j ∈ {0, . . . , p − 2}, let µ(j)
cyc denote the

minimum of the µ-invariants for Lp(f ⊗ g(I), ωj) and Lp(f ⊗ g(II), ωj). If
p > k1 − 2, then

(i) Lp,Sg(f ⊗ g(I), ωj) ≡ Lp,Sg(f ⊗ g(II), ωj) mod pµ
(j)
cyc+ν2 · Λcyc, and

(ii) λ(Lp(f ⊗g(I), ωj)) = λ(Lp(f ⊗g(II), ωj)) +
∑
l∈Sg e(II)

l (ωj)−e(I)
l (ωj)

where Sg consists of the primes dividing N (I)
g ·N (II)

g , and e(?)
l (ωj) is the λ-

invariant of the power series interpolating the Euler factor Ll(f⊗g(?)⊗ωj , s)
at a prime l.

There is a nice application of this result towards the Iwasawa Main Con-
jecture. By the work of Kings, Loeffler and Zerbes [18, Definition 3.3.2],
there exist one-cocycles

Eis[f ,g(?),r]
ét,b,N ∈ H1

ét

(
Z[1/Np], Tp(f ⊗ g(?))∗ ⊗ κ−rcyc

)
for 0 6 r 6 k2 − 2, b ∈ Z/NZ

called Rankin–Eisenstein classes, that map to a component Lp(f⊗g(?), ωj).
Applying Theorem 11.6.4 of [18] which relies on the existence of these



738 Daniel Delbourgo, Hamish Gilmore

classes then outside of the critical range, one obtains a divisibility of power
series

charΛcyc

(
H̃2

(
Z[1/S], Tp(f ⊗ g(?))∗ ⊗ ΛΓ(−j); ∆(f)

)
(ωj)

)
∣∣∣∣Tw1+j(Lp(f ⊗ g(?), ωj))

where the left-hand side is described fully in Proposition 11.2.9 of [18] and
arises naturally from Nekovǎŕ’s theory of Selmer complexes (in fact, it is
helpful to think of the H̃2(· · ·)-cohomology intuitively as being a cyclotomic
Selmer group).

If we now write λalg(f⊗g(?), ωj) for the λ-invariant of charΛcyc(H̃2(···))(ωj)
and likewise λan(f ⊗ g(?), ωj) for the λ-invariant of Lp(f ⊗ g(?), ωj), then
their divisibility theorem implies that λalg(f ⊗ g(?), ωj) 6 λan(f ⊗ g(?), ωj);
moreover{
zeroes of charΛcyc(H̃2(···; ∆(f))(ωj))

}
⊂
{
zeroes of Tw1+j(Lp(f⊗g(?), ωj))

}
for all j ∈ {0, . . . , p− 2}, and at either choice of ? ∈ {I, II}.

Conjecture 1.3. At branches j ∈ {0, . . . , p − 2}, there is a transition
formula

λalg(f ⊗ g(I), ωj) = λalg(f ⊗ g(II), ωj) +
∑
l∈Sg

e(II)
l (ωj)− e(I)

l (ωj).

This algebraic prediction is currently work in progress of the first-named
author. Assuming its validity, one can show if the Iwasawa Main Conjecture
is true for one motive,M(f⊗g(I)) say, it must be true for the pν2-congruent
motive M(f ⊗ g(II)). Unfortunately we have not yet found a method to
switch between two dominant weight newforms f (I) and f (II), if they are
congruent to each other modulo pν1 .

1.1.2. The triple product. We shall now add an extra pair of forms
into the discussion: let (f ,g(I),h(I)) and (f ,g(II),h(II)) denote triples of
newforms of weight k = (k1, k2, k3), levels (Nf , N

(?)
g , N

(?)
h ) and neben-

types (ψ1, ψ2, ψ3). We further suppose that these triples are p-ordinary,
so that ap(f), ap(g(?)), ap(h(?)) ∈ O×Cp . There exist primitive Λ-adic families
(F,G(?),H(?)) passing through (f ,g(?),h(?)) at each choice of ? ∈ {I, II}.
For technical reasons only, we impose the conditions:
(T1) The primitive characters satisfy ψ1ψ2ψ3 = 1.
(T2) ρF1 : GQ → GL2(Fp) is absolutely irreducible and p-distinguished;
(T3) gcd(Nf , N

(?)
g , N

(?)
h ) is a square-free integer for both choices ? ∈

{I, II};
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(T4) ε(1/2,Π(?)
k,l ) = 1 at primes l

∣∣NfN
(?)
g N

(?)
h and unbalanced k =

(k1, k2, k3), where Π(?)
k is the representation attached to F⊗G(?)⊗

H(?) at each k.
These hypotheses are required in [10, 15] to guarantee the existence of a
triple product p-adic L-function, Lp(F ⊗ G(?) ⊗ H(?)), interpolating the
special values

ιp ◦ ι−1
∞

Ep(Fk1⊗G(?)
k2
⊗H(?)

k3
⊗χ−1

k ) ·
L(Fk1⊗G(?)

k2
⊗H(?)

k3
⊗χ−1

k , k1+k2+k3−2
2 )

(−1)k1 · Ω∞(Fk1)2


at k = (k1, k2, k3) with k1 > k2 + k3 − 1, where χk is the unitarization of
det(Π(?)

k )1/2.

Remark. To consider congruences here we will treat the following situa-
tion. Assume there exists a p-adic line V in the ambient weight-space for
(F,G(?),H(?)), such that for all primes l - N (I)

g · N (II)
g · N (I)

h · N (II)
h and

unbalanced k = (k1, k2, k3) ∈ V:

(i) ρG(I)
k2

∣∣∣
GQl

∼= ρG(II)
k2

∣∣∣
GQl

mod pν2 , and

(ii) ρH(I)
k3

∣∣∣
GQl

∼= ρH(II)
k3

∣∣∣
GQl

mod pν3 .

Whenever this line is parameterised by a finite flat extension IV of OK,p[[1+
pZp]], then we call V a congruence line of type (pν2 , pν3) for the triples
(F,G(?),H(?)). Let LVp (F⊗G(?) ⊗H(?)) ∈ IV denote the restriction of the
p-adic L-function to V.

Example. Consider two modular elliptic curves E(I) and E(II) over Q, whose
p-adic Galois representations ρE(?),p : GQ → GL2(Zp) satisfy the congru-
ences ρE(I),p

∣∣
GQl

∼= ρE(II),p

∣∣
GQl

(mod pν2) at all prime numbers l - condQ(E(I))·
condQ(E(II)). Let G(I) ∈ I2[[q]] and G(II) ∈ I2[[q]] be Hida families pass-
ing through E(I) and E(II) respectively, and assume that F ∈ I1[[q]] and
H(I) = H(II) ∈ I3[[q]] denote arbitrary primitive Ii-adic forms. Then we can
choose our p-adic line in weight-space to be the set

V = {(k, 2, k − 2) | k ∈ DF ∩ DH(?)}

where DF ⊂ Zp (resp. DH(?)) is the disk of convergence for F (resp. H(I) =
H(II)), and the specialisation map

φV : I1⊗̂OK,pI2⊗̂OK,pI3 � IV

is induced by sending (X1, X2, X3) 7→ (XV , 0, XV+1
(1+p)2 − 1).
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As it is non-standard, we should define the (weight) λ-invariant in this
context. Since IV is a finite extension of Λwt := OK,p[[1 + pZp]] ∼= OK,p[[X]],
one can consider its normal closure IV,cl and the field of fractions KV =
Frac(IV,cl). We then define

λwt(β) :=
[
KV : Fwt

]−1 ×

the number of zeroes of
∏

σ∈Gal(KV/Fwt)
βσ


for each β ∈ IV , where Fwt is the field of fractions of Λwt (note

∏
σ β

σ ∈
OK,p[[X]]). Let us denote by µ

(V)
wt the minimum value of the weight µ-

invariant amongst the two p-adic L-functions, namely LVp (F⊗G(I) ⊗H(I))
and LVp (F⊗G(II) ⊗H(II)).

Theorem 1.4. If the weights k = (k1, k2, k3) satisfying k1 > k2 + k3 − 1
and p - (k1−2)!

( k1+k2+k3
2 −2)!

are dense in Spec(IV), and if ψ1 is trivial or quadratic,
then

(i) LVp,Sg,h
(F⊗G(I)⊗H(I))≡LVp,Sg,h

(F⊗G(II)⊗H(II)) mod pµ
(V)
wt +min{ν2,ν3},

and
(ii) λwt(LVp (F⊗G(I)⊗H(I)))=λwt(LVp (F⊗G(II)⊗H(II)))+

∑
l∈Sg,h

w(II)
l,V −

w(I)
l,V

where Sg,h consists of primes dividing N (I)
g · N (II)

g · N (I)
h · N (II)

h , and w(?)
l,V

is the λwt-invariant for the IV-adic factor Ll(Fk1 ⊗ G(?)
k2
⊗ H(?)

k3
⊗ χ−1

k ,
k1+k2+k3−2

2 )|k∈V .

As discussed in the above example, a good source of these congruence
lines V is given by specialising G(?) at a fixed weight k2 at which there
exists a mod pν2 congruence between G(I)

k2
and G(II)

k2
, and taking the weights

(k1, k2, k1−k2) with k1 denoting the free variable. One can therefore obtain
congruences between the p-adic L-functions Lp,Sg,h(Fk1 ⊗G(I)

k2
⊗Hk1−k2)

and Lp,Sg,h(Fk1 ⊗ G(II)
k2
⊗ Hk1−k2). By symmetry, the same thing works

when the rôles of G(?) and H(?) are reversed.
The reader will notice that there is no cyclotomic variable appearing

here, although by recent work of Hsieh and Yamana on exceptional p-adic
zeroes [16], this extra variable can certainly be introduced. The techniques
presented in our paper should carry over to the four-variable (quaternionic)
setting, thereby enabling us to prove transition formulae for the cyclotomic
λ-invariant at balanced (k1, k2, k3) ∈ V.

We should also mention the results of Darmon, Rotger and others, which
relate specialisations of Lp(F⊗G(?)⊗H(?)) to generalised Kato classes [4]
in global Galois cohomology with coefficients in Tp(Fk1 ⊗G(?)

k2
⊗H(?)

k3
). In
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particular, at weight (k1, k2, k3) = (2, 1, 1) they obtain the key information
on the Birch and Swinnerton-Dyer Conjecture for elliptic curves E. There-
fore given the existence of a congruence line V of type (pν2 , pν3) containing
(2, 1, 1) as a point, one could use a balanced version of Theorem 1.4 to pro-
duce non-trivial congruences between the values of L(E, ρ(I)

2 ⊗ ρ
(I)
3 , s) and

L(E, ρ(II)
2 ⊗ρ(II)

3 , s) at s = 1, for twists by degree four Artin representations
ρ

(?)
2 ⊗ ρ

(?)
3 which are self-dual and congruent.

1.1.3. Brief plan of the paper. In Section 2 we study projections of
C∞-modular forms of the type g · δ(r)

w (h), where the differential operator
δw = 1

2πi

(
w

2iy + ∂
∂z

)
. If h is an Eisenstein series then these projections are

related to double products, while if h is a cuspidal eigenform then they are
essentially triple product L-values. In Section 3, by writing these critical
values in terms of a linear functional L(r,ε)

f ( · ) acting on the space of nearly
holomorphic forms, one can then read off congruences amongst the L-values
in terms of congruences between the original modular forms. This is an ad
hoc approach and we apologise in advance for the very ugly formulae!

Conventions. We employ the following terminology throughout this article:
• If χ : Z → C is any Dirichlet character, then we write χ(p) for its
p-part and similarly we use χ(p) to denote its non-p-part, so that
χ = χ(p) · χ(p);
• If F is a number field or local field then OF will be its ring of inte-
gers, and we say that two expansions H,H† ∈ OF [[q]] are congruent
modulo pν if their qn-coefficients satisfy an(H) ≡ an(H†) mod pν

for every n > 0;
• If I denotes the normal closure of Λwt := OK [[1 + pZp]] inside of
Frac(Λwt), then we assume K/Qp is chosen large enough to ensure
I∩Qp = OK , and that the algebraic points Spec I(OK)alg are Zariski
dense in Spec I(Qp);
• For an integer N > 1 coprime to p and a Dirichlet character χ
modulo N , we use Tord(N,χ; I) to indicate the Hecke algebra acting
on Sord(N,χ; I), the space of ordinary I-adic cusp forms of tame
level N and character χ.

Acknowledgements. The first-named author was largely inspired by a
series of talks given by Victor Rotger and Shunsuke Yamana at Iwasawa
2019 in Bordeaux. He also thanks the local conference organisers, Denis
Benois and Pierre Parent, for their hospitality. The second author is sup-
ported by a University of Waikato PhD Scholarship and this paper forms
a part of his PhD dissertation [11].
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2. A lowbrow study of Petersson inner products
Let F1, G2, G3 be modular forms of levels N1, N2, N3, weights k1, k2, k3 >

0 and nebentypes ψ1, ψ2, ψ3 respectively. We shall assume that F1 and G2
are cusp forms, that the primitive characters satisfy ψ2 · ψ3 = ψ−1

1 , and
thirdly that k1 > k2 + k3 − 1. Our main goal here is to derive an explicit
expression for quotients of the type

(2.1)

〈
F ]1 ,Tr

Ñ/N0
(Hol∞(G2 · δ(r)

w (G3))
∣∣
k1
W ε
Ñ

)
〉
N0〈

F1, F1
〉
N1

, ε ∈ {0, 1}

where the various operators, levels and inner products above will be de-
fined shortly (the precise formulae for these ratios will be given in Propo-
sitions 2.12 and 2.13). We need to study these projections in some detail,
as the critical values of both the double and triple product L-functions can
be represented via integrals of this type.

2.1. Preliminaries on modular forms. We begin with some terminol-
ogy. Choose an integer N > 1, a Dirichlet character ψ modulo N , and a
weight k > 0. One writesMk(N,ψ) for the vector space of modular forms
of weight k, level N and character ψ, while the notation Sk(N,ψ) refers
to the subspace of cusp forms. If F,G ∈ Mk(N,ψ) one of which is a cusp
form, then we normalise the Petersson inner product1 by taking〈

F,G
〉
N

:=
∫

Γ0(N)\H
F (z)G(z)yk · dxdy

y2 .

Here H denotes the standard upper half-plane {z=x+iy∈C | y=Im(z)>0}.
An advantage of making this choice is that if M |N and F exists at level
M , then 〈

F,G
〉
N

=
〈
F,TrNM (G)

〉
M

where the trace mapping TrNM : Mk(N,ψ) → Mk(M,ψ) is given by the
summation

TrNM (G) :=
∑

γ∈Γ0(N)\Γ0(M)
ψ(γ) ·G

∣∣∣
k
γ.

Recall the three modular forms F1, G2, G3 of levels N1, N2, N3 mentioned
above.

Notations.
(a) For each i ∈ {1, 2, 3}, we factorise the level into Ni = pei ·N (p)

i with
ei = ordp(Ni), and where N (p)

i is the corresponding tame (prime-
to-p) level.

1This normalisation differs from [23, Section 2] in that we do not divide by the volume of a
fundamental domain for Γ0(N)\H, which means that our inner product will be level-dependent.



λ-invariants for the double and triple product 743

(b) We set Ñ := lcm(N1, N2, N3), which one decomposes into Ñ =
pẽ · Ñ (p).

(c) Lastly let us choose N0 := p · lcm(N (p)
1 , N

(p)
2 , N

(p)
3 ) = p1−ẽ · Ñ ∈

p · Z×p .

Note that F1 belongs to Sk1(N1, ψ1) with q-expansion F1(q) =∑∞
n=1 an(F1)qn, so there exists a conjugate form F ]1 ∈ Sk1(N1, ψ

−1
1 ) with

F ]1(q) =
∑∞
n=1 an(F1)qn. We shall further suppose that F1 is a newform of

conductor N1, so that

F1
∣∣∣
k1
WN1 = ε1 · F ]1 where WN1 =

(
0 −1
N1 0

)
and ε1 ∈ C,

∣∣ε1∣∣∞ = 1.

For simplicity, throughout this paper we assume that F ]1 = F1 and ψ2
1 = 1.

Let us write Vd :
∑
anq

n 7→
∑
anq

nd for the d-th degeneracy mapping,
and as usual Up :

∑
anq

n 7→
∑
apnq

n means the p-th Hecke operator if p
divides the level.

Lemma 2.1. If p - N1 so that e1 =0, then for an arbitrary G∈Mk1(Ñ , ψ1),

〈
F ]1 ,TrÑN0(G)

〉
N0

= ε1p
1− (k1−2)(ẽ−2)

2

(
Ñ (p)

N1

) k1
2

·
∑
d
∣∣N0
N1

c
d,Ñ,ẽ

(G) ·
〈
F1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd
〉
N0

where each form G
∣∣
k1
W
Ñ
◦ U ẽ−1

p ∈ Mk1(N0, ψ1) has been decomposed into
a sum

G
∣∣
k1
W
Ñ
◦U ẽ−1

p =
∑
d
∣∣N0
N1

c
d,Ñ,ẽ

(G) ·F1
∣∣
k1
Vd+G(⊥)

Ñ,ẽ
for scalars c

d,Ñ,ẽ
(G) ∈ C,

and here the modular form G
(⊥)
Ñ,ẽ

is obtained by projecting G
∣∣
k1
W
Ñ
◦ U ẽ−1

p

onto the orthogonal complement of the F1-isotypic subspace inside
Mk1(N0, ψ1).

Proof. As the ratio Ñ/N0 = pẽ−1 is a power of p and p|N0, one deduces
that

TrÑN0(G) = p(1−k1/2)(ẽ−1) ×G
∣∣
k1
W
Ñ
◦ U ẽ−1

p ◦WN0 .
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Applying this standard identity to our inner product:〈
F ]1 ,TrÑN0(G)

〉
N0

= p(1−k1/2)(ẽ−1) ×
〈
F ]1 , G

∣∣
k1
W
Ñ
◦ U ẽ−1

p ◦WN0

〉
N0

= (−1)k1p(1−k1/2)(ẽ−1) ×
〈
F ]1
∣∣
k1
WN0 , G

∣∣
k1
W
Ñ
◦ U ẽ−1

p

〉
N0

= (−1)k1p1− (k1−2)(ẽ−2)
2

(
Ñ (p)

N1

)k1
2

×
〈
F ]1
∣∣
k1
WN1 ◦ Vp· Ñ(p)

N1

, G
∣∣
k1
W
Ñ
◦ U ẽ−1

p

〉
N0

and the last line follows because ( · )
∣∣∣
k1
WN0 = (p · Ñ(p)

N1
)k1/2 · ( · )

∣∣∣
k1
WN1 ◦

V
p· Ñ(p)

N1

. However F ]1
∣∣
k1
WN1 = ε1 · (−1)k1 × F1 and also p · Ñ(p)

N1
= N0

N1
, in

which case

〈
F ]1 ,TrÑN0(G)

〉
N0

= ε1p
1− (k1−2)(ẽ−2)

2

(
Ñ (p)

N1

) k1
2

×
〈
F1
∣∣
k1
VN0
N1
, G
∣∣
k1
W
Ñ
◦ U ẽ−1

p

〉
N0
.

Finally our assumption that F ]1 = F1 implies that the F1-isotypic subspace
inside Mk1(N0, ψ1) is spanned by the normalised eigenforms F1

∣∣
k1
Vd as d

runs through the divisors of N0/N1; we may therefore write

G
∣∣
k1
W
Ñ
◦ U ẽ−1

p =
∑
d
∣∣N0
N1

c
d,Ñ,ẽ

(G) · F1
∣∣
k1
Vd +G

(⊥)
Ñ,ẽ

for the particular choice of scalars, c
d,Ñ,ẽ

(G), obtained by projecting
G
∣∣
k1
W
Ñ
◦ U ẽ−1

p onto each basis element F1
∣∣
k1
Vd. Since the modular form

G
(⊥)
Ñ,ẽ

is orthogonal to F1
∣∣
k1
VN0
N1

under the Petersson inner product at level
N0, the result now follows. �

2.2. Expansions of nearly holomorphic functions. The strategy over
the next two sections is to show forG2 ∈ Sk2(N2, ψ2) andG3 ∈Mk3(N3, ψ3)
as before, that the modular forms

Hol∞(G2 · δ(r)
k1−k2−2r(G3)) with r = (k1 − k2 − k3)/2 ∈ Z>0

behave well under mod pν congruences, in the sense that if we replace G2
and G3 by pν-congruent forms then Hol∞(( · )·δ(r)

k1−k2−2r( · )) preserves these
congruences. We first recall properties of the Maass–Shimura differential
operator “δ(r)

w ” from [23], and then in Section 2.3 we give some background
on the projection mapping “Hol∞”.
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Let w, r > 0 be integers, and consider the operator δw := 1
2πi(

w
2iy + ∂

∂z )
where as usual ∂

∂z = 1
2( ∂
∂x − i

∂
∂y ) for all z = x+ iy. One can take an r-fold

composition
δ(r)
w := δw+2r−2 ◦ · · · ◦ δw+2 ◦ δw

with the convention that if r = 0, then δ
(0)
w just refers to the identity

operator.
If G is a holomorphic modular form of weight w, level N and char-

acter ψ, then δ
(r)
w (G) has weight w + 2r, level N and character ψ al-

though it may no longer be holomorphic; in fact δ(r)
w (G) is an element

of {
∑r
j=0 y

−j · hj |hj is holomorphic}. It follows that δ(r)
w (G) ∈ C∞(H) be-

longs to the larger space of C∞-modular forms, denoted byM∞w+2r(Γ(N)),
and exhibits “moderate growth” in the sense of [13, 21]. Specifically, a form
H ∈ M∞w (Γ(N)) is said to have moderate growth at γ ∈ SL2(Z) if for all
z ∈ H and s ∈ C with Re(s)� 0, the complex integrals

(2.2)
∫
τ=u+iv∈H

(H
∣∣
w
γ)(τ) · (τ − z)−w−2r∣∣τ − z∣∣−2s

∞ (Im(τ))w+2r+s · dudv
v2

are absolutely convergent, and admit an analytic continuation to the point
s = 0.

Definition 2.2. Let R ⊂ C be a commutative ring, and p C R a prime
ideal.

(i) For each t > 0, denote by N∞,tw,pol(Γ(N);R) the R-submodule of
M∞w (Γ(N)) consisting of C∞-modular forms, H(z), with Fourier
expansions of the type

H(z) =
∑

m∈N−1Z
e−2πmy · PH

( 1
4πy ,m

)
· e2πimx

where z = x + iy ∈ H and for all m ∈ N−1Z, the coefficient terms
PH (X,m) ∈ R[X] satisfy deg(PH) 6 t.

(ii) We similarly defineN∞,tw,pol(N,ψ;R) :=N∞,tw,pol(Γ(N);R)∩M∞w (N,ψ).
(iii) If H(z), H†(z) ∈ N∞,tw,pol(Γ(N);R) and there exists ν > 1 such that

PH (X,m)− PH† (X,m) ∈ pν ·R[X] for every m ∈ N−1Z,

then we say that H is congruent to H† modulo pν , and write H ≡
H† (mod pν ·R).

For example, if R = OK is the ring of integers of some number fieldK and
if one considers a classical form G =

∑∞
n=0 an(G)qn ∈Mw(N,ψ) ∩ OK [[q]],

then clearly PG(X,m) = am(G) if m ∈ Z>0, while PG(X,m) = 0 if
m 6∈ Z>0. We therefore have a natural containmentMw(N,ψ) ∩ OK [[q]] ⊂
N∞,0w,pol(N,ψ;OK). Furthermore, the definition of mod pν-congruent forms
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introduced above generalises the standard notion of modulo pν congruences
used for series expansions in OK [[q]].

Lemma 2.3.
(a) For a commutative ring R as above, the differential operator δ(r)

w

sends the nearly holomorphic forms N∞,tw,pol(Γ(N);R) into
N∞,t+rw+2r,pol(Γ(N);R), and by restriction sends N∞,tw,pol(N,ψ;R) into
N∞,t+rw+2r,pol(N,ψ;R).

(b) If H(z), H†(z) ∈ Mw(N,ψ) are pν-congruent forms with R-coeff-
icients, then one also obtains congruences

δ(r)
w (H) ≡ δ(r)

w (H†) (mod pν ·R)

at all integers r > 0, in the spirit of Definition 2.2(iii).

Proof. Let us deal with part (a) first. Recall from [18] that a C∞-modular
form G(z) ∈M∞w (Γ(N)) can be always expanded as a Fourier series of the
type

G(z) =
∑

m∈N−1Z
AG(y,m) · e2πimx with z = x+ iy,

and each term AG(y,m) ∈ C∞(R+). Applying the operator ∂
∂z to G(z) then

yields

∂G(z)
∂z

=
∑

m∈N−1Z

(
mπi ·AG(y,m)− i

2A
′
G(y,m)

)
· e2πimx

with A′G(y,m) = dAG(y,m)
dy , so that as an element ofM∞w+2(Γ(N)) we find

that

δw(G(z)) =
∑

m∈N−1Z

((
m

2 −
w

4πy

)
·AG(y,m)− 1

4πA
′
G(y,m)

)
· e2πimx.

In the specific situation with G ∈ N∞,tw,pol(Γ(N);R), one can further write

AG(y,m) = e−2πmy · PG
( 1

4πy ,m
)

where PG (X,m) =
t∑

j=0
βj(m) ·Xj ∈ R[X].

A straightforward calculation reveals that

A′G(y,m) = −2πe−2πmy·

 t∑
j=0

mβj(m)·(4πy)−j+2·
t∑

j=1
jβj(m)·(4πy)−j−1

,
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in which case

δw(G(z))

=
∑

m∈N−1Z

((
m

2 −
w

4πy

)
· e−2πmyPG

( 1
4πy ,m

)
− 1

4πA
′
G(y,m)

)
· e2πimx

=
∑

m∈N−1Z
e−2πmy ·

(
mβ0(m)+

t∑
j=1

(mβj(m)+(j−1−w)βj−1(m))·(4πy)−j

+ (t− w)βt(m) · (4πy)−t−1
)
· e2πimx.

Consequently for every m ∈ N−1Z, we set Pδw(G)(X,m) equal to the poly-
nomial

mβ0(m) +
t∑

j=1
(mβj(m) + (j − 1− w)βj−1(m)) ·Xj + (t− w)βt(m) ·Xt+1

so in particular, Pδw(G)(X,m) ∈ R[X] with deg(Pδw(G)) 6 t+ 1, hence

δw(G(z)) =
∑

m∈N−1Z
e−2πmy ·Pδw(G)

( 1
4πy ,m

)
·e2πimx ∈ N∞,t+1

w+2,pol(Γ(N);R).

It follows that δw : N∞,tw,pol((Γ(N);R)→ N∞,t+1
w+2,pol(Γ(N);R), and then apply-

ing an inductive argument to δ(r)
w = δw+2r−2◦· · ·◦δw+2◦δw for increasing val-

ues of r > 0, we conclude that δ(r)
w : N∞,tw,pol(Γ(N);R)→ N∞,t+rw+2r,pol(Γ(N);R)

as asserted in (a).
To show that statement (b) is true, let us in greater generality suppose

that:

H(z)=
∑
m∈Z

e−2πmy ·PH
( 1

4πy ,m
)
·e2πimx, PH (X,m)=

t∑
j=0

βj(m)·Xj ;

H†(z)=
∑
m∈Z

e−2πmy ·PH†
( 1

4πy ,m
)
·e2πimx, PH† (X,m)=

t∑
j=0

β†j (m)·Xj .

The condition H ≡ H† (mod pν ·R) is by definition equivalent to the family
of congruences βj(m) ≡ β†j (m) (mod pν ·R) for every m ∈ Z and j ∈
{0, . . . , t}. Adopting the same argument as in part (a), it directly follows
that

δw(H(z)) =
∑
m∈Z

e−2πmy ·PδH
( 1

4πy ,m
)
·e2πimx,PδH (X,m) =

t+1∑
j=0

βδj (m) ·Xj
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where

βδj (m) =


(t− w)βt(m) if j = t+ 1
mβj(m) + (j − 1− w)βj−1(m) if 0 < j < t+ 1
mβ0(m) if j = 0.

Likewise for the second Fourier expansion,

δw(H†(z)) =
∑
m∈Z

e−2πmy · PδH†
( 1

4πy ,m
)
· e2πimx,

PδH† (X,m) =
t+1∑
j=0

β†,δj (m) ·Xj

where

β†,δj (m) =


(t− w)β†t (m) if j = t+ 1
mβ†j (m) + (j − 1− w)β†j−1(m) if 0 < j < t+ 1
mβ†0(m) if j = 0.

The implication “βj(m) ≡ β†j (m) (mod pν) =⇒ βδj (m) ≡ β†,δj (m) (mod pν)”
is now obvious since the indices m, j, w, t ∈ Z, whence δw(H) ≡ δw(H†)
(mod pν ·R). Finally, recalling that δ(r)

w = δw+2r−2 ◦ · · · ◦ δw+2 ◦ δw and iter-
ating this process above (r− 1)-times more, one establishes that δ(r)

w (H) ≡
δ

(r)
w (H†) (mod pν ·R). �

2.3. Projecting Eisenstein series and cusp forms. Proceeding fur-
ther with our calculation of the inner product in (2.1), we shall require
some background on the operator “Hol∞( · )” which appears in the auto-
morphic theory.

Throughout G2 is a cusp form of weight k2, level N2 and character ψ2.

Definition 2.4. If H(z) =
∑
m∈ZAH(y,m) · e2πimx ∈ M∞w (N,ψ) denotes

an arbitrary C∞-modular form with w > 2 and AH(y,m) ∈ C∞(R+), then
we define

Hol∞(H) :=
∞∑
n=0

a(n,H) · qn ∈ C[[q]]

where at each integer n > 0, the n-th Fourier coefficient is given by

a(n,H) = lim
s→0+

(
(4πn)w−1

Γ(w − 1) ·
∫ ∞

0
AH(y, n)e−2πnyyw+s−2 · dy

)
.
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Theorem 2.5 (Gross–Zagier and Panchishkin [13, 21]). Let us suppose
that H(z) ∈M∞w (N,ψ) is a C∞-modular form which exhibits the two extra
properties:

(i) the coefficients AH(y,m) = 0 for all m 6 0, and
(ii) H

∣∣
w
γ ∈M∞w (Γ(N)), γ ∈ SL2(Z) has moderate growth, cf. (2.2).

Then a(0, H) = 0, moreover Hol∞(H) belongs to Mw(N,ψ) i.e. it is a
classical holomorphic modular form, and lastly it satisfies the inner product
identity 〈

F,Hol∞(H)
〉
N

=
〈
F,H

〉
N

at every F ∈ Sw(N,ψ).

2.3.1. The double product case. The first case we treat relates to the
double product L-function L(F1 ⊗ G2, s). Consider the Eisenstein series
in [23, (2.3)] of weight w > 0, character η−1 and level N , given by the
infinite series

(2.3) E∗w,N (z, s, η) =
∑

Γ∞\Γ0(N)
η(γ) · (cz+ d)−w

∣∣cz+ d
∣∣−2s
∞ , γ =

(
a b
c d

)
.

For technical reasons, our formulae become tidier if we renormalise these
series via

(2.4) E∗w,N (z, η) := Nw/2

2 · Γ(w)
(2πi)w · ζN (w, η)× E∗w,N (z, 0, η).

Henceforth let us assume that r, w ∈ Z satisfy both w = k1 − k2 − 2r > 0
and r > 0.

Proposition 2.6. Setting N = Ñ , η = ψ3 and Ğ3 = E∗
k1−k2−2r,Ñ

(z, ψ3),
then

H = Hol∞(G2 · δ(r)
k1−k2−2r(Ğ3)

∣∣
k1−k2

W
Ñ

) ∈Mk1(Ñ , ψ2ψ3)

has the q-expansion H(z) =
∑∞
n=1 a(n,H) · qn, where

a(n,H) =
∑

n=ξ2+ξ3>0
aξ2(G2) ·

∑
ξ3=b·c

bk1−k2−2r−1 · ψ3(c) · P−r(ξ3, n)

and for s ∈ Z60, the rational polynomial “Ps(−,−)” is given by

Ps(X,Y ) =
−s∑
j=0

(−1)j
(
−s
j

) Γ(k1 − k2 + s)
Γ(k1 − k2 + s− j)

Γ(k1 − 1− j)
Γ(k1 − 1) ·X−s−jY j .

Proof. Firstly applying [23, (2.9)], one has the identity

E∗
w+2r,Ñ (z,−r, η) = Γ(w)

Γ(w + r)(−4πy)r · δ(r)
w

(
E∗
w,Ñ

(z, 0, η)
)
.
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If one has r = 0 then E∗
w+2r,Ñ

(z, 0, η) is of holomorphic type, while if r > 0
then it is nearly holomorphic and has moderate growth, so that Theorem 2.5
is applicable. After rearranging the above equation, it follows directly that

δ(r)
w

(
E∗
w,Ñ

(z, 0, η)
) ∣∣∣W

Ñ

= (−4π)−r · Γ(w + r)
Γ(w) ×

(
y−r · E∗

w+2r,Ñ (z,−r, η)
) ∣∣∣W

Ñ

and then combining it with Panchishkin’s definitions [21, (4.3), (4.6) and
(4.13)],

(
y−r · E∗

w+2r,Ñ (z,−r, η)
) ∣∣∣

w+2r
W
Ñ

= 2 · ζN (w, η)−1

Ñw/2 · Γ(w + r)
· (2πi)w

(−4π)−r · Ew+2r(−r, η).

Here Ew+2r(s, η) denotes the Eisenstein series introduced in [21, (4.13)]:
in particular at s = −r, the C∞-function Ew+2r(−r, η) has the Fourier
expansion

(4πy)−r ·
∞∑
ξ3=1

 ∑
ξ3=b·c

bw−1η(c)
r∑
j=0

(−1)j
(
r
j

) Γ(w + r)
Γ(w+r−j) · (4πξ3y)r−j

e2πiξ3z.

Writing out everything in terms of our renormalised Eisenstein series
E∗w,N (z, · ), one finds that δ

(r)
w (E∗

w,Ñ
(z, η))

∣∣∣
w+2r

W
Ñ

coincides with
Ew+2r(−r, η), in which case

Hol∞(G2 · δ(r)
w (E∗

w,Ñ
(z, η))

∣∣∣
w+2r

W
Ñ

) = Hol∞(G2 · Ew+2r(−r, η)).

We next apply the integral operator (4πn)k1−1

Γ(k1−1) ·
∫∞
0 AH(y, n)e−2πnyyk1−2 ·dy

to the n-th Fourier coefficient of the form

H(z) = G2 · Ew+2r(−r, η) =
∞∑
m=1

AH(y,m) · e2πimx

and then exploit the well known identity

(2.5) (4πn)k1−1

Γ(k1 − 1) ·
∫ ∞

0
((4πy)−je−2πny)·e−2πnyyk1−2·dy = nj ·Γ(k1 − j − 1)

Γ(k1 − 1) .
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A tedious calculation, but essentially identical to the one given in [21, Sec-
tion 5], allows us to conclude that

Hol∞(G2 · Ew+2r(−r, η))

=
∞∑
n=1

 ∑
n=ξ2+ξ3>0

aξ2(G2) ·
∑
ξ3=b·c

bw−1η(c) · P−r(ξ3, n)

 qn.
The automorphy properties follow directly from Theorem 2.5 since each
translate G2 · Ew+2r(−r, η)

∣∣∣
k1
γ has moderate growth for γ ∈ SL2(Z), and

secondly the Fourier coefficients AH(y, n) of the form H = G2 ·Ew+2r(−r, η)
vanish at every n 6 0. �

Corollary 2.7. Suppose G(I)
2 , G

(II)
2 ∈ Sk2(N2, ψ2) have expansions in OK [[q]]

for a given number field K, that they satisfy the p-adic congruence

G
(I)
2 ≡ G

(II)
2 (mod pν2)

at some integer ν2 > 1, and that Ğ3 = E∗
k1−k2−2r,Ñ

(z, ψ3). If p > k1 − 2,
then

Hol∞(G(I)
2 ·δ

(r)
k1−k2−2r(Ğ3)

∣∣
k1−k2

W
Ñ

) ≡ Hol∞(G(II)
2 ·δ

(r)
k1−k2−2r(Ğ3)

∣∣
k1−k2

W
Ñ

)

modulo pν2 ·OK [[q]], provided the integer r lies in the range 06r6 1
2(k1−k2).

Proof. We use the Fourier expansions given in the preceding result for both
G2 = G

(I)
2 and G2 = G

(II)
2 , and observe that P−r(X,Y ) ∈ Zp[X,Y ] as

p > k1 − 2. �

2.3.2. The triple product case. The next case relates to L(F1 ⊗ G2 ⊗
G3, s). Here there are no Eisenstein series to contend with, and their rôle
is replaced by the holomorphic form G3 of weight w = k3, level N3 and
nebentypus ψ3 = (ψ1ψ2)−1.

Proposition 2.8. If G3 ∈ Mw(N3, ψ1ψ2;R) for a given subring R ⊂ C,
then

G = Hol∞(G2 · δ(r)
w (G3)) at each r = (k1 − k2 − w)/2 ∈ Z>0

is a cusp form of weight k1, level Ñ and character ψ1; furthermore, it has
the q-expansion G(z) =

∑∞
n=1 a(n,G) · qn, where

a(n,G) =
∑

n=ξ2+ξ3>0
aξ2(G2) ·

r∑
j=0

Γ(k1 − 1− j)
Γ(k1 − 1) · β(r)

j (ξ3) · nj

and P
δ
(r)
w (G3) (X,m) =

∑r
j=0 β

(r)
j (m) · Xj ∈ R[X] in the sense of Defini-

tion 2.2(i).
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Proof. One simply points out that G2 · δ(r)
w (G3) has the Fourier expansion

(G2 · δ(r)
w (G3))(z) =

∞∑
n=0

 ∑
n=ξ2+ξ3>0

aξ2(G2) ·
r∑
j=0

β
(r)
j (ξ3) · (4πy)−j

 · e2πinz

which we hit it with the operator Hol∞( · ), and then repeatedly use (2.5).
The property that G2 is a cusp form directly implies G vanishes at cusps
too. �

Corollary 2.9. If G(I)
2 , G

(II)
2 ∈ Sk2(N2, ψ2) and G(I)

3 , G
(II)
3 ∈ Mk3(N3, ψ3)

have expansions in OK [[q]] for a given number field K, if they satisfy re-
spectively

G
(I)
2 ≡ G

(II)
2 (mod pν2) and G(I)

3 ≡ G
(II)
3 (mod pν3) for some ν2, ν3 > 1,

and lastly if the prime p - (k1−2)!
(k1−2−r)! , then

Hol∞(G(I)
2 ·δ

(r)
k1−k2−2r(G

(I)
3 )) ≡ Hol∞(G(II)

2 ·δ
(r)
k1−k2−2r(G

(II)
3 )) mod pmin{ν2,ν3}

provided again that the integer r lies inside the range 0 6 r 6 1
2(k1 − k2).

Proof. From Lemma 2.3(b), δ(r)
k1−k2−2r(G

(I)
3 ) ≡ δ

(r)
k1−k2−2r(G

(II)
3 ) (mod pν3)

and using the Fourier expansions which are calculated in the preceding
proposition, the result follows immediately. �

2.4. The effect of Σ-depletion and χ-twisting. In the following dis-
cussion g(I) and g(II) denote primitive Hecke eigenforms of weight k, char-
acter ψ, and levels N (I)

g and N
(II)
g respectively (note that we treat both

p - N (I)
g ·N (II)

g and p | N (I)
g ·N (II)

g ). We shall further suppose the coefficients
in their q-expansions satisfy:

(2.6) an(g(I)) ≡ an(g(II)) (mod pν)

for all n ∈ N with gcd(n,N (I)
g N

(II)
g ) = 1.

Let Σ ⊂ Spec(Z) be a finite set containing the primes dividing N (I)
g N

(II)
g ,

but not p.

Definition 2.10.
(a) If ? ∈ {I, II}, then g(?)

Σ indicates the depleted cusp form

g(?)
Σ (z) =

∞∑
n=1

an(g(?)
Σ ) · qn ∈ Sk(N

(?)
Σ , ψ), N (?)

Σ = lcm(N (?)
g ,

∏
l∈Σ

l2)

where an(g(?)
Σ ) = an(g(?)) if supp(n) ∩ Σ = ∅, and an(g(?)

Σ ) = 0 if
supp(n) ∩ Σ 6= ∅.
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(b) For a Dirichlet character χ of conductor pnχ > 1, and choosing
? ∈ {I, II}, we define χ-twisted cusp forms by g(?)

χ := g(?) ⊗ χ and
g(?)

Σ,χ := (g(?) ⊗ χ)Σ = g(?)
Σ ⊗ χ.

If we set ÑΣ,χ := lcm(p2nχ , N
(I)
Σ , N

(II)
Σ ) then both g(I)

Σ,χ and g(II)
Σ,χ are

cuspidal Hecke eigenforms of weight k and character ψχ2, each of whose
levels divides ÑΣ,χ. Furthermore, their q-expansions automatically satisfy

g(?)
χ =

∞∑
n=1

χ(n) · an(g(?)) · qn and g(?)
Σ,χ =

∞∑
n=1

χ(n) · an(g(?)
Σ ) · qn

provided that the conductor pnχ > max
{∣∣N (I)

g
∣∣− 1

2
p
,
∣∣N (II)

g
∣∣− 1

2
p

}
.

Proposition 2.11. If g(I) and g(II) satisfy (2.6), then at all characters χ
of p-power conductor and for each finite set Σ ⊃ supp(N (I)

g ·N (II)
g )− {p},

g(I)
Σ,χ

∣∣∣
k
W
Ñ
≡ g(II)

Σ,χ

∣∣∣
k
W
Ñ

(mod pν) if ÑΣ,χ
∣∣Ñ and ordp(ÑΣ,χ) = ordp(Ñ),

as a congruence between (on both sides) a p-integral linear sum of eigen-
forms2.

Proof. For a rational prime l, if l does not divide the level we write Tl for
the l-th Hecke operator, whilst if l does divide the level we shall use the
notation Ul. For m ∈ N coprime to the level, the m-th diamond operator is
denoted by 〈m〉 and for an integer d > 1, one writes Vd for the degeneracy
map (as we did in Section 2.1). Let us begin by remarking that for each
? ∈ {I, II},

(2.7) g(?)
Σ,χ = g(?)

χ

∣∣∣∣
k

∏
l∈Σ,
l-N(?)

g

(1− Tl · Vl + lk−1 · 〈l〉 · Vl2) ·
∏
l∈Σ,
l‖N(?)

g

(1− Ul · Vl)

which gives an alternative construction of these Σ-depleted, χ-twisted cusp
forms. To prove our result, it is necessary to establish that the composition
of operators

( · )
∣∣∣∣
k

∏
l∈Σ,
l-N(?)

g

(1− Tl · Vl + lk−1 · 〈l〉 · Vl2) ·
∏
l∈Σ,
l‖N(?)

g

(1− Ul · Vl)
∣∣∣∣
k

W
Ñ

acting on newforms of weight k and character ψχ2 preserves the integral
structure.

2By work of Vatsal [25, Proposition 4.5], the canonical motivic periods associated to g(?)
Σ,χ and

g(?)
χ are known to differ from each other by a p-adic unit, at least in the case where ap(g(?))∈O×Cp

.
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Fix a choice of ? ∈ {I, II}. Let us assume that l is a rational prime
number, and M denotes a multiple of N (?)

g such that l2 divides M . Then
for a “weight k” action,

(1− Ul · Vl) ·WM = WM − Ul · Vl ·WM

= lk/2 ·WM/l · Vl − l−k/2 · Ul ·WM/l

because at such a weight, we have WM = lk/2 ·WM/l · Vl and Vl ·WM =
l−k/2 ·WM/l. One therefore deduces

(2.8)
(1− Ul · Vl) ·WM = lk/2 ·WM/l · Vl − l−k/2 ·WM/l · U∗l

= WM/l · (lk/2 · Vl − l−k/2 · U∗l )

where ( · )∗ indicates the adjoint Hecke operator. Analogously, one calculates
that

(1− Tl · Vl + lk−1〈l〉 · Vl2) ·WM

= WM − Tl · Vl ·WM + lk−1〈l〉 · Vl2 ·WM

= lk ·WM/l2 · Vl2 − l−k/2 · Tl ·WM/l + lk−1(l2)−k/2〈l〉 ·WM/l2

asWM = lk·WM/l2 ·Vl2 , Vl·WM = l−k/2·WM/l and Vl2 ·WM = (l2)−k/2WM/l2 .
We then obtain a string of equalities

(2.9) (1− Tl · Vl + lk−1 · 〈l〉 · Vl2) ·WM

= lk ·WM/l2 · Vl2 − Tl ·WM/l2 · Vl + l−1 · 〈l〉 ·WM/l2

= lk ·WM/l2 · Vl2 −WM/l2 · T ∗l · Vl + l−1 ·WM/l2 · 〈l〉∗

= WM/l2 ·
(
lk · Vl2 − T ∗l · Vl + l−1 · 〈l−1〉

)
and these three lines follow from the respective identities: l−k/2 ·WM/l =
WM/l2 ·Vl, Tl ·WM/l2 = WM/l2 ·T ∗l and 〈l〉∗ = 〈l−1〉, applied in a consecutive
order.

Returning to the description in (2.7), our calculations in Equations (2.8–
2.9) imply via an inductive argument that

g(?)
χ

∣∣∣∣
k

∏
l∈Σ,
l-N(?)

g

(1− Tl · Vl + lk−1〈l〉 · Vl2) ·
∏
l∈Σ,
l‖N(?)

g

(1− Ul · Vl) ·
∣∣∣∣
k

W
ÑΣ,χ

(2.10)

= g(?)
χ

∣∣∣∣
k

W
M̃Σ,χ
·
∏
l∈Σ,
l-N(?)

g

(
lk · Vl2 − T ∗l ·Vl + l−1 · 〈l−1〉

)
·
∏
l∈Σ,
l‖N(?)

g

(lk/2 · Vl − l−k/2 · U∗l )
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with the level of the W -operator being decreased to

M̃Σ,χ :=ÑΣ,χ ·
∏
l∈Σ,
l-N(?)

g

l−2 ·
∏
l∈Σ,
l‖N(?)

g

l−1 =Ng(?)⊗χ×M
(?)
Σ,g for some M (?)

Σ,g∈N∩Z
×
p .

Under this weight k action, we may factorise

W
M̃Σ,χ

=
(
M

(?)
Σ,g

)k/2
·WNg(?)⊗χ

· V
M

(?)
Σ,g

and one readily deduces that

(2.11) g(?)
χ

∣∣∣
k
W
M̃Σ,χ

=
(
M

(?)
Σ,g

)k/2
·
(

g(?) ⊗ χ
∣∣∣
k
WNg(?)⊗χ

) ∣∣∣
k
V
M

(?)
Σ,g

=
(
M

(?)
Σ,g

)k/2
·
(
ψ(p2nχ)χ(N (?)

g )τ(χ)2

pnχ
ε
(?)
g · (g(?),] ⊗ χ−1)

) ∣∣∣∣
k

V
M

(?)
Σ,g

where ε(?)g ∈ C,
∣∣ε(?)g

∣∣
∞ = 1 satisfies g(?)∣∣

k
W
N

(?)
g

= ε
(?)
g · g(?),] (see [21,

(1.24)]). If we define the algebraic number

Z(?)
Σ,χ :=

(
M

(?)
Σ,g

)k/2
· ψ(p2nχ)χ

(
N

(?)
g
)τ(χ)2

pnχ
ε
(?)
g

which is a p-adic unit as τ(χ)2

pnχ , ε
(?)
g ∈ O×Cp , Equations (2.8) and (2.10–2.11)

imply

g(?)
Σ,χ

∣∣∣
k
W
ÑΣ,χ

= Z(?)
Σ,χ · (g

(?),] ⊗ χ−1)
∣∣∣∣
k

V
M

(?)
Σ,g

∣∣∣∣
k∏

l∈Σ, l-N(?)
g

(
lk · Vl2 − T ∗l · Vl + l−1 · 〈l−1〉

) ∣∣∣∣
k

∏
l∈Σ, l‖N(?)

g

(lk/2 · Vl − l−k/2 · U∗l ).

The right-hand side of the above equation is clearly a p-integral combination
of eigenforms with algebraic integer q-expansions, therefore the left-hand
side is too. To pass from g(?)

Σ,χ

∣∣∣
k
W
ÑΣ,χ

to the cusp form g(?)
Σ,χ

∣∣∣
k
W
Ñ
, one

employs the identity

g(?)
Σ,χ

∣∣∣
k
W
Ñ

=
(
Ñ
/
ÑΣ,χ

)k/2
·
(

g(?)
Σ,χ

∣∣∣
k
W
ÑΣ,χ

) ∣∣∣
k
V
Ñ/ÑΣ,χ

and observes that the quotient Ñ
/
ÑΣ,χ ∈ N ∩ Z×p since ordp(ÑΣ,χ) =

ordp(Ñ).
Finally, those congruences asserted in the statement of the proposition

now follow from the system of congruences

χ−1(n) · an(g(I)
Σ ) ≡ χ−1(n) · an(g(II)

Σ ) (mod pν)
which hold at integers n > 1 by (2.6), and the proof is complete. �
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2.5. Finishing off the inner product calculation. Let us return to our
earlier computation of the numerator from (2.1), namely we must evaluate〈

F ]1 ,Tr
Ñ/N0

(Hol∞(G2 · δ(r)
w (G3))

∣∣
k1
W ε
Ñ

)
〉
N0
, ε ∈ {0, 1}

for forms F1, G2, G3 of level N1, N2, N3, weight k1, k2, k3 and nebentypus
ψ1, ψ2, ψ3 with ψ2 · ψ3 = ψ−1

1 . Throughout we will again suppose that
F ]1 = F1 and ψ2

1 = 1.
In particular, after dividing through by the period 〈F1, F1〉N1 , one wants

to see how this quantity varies when we replace G2 and G3 with pν-
congruent forms. We shall treat the same two cases as in Section 2.3, cor-
responding to the double product L(F1 ⊗ G2, s) and the triple product
L(F1 ⊗G2 ⊗G3, s), respectively.

2.5.1. The double product case. Assume we are given newforms g(I)

and g(II) of common weight k = k2 > 0, common character ψ, and conduc-
tors N (I)

g and N (II)
g . Let us further suppose (2.6) holds for their q-expansions

with ν = ν2, i.e.

an(g(I)) ≡ an(g(II)) (mod pν2) for all n ∈ N with gcd(n,N (I)
g N

(II)
g ) = 1.

We shall carefully select the subset Σ ⊂ Spec(Z) of primes in order to
satisfy the three conditions:

(i) supp(N (I)
g N

(II)
g )− {p} ⊂ Σ,

(ii) #Σ <∞ and
(iii) p 6∈ Σ.
Let χ denote a character of conductor pnχ>1. If we set Ñ=lcm(N1, ÑΣ,χ)

and ψ2 = ψχ−2, one may consider g(I)
Σ,χ
∣∣
k2
W
Ñ

and g(II)
Σ,χ
∣∣
k2
W
Ñ

as belong-
ing to the vector space Sk2(Ñ , ψ2); they have p-integral q-expansions by
Proposition 2.11, and their Fourier coefficients lie in some finite algebraic
extension of Q.

Now for any integer r in the range 0 6 2r 6 k1 − k2, just as in (2.4) one
can define

Ğ3(z) := E∗
k1−k2−2r,Ñ (z, ψ3)

where ψ3 = (ψ1ψ2)−1 = ψ1 · ψ · χ2, and the level of the Eisenstein series
equals Ñ . It follows for each choice of ? ∈ {I, II}, the product of the two
modular forms

G(?) = g(?)
Σ,χ · δ

(r)
k1−k2−2r(Ğ3) ∈M∞k1(Ñ , (ψ2ψ3)−1)

is such that G(?)∣∣
k1
γ has moderate growth at every γ ∈ SL2(Z), in which

case

H(?) := Hol∞(G(?))
∣∣∣
k1
W
Ñ

= Hol∞
(

g(?)
Σ,χ

∣∣∣
k2
W
Ñ
· δ(r)
k1−k2−2r(Ğ3)

∣∣∣
k1−k2

W
Ñ

)
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is an element ofMk1(Ñ , ψ2ψ3).
Let OK,χ denote the integral extension of Z generated by the Fourier

coefficients an(g(?)
Σ ) and the character values χ(n), for all positive integers

n and ? ∈ {I, II}. Note that in the context of Lemma 2.1, each of the
holomorphic modular forms

H(?)
∣∣∣
k1
U ẽ−1
p = Hol∞(G(?))

∣∣∣
k1
W
Ñ
◦ U ẽ−1

p ∈Mk1(N0, ψ2ψ3) ∩ OK,χ[[q]]

can be decomposed into its F1-isotypic and non-F1-isotypic components via

H(?)
∣∣∣
k1
U ẽ−1
p =

∑
d
∣∣N0
N1

c
(?)
d,Ñ,ẽ

(H) · F1
∣∣
k1
Vd +H(?),(⊥)

Ñ,ẽ

for scalars c
(?)
d,Ñ,ẽ

(H) ∈ OK,χ. If we define M̃ := Ñ/ÑΣ,χ ∈ N ∩ Z×p , using
Proposition 2.11 one finds that

g(I)
Σ,χ

∣∣∣
k2
W
Ñ
≡ g(II)

Σ,χ

∣∣∣
k2
W
Ñ

(mod pν2)

and moreover, if the prime p > k2 − 1, then Corollary 2.7 implies

(2.12) H(I) ≡ H(II) (mod pν2).

We next apply the results in Section 2.1 to this pair of congruent modular
forms.

Proposition 2.12. If ε = 0 and G(?) = g(?)
Σ,χ ·δ

(r)
k1−k2−2r(E∗k1−k2−2r,Ñ

(z, ψ3))
as above for either ? ∈ {I, II} with the prime p 6∈ Σ, p > k2 − 1 and p - N1,
then

(2.13)
〈
F ]1 ,TrÑN0(Hol∞(G(?))

∣∣
k1
W ε
Ñ

)
〉
N0〈

F1, F1
〉
N1

= ε1 · p1− (k1−2)(ẽ−2)
2 ·

(
Ñ (p)

N1

)k1
2

×
∑
d
∣∣N0
N1

c
(?)
d,Ñ,ẽ

(H) ·

〈
F1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd
〉
N0〈

F1, F1
〉
N1

where Ñ = lcm(N1, p
2nχ , N

(I)
Σ , N

(II)
Σ ), Ñ (p) =

∣∣Ñ ∣∣
p
· Ñ and lastly N0 =

p · Ñ (p). Moreover the congruences c
(I)
d,Ñ,ẽ

(H) ≡ c
(II)
d,Ñ,ẽ

(H) (mod pν2) hold at
integers d

∣∣N0
N1

.

Proof. Most of these assertions follow upon applying Lemma 2.1 directly
to the forms

G = Hol∞
(
g(I)

Σ,χ · δ
(r)
k1−k2−2r(Ğ3)

)
and G = Hol∞

(
g(II)

Σ,χ · δ
(r)
k1−k2−2r(Ğ3)

)
.
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The levels Ñ , Ñ (p) and N0 are easily determined from their descriptions in
Section 2.1. We should point out that the q-expansions ofH(I) andH(II) take
values in OK,χ by Propositions 2.6 and 2.11, hence so do the q-expansions
of the N0-level modular forms H(I)∣∣

k1
U ẽ−1
p and H(II)∣∣

k1
U ẽ−1
p . Finally, one

may combine (2.12) together with the implication
H(I) ≡ H(II) (mod pν2) =⇒ H(I)∣∣

k1
U ẽ−1
p ≡ H(II)∣∣

k1
U ẽ−1
p (mod pν2)

to conclude that the F1-isotypic parts of H(I)∣∣
k1
U ẽ−1
p and H(II)∣∣

k1
U ẽ−1
p

are similarly congruent modulo pν2 · OK,χ[[q]], whence c
(I)
d,Ñ,ẽ

(H) ≡

c
(II)
d,Ñ,ẽ

(H) (mod pν2). �

2.5.2. The triple product case. Alternatively, suppose one is given cusp
forms g(I),g(II) of weight k2, character ψ2, and that their respective levels
are N (I)

g , N
(II)
g . In addition, we suppose that h(I),h(II) are modular forms of

weight k3 = k1 − k2 − 2r, character ψ3 = ψ1ψ2, with levels N (I)
h and N (II)

h
respectively. One further assumes:

an(g(I)) ≡ an(g(II)) (mod pν2) if gcd(n,N (I)
g N

(II)
g ) = 1, and(2.14)

an(h(I)) ≡ an(h(II)) (mod pν3) if gcd(n,N (I)
h N

(II)
h ) = 1.(2.15)

We shall now choose the set of rational primes Σ to satisfy the three mod-
ified conditions:

(i) supp(N (I)
g N

(II)
g N

(I)
h N

(II)
h )− {p} ⊂ Σ,

(ii) #Σ <∞ and
(iii) p 6∈ Σ.

Notations.
(a) If we construct a “suitably large enough” level by taking

Ñ := lcm

N1, N
(I)
g , N

(II)
g , N

(I)
h , N

(II)
h ,

∏
l∈Σ

l2


then the Σ-depleted forms g(I)

Σ ,g(II)
Σ ,h(I)

Σ ,h(II)
Σ will each exist at this

top level Ñ .
(b) Let K = K(gΣ,hΣ) denote the number field generated by the q-

coefficients of the depleted modular forms g(I)
Σ ,g(II)

Σ ,h(I)
Σ and h(II)

Σ .
(c) We shall write OK = OK(gΣ,hΣ) for the ring of integers of

K(gΣ,hΣ).

Proposition 2.13. If ε = 1 and G(?) = g(?)
Σ · δ(r)

k1−k2−2r(h
(?)
Σ ) for ? ∈

{I, II} with p 6∈ Σ, p - (k1−2)!
(k1−2−r)! and p - N1, then G(I) and G(II) be-

long to N∞,rk1,pol(Ñ , ψ
−1
1 ;OK) and they both satisfy (2.13), where H(?) =
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Hol∞(G(?))
∣∣∣
k1
W 2
Ñ

and

H(?)
∣∣∣
k1
U ẽ−1
p =

∑
d
∣∣N0
N1

c
(?)
d,Ñ,ẽ

(H)·F1
∣∣
k1
Vd+H(?),(⊥)

Ñ,ẽ
, c

(?)
d,Ñ,ẽ

(H) ∈ OK(gΣ,hΣ).

Moreover the congruences c
(I)
d,Ñ,ẽ

(H) ≡ c
(II)
d,Ñ,ẽ

(H) (mod pmin{ν2,ν3}) hold for
d
∣∣N0
N1

.

Proof. The forms above satisfy h(?)
Σ ∈Mk3(Ñ , ψ3;OK)⊂N∞,0k3,pol(Ñ , ψ3;OK)

so that δ(r)
k1−k2−2r(h

(?)
Σ ) ∈ N∞,rk1−k2,pol(Ñ , ψ3;OK) by Lemma 2.3(a); conse-

quently

G(?) = g(?)
Σ · δ

(r)
k1−k2−2r(h

(?)
Σ ) ∈ N∞,rk1,pol(Ñ , ψ2ψ3;OK),

and combining (2.14–2.15) with Lemma 2.3(b) implies G(I) ≡ G(II) mod
pmin{ν2,ν3}. From Corollary 2.9 with G(?)

2 = g(?)
Σ and G(?)

3 = h(?)
Σ , it follows

directly that

Hol∞(G(I)) ≡ Hol∞(G(II)) mod pmin{ν2,ν3} · OK [[q]].

One next applies Lemma 2.1 to the pair of cusp forms G=Hol∞(G(I))
∣∣
k1
W
Ñ

and G = Hol∞(G(II))
∣∣
k1
W
Ñ
. By copying the same argument as in the pre-

vious proof, the required congruences are a consequence of the implication

H(I) ≡ H(II) mod pmin{ν2,ν3}

=⇒ H(I)
∣∣∣
k1
U ẽ−1
p ≡ H(II)

∣∣∣
k1
U ẽ−1
p mod pmin{ν2,ν3}

and the property that taking the F1-isotypic projection will respect congru-
ences (because the moduleMk1(N0, ψ

−1
1 )∩OK [[q]] contains a basis consist-

ing of Hecke eigenforms whose q-expansion coefficients also lie in the ring
of integers OK). �

2.5.3. Determining the 〈F1|V−,F1|Vd〉
〈F1,F1〉 ’s explicitly. For both the double

product and triple product cases, our special value formulae each involve
(2.13). It therefore remains to evaluate the ratio of

〈
F1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd
〉
N0

to
〈
F1, F1

〉
N1

as the integer “d” runs through the divisors of N0
N1

. Firstly
applying [23, Lemma 1],〈

F1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd
〉
N0〈

F1, F1
〉
N0

= Ress=k1

D(s, F ]1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd)

D(s, F ]1 , F1)


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where the convolution L-series D(s,F ,G) :=
∑∞
n=1 an(F)an(G) · n−s for

Re(s) � 0. By assumption F ]1 = F1, so we may factorise the ratio of L-
functions above into

D(s, F ]1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd)

D(s, F ]1 , F1)
=
(
N0
N1

)−s
·
∏
l
∣∣ N0
dN1

∑∞
j=0 alj (F1)a

l
j+tl,d (F1) · l−js∑∞

j=0 alj (F1)2 · l−js

with the integer exponent tl,d := ordl(N0)− ordl(dN1) > 0.

Lemma 2.14. If the prime l divides into N0
/
dN1, then

∑∞
j=0 alj (F1)a

l
j+tl,d (F1) · l−jk1∑∞

j=0 alj (F1)2 · l−jk1
=


a
l
tl,d

(F1)−lk1−2a
l
tl,d−2 (F1)

1+ψ1(l)·l−1 if tl,d > 2
al(F1)

1+ψ1(l)·l−1 if tl,d = 1
1 if tl,d = 0.

Proof. At each prime l, let us factorise the Hecke polynomial for F1 into
X2− al(F1)X +ψ1(l) · lk1−1 = (X −αl)(X −α′l) where we choose α′l = 0 if
l
∣∣N1. Then quoting verbatim from (3.1) of [23], for any integer t > 0:

Yl(s)×
∞∑
j=0

alj (F1)alj+t(F1) · l−js

=


alt(F1)− alt−1(F1)al(F1)αlα′l · l−s + alt−2(F1)(αlα′l)3 · l−2s if t > 2
al(F1)− al(F1)αlα′l · l−s if t = 1
1− (αlα′l)2 · l−2s if t = 0,

and the Euler factor3 here is defined by

Yl(s) := (1− α2
l · l−s)(1− α′2l · l−s)(1− αlα′l · l−s)2.

Putting s = k1 and utilising the identities αl+α′l = al(F1) and αlα′l = ψ1(l)·
lk1−1, the required quotient can be readily computed from this expression,
firstly at t = tl,d and secondly at t = 0. We will leave these details as an
exercise for the reader. �

3In general, given two distinct cusp forms F =
∑∞

n=1 an(F) · qn and G =
∑∞

n=1 an(G) · qn,
the Euler factor Yl(s) = (1 − αlβl · l−s)(1 − αlβ

′
l · l
−s)(1 − α′lβl · l

−s)(1 − α′lβ
′
l · l
−s) where

αl, α
′
l (resp. βl, β′l) denote the Weil numbers of F (resp. G); moreover the actual formula for∑∞

j=0 alj (F)alj+t (G) · l−js involves αl, α′l, βl, β
′
l, and only simplifies to the above when F = G.
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Corollary 2.15. For each positive divisor d of N0/N1, one has the identity〈
F1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd
〉
N0〈

F1, F1
〉
N1

=
∏
l|N1

lordl(N0)−ordl(N1) ×
∏

l|N0,l-N1

(l + 1) · lordl(N0)−1

×
(
N0
N1

)−k1

×
∏
l‖ N0
dN1

al(F1)
1 + ψ1(l) · l−1 ×

∏
l2
∣∣ N0
dN1

a
l
tl,d (F1)− lk1−2a

l
tl,d−2(F1)

1 + ψ1(l) · l−1 .

Proof. The result follows upon splitting up the quotient into a product〈
F1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd
〉
N0〈

F1, F1
〉
N1

=

〈
F1
∣∣
k1
VN0
N1
, F1

∣∣
k1
Vd
〉
N0〈

F1, F1
〉
N0

×
〈
F1, F1

〉
N0〈

F1, F1
〉
N1

and using the above lemma to compute the first ratio, whilst it is well
known that〈

F1, F1
〉
N0〈

F1, F1
〉
N1

=
[
Γ0(N1) : Γ0(N0)

]
=
∏
l|N0 l

ordl(N0) + lordl(N0)−1∏
l|N1 l

ordl(N1) + lordl(N1)−1 . �

3. Variation between the analytic λ-invariants
The technical portion of the paper is complete, and we now use these

formulae to study the λ-invariant for both the double and triple product
p-adic L-functions. A nice feature of our inner product expression is that
the special values of both types of p-adic L-function can be treated on an
equal footing, using the same ideas. However let us begin by streamlining
the existing notation to avoid clutter later.

Definition 3.1.
(a) For ε∈{0, 1} and an integer r∈

{
0, . . . , bk1/2c

}
, one defines a linear

functional L(r,ε)
F1

= L(r,ε)
F1

(p,N0, N1, Ñ) : N∞,rk1,pol(Ñ , ψ
−1
1 )→ C by

L(r,ε)
F1

(H) := ε−1
1 p

(k1−2)(ẽ−2)
2 −1

(
Ñ (p)

N1

)− k1
2 (N0

N1

)k1

·
〈
F ]1 ,TrÑN0(Hol∞(H)

∣∣
k1
W ε
Ñ

)
〉
N0〈

F1, F1
〉
N1

where F1
∣∣
k1
WN1 = ε1 ·F ]1 , and the levels Ñ = pẽ ·Ñ (p), N0 = p ·Ñ (p)

are as before.
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(b) At each positive divisor d of N0/N1, we will introduce the algebraic
number

Xd(N0, N1) :=
∏
l|N1

lordl(N0)−ordl(N1) ×
∏

l|N0,l-N1

(l + 1) · lordl(N0)−1

×
∏
l‖ N0
dN1

al(F1)
1 + ψ1(l) · l−1 ×

∏
l2
∣∣ N0
dN1

a
l
tl,d (F1)− lk1−2a

l
tl,d−2(F1)

1 + ψ1(l) · l−1

with the identical choice of exponent tl,d = ordl(N0) − ordl(dN1)
from Section 2.5.

For instance, using these definitions above, one may repackage (2.13)
into the more succinct form
(3.1) L(r,ε)

F1
(G(?)) =

∑
d
∣∣N0
N1

c
(?)
d,Ñ,ẽ

(H) ·Xd(N0, N1)

where H(?) = Hol∞(G(?))
∣∣
k1
W 1+ε
Ñ

at either choice of ? ∈ {I, II}.
The Xd(N0, N1)’s each have bounded denominators, and are

independent of the C∞-modular form G(?). Furthermore, if G(?) = g(?)
Σ,χ ·

δ
(r)
k1−k2−2r(E∗k1−k2−2r,Ñ

(z, ψ3)) or if G(?) = (g(?)
Σ ·δ

(r)
k1−k2−2r(h

(?)
Σ ))

∣∣
k1
W
Ñ
, cor-

responding to the double product and triple product cases respectively,
then the scalars c

(?)
d,Ñ,ẽ

(H) are algebraic integers which are congruent to
each other as one switches between ? = I and ? = II.

Although we shall treat the double and triple product separately, the
underlying methods are basically the same. In both situations F1 = f will
be a weight k1 newform of level N1, p - N1 and nebentypus ψ1, where f ] = f
and ψ2

1 = 1. In addition, it is now necessary to assume that the cusp form
f is ordinary at p.

3.1. The double product p-adic L-function. For two eigenforms F
and G of weights k1 > k2 and characters η1, η2, the L-function attached to
F ⊗G equals

(3.2) Ψ(s, F,G) := Γ(s)Γ(s+ 1− k2)
(2π)2s ×ζ(2s+2−k1−k2, η1η2)·D(s, F,G)

with Re(s) � 0, and this admits an analytic continuation to the complex
plane. We write ΨΣ(s, F,G) for the L-function stripped of Euler factors at
primes l ∈ Σ.

Throughout assume we are given newforms g(I),g(II) of weight k2, char-
acter ψ, with conductors N (I)

g , N
(II)
g respectively, and which satisfy:

an(g(I)) ≡ an(g(II)) (mod pν2) for all n ∈ N with gcd(n,N (I)
g N

(II)
g ) = 1.
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We again choose the set Σ so that supp(N (I)
g N

(II)
g ) − {p} ⊂ Σ, #Σ < ∞

and p 6∈ Σ.

Proposition 3.2. If χ has conductor pnχ > max
{∣∣N (I)

g
∣∣− 1

2
p
,
∣∣N (II)

g
∣∣− 1

2
p

}
,

then

L(r,0)
f

(
g(?)

Σ,χ · δ
(r)
k1−k2−2r(E

∗
k1−k2−2r,Ñ (z, ψ1ψχ

2))
)

= (Ñ (p))k1−k2/2−rN
−k1/2
1

ε1 · 2 · (2i)k1−1 × pnχ(2k1−k2−2r−2)+1 · ΨΣ(k1−1−r, f ,g(?) ⊗ χ)
(2πi)1−k2 ·

〈
f , f
〉
N1

at each integer r in the range 0 6 2r < k1 − k2, and for either choice of
? ∈ {I, II}.

Proof. Recall that ψ3 = ψ1 · ψ · χ2 and Ñ = lcm(N1, ÑΣ,χ) = pẽ · Ñ (p). An
essential starting point is the following formula4 of Shimura [23, Theorem 2],

D(k1 − 1− r, f ,g(?)
Σ,χ) = (−1)r(4π)k1−1 · Γ(k1 − k2 − 2r)

Γ(k1 − 1− r) · Γ(k1 − k2 − r)

×
〈
f ],g(?)

Σ,χ · δ
(r)
k1−k2−2r(E

∗
k1−k2−2r,Ñ (z, ψ3))

〉
Ñ

where E∗
k1−k2−2r,Ñ

(z, η) denotes the C∞-modular form defined in (2.3), and

D(s, f ,g(?)
Σ,χ) coincides with the Σ-depleted convolution L-function

DΣ(s, f ,g(?)
χ ) =

∞∑
n=1,

supp(n)∩Σ=∅

an(f)an(g(?))χ(n) · n−s, Re(s)� 0.

Reconciling the different normalisation of Eisenstein series in (2.3–2.4), one
may rephrase Shimura’s identity above into an equivalent form〈

f ],g(?)
Σ,χ · δ

(r)
k1−k2−2r(E

∗
k1−k2−2r,Ñ (z, ψ3))

〉
Ñ

= (−1)r

(4π)k1−1 ·
Ñ

k1−k2−2r
2

2(2πi)k1−k2−2r × Γ(k1 − 1− r)

· Γ(k1 − k2 − r) · ζÑ (k1 − k2 − 2r, ψ3) ·DΣ(k1 − 1− r, f ,g(?)
χ )

= (4π2)k1−1−r · (−1)r

(4π)k1−1 ·
Ñ

k1−k2−2r
2

2(2πi)k1−k2−2r ×ΨΣ(k1 − 1− r, f ,g(?)
χ ).

In fact, the terms directly before ΨΣ(· · ·) can be simplified to (2i)k2−k1 ·
Ñ
k1−k2−2r

2
2π1−k2 , which means that if G(?) = g(?)

Σ,χ · δ
(r)
k1−k2−2r(E∗k1−k2−2r,Ñ

(z, ψ3))

4His normalisation of the Petersson inner product differs from ours by vol(Γ1(Ñ)\H)−1.
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then 〈
f ], G(?)〉

Ñ〈
f , f
〉
N1

= Ñ
k1−k2−2r

2

2(2i)k1−k2
× ΨΣ(k1 − 1− r, f ,g(?)

χ )
π1−k2 ·

〈
f , f
〉
N1

.

Focussing on the left-hand side, as G(?)∣∣
k1
γ has moderate growth for all

γ ∈ SL2(Z) it follows from Theorem 2.5 that〈
f ], G(?)〉

Ñ〈
f , f
〉
N1

=
〈
f ],Hol∞(G(?))

〉
Ñ〈

f , f
〉
N1

=

〈
f ],Tr

Ñ/N0
(Hol∞(G(?)))

〉
N0〈

f , f
〉
N1

and so by Definition 3.1(a),

L(r,0)
f (G(?)) = ε−1

1 · p
(k1−2)(ẽ−2)

2 −1 ·
(
Ñ (p)

N1

)− k1
2

·
(
N0
N1

)k1

×
〈
f ], G(?)〉

Ñ〈
f , f
〉
N1

= ε−1
1 · p

(k1−2)(ẽ−2)
2 −1 ·

(
Ñ (p)

N1

)− k1
2

·
(
N0
N1

)k1

· Ñ
k1−k2−2r

2

2(2i)k1−k2

× ΨΣ(k1 − 1− r, f ,g(?)
χ )

π1−k2 ·
〈
f , f
〉
N1

.

Provided that p2nχ > max
{∣∣N (I)

g
∣∣−1
p
,
∣∣N (II)

g
∣∣−1
p

}
, the p-part of the level of

both cusp forms g(I)
Σ,χ and g(II)

Σ,χ equals p2nχ : thus ẽ = 2nχ, Ñ = p2nχ · Ñ (p)

and N0 = p · Ñ (p). Substituting these values into our formula, the result
follows after a clean-up. �

Let K be the number field generated by the Fourier coefficients of
f ,g(I),g(II). Since the newform f is p-ordinary, we can factorise its Hecke
polynomial at p into

X2 − ap(f)X + ψ1(p) · pk1−1 = (X − αp)(X − α′p)

where
∣∣αp∣∣p = 1 and

∣∣α′p∣∣p = p1−k1 < 1. Now applying the results of Hida
and Panchishkin [14, 21], for each choice of ? ∈ {I, II} there exists a p-adic
L-function Lp(f ⊗ g(?)

Σ ) ∈ OK,p[[Z×p ]][1/p] interpolating

χxsp

(
Lp(f ⊗ g(?)

Σ )
)

= ψ(p)nχ · τ(χ)2 · pnχ(k2+2s−1)

(−1)s · α2nχ
p

· A(s, χ)×
Ψ(k2 + s, f ,g(?)

Σ,χ)
(2πi)1−k2 ·

〈
f , f
〉
N1

at all integers s ∈ {0, . . . , k1 − k2 − 1}. Here τ(χ) =
∑pnχ

j=1 χ(n)e2πij/pnχ

denotes a Gauss sum for χ, and the p-Euler factor term A(s, χ) is equal to
1 whenever χ 6= 1.
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Remarks.
(i) If one changes variable by instead setting s = k1− k2− r− 1, then for

χ 6= 1 the above becomes

χxsp

(
Lp(f ⊗ g(?)

Σ )
)

= ψ(p)nχ · τ(χ)2 · pnχ(2k1−k2−2r−3)

(−1)k1−k2−r−1 · α2nχ
p

×
Ψ(k1 − 1− r, f ,g(?)

Σ,χ)
(2πi)1−k2 ·

〈
f , f
〉
N1

.

(ii) The formula in Proposition 3.2 can similarly be expressed in the form

L(r,0)
f (G(?))

= (Ñ (p))k1−k2/2−rN
−k1/2
1

ε1 · 2 · (2i)k1−1 · pnχ(2k1−k2−2r−2)+1 ×
Ψ(k1 − 1− r, f ,g(?)

Σ,χ)
(2πi)1−k2 ·

〈
f , f
〉
N1

.

(iii) Consequently, (−1)s ·χxsp(Lp(f⊗g(?)
Σ )) = p−1 ·Ξr,χ×L(r,0)

f

(
G(?)

)
where

Ξr,χ :=
(
ψ(p)
α2
p

)nχ
· τ(χ)2

pnχ
× ε1 · 2 · (2i)k1−1

(Ñ (p))k1−k2/2−rN
−k1/2
1

is actually a p-adic unit.

There is a natural decomposition Z×p ∼= F×p × (1 + pZp), and let ω :
Z×p � µp−1 be the Teichmüller character, so that ω(a) ≡ a (mod p) and
ω(1+pZp) = {1}. One can split the Iwasawa algebra up into F×p -eigenfactors

OK,p[[Z×p ]] ∼=
p−2⊕
j=0
OK,p[[1 + pZp]](ωj)

∼−→
p−2⊕
j=0
OK,p[[X]](ωj)

where the last isomorphism arises by sending 1 + p ∈ Z×p to the polynomial
X + 1. For each j ∈ Z and ? ∈ {I, II}, we will write Lp(f ⊗ g(?)

Σ , ωj) for the
image of the Hida–Panchishkin p-adic L-function inside the ωj-eigenspace
OK,p[[X]][1/p](ωj). Let us also choose a local parameter, $, for the discrete
valuation ring OK,p.

Theorem 3.3. At each j ∈ {0, . . . , p − 2}, let us define µ
(j)
I,II to be the

minimum of µ$(Lp(f ⊗ g(I)
Σ , ωj)) and µ$(Lp(f ⊗ g(II)

Σ , ωj)). If the prime
p > k1 − 2, then one obtains a congruence of Σ-imprimitive p-adic L-
functions

Lp(f ⊗ g(I)
Σ , ωj) ≡ Lp(f ⊗ g(II)

Σ , ωj) mod $epν2+µ(j)
I,II · OK,p[[X]](ωj)

where the ramification index ep ∈ N satisfies 〈$〉ep = p · OK,p.
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Proof. We first pick an integer s = k1 − k2 − r − 1 > 0 to Tate twist by.
Consider theOCp-module, L(j,r), generated by the special values L(r,0)

f (G(?)
χ )

where

G(?)
χ := g(?)

Σ,χ · δ
(r)
k1−k2−2r(E

∗
k1−k2−2r,Ñ (z, ψ1ψχ

2)) ∈M∞k1(Ñ , ψ1), and

χ ranges over non-trivial characters of conductor pnχ > max
{∣∣N (I)

g
∣∣− 1

2
p
,∣∣N (II)

g
∣∣− 1

2
p

}
such that χ

∣∣
F×p

= ωj .

Using the identity χxsp(Lp(f ⊗ g(?)
Σ )) = ±p−1Ξr,χ · L(r,0)

f (G(?)) in Re-

mark (iii), and also because
∣∣Ξr,χ∣∣−1

p
= 1, it follows that L(j,r) = $ep+µ(j)

I,II ·

OCp where µ(j)
I,II = min?∈{I,II}

{
µ$(Lp(f ⊗ g(?)

Σ , ωj))
}
∈ Z∪

{
±∞

}
. From a

naive perspective only three possibilities can ever happen:

(a) L(j,r) = {0},
(b) L(j,r) = $ep+µ(j)

I,II · OCp with µ(j)
I,II 6= ±∞, or alternatively

(c) L(j,r) = Cp.

In case (a) one has Lp(f ⊗ g(I)
Σ , ωj) = Lp(f ⊗ g(II)

Σ , ωj) = 0 and there-
fore µ$(Lp(f ⊗ g(?)

Σ , ωj)) = +∞, so the congruence is vacuously true and
moreover content-free. On the other hand, if we are in case (c) then
µ$(Lp(f ⊗ g(?)

Σ , ωj)) = −∞, which would then imply that the ωj-branches
of Lp(f ⊗g(?)

Σ ) arise from an unbounded p-adic measure. This directly con-
tradicts the work in [14, 21] and so never occurs!

This leaves us to deal with the interesting case (b). Recall from (3.1)
that the linear functional degenerates into a finite sum

L(r,0)
F1

(G(?)
χ ) =

∑
d
∣∣N0
N1

c
(?)
d,Ñ,ẽ

(Hχ) ·Xd(N0, N1)

where H(?)
χ = Hol∞(G(?)

χ )
∣∣
k1
W
Ñ
, and the Xd(N0, N1)’s are independent of

G
(?)
χ .
Applying Proposition 2.12, one has congruences c(I)

d,Ñ,ẽ
(Hχ) ≡ c

(II)
d,Ñ,ẽ

(Hχ)
(mod pν2) at every d

∣∣N0
N1

and finite order character χ on Z×p . As an immediate
consequence

L(r,0)
F1

(G(I)
χ )− L(r,0)

F1
(G(II)

χ ) ∈ $ep+µ(j)
I,II · pν2 · OCp ,
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i.e. χxsp(Lp(f ⊗ g(I)
Σ )− Lp(f ⊗ g(II)

Σ )) ∈ $epν2+µ(j)
I,II · OCp at almost all char-

acters5 χ : Z×p → Q×p such that χ
∣∣
F×p

= ωj . The rest now follows by p-adic
continuity. �

Let us instead consider primitive versions of these double product L-
functions, namely Lp(f ⊗ g(I), ωj) and Lp(f ⊗ g(II), ωj) which both belong
to OK,p[[X]][1/p](ωj). For either choice of ? ∈ {I, II}, they are related to
their Σ-imprimitive cousins via

(3.3) Lp(f ⊗ g(?)
Σ , ωj) = Lp(f ⊗ g(?), ωj)×

∏
l∈Σ

El(f ⊗ g(?), ωj)

where each term El(f ⊗ g(?), ωj) ∈ OK,p[[X]] p-adically interpolates the
Euler factor Ll(f ⊗g(?)⊗χωj , s) as χ ranges over finite order characters on
1 + pZp ⊂ Z×p .

Definition 3.4. At each prime l and branch j ∈ {0, . . . , p−2}, let us define
the non-negative integer e(?)

l (ωj) := the λ-invariant of El(f ⊗ g(?), ωj).

Theorem 3.5. If the prime p > k1 − 2, then

λ(Lp(f ⊗ g(I), ωj)) = λ(Lp(f ⊗ g(II), ωj)) +
∑

l|N(I)
g N

(II)
g

e(II)
l (ωj)− e(I)

l (ωj).

Proof. Firstly, we note that the Euler factors El(f ⊗ g(?), ωj) in (3.3) for
primes l ∈ Σ each have unit content, and therefore possess a trivial µ-
invariant. If µ(j)

I,II ∈ Z∪ {+∞} denotes the minimum of the µ-invariants for
Lp(f ⊗ g(I), ωj) and Lp(f ⊗ g(II), ωj), then by Theorem 3.3 one has

$−µ
(j)
I,II ·Lp(f ⊗ g(I)

Σ , ωj) ≡ $−µ
(j)
I,II ·Lp(f ⊗ g(II)

Σ , ωj) mod $ep·ν2 · OK,p[[X]].
Moreover as ep · ν2 > 1, we can then deduce that

λ(Lp(f ⊗ g(I)
Σ , ωj)) = rankF[[X]]

(
OK,p[[X]]

/〈
$,$−µ

(j)
I,II · Lp(f ⊗ g(I)

Σ , ωj)
〉)

= rankF[[X]]

(
OK,p[[X]]

/〈
$,$−µ

(j)
I,II · Lp(f ⊗ g(II)

Σ , ωj)
〉)

= λ(Lp(f ⊗ g(II)
Σ , ωj))

where F = OK,p
/
〈$〉 indicates the residue field. Finally, using (3.3) in

tandem with the additivity of the λ-invariant, clearly one has a relation

λ(Lp(f ⊗ g(?)
Σ , ωj)) = λ(Lp(f ⊗ g(?), ωj)) + e(?)

l (ωj).

5This containment is also true for the missing characters, which can be seen by exploiting the
p-adic density of finite order characters χ with χ

∣∣
F×p

= ωj inside the parameter space 1 + pZp.
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The result follows upon observing that e(I)
l (ωj) = e(II)

l (ωj) at any prime
l ∈ Σ such that l - N (I)

g N
(II)
g , because here El(f⊗g(I), ωj) ≡ El(f⊗g(II), ωj)

mod $ep·ν2 . �

3.2. The triple product p-adic L-function. We shall closely follow
the notation employed by Fukunaga and Hsieh in [10, 15]. In particular, Ii
denotes a normal finite flat extension of the algebra Λwt = OK [[Γwt]] at each
i ∈ {1, 2, 3}, with Γwt = 1 + pZp and [K : Qp] < ∞. Let us fix a triple of
Ii-adic forms (F1,G(2),G(3)) such that F1 := G(1) ∈ Sord(C1, ψ1; I1) and
also G(i) ∈ Sord(Ci, ψi; Ii) for i = 2, 3 are each primitive families in the
sense of Hida [14], and have expansions in Ii[[q]].

For a choice of index i ∈ {1, 2, 3}, we consider the set of non-zero con-
tinuous OK-algebraic homorphisms Xi :=

{
Q(i)
m : Ii → Qp

}
m∈N. Now given

such a formal series G(i) ∈ Ii[[q]] as described above, at every m > 1 one
can take its specialisation

G(i)(m) :=
∞∑
n=0
Q(i)
m (an(G(i))) · qn ∈ Qp[[q]]

which yields a normalised p-stabilised newform of weight k(i)(m), level
pe

(i)(m)Ci and character ψiω−k
(i)(m)ε

(i)
m , where ε(i)m is the restriction of Q(i)

m

to Γwt ⊂ Λwt.
Definition 3.6. If R = I1⊗̂OK I2⊗̂OK I3 is the three-parameter weight
algebra, then the unbalanced domain XF1

R of interpolation points for R
is given by

XF1
R :=

{
Q = (Q(1)

m1 ,Q
(2)
m2 ,Q

(3)
m3) ∈ X1×X2×X3

∣∣∣∣∣ k1 + k2 + k3 ≡ 0 (mod 2)
k1 > k2 + k2 − 1, k1 > 2

}
where we abbreviate (k(1)(m1), k(2)(m2), k(3)(m3)) by instead using
(k1, k2, k3).

Let Π′Q be the product of the automorphic representations πG(i)(m) on
GL2(A) associated to the triple (F1,G(2),G(3))(Q), and define ΠQ := Π′Q⊗
(χQ)A with

χQ = ω−
k(1)(m1)+k(2)(m2)+k(3)(m3)

2 · (ε(1)
m ε(2)

m ε(3)
m )

1
2 at every point Q ∈ XF1

R .

Passing from the automorphic viewpoint to the setting of Galois represen-
tations, one has an identification of complex L-series

L(ΠQ, s) = Γ(ΠQ,∞, s)

·
∏

l∈SpecZ
Ll

(
F1(m)⊗G(2)(m)⊗G(3)(m)⊗ χQ, s+ w − 1

2

)
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where Γ(ΠQ,∞, s) = ΓC(s+w/2)·
∏3
i=1 ΓC(s+1−k∗i ) is the factor at infinity,

w = k(1)(m1) + k(2)(m2) + k(3)(m3)− 2, and each k∗i = w/2 + 1− k(i)(mi).
The following conditions (which are copied directly from those given

in [10]) will guarantee us the existence of a p-adic L-function attached to
F1 ⊗G(2) ⊗G(3).

Hypothesis (T1). The primitive characters satisfy ψ1ψ2ψ3 = 1.

Hypothesis (T2). The residual Galois representation ρF1 : GQ→GL2(Fp)
is absolutely irreducible, and the semi-simplification of ρF1

∣∣
GQp
∼= θ1 ⊕ θ2

with θ1 6= θ2.

Hypothesis (T3). The value of gcd(C1, C2, C3) is a square-free integer.

Hypothesis (T4). At each Q ∈ XF1
R and l

∣∣C1C2C3, one has ε(1/2,ΠQ,l) =
+1 where ε(s,ΠQ,l) denotes the local ε-factor at a prime l, as defined by
Ikeda in [17].

Theorem 3.7 (Hsieh–Fukunaga [10, 15]). Under the Hypotheses (T1)–
(T4), there exists a unique element LF1

G(2),G(3) ∈ R satisfying the interpola-
tion property

(LF1
G(2),G(3)(Q))2 = EF1(m)(ΠQ,p) ·

L(ΠQ, 1/2)
√
−12k(1)(m1) · Ω2

F1(m)

at all unbalanced points Q ∈ XF1
R , where the p-Euler factor EF1(m)(ΠQ,p) and

the canonical period ΩF1(m) are given in [10, (3.3.1) and Definition 3.3.4],
respectively.

To avoid possible confusion later on, the element LF1
G(2),G(3) is the square-

root of the p-adic L-function, Lp(F1,G(2),G(3)), originally mentioned in the
Introduction. Therefore any congruence modulo pν one can prove
for the former automatically implies the same mod pν congruence holds for
the latter. The construction of LF1

G(2),G(3) from [10] involves gluing

“G(2) · δ(r)
• (G(3))(Q)” along the unbalanced points XF1

R to produce an in-
terpolating family Haux ∈ Sord(N,ψ1,(p)ψ

(p)
1 ; I1)⊗I1 R. One then sets

LF1
G(2),G(3) := the first Fourier coefficient of ηF1 · 1F1 · TrN/C1(Haux)

with N := C1C2C3, and where the operators ηF1 , 1F1 will be introduced
shortly (in fact LF1

G(2),G(3) and LF1
G(2),G(3) differ from each other by a very

simple R-unit).
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3.2.1. The basic congruences set-up. At the risk of bombarding the
reader with too many superscripts, suppose that we are given two primitive
Ii-adic triples

(F1,G(2),(I),G(3),(I)) and (F1,G(2),(II),G(3),(II))

where F1 has level N1 =C1, and the families G(i),(?) have level equal to C(?)
i .

Assume there exists a one-dimensional subset (i.e. line) V ⊂ X1×X2×X3
in the parameter space, such that for all unbalanced points Q ∈ V ∩ XF1

R :

Q
(
an(G(2),(I))

)
≡Q

(
an(G(2),(II))

)
(mod pν2) if gcd(n,C(I)

2 C
(II)
2 )=1,(3.4)

Q
(
an(G(3),(I))

)
≡Q

(
an(G(3),(II))

)
(mod pν3) if gcd(n,C(I)

3 C
(II)
3 )=1.(3.5)

We also suppose the image of the specialisations φV : R →
⊕
Q∈V∩XF1

R
Q(R)

glues into a one-parameter algebra, IV ∼= φV(R), of finite-type over Λwt.
Let us write µ(V)

wt ∈ Z ∪ {−∞,+∞} for the minimum of the (weight)
µ-invariants associated to φV

(
Lp(F1,G(2),(?),G(3),(?))

)
∈ IV over both

choices of ? ∈ {I, II}. The theorem immediately below is the primary tech-
nical result in this section.

Theorem 3.8. If both triples (F1,G(2),(I),G(3),(I)) and (F1,G(2),(II),
G(3),(II)) satisfy Hypotheses (T1)–(T4), if the congruences (3.4)–(3.5) hold
for ν2, ν3 > 1, if the points Q ∈ XF1

R with p - (k1−2)!
(k1−2−r)! are dense in Spec(IV),

and if ψ2
1 = 1, then

φV
(
Lp,Σ(F1,G(2),(I),G(3),(I))

)
≡ φV

(
Lp,Σ(F1,G(2),(II),G(3),(II))

)

modulo pµ
(V)
wt +min{ν2,ν3}·IV, where the finite set Σ:=supp(C(I)

2 C
(II)
2 C

(I)
3 C

(II)
3 ).

In particular, this is equivalent to Theorem 1.4(i) stated in the Intro-
duction. Moreover let us recall that the Σ-imprimitive p-adic L-function
factorises into

Lp,Σ(F1,G(2),(?),G(3),(?))

= Lp(F1,G(2),(?),G(3),(?))×
∏
l∈Σ

E
(?)
l (F1,G(2),G(3))
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where E(?)
l ( · ) interpolates Ll(F1(m) ⊗G(2),(?)(m) ⊗G(3),(?)(m) ⊗ χQ, w2 )

on XF1
R . Applying an identical argument to that used in the proof of The-

orem 3.5,

λwt ◦ φV
(
Lp(F1,G(2),(I),G(3),(I))

)
+
∑
l∈Σ

λwt ◦ φV
(
E

(I)
l (F1,G(2),G(3))

)
= λwt ◦ φV

(
Lp,Σ(F1,G(2),(I),G(3),(I))

)
by 3.5= λwt ◦ φV

(
Lp,Σ(F1,G(2),(II),G(3),(II))

)
= λwt ◦ φV

(
Lp(F1,G(2),(II),G(3),(II))

)
+
∑
l∈Σ

λwt◦φV
(
E

(II)
l (F1,G(2),G(3))

)
and Theorem 1.4(ii) now follows as an immediate corollary.

Remarks. The strategy we adopt to establish Theorem 3.8 has three steps:
(1) At each point Q ∈ XF1

R and ? ∈ {I, II}, we will express the special
valueQ(LF1

G(2),(?)
Σ ,G(3),(?)

Σ
) in terms ofQ(a1(ηF1·1F1·Tr

Ñ/C1
(Haux,(?)

Σ ))).

Note that by construction, both the Σ-depleted families Haux,(?)
Σ ∈

Sord(Ñ , ψ1,(p)ψ
(p)
1 ; I1) ⊗I1 R exist at the top-most level Ñ :=

lcm(C1C
(I)
2 C

(I)
3 , C1C

(II)
2 C

(II)
3 ,

∏
l∈Σ l

2).
(2) By replacing the original triple (F1,G(2),(?)

Σ ,G(3),(?)
Σ ) with the

twisted triple

(F1 ⊗ (ω−k(1)(m)ε(1)
m )−1/2,G(2),(?)

Σ ⊗ (ω−k(1)(m)ε(1)
m )1/2,G(3),(?)

Σ ),

we relate Q
(
a1
(
ηF1 · 1F1 ·Tr

Ñ/C1
(Haux,(?)

Σ )
))

to the special value of

our functional L(r,1)
F1

(
Q(G(2),(?)

Σ ) · δ(r)
k3

(Q(G(3),(?)
Σ ))

∣∣??) with Fα1 =
Q(F1) ⊗ (ω−k(1)(m)ε

(1)
m )−1/2, k = (k1, k2, k3), r = (k1 − k2 − k3)/2,

and “??” a combination of Hecke operators.
(3) Finally, upon exploiting the congruence preserving properties of

the linear functionals L(r,1)
F1

(−
∣∣??) and the Zariski density of V ∩

XF1
R inside of Spec(IV), the mod pmin{ν2,ν3}-congruences between
Q(Haux,(I)

Σ ) and Q(Haux,(II)
Σ ) will produce mod pµ

(V)
wt +min{ν2,ν3}-

congruences between the respective triple product L-values.

3.2.2. Step (1). Let us begin by reviewing the important properties of
Haux,(?). In fact this family is obtained from a secondary R-adic family,
Hord,(?), through

Haux,(?) =
∑

I⊂ΣIIb
1,0

(−1)#I ·
ψ1,(p)(nI/d1)〈nI/d1〉I1d1

βI(F1) · nI
◦Hord,(?)

∣∣∣Ud1/nI
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where the sets I,ΣIIb
1,0 and the positive integers nI , d1 can be found in [10,

Section 4]. Each βI(F1) ∈ I×1 is a distinguished root of X2 − al(F1)X +
ψ1(l) · l−1〈l〉I1 at the primes l

∣∣C1C
(?)
2 C

(?)
3 , in which case the denominator

βI(F1) · nI must be a unit.

Definition 3.9. The operator Υaux
N,F1

∈ EndI1(Sord(N,ψ1,(p)ψ
(p)
1 ; I1)⊗I1R)

is obtained via the formula

H
∣∣∣Υaux

N,F1 :=
∑

I⊂ΣIIb
1,0

(−1)#I ·
ψ1,(p)(nI/d1)〈nI/d1〉I1d1

βI(F1) · nI
◦H

∣∣∣Ud1/nI .

If we instead deplete our families by omitting the qn-coefficients involving
those integers n such that supp(n) ∩ Σ 6= ∅, then analogously Haux,(?)

Σ =
Hord,(?)

Σ
∣∣Υaux

Ñ,F1
. Now by its very definition,

LF1

G(2),(?)
Σ ,G(3),(?)

Σ
:=a1

(
ηF1·1F1·Tr

Ñ/C1
(Haux,(?)

Σ )
)
(e.g. see [10, Section 4.2.5])

where ηF1 ∈ I1 generates the annihilator of the congruence module at-
tached to F1, while 1F1 ∈ Tord(C1, ψ1; I1)mF1

⊗I1 Frac(I1) is the idempotent
element6 which cuts the F1-isotypic part out from Sord(C1, ψ1,(p)ψ

(p)
1 ; I1).

Therefore at every Q ∈ XF1
R ,

(3.6) Q
(
LF1

G(2),(?)
Σ ,G(3),(?)

Σ

)
=Q(1)

m1(ηf1)×Q
(
a1
(
1F1 ·Tr

Ñ/C1

(
Hord,(?)

Σ
∣∣Υaux

Ñ,F1

)))
and the next stage is to relate the right-hand side of this to the functional
L(r,1)
F1

.

3.2.3. Step (2). Before we can proceed further, a word of caution: for
a fixed unbalanced point Q ∈ XF1

R , the specialisation Q(F1) = Q(1)
m1(F1)

has the character ψ1ω
−k(1)(m)ε

(1)
m , which in general is not quadratic. Con-

sequently the theory we developed in Section 2 cannot be directly applied
to the classical eigenform Q(F1).

To salvage the argument, we replace the triple (F1,G(2),(?)
Σ ,G(3),(?)

Σ ) with
its modified version (F1 ⊗ (ω−k(1)(m)ε

(1)
m )−1/2,G(2),(?)

Σ ⊗ (ω−k(1)(m)ε
(1)
m )1/2,

G(3),(?)
Σ ), which works fine for even k(1)(m). If the original triple satisfies

(T1)–(T4), it is easy to check the modified version does too. Furthermore,
it follows readily that

Fα1 := Q(F1 ⊗ (ω−k(1)(m)ε(1)
m )−1/2) ∈ Sk(1)(m)(pC1, ψ1;O

K,ε
(1)
m

)

6Hsieh and Fukunaga consider ηF̌1
and 1F̌1

where F̌1 := F1
∣∣[ψ(p)

1
]
; however our condition

ψ2
1 = 1 implies F1 and F̌1 share the same character, so we supress notation and ignore this

switch.
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must be an ordinary p-stabilised newform. If k(1)(m) > 2 then we can
assume it is principal series at p, in which case

Fα1 (z) = F1(z)− ψ1(p)pk(1)(m)−1α−1 · F1(pz)
where the underlying newform F1 ∈ Sk(1)(m)(C1, ψ1) is exactly as in Sec-
tion 2.
Remarks.

(a) If k(1)(m) = 2 and Fα1 is Steinberg at p, then Fα1 = F1 is already
a newform of level pC1, and we cannot apply the calculations in
Section 2 to it.

(b) Replacing (F1,G(2),(?)
Σ ,G(3),(?)

Σ ) by the modified (twisted) triple
above has no effect on the triple product L-function as the Galois
representation is unchanged, however LF1

G(2),(?)
Σ ,G(3),(?)

Σ
is essentially

a square-root so it might flip its sign around.

By the previous discussion, after first modifying (F1,G(2),(?)
Σ ,G(3),(?)

Σ )
one may then assume Fα1 = Q(F1) has exact level pC1 and character ψ1,
such that ψ2

1 = 1. To simplify the notation suppose that we have fixed a
point Q ∈ XF1

R , and define (k1, k2, k3) = (k(1)(m), k(2)(m), k(3)(m)), N1 =
C1, and Ni = pe

(i)(m)Ci for i = 2, 3. We shall also require the depleted
Hecke eigenforms

g(?)
Σ := Q(2)

m2
(G(2),(?)

Σ ) and h(?)
Σ := Q(3)

m3
(G(3),(?)

Σ )
∣∣∣ΘQ

in the context of Section 2.5, where ΘQ = ψ1,(p) · ω−(k1−k2−k3)/2 ·

(ε(1)
m ε

(2)
m ε

(3)
m )1/2 and the twisting operation “ ·

∣∣ΘQ” sends
∑∞
n=1 cn · qn 7→∑∞

n=1 cnΘQ(n) · qn.

Lemma 3.10. If Q is unbalanced of weight (k1, k2, k3) and k1 ∈ 2 · Z>2,
then

Q(a1(1F1 · Tr
Ñ/N1

(Hord,(?)
Σ )))

= uQ · L(r,1)
F1

(
g(?)

Σ · δ
(r)
k3

(h(?)
Σ )
∣∣∣∣
k1

(1
p
· id−ψ1(p)

p2α
· U∗p

))
with uQ ∈ O×Cp independent of ? ∈ {I, II}, and U∗p is the adjoint of Up at
level Ñ .
Proof. We start by using a convenient formula of Hida in [14, Lemma 9.1],
which implies that the specialised coefficient

Q(a1(1F1 · Tr
Ñ/N1

(Hord,(?)
Σ ))) =

〈
Q(F1)], eord · Q(Hord,(?)

Σ )
∣∣
k1
W
Ñ

〉
Ñ〈

Q(F1)],Q(F1)
∣∣
k1
W
Ñ

〉
Ñ

.
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Here the idempotent eord = limn→∞ U
n!
p and Q(F1) = Fα1 as before, whilst

from [10, Lemma 4.2.3] we know that Q(Hord,(?)
Σ ) coincides with

eord ·Hol∞
(
Q(2)
m2

(G(2),(?)
Σ ) · δ

(rQ)
k3
Q(3)
m3

(G(3),(?)
Σ )

∣∣∣ΘQ)
= eord ·Hol∞

(
g(?)

Σ · δ
(r)
k3

(h(?)
Σ )
)

with r = rQ = (k1 − k2 − k3)/2.
As an immediate consequence, one deduces that

Q(a1(1F1 · Tr
Ñ/N1

(Hord,(?)
Σ )))

=

〈
(Fα1 )], eord ·Hol∞

(
g(?)

Σ · δ
(r)
k3

(h(?)
Σ )
) ∣∣∣

k1
W
Ñ

〉
Ñ〈

(Fα1 )], Fα1
∣∣
k1
W
Ñ

〉
Ñ

.

To deal with the denominator first, applying [14, Lemma 5.3(vi)] it can be
shown 〈

(Fα1 )], Fα1
∣∣
k1
W
Ñ

〉
Ñ

= (−1)k1
〈
(Fα1 )]

∣∣
k1
W
Ñ
, Fα1

〉
Ñ

= (−1)k1p
( 2−k1

2

)
ẽu† ·

〈
F1, F1

〉
N1

where the term u† is composed of Euler factors/Gauss sums7, and is a p-adic
unit.

To study the numerator term, if we write “gh” as shorthand for g(?)
Σ ·

δ
(r)
k3

(h(?)
Σ ) then because the p-stabilised newform Fα1 is p-ordinary,〈

(Fα1 )], eord ·Hol∞ (gh)
∣∣
k1
W
Ñ

〉
Ñ

=
〈
(Fα1 )],Hol∞ (gh)

∣∣
k1
W
Ñ

〉
Ñ

by 2.5=
〈
(Fα1 )],gh

∣∣
k1
W
Ñ

〉
Ñ

=
〈
F1,gh

∣∣
k1
W
Ñ

〉
Ñ
− ψ1(p)pk1−1

α

〈
F1|k1Vp,gh

∣∣
k1
W
Ñ

〉
Ñ

and the last equality follows since (Fα1 )](q) = F1(q) − ψ1(p)pk1−1

α · F1(qp)
if k1 > 2. Now

〈
F1|k1Vp,gh

∣∣
k1
W
Ñ

〉
Ñ

= p−k1
〈
F1,gh

∣∣
k1
W
Ñ
◦ Up

〉
Ñ

while
W
Ñ
◦ Up = U∗p ◦WÑ

, in which case

〈
(Fα1 )], eord ·Hol∞ (gh)

∣∣
k1
W
Ñ

〉
Ñ

=
〈
F1,gh

∣∣∣∣∣
k1

(
id−ψ1(p)

pα
· U∗p

)
◦W

Ñ

〉
Ñ

.

7In fact, the term u† = η(p)ẽ ·ψ∞(−1) ·W ′(Fα1 ) ·S(P ) ·
∏

q∈Σ1
τ(η′−1ψ′−1) ·

∏
v∈Σ

ηη′(dv)
|ηη′(dv)|

in the notation of [14, Section 5]; one then carefully checks each individual term is a unit of OCp .



λ-invariants for the double and triple product 775

Therefore, combining together the numerator and denominator calcula-
tions:

Q(a1(1F1 · Tr
Ñ/N1

(Hord,(?)
Σ )))

= p
(
k1−2

2

)
ẽ

(−1)k1u†
·

〈
F1,gh

∣∣∣
k1

(
id−ψ1(p)

pα · U
∗
p

)
◦W

Ñ

〉
Ñ〈

F1, F1
〉
N1

.

On the other hand, carefully rearranging the factors in Definition 3.1(a)
one finds

L(r,1)
F1

(
gh
∣∣∣
k1

(id−ψ1(p)
pα

· U∗p )
)

= ε−1
1 · p

1+
(
k1−2

2

)
ẽ ·
(
N

(p)
0
N1

) k1
2

×

〈
F1,gh

∣∣∣
k1

(id−ψ1(p)
pα · U

∗
p ) ◦W

Ñ

〉
Ñ〈

F1, F1
〉
N1

and then setting uQ := ε1 · (
N

(p)
0
N1

)−
k1
2 · (−1)k1 · u−1

† ∈ O×Cp , the result is
proven. �

Of course, we want the value of a1(ηF1 ·1F1 ·Tr
Ñ/N1

(Haux,(?)
Σ )) at a point

Q not the value of a1(1F1 · Tr
Ñ/N1

(Hord,(?)
Σ )) at Q, but they are closely

connected. Comparing the preceding lemma with Definition 3.9, then at
even weight k1 > 2

Q(a1(ηF1 · 1F1 · Tr
Ñ/N1

(Haux,(?)
Σ )))

= uQ ·Q(1)
m1(ηF1)×L(r,1)

F1

(
g(?)

Σ ·δ
(r)
k3

(h(?)
Σ )
∣∣∣
k1
Q(Υaux

Ñ,F1
)◦
(1
p
· id−ψ1(p)

p2α
·U∗p

))
.

Moreover by its construction LF1

G(2),(?)
Σ ,G(3),(?)

Σ
=a1(ηF1 ·1F1 ·Tr

Ñ/N1
(Haux,(?)

Σ )),
and so we may summarise the various calculations of Step (2) in the fol-
lowing way.

Corollary 3.11. If Q ∈ XF1
R has weight k = (k1, k2, k3) and k1 ∈ 2 · Z>2,

then the special value of LF1

G(2),(?)
Σ ,G(3),(?)

Σ
at the unbalanced point Q is equal to

p−2·uQ·Q(1)
m1(ηF1)×L(r,1)

F1

(
g(?)

Σ ·δ
(r)
k3

(h(?)
Σ )
∣∣∣
k1
Q(Υaux

Ñ,F1
)◦
(
p · id−ψ1(p)

α
·U∗p

))
.

The operator Q(Υaux
Ñ,F1

) ◦ (p · id−ψ1(p)
α ·U∗p ) is the mysterious “??” men-

tioned in the remarks after Theorem 3.8.
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3.2.4. Step (3). The final task is to prove the congruences for
LF1

G(2),(?)
Σ ,G(3),(?)

Σ
by reading them off at enough unbalanced specialisations

Q which are Zariski dense. An important initial observation is that

LF1

G(2),(?)
Σ ,G(3),(?)

Σ
= (−ψ1,(p)(−1))−1/2 · LF1

G(2),(?)
Σ ,G(3),(?)

Σ
×
∏
l|N

f
−1/2
l

where the factors fl ∈ R× are given in [10, Proposition 5.1.4], but are
not required here. Thus to prove a congruence for the LF1

G(2),(?)
Σ ,G(3),(?)

Σ
’s

over the one-dimensional set V, it is necessary and sufficient to show the
same congruence for the LF1

G(2),(?)
Σ ,G(3),(?)

Σ
’s. Because each LF1

G(2),(?)
Σ ,G(3),(?)

Σ
is a

square-root, one has an equality of µ-invariants

µ ◦ φV
(
Lp(F1,G(2),(?)

Σ ,G(3),(?)
Σ )

)
= 2 · µ ◦ φV

(
LF1

G(2),(?)
Σ ,G(3),(?)

Σ

)
at either ? ∈ {I, II},

which means Q(LF1

G(2),(?)
Σ ,G(3),(?)

Σ
) takes values in pµ

(V)
wt

/
2 · OCp for all Q ∈

V ∩ XF1
R . It follows directly from Corollary 3.11 that for each ? ∈ {I, II},

L(r,1)
F1

(
g(?)

Σ · δ
(r)
k3

(h(?)
Σ )
∣∣∣
k1
Q(Υaux

Ñ,F1
) ◦
(
p · id−ψ1(p)

α
· U∗p

))
lies inside Q(1)

m1(ηF1)−1p2+µ(V)
wt

/
2 · OCp , provided that Q ∈ V ∩ XF1

R with
k1 ∈ 2 · Z>2.

Remarks.
(i) By (3.1), the functional values below degenerate into

L(r,1)
F1

(
g(?)

Σ · δ
(r)
k3

(h(?)
Σ )
)

=
∑
d
∣∣N0
N1

c
(?)
d,Ñ,ẽ

(HΣ) ·Xd(N0, N1)

where H(?)
Σ = Hol∞(g(?)

Σ · δ(r)
k3

(h(?)
Σ ))

∣∣
k1
W 2
Ñ

= (−1)k1 · Hol∞(g(?)
Σ ·

δ
(r)
k3

(h(?)
Σ )).

(ii) Applying Proposition 2.13 at divisors d
∣∣N0
N1

and if p - (k1−2)!
(k1−2−r)! , one

has
c
(I)
d,Ñ,ẽ

(HΣ) ≡ c
(II)
d,Ñ,ẽ

(HΣ) (mod pmin{ν2,ν3}).

Since the composition of operators RQ := Q(Υaux
Ñ,F1

) ◦ (p · id−ψ1(p)
α ·U∗p )

does not introduce any new denominators involving p, it follows from these
remarks that

L(r,1)
F1

(g(I)
Σ · δ

(r)
k3

(h(?)
Σ )
∣∣∣
k1
RQ)− L(r,1)

F1
(g(II)

Σ · δ(r)
k3

(h(?)
Σ )
∣∣∣
k1
RQ)
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belongs toQ(1)
m1(ηF1)−1p2+min{ν2,ν3}+µ(V)

wt

/
2·OCp at all the pointsQ ∈ V∩X

F1
R

satisfying k1 ∈ 2 · Z>2 and p - (k1−2)!
(k1−2−rQ)! . Reversing the previous chain of

reasoning,

Q
(
LF1

G(2),(I)
Σ ,G(3),(?)

Σ

)
−Q

(
LF1

G(2),(II)
Σ ,G(3),(?)

Σ

)
∈ pmin{ν2,ν3}+µ(V)

wt

/
2 · OCp

hence bothQ(Lp(F1⊗G(2),(I)
Σ ⊗G(3),(I)

Σ )) andQ(Lp(F1⊗G(2),(II)
Σ ⊗G(3),(II)

Σ ))
are congruent to each other modulo pµ

(V)
wt +min{ν2,ν3}.

Lastly as p 6= 2, we use the density of those Q ∈ V ∩ XF1
R with p -

(k1−2)!
(k1−2−rQ)! and 2

∣∣k1 inside Spec(IV) to obtain the full congruence, and The-
orem 3.8 is proved.
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