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Résumé. L’objectif principal de cette note est de comprendre l’arithmétique
encodée dans la valeur de la fonction L p-adique Lg

p(f ,g,h) associée à un tri-
plet de formes modulaires (f, g, h) de poids (2, 1, 1), dans le cas où la fonction
L classique L(f ⊗ g ⊗ h, s) (qui est généralement de signe +1) ne s’annule
pas au point central critique s = 1. Lorsque f correspond à une courbe el-
liptique E/Q et la fonction L classique s’annule, la conjecture elliptique de
Stark de Darmon–Lauder–Rotger prédit que soit la valeur Lg

p(f ,g,h)(2, 1, 1)
est 0 (lorsque l’ordre d’annulation de la fonction L complexe est > 2), soit
elle est liée aux logarithmes des points globaux sur E et à une certaine unité
de Gross–Stark associée à g (lorsque l’ordre d’annulation est exactement 2).
Nous complétons la conjecture de Stark elliptique en donnant une formule
pour la valeur Lg

p(f ,g,h)(2, 1, 1) dans le cas où L(f ⊗ g ⊗ h, 1) 6= 0.

Abstract. The main purpose of this note is to understand the arithmetic
encoded in the special value of the p-adic L-function Lg

p(f ,g,h) associated to
a triple of modular forms (f, g, h) of weights (2, 1, 1), in the case where the
classical L-function L(f⊗g⊗h, s) (which typically has sign +1) does not van-
ish at its central critical point s = 1. When f corresponds to an elliptic curve
E/Q and the classical L-function vanishes, the Elliptic Stark Conjecture of
Darmon–Lauder–Rotger predicts that Lg

p(f ,g,h)(2, 1, 1) is either 0 (when the
order of vanishing of the complex L-function is > 2) or related to logarithms
of global points on E and a certain Gross–Stark unit associated to g (when the
order of vanishing is exactly 2). We complete the picture proposed by the El-
liptic Stark Conjecture by providing a formula for the value Lg

p(f ,g,h)(2, 1, 1)
in the case where L(f ⊗ g ⊗ h, 1) 6= 0.
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1. Introduction
Let E be an elliptic curve defined over Q and let f ∈ S2(Nf ) be the

newform attached to E. Let

g ∈ S1(Ng, χ)L, h ∈ S1(Nh, χ)L
be two cuspforms of weight one, inverse nebentype characters and with
Fourier coefficients contained in a number field L. Let ρg and ρh be the
Artin representations attached to g and h. The tensor product ρg ⊗ ρh is a
self-dual Artin representation of dimension 4 of the form

ρ := ρg ⊗ ρh : Gal(H/Q) ↪−→ Aut(Vg ⊗ Vh) ∼= GL4(L),

where H/Q is a finite extension.
In this setting, the complex L-function L(E⊗ρ, s) attached to the (Tate

module Vp(E) of the) elliptic curve E twisted by the Artin representation
ρ coincides with the Garrett–Rankin L-function L(f ⊗ g ⊗ h, s) attached
to the triple (f, g, h) of modular forms. By multiplying this L-function by
an appropriate archimedean factor L∞(f ⊗ g ⊗ h, s) one obtains an entire
function Λ(f ⊗ g ⊗ h, s) which satisfies a functional equation of the form

(1.1) Λ(f ⊗ g ⊗ h, s) = ε · Λ(f ⊗ g ⊗ h, 2− s),

where ε ∈ {±1}. Moreover, L∞(f ⊗ g ⊗ h, s) does not have zeros nor poles
at s = 1.

Denote Ng and Nh the level of g and h respectively. The sign can be
written as a product of local factors ε =

∏
v εv where v runs over the

places of Q, and εv = +1 if v is a finite prime which does not divide
lcm(Nf , Ng, Nh) or if v =∞. We will work under the following assumption

Assumption 1.1. εv = +1 for all v.

Assumption 1.1 holds most of the time: this is the case for instance if
the greatest common divisor of the levels of f, g and h is 1.

Fix an odd prime number p such that

p - NfNgNh,

and denote by αg, βg the eigenvalues for the action of the Frobenius element
at p acting on Vg. We use the analogous notation for h, and we assume

αg 6= βg, and αh 6= βh.

Fix once and for all completions Hp, Lp of the number fields H,L at primes
above p.

Choose an ordinary p-stabilisation of g, namely gα(z) := g(z)− βgg(pz)
and define analogously hα. Let

f ∈ Λf [[q]], g ∈ Λg[[q]], h ∈ Λh[[q]]
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be Hida families passing through the unique ordinary p-stabilisation of f
and gα and hα respectively, where Λf ,Λg,Λh are finite flat extensions of the
Iwasawa algebra Λ := Zp[[T ]]. Consider the Garret–Hida p-adic L-function

Lgp(f ,g,h)

of [5] associated to the specific choice of test vectors (f̆ , ğ, h̆) of [10, Chap-
ter 3]. This p-adic L-function interpolates the square-roots of the central
values of the classical L-function L(f̆k ⊗ ğ` ⊗ h̆m, s) attached to the spe-
cializations of the Hida families at classical points of weights k, `,m with
k, `,m ≥ 2 and ` ≥ k+m. Notice that the point (2, 1, 1), which corresponds
to our triple of modular forms (f, g, h), lies outside the region of classical
interpolation for Lgp(f ,g,h). We are interested in studying the value

Lgp(f ,g,h)(2, 1, 1)
under the following assumption:

Assumption 1.2. L(E ⊗ ρ, 1) 6= 0 and Selp(E ⊗ ρ) = 0.

Here Selp(E ⊗ ρ) denotes the Bloch–Kato Selmer group attached to the
representation

V := Vp(E)⊗ Vg ⊗ Vh.
Under Assumption 1.1, the sign ε of the functional equation (1.1) is

+1, and thus the order of vanishing of L(E ⊗ ρ, s) at s = 1 is even.
One hence expects that L(E ⊗ ρ, 1) is generically nonzero. If this L-value
is nonzero, by [7] we know that the ρ-isotypical component E(H)ρ :=
HomGQ(Vg⊗Vh, E(H)⊗L) of the Mordell–Weil group E(H) is trivial. By the
Shafarefich–Tate conjecture one also expects the Selmer group Selp(E ⊗ ρ)
to be trivial, although this conjecture is widely open. It is also worth not-
ing that the value Lgp(f ,g,h)(2, 1, 1) in the setting in which the complex
L-function L(E⊗ρ, s) vanishes at s = 1 has been analyzed in [4], where the
authors give a conjectural formula for this p-adic value as a 2× 2-regulator
of p-adic logarithms of global points.

Under our running assumption 1.2 one can not expect a similar formula
for the above p-adic L-value, as no global points are naturally present in this
scenario. The main result of this paper consists in an explicit formula for
the value Lgp(f ,g,h)(2, 1, 1) which involves the algebraic part of the classical
L-value L(E ⊗ ρ, 1) and the logarithm of a canonical non-crystalline class
along a certain crystalline direction.

In Section 2 we recall the basic definitions on Selmer groups and we
give a precise description of the relaxed p-Selmer group Sel(p)(E⊗ρ) under
Assumption 1.2. More precisely, the projection to the singular quotient
gives an isomorphism

(1.2) ∂p : Sel(p)(E ⊗ ρ)
∼=−→ H1

s(Qp, V ).
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Let V α
g , V

β
g , with basis vαg , vβg respectively, be the eigenspaces of Vg for the

action of Frobp with eigenvalues αg, βg, and use the analogous notation for
Vh. The GQp-representation V decomposes as a direct sum as

V = V αα ⊕ V αβ ⊕ V βα ⊕ V ββ ,

where V αα := VpE⊗V α
g ⊗V α

h and similarly for the other pieces. It induces
the decomposition
(1.3)

H1
s(Qp, V ) = H1

s(Qp, V
αα)⊕H1

s(Qp, V
αβ)⊕H1

s(Qp, V
βα)⊕H1

s(Qp, V
ββ),

and the Bloch–Kato dual exponential gives isomorphisms

exp∗αα : H1
s(Qp, V

αα)
∼=−→ Lp

and similarly for the other pieces of the decomposition (1.3). Combining it
with (1.2), we get a basis

ξαα, ξαβ, ξβα, ξββ

for Sel(p)(E ⊗ ρ) characterised by the fact that

∂pξ
αα ∈ H1

s(Qp, V
αα) and exp∗αα ∂pξαα = 1,

and similarly for ξαβ, ξβα, ξββ .
The GQp-cohomology of V and its submodule of crystalline classes

H1
f (Qp, V ) ⊆ H1(Qp, V )

also have decompositions analogous to (1.3). Moreover, if

παβ : H1(Qp, V ) −→ H1(Qp, V
αβ)

denotes the projection, then παβξ
ββ lies in H1

f (Qp, V
αβ). Finally, we can

write

παβξ
ββ = Rβα ⊗ vαg ⊗ v

β
h ∈ (E(Hp)⊗ V α

g ⊗ V
β
h )GQp ∼= H1

f (Qp, V
αβ)

where Rβα ∈ E(Hp) is a local point on which Frobp acts as multiplication
by βgαh.

We can finally state the main result of the paper.

Theorem (cf. Theorem 3.2). Under Assumptions 2.1 and 1.2,

(1.4) Lgp(f ,g,h)(2, 1, 1) = A · E
π〈f, f〉

×
logp(Rβα)
Lgα

×
√
L(E ⊗ ρ, 1),

where A ∈ Q× is an explicit number, E ∈ Lp is a product of Euler factors,
〈f, f〉 denotes the Petersson norm of f , Lgα ∈ Hp is an element on which
Frobp acts as multiplication by βg

αg
and which only depends on gα, and logp :

E(Hp)→ Hp denotes the p-adic logarithm.
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We refer to Theorem 3.2 for a more precise statement of the result and
of the objects appearing in (1.4). In particular, the element Lgα is expected
to be related to a so-called Gross–Stark unit attached to gα, as conjectured
in [6, Conjecture 2.1].

Under the additional assumption that g is not the theta series of a
Hecke character of a real quadratic field in which p splits, the value
Lgp(f ,g,h)(2, 1, 1) can be recast in a more explicit way in terms of p-adic
iterated integrals, as explained in the introduction of [4]. The numerical
computations we offer in Section 5 are obtained by calculating such inte-
grals, where a key input are Lauder’s algorithms [11] for the computation
of overconvergent projections.

As an application of the main result, in Section 4 we explore the situation
where g and h are theta series of the same imaginary quadratic field in which
p splits. The following theorem is stated as Theorem 4.1 in the text.

Theorem (cf. Theorem 4.1). Let K be an imaginary quadratic field in
which p is split, and let ψg (resp. ψh) be a finite order Hecke character of
K of conductor cg (resp. of conductor ch). Denote by g and h the theta
series attached to ψg and ψh, respectively. Suppose that gcd(Nf , cg, ch) = 1
and that the Nebentype characters of g and h are inverses to each other. If
L(E, ρg ⊗ ρh, 1) 6= 0 then Lgp(f ,g,h)(2, 1, 1) = 0.

2. The Selmer group of f ⊗ g ⊗ h

We begin this section by collecting some standard facts on Selmer groups
of p-adic Galois representations that we will use. Then we introduce the
Galois representation attached to the triple of modular forms f , g, and
h of weights 2, 1, 1, and we study the corresponding Selmer groups. In
particular, the structure of the relaxed Selmer group will be key in proving
the main theorem of Section 3.

2.1. Selmer groups. Let V be a Qp[GQ]-module and let Bcris be
Fontaine’s p-adic crystalline period ring. For each prime number `, denote

(2.1) H1
f (Q`, V ) :=

H1
ur(Q`, V ) := H1(Qur

` /Q`, V
I`) ` 6= p

ker
(

H1(Qp, V )→ H1(Qp, V ⊗Qp Bcris)
)

` = p,

and
H1
s(Q`, V ) := H1(Q`, V )/H1

f (Q`, V ).
The Bloch–Kato Selmer group of V is

Selp(Q, V ) :=
{
x ∈ H1(Q, V )

∣∣∣ res`(x) ∈ H1
f (Q`, V ) for all `

}
,

where res` : H1(Q, V ) → H1(Q`, V ) denotes the restriction map in Galois
cohomology.
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For each prime `, we denote by ∂` the composition

∂` : H1(Q, V ) res`−−→ H1(Q`, V ) −→ H1
s(Q`, V ),

where the second map is the natural quotient map.
The relaxed Selmer group is defined as

Sel(p)(Q, V ) :=
{
x ∈ H1(Q, V )

∣∣∣ res`(x) ∈ H1
f (Q`, V ) for all ` 6= p

}
⊇ Selp(Q, V ).

Let V ∗ := HomQp(V,Qp(1)) be the Kummer dual of V . One can define
a Selmer group Selp,∗(Q, V ∗) for V ∗ which is dual to (2.1) with respect to
the local Tate pairings

〈 · , · 〉` : H1(Q`, V )×H1(Q`, V
∗) −→ Qp.(2.2)

For each `, define H1
f,∗(Q`, V

∗) to be the orthogonal complement of
H1
f (Q`, V ) with respect to (2.2); the Selmer group attached to V ∗ is then

Selp,∗(Q, V ∗) :=
{
x ∈ H1(Q, V ∗)

∣∣∣ res`(x) ∈ H1
f,∗(Q`, V

∗) for all `
}
.

Finally, the strict Selmer group of V ∗ is the subspace of Selp,∗(Q, V ∗) de-
fined as

Sel[p],∗(Q, V ∗) :=
{
x ∈ H1(Q, V ∗)

∣∣∣∣∣ res`(x) ∈ H1
f,∗(Q`, V

∗) for all `
and resp(x) = 0

}
.

By Poitou–Tate duality (see, for example, [12, Theorem 2.3.4]) there is
an exact sequence

(2.3) 0 −→ Selp(Q, V ) −→ Sel(p)(Q, V ) −→ H1
s(Qp, V )

−→ Selp,∗(Q, V ∗)∨ −→ Sel[p],∗(Q, V ∗)∨,
where ∨ stands for the Qp-dual.

2.2. Representations attached to modular forms. In this section we
review the main features of the representations, both p-adic and Λ-adic,
attached to modular forms in the lines of [6, Section 2], which the reader
can consult for more details.

Let f ∈ S2(Nf ) be a weight two normalized eigenform of level Nf , trivial
nebentype character and rational Fourier coefficients an(f). Denote by E
the elliptic curve over Q of conductor Nf associated to f by the Eichler–
Shimura construction.

Let also
g ∈ S1(Ng, χ) and h ∈ S1(Nh, χ)

be two normalized newforms of weight one, levelsNg andNh, and nebentype
characters χ and χ respectively. Denote byKg andKh their fields of Fourier
coefficients, and put L := Kg ·Kh the compositum of these fields.
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From now on, we fix a rational prime p, and we assume the following
hypothesis.
Assumption 2.1. The prime p does not divide NfNgNh.

Since we will be interested in putting f in a Hida family, we assume
moreover that f is ordinary at p; that is to say, that p - ap(f).

We denote the 2-dimensional p-adic representations attached to f by Vf .
Since f corresponds to the curve E, the representation Vf is given by the
rational Tate module Vp(E) = Tp(E) ⊗ Qp. Denote by αf , βf the roots of
the Hecke polynomial X2−ap(f)X+p. Since f is ordinary at p, one of these
roots, say αf , is a p-adic unit; also, the restriction of Vf to a decomposition
group GQp ⊂ GQ admits a filtration of Qp[GQp ]-modules

0 −→ V +
f −→ Vf −→ V −f −→ 0

with the following properties:
(1) dimQp V

+
f = dimQp V

−
f = 1;

(2) the group GQp acts on the quotient V −f via ψf , where ψf : GQp →
Z×p is the unramified character that maps an arithmetic Frobenius
Frobp to αf .

(3) the group GQp acts on V +
f via the character χcyclψ

−1
f (here χcycl is

the p-adic cyclotomic character).
There are Artin representations associated to g and h. Without loss of

generality we can assume that they are defined over L, and that they factor
through the same finite extension H of Q. That is to say, they are of the
form

ρg : Gal(H/Q) −→ Aut(V a
g ) ∼= GL2(L),

ρh : Gal(H/Q) −→ Aut(V a
h ) ∼= GL2(L)

for certain 2-dimensional L-vector spaces V a
g and V a

h .
Fix once and for all a prime p of H and a prime P of L above p. Denote

the corresponding completions by Hp := Hp and Lp := LP. There are also
p-adic Galois representations associated to g and h, that we will denote by
Vg and Vh. There are non-canonical isomorphisms

jg : V a
g ⊗L Lp

∼=−→ Vg and jh : V a
h ⊗L Lp

∼=−→ Vh.(2.4)
Since p - NgNh the representations Vg and Vh are unramified at p. We

assume from now on that Frobp acts on Vg and Vh with distinct eigenvalues.
Let αg, βg be the eigenvalues for the action of Frobp on Vg and let V α

g , V
β
g

be the corresponding eigenspaces. We will use the analogous notations αh,
βh, V α

h , and V β
h for h.

Denote by gα the p-stabilisation of g such that Up(gα) = αggα. The
theory of Hida families ensures the existence of a Hida family g passing
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through gα. This can be regarded as a power series g ∈ Λg[[q]], where
Λg is a finite flat extension of the Iwasawa algebra Λ := Zp[[T ]], with the
property that, if we denote by yg : Λg → Lp the weight corresponding
to g, then yg(g) = gα. There is a locally free Λg-module Vg and a Λ-
adic representation ρg : GQ → GL(Vg) ∼= GL2(Λg) that interpolates the
p-adic representations associated to the specializations of g. As a GQp-
representation, Vg is equipped with a filtration of Λg[GQp ]-modules

(2.5) 0→ V +
g −→ Vg −→ V −g → 0,

where V +
g and V −g are locally free of rank one and the action of GQp on

V −g is unramified, with Frobp acting as multiplication by the p-th Fourier
coefficient of g. There is a perfect Galois equivariant pairing

〈 · , · 〉 : V −g × V +
g −→ Λg(det(ρg)).(2.6)

For a crystalline Qp[GQp ]-module W , denote D(W ) := (W ⊗ Bcris)GQp .
Recall that, if W is unramified, then

D(W ) ∼= (W ⊗ Q̂ur
p )GQp ,

where Q̂ur
p is the p-adic completion of the maximal unramified extension

of Qp. Denote by ωg ∈ D(V −g ) the canonical period associated to g con-
structed by Ohta [13].

By specializing via yg, we obtain the Lp-vector space yg(Vg) := Vg⊗Λg,yg
Lp, which can be identified with Vg. Using the functoriality of D and the
identification yg(V +

g ) = V β
g , yg(V −g ) = V α

g we obtain a pairing

(2.7) 〈 · , · 〉 : D(V α
g )×D(V β

g ) −→ D(Lp(χ)) = (Hp ⊗ Lp(χ))GQp .

Define

ωg := yg(ωg) ∈ D(V α
g )

and let ηg ∈ D(V β
g ) be the element characterized by the equality

(2.8) 〈ωg, ηg〉 = g(χ)⊗ 1 ∈ D(Lp(χ)),

where g(χ) denotes the Gauss sum of χ viewed as an element of Hp. We
define similarly ωh ∈ D(V α

h ) and ηh ∈ D(V β
h ).

Using the isomorphisms (2.4) we can define an L structure on Vg by
V L
g := jg(V

a
g ). Let vαg (resp. vβg ) be an L-basis of V L

g ∩ V α
g (resp. of V β

g ).
Define

Ωg ∈ H1/αg
p , Θg ∈ H1/βg

p

to be the elements such that

(2.9) Ωg ⊗ vαg = ωg ∈ D(V α
g ), Θg ⊗ vβg = ηg ∈ D(V β

g ).
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Let

V := Vf ⊗ Vgh
be the p-adic representation given by the tensor product Vf ⊗ Vg ⊗ Vh.
Since the product of the nebentype characters of f , g, and h is trivial we
have that V ∗ ∼= V . We next study the structure of several Selmer groups
associated to V .

2.3. Selmer groups of V . Put V a
gh := V

a
g ⊗L V

a
h and denote by ρ the

representation afforded by this space:

ρ : Gal(H/Q) −→ Aut(V a
gh).

Put E(H)L := E(H)⊗ZL and denote by E(H)ρ the ρ-isotypical component
of the Mordell–Weil group:

E(H)ρ := HomGal(H/Q)(V
a
gh, E(H)L).

Lemma 2.2. There are isomorphisms

(2.10) H1(Q, V ) ∼= (H1(H,Vf )⊗ Vgh)Gal(H/Q)

∼= HomGal(H/Q)(Vgh,H1(H,Vf ));

(2.11) H1(Qp, V ) ∼= (H1(Hp, Vf )⊗ Vgh)Gal(Hp/Qp)

∼= HomGal(Hp/Qp)(Vgh,H1(Hp, Vf )).

Proof. We prove only (2.11), and (2.10) is proven similarly. By the inflation-
restriction exact sequence we have the exact sequence

0 −→ H1(Gal(Hp/Qp), V GHp ) −→ H1(Qp, V )

−→ H1(Hp, V )Gal(Hp/Qp) −→ H2(Gal(Hp/Qp), V GHp ).

Since H1(Gal(Hp/Qp), V GHp ) = H2(Gal(Hp/Qp), V GHp ) = 0, the restric-
tion to GHp gives an isomorphism

H1(Qp, V ) −→ H1(Hp, V )Gal(Hp/Qp).

Composing it with the identifications

H1(Hp, V )Gal(Hp/Qp) = H1(Hp, Vf ⊗ Vgh)Gal(Hp/Qp)

= (H1(Hp, Vf )⊗ Vgh)Gal(Hp/Qp),

we get the first isomorphism of (2.11). Finally, the second isomorphism
follows from the relation between Hom and tensor and from the selfduality
V ∨gh
∼= Vgh. �
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Let E(H)VghL := HomGal(H/Q)(Vgh, E(H)L). The Kummer homomorphism

E(H)L −→ H1(H,Vf )

induces a homomorphism

δ : E(H)VghL −→ HomGal(H/Q)(Vgh,H1(H,Vf )) ∼= H1(Q, V ),

which using (2.10) can be seen as a morphism

δ : E(H)VghL −→ H1(Q, V ).

For 4,♥ ∈ {α, β}, denote

V 4♥gh := V 4g ⊗ V
♥
h and V 4♥ := Vf ⊗ V 4g ⊗ V

♥
h .

Specializing (2.5) via yg we obtain

0 −→ V β
g −→ Vg −→ V α

g −→ 0.

For 4 6= ♥ the pairing (2.6) and its analog for h induce perfect pairings

〈 · , · 〉 : V 44gh × V ♥♥gh −→ Lp, 〈 · , · 〉 : V 4♥g × V ♥4g −→ Lp.(2.12)

The identifications

V 44gh
∼= HomLp[GQp ](V ♥♥gh , Lp) and V 4♥gh

∼= HomLp[GQp ](V
♥4
gh , Lp),(2.13)

together with (2.11) give the following isomorphisms:

(2.14) H1(Qp, V
44) ∼= (H1(Hp, Vf )⊗ V 44gh )Gal(Hp/Qp)

∼= HomGal(Hp/Qp)(V ♥♥gh ,H1(Hp, Vf ));

(2.15) H1(Qp, V
4♥) ∼= (H1(Hp, Vf )⊗ V 4♥gh )Gal(Hp/Qp)

∼= HomGal(Hp/Qp)(V
♥4
gh ,H1(Hp, Vf )).

It follows from [8, Lemma 4.1] that the submodule H1
f (Qp, Vf ⊗ V 4♥gh )

and the singular quotient H1
s (Qp, Vf ⊗V 4♥gh ) can be written in terms of the

filtration of Vf as follows:

(2.16) H1
s(Qp, Vf ⊗ V 4♥gh ) = H1(Qp, V

−
f ⊗ V

4♥
gh )

∼= (V ♥4gh ⊗H1
s(Hp, Vf ))Gal(Hp/Qp);

(2.17) H1
f (Qp, Vf ⊗ V 4♥gh ) = ker(H1(Qp, Vf ⊗ V 4♥gh )

−→ H1(Ip, V −f ⊗ V
4♥
gh )) = H1(Qp, V

+
f ⊗ V

4♥
gh ).
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Lemma 2.3. For 4,♥ ∈ {α, β}, 4 6= ♥, there are isomorphisms

δp : E(Hp)
Vgh
Lp
−→ H1

f (Qp, V );

δ4♥p : E(Hp)
V 4♥
gh

Lp
−→ H1

f (Qp, V
♥4);

δ44p : E(Hp)
V 44
gh

Lp
−→ H1

f (Qp, V
♥♥).

Proof. We prove the existence of the isomorphism δ4♥, the others are sim-
ilar. By Kummer theory, there is an injective morphism

E(Hp)Lp −→ H1(Hp, Vf ),

which is an isomorphism on its image H1
f (Hp, Vf ) ∼= H1(Hp, V

+
f ). It induces

an homomorphism

δ4♥p : E(Hp)
V 4♥
gh

Lp
−→ HomGal(Hp/Qp)(V

4♥
gh ,H1(Hp, V

+
f )).

Using the isomorphisms (2.13) we obtain

HomGal(Hp/Qp)(V
4♥
gh ,H1(Hp, V

+
f ))

∼=−→ (H1(Hp, V
+
f )⊗ V ♥4gh )Gal(Hp/Qp).

Arguing as in the proof of Lemma 2.2, we get the isomorphisms

(H1(Hp, V
+
f )⊗ V ♥4gh )Gal(Hp/Qp) ∼= H1(Hp, V

+
f ⊗ V

♥4
gh )Gal(Hp/Qp)

∼= H1(Qp, V
+
f ⊗ V

♥4
gh ) ∼= H1

f (Qp, V
♥4). �

From now on we will make the following assumption on the Selmer group
of V .

Assumption 2.4. Selp(Q, V ) = 0.

Under this assumption one can identify the relaxed Selmer group with
the singular quotient.

Lemma 2.5. Under Assumptions 2.1 and 2.4 the natural map
∂p : Sel(p)(Q, V )−→H1

s(Qp, V )
is an isomorphism. In particular, there is an isomorphism

(2.18) Sel(p)(Q, V ) ∼= H1
s(Qp, V

αα)⊕H1
s(Qp, V

αβ)
⊕H1

s(Qp, V
βα)⊕H1

s(Qp, V
ββ)

Proof. Since the representation V is self-dual there is an isomorphism
Selp,∗(V ∗) ∼= Selp(V ), (see, for example, [3] and [1, Theorem 2.1]). Then
the lemma follows immediately from the exact sequence (2.3). �

In the next subsection we will describe the spaces in the right hand side
of (2.18) in terms of dual exponential maps.
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2.4. Bloch–Kato logarithms and exponentials. The GQp-representa-
tions of the form V +

f ⊗ V
4♥
gh are one dimensional and, therefore, given by

characters. Indeed, GQp acts on V +
f as χcyclψ

−1
f , and it acts as ψg (resp.

ψ−1
g ) on V α

g (resp. V β
g ) and as ψh (resp. ψ−1

h ) on V α
h (resp. V β

h ). Therefore
we have that
V +
f ⊗ V

αα
gh = Lp(χcyclψ

−1
f ψgψh), V +

f ⊗ V
αβ
gh = Lp(χcyclψ

−1
f ψgψ

−1
h ),

V +
f ⊗ V

βα
gh = Lp(χcyclψ

−1
f ψ−1

g ψh), V +
f ⊗ V

ββ
gh = Lp(χcyclψ

−1
f ψ−1

g ψ−1
h ).

In particular V +
f ⊗ V

4♥
gh is of the form Lp(ψχcycl) for some nontrivial un-

ramified character ψ. By (2.17) we have that H1
f (Qp, V

4♥) ∼= H1(Qp, V
+
f ⊗

V 4♥gh ), and the Bloch–Kato logarithm gives an isomorphism (cf. [8, Exam-
ple 1.6(a)]):

(2.19) log4♥ : H1
f (Qp, V

4♥) −→ D(V +
f ⊗ V

4♥
gh ) = D(Lp(ψχcycl)).

For (4,♥) = (α, α), the pairings 2.7 and the analogous pairings for f and
h give rise to a pairing

(2.20) 〈 · , · 〉 : V +
f ⊗ V

α
g ⊗ V α

h × V −f (−1)⊗ V β
g ⊗ V

β
h −→ Lp

which induces
(2.21) 〈 · , · 〉 : D(V +

f ⊗V
α
g ⊗V α

h )×D(V −f (−1)⊗V β
g ⊗V

β
h ) −→ D(Lp) = Lp.

Denote by ω̃f the differential form on X0(Nf ) corresponding to f . It can
be naturally viewed as an element of the de Rham cohomology group
H1

dR(X0(Nf )/Qp). The comparison isomorphisms of p-adic Hodge theory
provide a natural map

H1
dR(X0(Nf )/Qp)(1) −→ D(V −f )

and therefore ω̃f gives rise to an element ωf ∈ D(V −f (−1)). In (2.21),
pairing with the class ωf ⊗ ηg ⊗ ηh gives then an isomorphism

(2.22) 〈 · , ωf ⊗ ηg ⊗ ηh〉 : D(Lp(ψχcycl)) = D(V +
f ⊗ V

α
g ⊗ V α

h ) −→ Lp.

There are similar pairings and isomorphisms for the remaining pairs (4,♥).
We still denote
(2.23) log4♥ : H1

f (Qp, Vf ⊗ V 4♥gh ) −→ Lp

the map obtained by composing (2.19) with (2.22).

Remark 2.6. The logarithm maps of (2.23) are related to the usual p-adic
logarithm on E as follows. The differential ωf gives rise to an invariant
differential on E, and we denote by

logf,p : E(Hp) −→ Hp
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the corresponding formal group logarithm on E. The map logαβ coincides
with the inverse of the isomorphism of Lemma 2.3

E(Hp)
V βα
gh

Lp
∼= (E(Hp)βgαh ⊗ V αβ

gh )GQp

composed with the maps

(E(Hp)βgαh ⊗ V αβ
gh )GQp −→ (Hβgαh

p ⊗ V αβ
gh )GQp = D(V αβ

gh ) −→ Lp

x⊗ vαg v
β
h 7−→ logf,p(x)⊗ vαg v

β
h

y 7−→ 〈y, ηgωh〉.
Analogous equalities hold for the other maps log4♥.

A similar discussion can be applied to the representations of the form
V −f ⊗V

4♥
gh . In this case we have the following isomorphisms of 1-dimensional

representations:

V −f ⊗ V
αα
gh = Lp(ψfψgψh), V −f ⊗ V

αβ
gh = Lp(ψfψgψ−1

h χ),

V −f ⊗ V
βα
gh = Lp(ψfψ−1

g ψhχ), V −f ⊗ V
ββ
gh = Lp(ψfψ−1

g ψ−1
h ).

Therefore, V −f ⊗ V
4♥
gh is isomorphic to a representation of the form Lp(ψ)

for some unramified and nontrivial character ψ. By (2.16) there is an iden-
tification

H1
s(Qp, V

4♥) = H1(Qp, Lp(ψ)),

and by [7, Example 1.8(b)] the dual exponential gives isomorphisms

(2.24) exp∗4♥ : H1
s(Qp, V

4♥) −→ D(Lp(ψ)) ∼= Lp,

where the last isomorphism is induced by pairing with the appropriate class
of

D(Lp(ψ−1)) = D(V +
f (−1)⊗ V ♥g ⊗ V

4
h )

similarly as in (2.22). Arguing as in Remark 2.6, let

exp∗f,p : H1
s(Hp, Vf ) −→ Hp

denote the dual exponential on H1
s(Hp, Vf ). Then exp∗ββ can be identified

with the composition

(H1
s(Hp, Vf )αgαh⊗V ββ

gh )GQp −→ (Hαgαh
p ⊗V ββ

gh )GQp =D(V ββ
gh ) −→ Lp

x⊗ vβg v
β
h 7−→ exp∗f,p(x)⊗ vβg v

β
h

y 7−→ 〈y, ωgωh〉,

(2.25)

after taking into account the identification

H1
s(Qp, V

ββ) ∼= (H1
s(Hp, Vf )αgαh ⊗ V ββ

gh )GQp .
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Analogous formulas hold for the dual exponentials exp4♥ on the remaining
components.

To sum up the discussion of this subsection, we conclude that the relaxed
Selmer group of V admits a basis adapted to decomposition (2.18) with
respect to the dual exponential maps.

Proposition 2.7. Under Assumptions 2.4 and 2.1, Sel(p)(V ) has a basis

{ξαα, ξαβ, ξβα, ξββ}(2.26)
characterized by the fact that there exist elements

Ψββ ∈ H1
s(Hp, Vf )βgβh , Ψβα ∈ H1

s(Hp, Vf )βgαh ,
Ψαβ ∈ H1

s(Hp, Vf )αgβh , Ψαα ∈ H1
s(Hp, Vf )αgαh

such that
∂pξ

αα = (Ψββ ⊗ vαg vαh , 0, 0, 0), ∂pξ
αβ = (0,Ψβα ⊗ vαg v

β
h , 0, 0)

∂pξ
βα = (0, 0,Ψαβ ⊗ vβg vαh , 0), ∂pξ

ββ = (0, 0, 0,Ψαα ⊗ vβg v
β
h)

and
exp∗f,p(Ψββ) = exp∗f,p(Ψβα) = exp∗f,p(Ψαβ) = exp∗f,p(Ψαα) = 1.

Remark 2.8. Notice that the basis (2.26) depends on the choice of the
L-basis vαg , vβg of Vg and the L-basis vαh , v

β
h of Vh. Then each element of the

basis {ξαα, ξαβ, ξβα, ξββ} depends on this choice up to multiplication by an
element of L×.

3. Special value formula for the triple product p-adic L-function
in rank 0

We continue with the notation and assumptions of the previous section.
In particular, V := Vf ⊗ Vg ⊗ Vh is the tensor product of the p-adic repre-
sentations attached to the newforms

f ∈ S2(Nf )Q, g ∈M1(Ng, χ)L, h ∈M1(Nh, χ)L,
and we assume from now on that gcd(Nf , Ng, Nh) is square free. Recall that
V

a
g (resp. V a

h ) stands for the Artin representation attached to g (resp. h)
and ρ denotes the tensor product representation

ρ : Gal(H/Q) −→ GL(V a
g ⊗ V

a
h ) ∼= GL4(L).

The complex L-function
L(E, ρ, s) = L(f ⊗ g ⊗ h, s)

has entire continuation and satisfies a functional equation relating the value
at s with the value at 2 − s. Let ε be the sign of this functional equation
and denote N := lcm(Nf , Ng, Nh). Then ε is the product of local signs
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ε =
∏
v εv, where v runs over the places of Q dividing N or ∞. In this

setting, ε∞ = +1. Assume also that εv = +1 for all v | N . In particular, the
global sign is ε = 1 and the order of vanishing of L(E, ρ, s) at the central
point s = 1 is even.

Recall that p stands for a prime that does not divide N , and that g ∈
Λg[[q]] (resp. h ∈ Λh[[q]]) is a Hida family passing through the p-stabilization
gα (resp. hα) such that Upgα = αggα (resp. Uphα = αhhα). Similarly, denote
by f ∈ Λf [[q]] a Hida family passing through the p-stabilization fα of f .

Denote by Lgp(f ,g,h) the triple product p-adic L-function defined in [7],
attached to the choice of Λ-adic test vector (f̆ , ğ, h̆) of [10, Chapter 3]. The
values Lgp(f ,g,h)(k, `,m) of this p-adic L-function at triples of integers
(k, `,m) with ` ≥ k+m interpolate the square root of the algebraic part of

L

(
f̆k ⊗ ğ` ⊗ h̆m,

k + `+m− 2
2

)
,(3.1)

where f̆k, ğ`, h̆m denote the specializations of f̆ , ğ, h̆ at weights k, `,m.
There is an analogous triple product p-adic L-function Lfp(f ,g,h) that

interpolates (3.1) but for the range of values (k, `,m) with k ≥ ` + m. In
particular, Lfp(f ,g,h)(2, 1, 1) is directly related to L(E, ρ, 1).

The article [4] studies the value Lgp(f ,g,h)(2, 1, 1) when L(E, ρ, 1) = 0.
In particular, the Elliptic Stark Conjecture predicts that when E(H)ρ is
2-dimensional then Lgp(f ,g,h)(2, 1, 1) should encode the p-adic logarithms
of global elements in E(H)ρ.

In the present note, our running Assumption 2.4 is that Selp(Q, V ) =
0. This implies that E(H)ρ = 0 and, conjecturally, it also implies that
L(E, ρ, 1) 6= 0.

The main result of this section is an explicit formula for Lgp(f ,g,h)(2, 1, 1)
in this case, and this can be seen as completing the study of Lgp(f,g,h)(2,1,1)
initiated in [4].

3.1. Kato classes. The main tool that we shall use are the generalized
Kato classes

κ := κ(f, gα, hα) ∈ Sel(p)(Q, V )(3.2)

introduced in [7, Section 3]. While we refer to loc. cit. for the detailed con-
struction of these classes, let us describe informally how they are defined.
Although the very definition of (3.2) is not strictly necessary for our pur-
poses below, we include it for the interest of the reader.

The class κ should be regarded as the limit as ` → 1 in weight space
of a sequence of global cohomology classes κ(f,g`,h`) indexed by weights
` ≥ 2. At ` = 2 the class is constructed by means of the codimension 2
cycle ∆2 in the cube X1(N)3 of the classical modular curve X1(N) given
by the diagonal embedding x 7→ (x, x, x). This diagonal cycle is not trivial in
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cohomology, but it is possible to modify it slightly in order to make it null-
homologous and κ(f,g2,h2) is defined as the (f̆ , ğ2, h̆2)-isotypic component
of the image of ∆2 under the p-adic étale Abel–Jacobi map.

For higher weights ` > 2, one defines in a similar way a null-homologous
cycle ∆` in the productX1(N)×E`−1

1 (N)×E`−1
1 (N) where E`−1

1 (N) denotes
the Kuga–Sato variety over X1(N) whose generic fiber over a point x is the
(` − 1)-th self-product of the marked elliptic curve associated to x under
the moduli interpretation.

The class κ(f,g`,h`) is then again defined as the (f̆ , ğ`, h̆`)-isotypic com-
ponent of the image of ∆` under the p-adic étale Abel–Jacobi map. In [7]
it is shown that these classes can be packaged into a Λ-adic cohomology
class κ(f,g,h) and then κ = κ(f, gα, hα) is defined as the specialization of
κ(f,g,h) at ` = 1.

Next proposition pins down the relation between the generalized Kato
class κ with the p-adic L-values Lfp(f ,g,h)(2, 1, 1) and Lgp(f ,g,h)(2, 1, 1).
To lighten the notation, let us denote

Lfp := Lfp(f ,g,h)(2, 1, 1), Lgp := Lgp(f ,g,h)(2, 1, 1).

Let

παβ : H1(Qp, V ) −→ H1(Qp, V
αβ)

be the projection map induced by the natural map V → V αβ.

Proposition 3.1 (Darmon–Rotger).
(1) The element ∂pκ lies in the image of the natural map

H1
s(Qp, V

ββ) −→ H1
s(Qp, V )

and

(3.3) exp∗ββ(∂pκ) =
2(1− pαfα−1

g α−1
h )

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )
× Lfp .

(2) The element παβ resp κ ∈ H1(Qp, V
αβ) belongs to H1

f (Qp, V
αβ) and

(3.4) logαβ(παβ resp κ) = 2(1− χ(p)p−1αfap(g)−1ap(h))−1 × Lgp.

Proof. The fact that ∂pκ is the image of an element in H1
s(Qp, V

ββ) is [7,
Proposition 2.8]. The equality (3.3) follows from Proposition 5.2 and The-
orem 5.3 of [7]. By part (1) of the proposition πsαβ∂pκ = 0 in the singular
quotient H1

s(Qp, V
αβ). This means that παβ resp κ belongs to H1

f (Qp, V
αβ).

Equality (3.4) follows from Proposition 5.1, Theorem 5.3 of [7]. �
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3.2. Main formula. Using the class κ introduced above and the ba-
sis (2.26) of Sel(p)(V ), we can give a precise formula for Lgp in the rank
0 setting. Define the local points Rβα ∈ E(Hp)βα by the equality

(3.5) παβ resp ξββ = Rβα ⊗ vαg v
β
h ∈ H1

f (Qp, V
αβ) = (E(Hp)βα ⊗ V αβ

gh )GQp .

Theorem 3.2. The class κ is a multiple of ξββ. More precisely,

κ =
ΘgΘh2(1− pαfα−1

g α−1
h )Lfp

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f ap(g)ap(h)−1)
· ξββ .

Moreover, if we define the quantities

Lgα := Ωg

Θg
, E :=

(1− χ(p)p−1α−1
g αh)(1− pαfα−1

g α−1
h )

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )

then we have that

Lgp = E ×
logp(Rβα)
Lgα

× Lfp mod L×.

Proof. By Proposition 3.1, κ is an element of Sel(p)(Q, V ) such that
(3.6)

exp∗(∂pκ) =
(

0, 0, 0,
2(1− pαfα−1

g α−1
h )

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )
× Lfp

)
.

Then κ is a multiple of the element ξββ ; indeed

κ =
exp∗ββ(∂pκ)

exp∗ββ(∂pξββ)ξ
ββ .

Observe that (3.6) gives us the expression for the numerator. We now com-
pute the denominator:

exp∗ββ(∂pξββ) = 〈exp∗f,p(Ψαα)⊗ vβg v
β
h , ωgωh〉 =

exp∗f,p(Ψαα)
ΘgΘh

= 1
ΘgΘh

.

Here we used the fact that ηgηh = ΘgΘhv
β
g v

β
h . So we get

κ =
exp∗ββ(∂pκ)

exp∗ββ(∂pξββ) · ξ
ββ

=
2(1− pαfα−1

g α−1
h )ΘgΘh

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )
× Lfp · ξββ
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By (3.4),

Lgp = 1
2(1− χ(p)p−1α−1

g αh) logαβ(παβ resp κ)

=
ΘgΘh(1− χ(p)p−1α−1

g αh)(1− pαfα−1
g α−1

h )
αgαh(1− α−1

f αgαh)(1− χ−1(p)α−1
f αgα

−1
h )
× Lfp logαβ(παβ resp ξββ)

= EΘgΘhLfp logαβ(παβ resp ξββ) = EΘgΘhLfp〈logp(Rβα)⊗ vαg v
β
h , ηgωh〉

= ELfp
ΘgΘh

ΩgΘh
logp(Rβα) = ELfp

Θg

Ωg
logp(Rβα)

=
ELfp
Lgα

logp(Rβα)

since ωgηh = ΩgΘh ⊗ vαg v
β
h . �

We end this section by noting that Lgα is often expected to be related
to the Gross–Stark Unit ugα attached to the modular form gα as defined
in [4, Section 1]. More precisely, under the additional assumption that g is
not the theta series of a Hecke character of a real quadratic field in which
p splits, [6, Conjecture 2.1] predicts that

Lgα
?= logp(ugα) mod L×.(3.7)

Thus we obtain the following consequence of Theorem 3.2, under the afore-
mentioned hypothesis:

Corollary 3.3. Assuming the equality (3.7), if Selp(Q, V ) = 0 then

Lgp = E ×
logp(Rβα)
logp(ugα) × L

f
p .

4. The case of theta series of an imaginary quadratic field K
where p splits

In this section we will consider a particular case where g and h are theta
series of the same imaginary quadratic field in which p splits. We will see
that in this setting the representation V decomposes in a way that forces
Lgp to vanish when the complex L-function does not vanish at the central
critical point; that is, the special value of the p-adic L-function vanishes in
analytic rank 0.

Let K be an imaginary quadratic field of discriminant DK . Let ψg, ψh :
A×K → C× be two finite order Hecke characters of K of conductors cg, ch
and central characters ε, ε respectively. Here ε : A×Q → C× is a finite order
character of and ε denotes is complex conjugate. Let g and h be the theta



Triple product p-adic L-functions and non-crystalline classes 827

series attached to ψg and ψh. They are modular forms of weight one, and
their levels and nebentype characters are given by

Ng := DK ·NK(cg), Nh := DK ·NK(ch), χ := χK · ε, χ = χK · ε,

where NK stands for the norm on ideals of K and we regard ε and ε as
Dirichlet characters via class field theory. That is to say,

g ∈M1(Ng, χ), and h ∈M1(Nh, χ).

Let f ∈ S2(Nf ) be a newform with rational coefficients and let E be the
associated elliptic curve over Q. We will particularize some of the results of
the previous sections to this choice of forms f , g, and h, so we will use the
same notations as before. In particular, ρ stands for the Artin representation
afforded by Vg ⊗ Vh and p is a prime that does not divide Nf ·Ng ·Nh. In
this section, we will make the following additional assumptions:

(1) gcd(Nf , cgch) = 1;
(2) p splits in K.

A finite order Hecke character ψ of K can be regarded, via class field
theory, as a Galois character ψ : GK → A×K . Let σ0 be any element in
GQ \ GK . We denote by ψ′ the character defined by ψ′(σ) := ψ(σ0σσ

−1
0 )

(this does not depend on the particular choice of σ0). Also, ψ gives rise to a
1-dimensional representation of GK , and we let Vψ = IndQ

K(ψ) denote the
induced representation; it is a 2-dimensional representation of GQ. Observe
that, with this notation, Vg = Vψg and Vh = Vψh .

There is a well-known decomposition of Vg⊗Vh as the direct sum of two
representations:
(4.1) Vg ⊗ Vh = Vψ1 ⊕ Vψ2 ,

where the characters ψ1 and ψ2 are
ψ1 := ψgψh, and ψ2 := ψgψ

′
h.

This induces a decomposition of the representation V = Vf ⊗ Vg ⊗ Vh as a
direct sum of two representations:
(4.2) V = V1 ⊕ V2,

where
V1 := Vf ⊗ Vψ1 , and V2 := Vf ⊗ Vψ2 .

This induces a factorization of complex L-functions
L(E, ρ, s) = L(E,ψ1, s) · L(E,ψ2, s).

Under our assumption that gcd(Nf , cgch) = 1 the local signs of L(E,ψ1, s)
and L(E,ψ2, s) are equal, so that the local signs of L(E, ρ, s) are all equal
to +1 and therefore the assumption on local signs of Section 3 is satisfied.
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Theorem 4.1. In the setting of this section, if L(E, ρ, 1) 6= 0 then Lgp = 0.

Proof. If L(E, ρ, 1) 6= 0 then L(E,ψi, 1) 6= 0 for i = 1, 2. Note that ψ1 and
ψ2 are ring class characters of the imaginary quadratic field K. Then, by
results of Gross–Zagier and Kolyvagin
(4.3) Selp(Q, Vi) = 0 for i = 1, 2.
The decomposition (4.2) induces a decomposition of the Selmer groups
(4.4) Selp(Q, V ) = Selp(Q, V1)⊕ Selp(Q, V2),
and analogously for the relaxed and the strict Selmer groups of V . In par-
ticular,

Selp(Q, V ) = 0.
Since p splits in K we can write pOK = pp, and from our assumption

that p - Nf ·Ng ·Nh we see that p - cgch. Without loss of generality we can
suppose that

ψg(p) = αg, ψg(p) = βg, ψh(p) = αh, ψh(p) = βh,

so that
V1 = V αα ⊕ V ββ and V2 = V αβ ⊕ V βα.

By (4.3), the same computations as in §2.1 show that there are isomor-
phisms

Sel(p)(Q, V1) ∂p−→ H1
s(Qp, V1)

(πsαα,πsββ)
−−−−−−→ H1

s(Qp, V
αα

1 )⊕H1
s(Qp, V

ββ
1 ),

where πsαα denotes the natural map in the singular quotient induced by the
projection V → V αα, and analogously for πsββ . Similarly, there are dual
exponential maps

exp∗αα : H1
s(Qp, V

αα
1 ) = H1(Qp, V

−
f ⊗ V

αα
gh ) −→ Lp

and
exp∗ββ : H1

s(Q, V
ββ

1 ) = H1(Qp, V
−
f ⊗ V

ββ
gh ) −→ Lp

which are in fact isomorphisms.
Then Sel(p)(Q, V1) has dimension 2 over Qp with the canonical basis

ζαα, ζββ ,

where ζαα is characterized (up to scalars in L×) by the fact that
exp∗αα(παα∂p(ζαα)) = 1, and exp∗ββ(πββ∂p(ζαα)) = 0.

Similarly,
exp∗αα(παα∂p(ζββ)) = 0, and exp∗ββ(πββ∂p(ζββ)) = 1.

Analogously, Sel(p)(Q, V2) has dimension 2 with basis ζαβ, ζβα.
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By Theorem 3.2, the value Lgp is a multiple of logαβ(resp ξββ). On the
other hand, using the decomposition

Sel(p)(Q, V ) = Sel(p)(Q, V1)⊕ Sel(p)(Q, V2),

the element ξββ ∈ Sel(p)(Q, V ) corresponds to a multiple of (0, ζββ), and
this implies that

πβα resp ξββ = 0. �

5. Numerical computations
In this section we present a few numerical examples illustrating the

phenomena studied in this note. They have been computed with a Sage
([14]) implementation of Lauder’s algorithms ([11]), adapted to work
in the current setting. The code is available at github.com/mmasdeu/
ellipticstarkconjecture. The data for the weight-one modular forms
can be found in Alan Lauder’s website.1

The aim of this section is threefold: first of all, we illustrate and numeri-
cally verify the vanishing predicted by Theorem 4.1; we also provide various
other examples not covered by Theorem 4.1 where Lgp(f ,g,h)(2, 1, 1) van-
ishes, and for which we suspect there should be a systematic explanation;
finally, we present numerical data where Lgp(f ,g,h)(2, 1, 1) does not vanish,
therefore confirming that these quantities are certainly not always 0.

This raises the natural question about what is the arithmetic meaning
encoded by the p-adic L-value Lgp(f ,g,h)(2, 1, 1). When the analytic rank
of the associated classical L-function is 2, the authors of [4] proposed a
conjectural interpretation of these p-adic iterated integrals, predicting that
Lgp(f ,g,h)(2, 1, 1) should encode a 2× 2-regulator given by the p-adic log-
arithms along suitable directions of global points on E, rational over the
number field cut out by the tensor product ρg ⊗ ρh of the Artin represen-
tations attached to g and h.

In the setting of this note, where the analytic rank is 0, one can not
expect global points on E appearing in the picture, because according to
the Birch and Swinnerton–Dyer conjecture the eigenspace of the Mordell–
Weil group of E cut out by ρg⊗ρh should be trivial (and this is indeed the
case in many instances, as proved in [7]). The analogous motivic class that
one does expect to show up in our scenario is a global cohomology class
with values in Vp(E) ⊗ ρg ⊗ ρh that should fail to be crystalline at p, and
Lgp(f ,g,h)(2, 1, 1) should be interpreted as some sort of p-adic invariant
attached to such class. Our main Theorem 3.2 claims precisely a statement
along these lines: there exists a specific global cohomology class (namely,
the generalized Kato class constructed in [7]) which fails to be crystalline
along the direction in Vg⊗Vh on which Frobp acts with eigenvalue βgβh (and

1See http://people.maths.ox.ac.uk/lauder/weight1/.

github.com/mmasdeu/ellipticstarkconjecture
github.com/mmasdeu/ellipticstarkconjecture
http://people.maths.ox.ac.uk/lauder/weight1/
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therefore is not crystalline at p), but remains crystalline along a different
direction, namely the line in Vg ⊗ Vh on which Frobp acts with eigenvalue
βgαh. It thus makes sense to compute the Bloch–Kato logarithm of this
class along the latter direction, and Lgp(f ,g,h)(2, 1, 1) essentially encodes
the output of that operation, together with other global invariants. This is
how the numerical data below should be understood.

In some instances one can go further and understand better these p-
adic iterated integrals by relating them to well-known constructions in the
literature. Namely, in [9] the first and last authors focus on the case where E
has multiplicative reduction at p, while g and h are theta series associated to
characters of the same imaginary quadratic field K, in which p is assumed
to remain inert. Under these hypotheses, they prove a formula relating
Lgp(f ,g,h)(2, 1, 1) to the Kolyvagin classes constructed by Bertolini and
Darmon in [2] by means of the tower of Heegner points of conductor pr
with r ≥ 1.

5.1. Dihedral case.

(a). We computed Lgp(f,g,g)(2, 1, 1) with f the Hida family passing through
the modular form fE of weight 2 attached to an elliptic curve E/Q of
conductor Nf and g attached to the weight-one modular form g = θ(1K)
for some imaginary quadratic field K. The modular form g belongs then
to M1(Ng, χK)Q. For each of the entries in the table we give the Cremona
label for the elliptic curve Ef , its conductor Nf , the field K, the level Ng

of g, the level N such that pαN = lcm(Nf , Ng) with α ≥ 0 and p - N . In
all of these cases, we obtained Lgp(f ,g,g) = 0 up to the working precision
of p10. Due to computational restrictions, only in the ramified case we have
been able to compute examples where p divides the conductor of the elliptic
curve.

Note that all the elliptic curves arising in Table 5.1 below have rank
0 over K, and thus the zeros obtained in this table are accounted for by
Theorem 4.1.

In Tables 5.2 and 5.3 below, we see instances of zeros which we expect are
explained by the sign of the action of the level N Atkin–Lehner operator
although we have not verified this in detail.

In what follows we illustrate with examples the fact that the quantity
Lgp(f ,g,g) is not always zero.

(b). In this example we fix f to be attached to the elliptic curve Ef : y2 =
x3 + x2 − 15x + 18, of conductor Nf = 120. The weight-one form g we
consider has level Ng = 120 also, and has q-expansion
g(q) = q + iq2 + iq3 − q4 − iq5 − q6 − iq8 − q9 + q10 − iq12 + q15

+ q16 − iq18 + iq20 + q24 − q25 − iq27 + iq30 − 2q31 + iq32 +O(q34),
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Table 5.1. Cases with p split in K.

Ef K Ng p N Lgp(f ,g,g)
11a Q(

√
−5) 20 7 220 0

11a Q(
√
−11) 11 5 11 0

19a Q(
√
−19) 19 5 19 0

19a Q(
√
−19) 19 7 19 0

39a Q(
√
−39) 39 5 39 0

51a Q(
√
−51) 51 5 51 0

55a Q(
√
−55) 55 7 55 0

187a Q(
√
−187) 187 7 187 0

Table 5.2. Cases with p inert in K.

Ef K Ng p N Lgp(f ,g,g)
11a Q(

√
−3) 3 5 33 0

11a Q(
√
−11) 11 7 11 0

15a Q(
√
−15) 15 7 15 0

39a Q(
√
−39) 39 7 39 0

51a Q(
√
−51) 51 7 51 0

67a Q(
√
−67) 67 5 67 0

67a Q(
√
−67) 67 7 67 0

187a Q(
√
−187) 187 5 187 0

Table 5.3. Cases with p ramified in K.

Ef K Ng p N Lgp(f ,g,g)
15a Q(

√
−15) 15 5 3 0

35a Q(
√
−35) 35 5 7 0

35a Q(
√
−35) 35 7 5 0

55a Q(
√
−55) 55 5 11 0

where i2 = −1. It is the theta series attached to the Dirichlet character ε
modulo 120 defined by

ε(97) = −1, ε(31) = 1, ε(41) = −1, ε(61) = −1.
The field cut out by ε is K = Q(

√
−6), and we take p = 5 which is split in

both L = Q(
√
−1) and K. Note that p divides Nf and Ng. We compute to

precision 10 the quantity
Lg5(f ,g,g)(2, 1, 1) = 4·5+3·52+4·53+3·55+4·56+3·57+58+2·59+O(510).
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With the same setting, we take p = 13 (now p is split in L but inert
in K). We obtain

Lg13(f ,g,g)(2, 1, 1) = 7 + 3 · 13 + 10 · 132 + 134 + 11 · 135 + 136

+ 6 · 137 + 4 · 138 + 5 · 139 +O(1310)

(c). Let Ef be the elliptic curve y2 + y = x3 + x2 + 42x − 131 with label
175c1. It has conductor Nf = 175 and rank 0. Let g = h be the theta
series of the character ε1 of K = Q(α) with α satisfying α2 − α + 2 = 0,
of discriminant DK = −7 and conductor 5OK (which is inert, of norm 25),
satisfying

ε1(127) = −1, ε1(101) = −1.
The modular form g has q-expansion

g(q) = q+iq2−iq7+iq8−q9−q11+q14−q16−iq18−iq22−iq23+q29+O(q30),

where again i2 = 1. For p = 13 (which is inert in K and split in L), we
obtain

Lg13(f ,g,g)(2, 1, 1) = 1 + 3 · 13 + 2 · 132 + 133 + 12 · 134 + 9 · 135

+ 3 · 138 + 5 · 139 +O(1310).

(d). Finally, consider the elliptic curve Ef of conductor 175 from the pre-
vious example, and for g = h consider the theta series of another character
ε2 of K = Q(α), α2 − α + 2 = 0, of discriminant DK = −7 and conductor
5OK (inert, of norm 25), now taking the values

ε2(127) = 1, ε2(101) = −1.

This yields a modular form g with q-expansion

g(q) = q+ q2− q7− q8 + q9− q11− q14− q16 + q18− q22 + q23− q29 +O(q30).

We numerically obtain for p = 13 that

Lg13(f ,g,g)(2, 1, 1) = 0.

Again, we do not have a way to prove that Lg13(f ,g,g)(2, 1, 1) is actually
zero.

5.2. Exotic image case. In the non-CM setting, we have been able to
compute the following example. Consider Ef : y2 = x3 − 17x − 27, which
has conductor Nf = 124. Let g be the modular form of level Ng = 124
and projective image A4, defined as the theta series of the character ε of
conductor 124 having values

ε(65) = α2 − 1, ε(63) = −1,
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where α satisfies α4 − α2 + 1 = 0. The modular form g has q-expansion

g(q) = q − α3q2 + (−α3 + α)q3 − q4 + (α2 − 1)q5 − α2q6 + (α3 − α)q7

+ α3q8 + αq10 − αq11 + (α3 − α)q12 + (−α2 + 1)q13 + α2q14 + α3q15

+ q16 − α2q17 + (−α3 + α)q19 + (−α2 + 1)q20 + (α2 − 1)q21

+ (α2 − 1)q22 + α2q24 − αq26 + α3q27 +O(q28).

We let h = g∗ its complex conjugate, and compute with p = 13, obtaining

Lg13(f ,g,h)(2, 1, 1) = 1 + 5 · 13 + 5 · 132 + 4 · 133 + 6 · 134 + 6 · 135

+ 6 · 136 + 137 + 3 · 138 + 9 · 139 + 9 · 1310 +O(1311).
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