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Energy Minimization Principle for
non-archimedean curves

par Veronika WANNER

Résumé. Baker et Rumely ont défini la notion de fonction d’Arakelov–Green
sur la droite projective analytifiée au sens de Berkovich et ont établi un prin-
cipe de minimisation de l’énergie pour ces fonctions. Nous étendons leur dé-
finition et démontrons leur principe de minimisation de l’énergie pour les
courbes projectives lisses générales. Comme application, nous obtenons une
généralisation et une nouvelle démonstration d’un résultat d’équidistribution
de Baker et Petsche.

Abstract. Baker and Rumely defined a notion of Arakelov–Green’s func-
tions on the Berkovich analytification of the projective line and established
an Energy Minimization Principle. We extend their definition and show their
Energy Minimization Principle for general smooth projective curves. As an
application we get a generalization and a different proof of an equidistribu-
tion result by Baker and Petsche.

1. Introduction
Potential theory is a very old area of mathematics and has been extended

to non-archimedean analytic geometry by many different authors. In the
one-dimensional case this is for example done by Favre and Jonsson in [8]
for the Berkovich projective line (indeed for any metric R-tree), by Thuillier
in [13] for general analytic curves and by Baker and Rumely in [5] also for
the Berkovich projective line. One important theorem in potential theory
is the so called Energy Minimization Principle. There are independent ap-
proaches of a non-archimedean version of this principle in the case of the
Berkovich projective line P1,an, one by Favre and Rivera-Letelier in [9] and
one by Baker and Rumely established in [5]. Both results are respectively
used in [9] and in [4] as key tools for non-archimedean equidistribution
results.

In this paper, we generalize Baker and Rumely’s approach and extend
all of their needed notions to the Berkovich analytification Xan of a smooth
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projective curveX over an algebraically closed non-archimedean fieldK. As
an application we get a generalization and a different proof of an equidistri-
bution result by Baker and Petsche in [3]. This work is part of the author’s
thesis [15]. As Baker and Rumely’s non-archimedean potential theory is
only established for the Berkovich analytification P1,an of the projective
line, we work in Thuillier’s general theory which he developed in his the-
sis [13]. Most important to us are his class of smooth functions A0 with its
corresponding measure valued Laplacian ddc and his class of subharmonic
functions.

For the Energy Minimization Principle, we need Arakelov–Green’s func-
tions gµ defined on Xan × Xan for given probability measures µ on Xan

with continuous potentials analogous to the complex geometrical setting.
For the definition of having continuous potentials we refer to Definition 7.3.
This condition assures gµ is well-defined and is lower semicontinuous on
Xan × Xan. Complex Arakelov–Green’s functions are characterized by a
special list of properties. We extend the construction of Arakelov–Green’s
function from [5, §8.10] to our general smooth projective curve X such that
the following analogous list is satisfied:

Theorem 1.1. For a probability measure µ on Xan with continuous poten-
tials, there exists a unique symmetric function gµ : Xan ×Xan → (−∞,∞]
such that the following holds.

(1) (Semicontinuity) The function gµ is finite and continuous off the
diagonal and strongly lower semicontinuous on the diagonal in the
sense that

gµ(x0, x0) = lim inf
(x,y)→(x0,x0),x 6=y

gµ(x, y).

(2) (Differential equation) For each fixed y ∈ Xan the function gµ( · , y)
satisfies

ddcgµ( · , y) = µ− δy,
i.e.

∫
gµ(x, y) (ddcf)(x) =

∫
f d(µ− δy)(x) for all f ∈ A0

c(Xan).
(3) (Normalization)∫∫

gµ(x, y) dµ(x)dµ(y) = 0.

The function gµ is called the Arakelov–Green’s function corresponding to
µ. With the help of gµ, we can define the µ-energy integral of an arbitrary
probability measure ν on Xan as

Iµ(ν) :=
∫∫

gµ(x, y) dν(y)dν(x).

In Theorem 8.2 we formulate and prove the following Energy Minimization
Principle analogous to the one in complex potential theory and [5, §8.10]:



Energy Minimization Principle for non-archimedean curves 3

Theorem 1.2 (Energy Minimization Principle). Let µ be a probability mea-
sure on Xan with continuous potentials. Then

(1) Iµ(ν) ≥ 0 for each probability measure ν on Xan, and
(2) Iµ(ν) = 0 if and only if ν = µ.

As a direct application of the Energy Minimization Principle, we can
give a generalization and a different proof of the non-archimedean local
discrepancy result from [3] for an elliptic curve E over K. Note that in [3]
everything was worked out for K coming from a number field. For our
generalK, we define the local discrepancy of a subset Zn ⊂ E(K) consisting
of n distinct points as

D(Zn) := 1
n2

 ∑
P 6=Q∈Zn

gµE (P,Q) + n

12 log+ |jE |

 ,
where µE is the canonical measure and jE is the j-invariant of E (see Sec-
tion 9 for definitions). Note that this definition is consistent with the defi-
nition of local discrepancy from [3] and [11]. We show in Corollary 9.4 the
following generalization of [3, Corollary 5.6] using the Energy Minimization
Principle:

Corollary 1.3. For each n ∈ N, let Zn ⊂ E(K) be a set consisting of n
distinct points and let δn be the probability measure on Ean that is equidis-
tributed on Zn. If limn→∞D(Zn) = 0, then δn converges weakly to µE
on Ean.

Terminology. In this paper, letK be an algebraically closed field endowed
with a complete, non-archimedean, non-trivial absolute value | · |. A variety
over K is an irreducible separated reduced scheme of finite type over K
and a curve is a 1-dimensional variety over K.

Acknowledgments. The author would like to thank Matt Baker for the
opportunity to visit him for a two months research stay and for suggesting
the generalization of the Energy Minimization Principle to the author. The
author is also grateful to Walter Gubler for very carefully reading drafts
of this work and for the helpful discussions. Furthermore the author would
like to thank the anonymous referee for the detailed report, which helped
to improve the presentation of this paper.

2. Non-archimedean curves and their skeleta
Let X be an algebraic smooth projective curve X over K. Then by Xan

we always denote the Berkovich analytification of X. We briefly recall the
construction of this analytification.
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Definition 2.1. For an open affine subset U = Spec(A) of X, the ana-
lytification Uan is the set of all multiplicative seminorms on A extending
the given absolute value | · | on K. We endow the set Uan with the coarsest
topology such that Uan → R, p 7→ p(a) is continuous for every element
a ∈ A. By gluing, we get a topological space Xan, which is connected, com-
pact and Hausdorff. We call the space Xan the (Berkovich) analytification
of X which is a K-analytic space in the sense of [6, §3.1].

Remark 2.2. Note that the space Xan is in fact path-connected. Here a
path from x to y is a continuous injective map γ : [a, b]→ Xan with γ(a) = x
and γ(b) = y. If there is a unique path between two points x, y ∈ Xan, we
write [x, y] for this path. We often use the notations (x, y) := [x, y]\{x, y},
(x, y] := [x, y]\{x} and [x, y) := [x, y]\{y}.

Remark 2.3. The points of Xan can be classified in four different types
following [6, §1.4], [13, §2.1] and [2, §3.5]. The points of type I can be
identified with the rational points X(K). By I(Xan) we denote the subset
of points of type II or III, and by H(Xan) the subset of points of type II,
III and IV, i.e. H(Xan) = Xan\X(K). For any subset S of Xan, we write
I(S) := S ∩ I(Xan) and H(S) := S ∩H(Xan). The sets I(Xan) and X(K)
are dense in Xan.

Remark 2.4. When we talk about the boundary of a subset W of Xan,
we always mean (if nothing is stated otherwise) the Berkovich boundary of
W , which is the topological boundary in Xan. For an affinoid domain the
Berkovich boundary coincides with Shilov boundary and the limit bound-
ary, and it is always a finite set of points of type II or III in Xan (see [13,
Proposition 2.1.12] for definitions and a proof). If the affinoid domain is
strictly affinoid, all boundary points are of type II.

Due to the nice properties of the topological space Xan, finite signed
Borel measures are automatically regular.

Proposition 2.5. Every finite signed Borel measure on Xan is a signed
Radon measure. In particular, every net 〈να〉α of probability measures να
on Xan has a subnet that converges weakly to a probability measure ν
on Xan.

Proof. The first assertion follows by [10, Theorem 7.8], as every open sub-
set of the locally compact Hausdorff space Xan is the countable union of
compact sets by [7, (2.1.5)]. Since every probability measure is so a Radon
measure, the second assertion follows by the Prohorov’s theorem for nets
(see for example [5, Theorem A.11]). �

Remark 2.6. Another important property of the analytification Xan of
a smooth projective curve X over K is the existence of so called skeleta.



Energy Minimization Principle for non-archimedean curves 5

Skeleta are deformation retracts of Xan and they have the structure of a
metric graph. We refer to [1] for their definition via semistable vertex sets.
Without loss of generality all of our considered skeleta do not have any
loop edges (cf. [1, Corollary 3.14]). Note that their definition of skeleta is
consistent with Thuillier’s notion. For a skeleton Γ of Xan we write Γ0 for
its vertex set and τΓ for its retraction map.
Proposition 2.7. As sets we have

I(Xan) =
⋃

Γ skeleton of Xan
Γ.

Proof. See [1, Corollary 5.1]. �

Proposition 2.8. Let Γ be a skeleton of Xan, then the following are true:
(1) Γ is a connected, compact subset of points of type II and III and

has the structure of a metric graph.
(2) For a finite subset S ⊂ I(Xan), there is a skeleton Γ′ of Xan such

that Γ′ contains Γ as a finite metric subgraph and S ⊂ Γ′.
(3) For a finite subset S of type II points in Γ, there is a skeleton of Xan

such that Γ′ contains Γ as a finite metric subgraph with Γ0∪S = Γ′0,
i.e. Γ′ and Γ are equal as sets.

Proof. See [1, Lemma 3.4], [1, Lemma 3.13] and use the last proposition. �

Definition 2.9. With the help of the shortest-path metric on every skele-
ton and the fact that I(Xan) can be exhausted by skeleta, one can define
a metric ρ on H(Xan) (cf. [1, §5]), which is called the skeletal metric.
Definition 2.10. Let Γ be a skeleton of Xan. Then a subset Ω of Γ is a
star-shaped open subset of Γ if Ω is a simply-connected open subset of Γ
and there is a point x0 ∈ Ω such that Ω\{x0} is a disjoint union of open
intervals. We call x0 the center of Ω.
Theorem 2.11. Let x0 ∈ Xan. There is a fundamental system of open
neighborhoods {Vα} of x0 of the following form:

(1) If x0 is of type I or type IV, then the Vα are open balls.
(2) If x0 is of type III, then the Vα are open annuli with x0 contained

in the skeleton of the annulus Vα (cf. [1, §2]).
(3) If x0 is of type II, then Vα = τ−1

Γ (Ωα) for a skeleton Γ of Xan and a
star-shaped open subset Ωα of Γ. Hence each Vα\{x0} is a disjoint
union of open balls and open annuli.

Proof. See [1, Corollary 4.27]. �

Definition 2.12. An open subset of the described form in Theorem 2.11
is called simple open.
Remark 2.13. Theorem 2.11 implies directly that Xan is locally path-
connected.
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3. Subharmonic functions on non-archimedean curves
Thuillier developed in [13] a potential theory on non-archimedean curves,

which is based on skeleta. In this section, we introduce his subharmonic
functions on Xan via his class of smooth functions with their corresponding
Laplacian.

Definition 3.1. Let Γ be a skeleton of Xan.
(1) A piecewise affine function on Γ is a continuous function F : Γ→ R

such that F |e ◦αe is piecewise affine for every edge e of Γ, where αe
is an identification of e with a real closed interval.

(2) We define the outgoing slope of a piecewise affine function F on Γ
at a point x ∈ Γ along a tangent direction ve at x corresponding to
an adjacent edge e as

dveF (x) := lim
ε→0

(F |e ◦ αe)′(α−1
e (x) + ε).

One obtains a finite measure on Xan by putting

ddcF :=
∑
x∈Γ

(∑
ve

dveF (x)
)
δx,

where e is running over all edges in Γ at x. Since F is piecewise
affine, we have

∑
ve dveF (x) 6= 0 for only finitely many points in Γ.

Definition 3.2. Let W ⊂ Xan be open. A continuous function f : W → R
is called smooth if for every point x ∈W there is a neighborhood V of x in
W , a skeleton Γ of Xan and a piecewise affine function F on Γ such that

f = F ◦ τΓ

on V . We denote by A0(W ) the vector space of smooth functions onW , and
by A0

c(W ) the subspace of smooth functions on W with compact support
in W .

Remark 3.3. One should note that these smooth functions are not nec-
essarily smooth in the sense of Chambert-Loir and Ducros from [7]. In [14]
and [15] we work with both notions and so smooth functions in the sense of
Thuillier from Definition 3.2 are called there lisse to distinguish them form
those defined by Chambert-Loir and Ducros.

Definition 3.4. We write A1(W ) for the set of real measures on W with
discrete support in I(W ), and use A1

c(W ) for those with compact support
in W . Then for every smooth function f ∈ A0(W ), there is a unique real
measure ddcf in A1(W ) such that

ddcf = ddcF
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whenever f = F ◦τΓ for a skeleton Γ of Xan (cf. [13, Théorème 3.2.10]). We
call this linear operator ddc : A0(W ) → A1(W ) the Laplacian. Note that
A0
c(W ) is mapped to A1

c(W ) under ddc [13, Corollaire 3.2.11].
Proposition 3.5. For any two points x, y ∈ I(Xan) there is a unique
smooth function gx,y ∈ A0(Xan) such that

(1) ddcgx,y = δx − δy, and
(2) gx,y(x) = 0.

Proof. See [13, Proposition 3.3.7]. �

Definition 3.6. Let W be an open subset of Xan. We denote by D0(W )
(resp. D1(W )) the dual of A1

c(W ) (resp. A0
c(W )).

Proposition 3.7. The map
D0(W ) −→ Hom(I(W ),R),

T 7−→ (x 7→ 〈T, δx〉)
is an isomorphism of vector spaces.
Proof. See [13, Proposition 3.3.3]. �

In the following, we always use this identification.
Remark 3.8. The Laplacian ddc : A0

c(W ) → A1
c(W ) on an open subset

W ⊂ Xan leads naturally by duality to an R-linear operator
ddc : D0(W ) −→ D1(W ),

T 7−→ (g 7→ 〈ddcT, g〉 := 〈T, ddcg〉)
such that the following diagram commutes

A0(W ) ddc //

��

A1(W )

��
D0(W ) ddc // D1(W ).

Note that the vertical maps are the natural inclusion maps.
Definition 3.9. We say that a current T ∈ D1(W ) on an open subset
W of Xan is positive if 〈T, g〉 ≥ 0 for every non-negative smooth function
g ∈ A0

c(W ).
Before introducing subharmonic functions we recall upper respectively

lower semicontinuity.
Definition 3.10. A function f : W → [−∞,∞) on an open subset W of a
topological space is upper semicontinuous in a point x0 of W if

lim sup
x→x0

f(x) ≤ f(x0),
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where the limit superior in this context is defined as
lim sup
x→x0

f(x) := sup
U∈U(x0)

inf
x∈U\{x0}

f(x),

where U(x0) is any basis of open neighborhoods of x0. We say that f is upper
semicontinuous on W if it is upper semicontinuous in all points of W .

Analogously, a function f : W → (−∞,∞] on an open subset W of a
topological space is lower semicontinuous in a point x0 of W if

lim inf
x→x0

f(x) ≥ f(x0),

where the limit inferior in this context is defined as
lim inf
x→x0

f(x) := inf
U∈U(x0)

sup
x∈U\{x0}

f(x),

where U(x0) is any basis of open neighborhoods of x0. We say that f is
lower semicontinuous on W if it is lower semicontinuous in all points of W .

Definition 3.11. Let W be an open subset of Xan. An upper semicon-
tinuous function f : W → [−∞,∞) is called subharmonic if and only if
f ∈ D0(W ) and ddcf ≥ 0.

A continuous function h : W → R is called harmonic if h and −h are
subharmonic, i.e. ddch = 0.

Remark 3.12. Note that this is not Thuillier’s original definition of sub-
harmonic functions, but it is equivalent by [13, Théorème 3.4.12]. Baker and
Rumely independently introduced subharmonic functions on P1,an. How-
ever, their class equals Thuillier’s class of subharmonic functions in this
special case.

If f is smooth, then f is subharmonic if and only if ddcf is a positive
measure [13, Proposition 3.4.4]. Moreover, note that a harmonic function
h is automatically smooth i.e. h ∈ A0(W ) by [13, Corollaire 3.2.11].

Proposition 3.13. Let W be an open subset of Xan. Then a subharmonic
function f : W → [−∞,∞) admits a local maximum in a point x0 of W if
and only if it is locally constant at x0.

Proof. See [13, Proposition 3.1.11]. �

Proposition 3.14. The subharmonic functions form a sheaf on Xan.

Proof. See [13, Corollaire 3.1.13]. �

Remark 3.15. Let f : W → [−∞,∞) be a subharmonic function on an
open subset W of Xan and let [x0, y0] be an interval (i.e. a segment of an
edge) in a skeleton Γ of Xan such that τ−1

Γ ((x0, y0)) ⊂ W . Then one can
show that f is convex restricted to the relative interior of I = [x0, y0] (see
for example [15, Remark 3.1.32]).
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4. Potential kernel
On the way to define Arakelov–Green’s functions and prove an Energy

Minimization Principle, we have to introduce a lot of other things first. Our
most fundamental tool is the potential kernel that is a function gζ( · , y) for
fixed ζ and y that inverts the Laplacian in the sense that ddcgζ( · , y) =
δζ − δy. A function with this property was already seen in Proposition 3.5
for ζ, y ∈ I(Xan).

Definition 4.1. Let Γ be a metric graph. For fixed points ζ, y ∈ Γ, let
gζ( · , y)Γ : Γ→ R≥0 be the unique piecewise affine function on Γ such that

(1) ddcgζ( · , y)Γ = δζ − δy, and
(2) gζ(ζ, y)Γ = 0.

We call gζ(x, y)Γ the potential kernel on Γ. The Laplacian ddc is defined
as in Definition 3.1. More details in the context of general metric graphs
can be found in [5, §3]. Note that the function gζ(x, y)Γ is unique by [5,
Proposition 3.2] and the normalization condition (2).

Lemma 4.2. Let Γ be a metric graph, then the potential kernel gζ(x, y)Γ
on Γ is non-negative, bounded, symmetric in x and y, and jointly continuous
in x, y, ζ. For every ζ ′ ∈ Γ, we have

gζ(x, y)Γ = gζ′(x, y)Γ − gζ′(x, ζ)Γ − gζ′(y, ζ)Γ + gζ′(ζ, ζ)Γ.

Proof. Follows by [5, Proposition 3.3]. �

Since every skeleton of Xan has the structure of a metric graph, we
can define a potential kernel on every skeleton. Using the skeletal met-
ric ρ : H(Xan) × H(Xan) → R≥0 from Definition 2.9, we can extend the
potential kernel to all of Xan.

Remark 4.3. Let V be a uniquely path-connected subset of Xan and let
ζ be a point in V . For two points x, y ∈ V , we denote by wζ(x, y) the
unique point in V where the paths [x, ζ] and [y, ζ] first meet. For example,
for a skeleton Γ of Xan and a point x0 ∈ Γ, the subset τ−1

Γ (x0) is uniquely
path-connected. We therefore can define for two points x, y ∈ τ−1

Γ (x0) the
point wΓ(x, y) := wx0(x, y).

Definition 4.4. Let ζ ∈ I(Xan). We define the potential kernel gζ : Xan×
Xan → (−∞,∞] corresponding to ζ by

gζ(x, y) :=


∞ if (x, y)∈Diag(X(K)),
gζ(τΓ(x), τΓ(y))Γ if τΓ(x) 6=τΓ(y),
gζ(τΓ(y), τΓ(x))Γ +ρ(wΓ(x, y), τΓ(y)) else

for a skeleton Γ of Xan containing ζ and the skeletal metric ρ : H(Xan) ×
H(Xan) → R≥0. The different types and subsets of points in Xan were
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defined in Remark 2.3. Note that we have to exclude K-rational points
in the diagonal first, otherwise the last alternative does not make sense
as we need that wΓ(x, y) is in H(Xan). It is not necessary to exclude all
points from the diagonal as the remaining points are covered by the last
alternative.

Proposition 4.5. The function gζ is well-defined for every ζ ∈ I(Xan).

Proof. We have to show that gζ is independent of the skeleton Γ. Thus we
consider (x, y) /∈ Diag(X(K)). Let Γ1 and Γ2 be two skeleta containing ζ,
and we may assume that Γ1 ⊂ Γ2. Since Γ1 is already a skeleton of Xan, Γ2
arises by just adding additional edges and vertices to Γ1 without getting
new loops or cycles. Working inductively, we may assume that Γ2 equals to
the graph Γ1 and one new edge e attached to a vertex z in Γ1.

Note that for every w ∈ Γ1, due to uniqueness of the potential kernel
and because its Laplacian is supported on {ζ, w}, we have

gζ( · , w)Γ1 ≡ gζ( · , w)Γ2 on Γ1, and gζ( · , w)Γ2 ≡ gζ(z, w)Γ2 on e.(4.1)

Hence gζ(v, w)Γ1 = gζ(v, w)Γ2 for every pair (v, w) ∈ Γ1 × Γ1.
First, we consider (x, y) with τΓ1(x) 6=τΓ1(y). Then automatically τΓ2(x) 6=

τΓ2(y) and τΓ1(x) = τΓ2(x) or τΓ1(y) = τΓ2(y). Without loss of generality
τΓ1(y) = τΓ2(y). As argued in (4.1) and using symmetry, we get

gζ(τΓ1(x), τΓ1(y))Γ1 = gζ(τΓ1(x), τΓ1(y))Γ2

= gζ(τΓ2(x), τΓ1(y))Γ2

= gζ(τΓ2(x), τΓ2(y))Γ2 .

Note for the second equation that either τΓ1(x) = τΓ2(x) or τΓ1(x) = z and
τΓ2(x) ∈ e.

Now consider the case τΓ1(x) = τΓ1(y), and we set w := wΓ1(x, y) (cf. Re-
mark 4.3). Then (4.1) implies

gζ(τΓ1(x), τΓ1(y))Γ1 = gζ(τΓ1(x), τΓ1(y))Γ2 = gζ(τΓ2(x), τΓ1(y))Γ2 .(4.2)

Note again that either τΓ1(x) = τΓ2(x) or τΓ1(x) = z and τΓ2(x) ∈ e. In
the case τΓ2(x) = τΓ2(y) = τΓ1(y) = τΓ1(x), then the line above implies the
claim.

If τΓ2(x) = τΓ2(y) 6= τΓ1(y) = τΓ1(x), then τΓ1(y) = τΓ1(x) = z and we
have

ρ(w, τΓ1(x)) = ρ(w, τΓ2(x)) + ρ(τΓ2(x), τΓ1(x)).
Identity (4.2) implies

gζ(τΓ1(x), τΓ1(x))Γ1 = gζ(τΓ2(x), τΓ1(x))Γ2

= gζ(τΓ1(x), τΓ2(x))Γ2

= gζ(τΓ2(x), τΓ2(x))Γ2 − ρ(τΓ1(x), τΓ2(x)),
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where we use for the last equation that gζ( · , τΓ2(x))Γ2 restricted to the path
[z, τΓ2(x)] is affine with slope 1. Adding these two equations up, we get
gζ(τΓ1(x), τΓ1(x))Γ1 + ρ(w, τΓ1(x)) = gζ(τΓ2(x), τΓ2(x))Γ2 + ρ(w, τΓ2(x))

as we desired.
If τΓ2(x) 6= τΓ2(y), then z = τΓ1(x) = τΓ1(y) and w = τΓ2(x) or

w = τΓ2(y). Without loss of generality, w = τΓ2(y). The potential kernel
gζ( · , τΓ2(x))Γ2 restricted to the path [z, τΓ2(x)] (which contains w = τΓ2(y))
is affine with slope 1. Hence (4.2) and symmetry yield

gζ(τΓ1(x), τΓ1(y))Γ1 = gζ(τΓ1(y), τΓ2(x))Γ2

= gζ(τΓ2(y), τΓ2(x))Γ2 − ρ(τΓ1(y), w).

Consequently, gζ(x, y) is well-defined. �

Remark 4.6. If X = P1, it is easy to see that the function gζ coincides
with the potential kernel jζ from [5, §4.2] for every ζ ∈ I(Xan). One should
also mention that the potential kernel jζ(x, y) on a finite R-tree coincides
with the Gromov product (x|y)ζ which plays an important role in [9].

Lemma 4.7. Fix ζ ∈ I(Xan). As a function of two variables gζ(x, y) sat-
isfies the following properties:

(1) It is non-negative and gζ(ζ, y) = 0.
(2) gζ(x, y) = gζ(y, x).
(3) For every ζ ′ ∈ I(Xan), we have

gζ(x, y) = gζ′(x, y)− gζ′(x, ζ)− gζ′(y, ζ) + gζ′(ζ, ζ).(4.3)

(4) It is finitely valued and continuous off the diagonal and it is lower
semicontinuous on Xan×Xan (where we understand Xan×Xan set
theoretically and endowed with the product topology).

Proof. All properties follow by construction and the properties of the po-
tential kernel on a metric graph from Lemma 4.2. Note for the third as-
sertion that we choose a skeleton such that ζ, ζ ′ ∈ Γ. A detailed proof of
property (4) can be found in [15]. �

Proposition 4.8. For fixed points ζ ∈ I(Xan) and y ∈ Xan, we consider
the function Gζ,y := gζ( · , y) : Xan → (−∞,∞]. Then Gζ,y defines a current
in D0(Xan) with

ddcGζ,y = δζ − δy.
Moreover, the following hold:

(1) If y is of type II or III, then Gζ,y ∈ A0(Xan) and coincides with
gy,ζ from Proposition 3.5.

(2) If y is of type IV, the function Gζ,y is finitely valued and continuous
on Xan.
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(3) If y is of type I, then Gζ,y is finitely valued on Xan\{y} and con-
tinuous on Xan when we endow (−∞,∞] with the topology of a
half-open interval.

Hence Gζ,y is subharmonic on Xan\{y} for every fixed y ∈ Xan.

Proof. First, note that by construction Gζ,y(x) = ∞ if and only if x =
y ∈ X(K). Thus the restriction of Gζ,y to I(Xan) is always finite, and so
Gζ,y defines a current in D0(Xan). Here, one should have in mind that the
vector space D0(Xan) is isomorphic to the vector space Hom(I(Xan),R)
endowed with the topology of pointwise convergence (see Proposition 3.7).
We always use this identification.

Let Γ always be a skeleton that contains ζ. To calculate the Laplacian,
we first consider a point y ∈ I(Xan). We may extend Γ such that y ∈ Γ.
Then Gζ,y = gζ( · , y)Γ ◦ τΓ on Xan since

ρ(wΓ(x, y), y) = ρ(τΓ(x), τΓ(y)) = 0

if τΓ(x) = τΓ(y) = y. Since the potential kernel gζ( · , y)Γ is the unique
piecewise affine function on the metric graph Γ such that ddcgζ( · , y)Γ =
δζ−δy and gζ(ζ, y)Γ = 0, we have Gζ,y = gζ( · , y) ∈ A0(Xan) and ddcGζ,y =
δζ − δy on Xan by the construction of the Laplacian. In particular, the
function Gζ,y is continuous on Xan. Uniqueness in Proposition 3.5 implies
that Gζ,y coincides with gy,ζ .

Now consider an arbitrary y ∈ Xan\I(Xan) and let (yn)n∈N be a se-
quence of points yn ∈ I(Xan) converging to y. Then gζ( · , yn) converges to
gζ( · , y) in the topological vector space Hom(I(Xan),R) ' D0(Xan), i.e. for
every fixed point x ∈ I(Xan) we have gζ(x, yn) = gζ(yn, x) converges to
gζ(x, y) = gζ(y, x) for n → ∞ since gζ( · , x) is smooth, and so continuous.
The differential operator ddc : D0(Xan) → D1(Xan) is continuous by [13,
Proposition 3.3.4], and hence ddcgζ( · , y) = δζ − δy.

If y is a point of type I or IV, the connected component U of Xan\Γ
containing y is an open ball. For a type IV point y, we have

Gζ,y(x) = gζ(τΓ(y), τΓ(y))Γ + ρ(wΓ(x, y), τΓ(x))
= gζ(τΓ(y), τΓ(y))Γ + ρ(wτΓ(y)(x, y), τΓ(x))

for every x ∈ U . Note that τΓ(x) = τΓ(y) and ζ ∈ Γ. If y is of type
I, we have this identity on U\{y}. Since the path distance metric ρ is
continuous on U , it follows that Gζ,y is continuous on U in both cases with
limx→y Gζ,y(x) = Gζ,y(y) =∞ if y is of type I.

In particular, Gζ,y is upper semicontinuous on Xan\{y} with ddcGζ,y =
δζ−δy for every fixed y ∈ Xan. Hence Gζ,y is subharmonic on Xan\{y}. �

To introduce a capacity theory and define potential functions on Xan in
the following sections, we define a potential kernel gζ(x, y) for every point
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ζ ∈ Xan (cf. [5, §4.4]). In [5], this is done with the help of the Gauss point.
In our case, we have to fix a base point for the definition.
Definition 4.9. Fix ζ0 ∈ I(Xan). We define gζ0 : Xan × Xan × Xan →
[−∞,∞] as gζ0(ζ, x, y) =∞ if x = y = ζ ∈ X(K) and else as

gζ0(ζ, x, y) := gζ0(x, y)− gζ0(x, ζ)− gζ0(y, ζ).
Note that gζ0(x, y) = ∞ if and only if x = y ∈ X(K) and so gζ0(ζ, x, y) is
well-defined.
Corollary 4.10. For fixed points ζ0 ∈ I(Xan) and ζ, y ∈ Xan, the potential
kernel gζ0(ζ, · , y) defines a current in D0(Xan) with

ddcgζ0(ζ, · , y) = δζ − δy,
and it extends gζ(x, y) in the sense that

gζ(ζ, x, y) = gζ(x, y)
if ζ ∈ I(Xan).
Proof. Follows directly by construction, Proposition 4.8 and linearity of
ddc. �

5. Capacity theory
The main goal of this paper is to prove an analogue of the Energy Min-

imization Principle. In order to do this, we need to prove some partial
results as for example Frostman’s theorem. One of the tools for showing
Frostman’s theorem is the notion of capacity. We therefore introduce ca-
pacity analogously as in [5, §6.1], show all needed properties, and compare
our notion with Thuillier’s capacity in [13, §3.6.1].
Definition 5.1. Let ζ0 ∈ I(Xan) be a fixed base point. Then for a point
ζ ∈ Xan and for a probability measure ν on Xan with supp(ν) ⊂ Xan\{ζ},
we define the energy integral as

Iζ0,ζ(ν) :=
∫∫

gζ0(ζ, x, y) dν(x)dν(y).

Recall from Definition 4.9 the extended potential kernel gζ0(ζ, · , · ), which
is lower semicontinuous on Xan\{ζ} ×Xan\{ζ} by Lemma 4.7 and Propo-
sition 4.8. Hence the Lebesgue integral with respect to ν is well-defined.

With the help of the energy integral, one can introduce capacity of a
proper subset E of Xan with respect to ζ ∈ Xan\E as

γζ0,ζ(E) := e− infν Iζ0,ζ(ν)

where ν varies over all probability measures supported on E. We say that
E has positive capacity if there is a ζ0 ∈ I(Xan) and a point ζ ∈ Xan\E
such that γζ0,ζ(E) > 0, i.e. there exists a probability measure ν supported
on E with Iζ0,ζ(ν) <∞. Otherwise, we say that E has capacity zero.
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Remark 5.2. It follows from the definition of the capacity of E with
respect to ζ ∈ Xan\E that

γζ0,ζ(E) = sup
E′⊂E,E′ compact

γζ0,ζ(E′).

Lemma 5.3. Positive capacity is independent of the choice of the chosen
base point ζ0.
Proof. Consider ζ0, ζ

′
0 ∈ I(Xan), a proper subset E of Xan, a point ζ ∈

Xan\E and a probability measure ν supported on E. We show that Iζ0,ζ(ν)
is finite if and only if Iζ′0,ζ(ν) is finite. Using Definition 4.9 and Lemma 4.7,
we obtain for every x, y ∈ E (note that ζ /∈ E) gζ0(ζ, x, y) = gζ′0(ζ, x, y) +
2gζ′0(ζ, ζ0)−gζ′0(ζ0, ζ0) where the last two terms are finite for all ζ ∈ Xan\E.
Considering the energy integrals, we get

Iζ0,ζ(ν) = Iζ′0,ζ(ν) + 2gζ′0(ζ, ζ0)− gζ′0(ζ0, ζ0).
Hence they differ by a finite constant. �

For the rest of the section, we therefore just fix a base point ζ0 ∈ I(Xan).
Remark 5.4. Let E be a proper subset of Xan and let ν be a probability
measure supported on E. Then for every ζ ∈ Xan\E

Iζ0,ζ(ν) =
∫∫

gζ0(ζ, x, y) dν(x)dν(y)

=
∫∫

gζ0(x, y) dν(x)dν(y)− 2
∫
gζ0(x, ζ) dν(x),

where the last term of the right hand side is finite since gζ0( · , ζ) is contin-
uous on the compact set supp(ν) by Proposition 4.8. Thus Iζ0,ζ(ν) is finite
if and only if Iζ0,ξ(ν) is finite for every point ξ ∈ Xan\E.
Lemma 5.5. If E is a proper subset of Xan containing a point of H(Xan),
then E has positive capacity.
Proof. Choose a point ζ ∈ Xan\E and assume there is a point z ∈ H(Xan)∩
E. Then the Dirac measure ν := δz is a probability measure supported on E
and

Iζ0,ζ(ν) =
∫∫

gζ0(ζ, x, y) dν(x)dν(y) = gζ0(z, z)− 2gζ0(ζ, z) <∞

since z ∈ H(Xan). �

Note that Iζ0,ζ0(ν) is also well-defined for a probability measure ν sup-
ported on Xan with ζ0 ∈ supp(ν) as

Iζ0,ζ0(ν) =
∫∫

gζ0(ζ0, x, y) dν(x)dν(y) =
∫∫

gζ0(x, y) dν(x)dν(y)

by Corollary 4.10 and gζ0 is lower semicontinuous on Xan ×Xan by Lem-
ma 4.7.
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Lemma 5.6. Let ζ be a point in Xan, let E be a subset of Xan\{ζ} that
has capacity zero and let ν be a probability measure on Xan. If

(1) supp(ν) ⊂ Xan\{ζ} with Iζ0,ζ(ν) < ∞ for some base point ζ0 ∈
I(Xan), or

(2) ζ ∈ I(Xan) with Iζ,ζ(ν) <∞,
then ν(E) = 0.

Proof. The proof is analogous to [5, Lemma 6.16]. Note that gζ0( · , ζ) is
continuous on the compact set supp(ν) and gζ0(x, y) as a function of two
variables is lower semicontinuous on supp(ν)×supp(ν) (Proposition 4.8 and
Lemma 4.7). Hence the extended potential kernel gζ0(ζ, x, y) = gζ0(x, y)−
gζ0(x, ζ)− gζ0(y, ζ) is bounded from below on supp(ν)× supp(ν) by a con-
stant if (1) is satisfied. If ζ ∈ I(Xan), then the function gζ(ζ, x, y) = gζ(x, y)
(cf. Corollary 4.10) is lower semicontinuous on Xan ×Xan by Lemma 4.7,
and so also bounded from below on supp(ν). In both cases let C be this
constant. If ν(E) > 0, then there is a compact subset e of E such that
ν(e) > 0. Consider the probability measure ω := (1/ν(e)) · ν|e on e. Then

Iζ0,ζ(ω) =
∫∫

gζ0(ζ, x, y) dω(x)dω(y)

=
∫∫

(gζ0(ζ, x, y)− C) dω(x)dω(y) +
∫∫

C dω(x)dω(y)

≤ 1
ν(e)2 ·

∫∫
(gζ0(ζ, x, y)− C) dν(x)dν(y) + C

= 1
ν(e)2 · Iζ0,ζ(ν)− ν(E)2

ν(e)2 · C + C <∞

contradicting that E has capacity zero. Note that in case (2) we have ζ0 = ζ
in the calculation. �

Corollary 5.7. Let ζ be a point in Xan and let En be a countable collection
of Borel sets in Xan\{ζ} such that En has capacity zero for every n ∈ N.
Then the set E :=

⋃
n∈NEn has capacity zero.

Proof. Assume E has positive capacity, i.e. there is a ζ ∈ Xan\E and a
probability measure ν supported on E such that Iζ0,ζ(ν) < ∞. The set E
is measurable since all En are, and

∑
n∈N ν(En) ≥ ν(E) = 1. Thus there

has to be an En such that ν(En) > 0 contradicting Lemma 5.6. �

Remark 5.8. Thuillier introduced in [13, §3.6.1] relative capacity in an
open subset Ω of Xan with a non-empty boundary ∂Ω ⊂ I(Xan). The
capacity of a compact subset E of Ω is then defined as

C(E,Ω)−1 :=
(

inf
ν

∫
E

∫
E
−gx(y) dν(x)dν(y)

)
∈ [0,∞]
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where ν runs over all probability measures supported on E. Here gx : Ω→
[−∞, 0) for x ∈ Ω is the unique subharmonic function on Ω such that

(1) ddcgx = δx, and
(2) limy∈Ω, y→ζ gx(y) = 0

for every ζ ∈ ∂Ω (see [13, Lemma 3.4.14]). This notion of relative capacity
can be extended canonically to all subsets of Ω by

C(E,Ω) := sup
E′⊂E compact

C(E′,Ω).

One can show that when ∂Ω = {ζ} ⊂ I(Xan), a subset E of Ω has
positive capacity (as defined in Definition 5.1) if and only if C(E,Ω) > 0
(cf. [15, Proposition 3.2.19]).

6. Potential functions
With the help of the potential kernel from Section 4, one can introduce

potential functions on Xan attached to a finite signed Borel measure. Baker
and Rumely defined these functions on the Berkovich projective line P1,an

in [5, §6.3]. For the generalization to Xan, we have to fix a type II or III
point ζ0 serving as a base point as the Gauss point does for P1,an. We
define potential functions with respect to this base point and use them to
define Arakelov–Green’s functions in Section 7. Later in Lemma 7.8, we see
that the definition of the Arakelov–Green’s functions is independent of this
choice.

Definition 6.1. Let ζ0 be a chosen base point in I(Xan) and let ν be any
finite signed Borel measure on Xan. For every ζ ∈ I(Xan) or ζ /∈ supp(ν),
we define the corresponding potential function as

uζ0,ν(x, ζ) :=
∫
Xan

gζ0(ζ, x, y) dν(y)

for every x ∈ Xan. Here gζ0(ζ, x, y) is the potential kernel defined in Defi-
nition 4.9.

Lemma 6.2. Let ζ0 be a chosen base point in I(Xan) and let ν be any
finite signed Borel measure on Xan. For every ζ ∈ I(Xan) or ζ /∈ supp(ν),
the function uζ0,ν( · , ζ) is well-defined on Xan with values in R∪{±∞} and
we can write

uζ0,ν( · , ζ) =
∫
gζ0( · , y) dν(y)− ν(Xan)gζ0( · , ζ) + Cζ0,ζ(6.1)

on Xan for a finite constant Cζ0,ζ .

Proof. By the definition of the potential kernel gζ0(ζ, x, y), we get for every
x ∈ Xan

uζ0,ν(x, ζ) =
∫
gζ0(x, y) dν(y)− ν(Xan)gζ0(x, ζ)−

∫
gζ0(y, ζ) dν(y).
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Since gζ0( · , ζ) is continuous on the compact subset supp(ν) if ζ ∈ I(Xan) or
ζ /∈ supp(ν) (cf. Proposition 4.8), the last term is always a finite constant,
and so we get the description in (6.1) with Cζ0,ζ := −

∫
gζ0(y, ζ) dν(y).

To prove that uζ0,ν( · , ζ) is well-defined, we have to show that ∞−∞ or
−∞+∞ cannot occur.

If ζ ∈ I(Xan), then gζ0(x, ζ) is finite for every x ∈ Xan, and so uζ0,ν( · , ζ)
is well-defined.

Next, we consider ζ /∈ supp(ν). For every x 6= ζ, we know that gζ0(x, ζ)
is finite as well, and so ∞ −∞ or −∞ +∞ cannot occur. It remains to
show that the function is well-defined in x = ζ /∈ supp(ν). Since gζ0(x, ·) is
continuous on the compact subset supp(ν) as x /∈ supp(ν), the first term∫
gζ0(x, y) dν(y) is finite, and so uζ0,ν(x, ζ) is well-defined if x = ζ. �

Remark 6.3. Let ζ ′0 be another chosen base point in I(Xan). Then Lem-
ma 4.7 implies that for every ζ ∈ I(Xan) or ζ /∈ supp(ν) and x ∈ Xan we
have

uζ0,ν(x, ζ) = uζ′0,ν(x, ζ) + 2ν(Xan)gζ′0(ζ, ζ0)− ν(Xan)gζ′0(ζ0, ζ0),

i.e. the corresponding potential function differ by a constant depending
on ζ ′0, ζ0 and ζ.

Lemma 6.4. Let ζ0 be a chosen base point in I(Xan) and let ν be any
finite signed Borel measure on Xan. For every skeleton Γ of Xan or every
path Γ = [z, ω] ⊂ H(Xan), and for every ζ ∈ I(Xan) or ζ /∈ supp(ν), the
restriction of uζ0,ν( · , ζ) to Γ is finite and continuous.

Proof. First, we consider a skeleton Γ of Xan. We may assume ζ0 ∈ Γ
by Remark 6.3. Note that the potential kernel satisfies by construction a
retraction formula as in [5, Proposition 4.5], i.e.

gζ0(x, y) = gζ0(x, τΓ(y))Γ = gζ0(x, τΓ(y))(6.2)
for every x ∈ Γ and y ∈ Xan. Furthermore, recall the description of
uζ0,ν( · , ζ) in (6.1).

Then for every x ∈ Γ

uζ0,ν(x, ζ) =
∫
Xan

gζ0(x, y) dν(y)− ν(Xan)gζ0(x, ζ) + Cζ0,ζ

=
∫
Xan

gζ0(x, τΓ(y))Γ dν(y)− ν(Xan)gζ0(x, τΓ(ζ))Γ + Cζ0,ζ

=
∫

Γ
gζ0(x, t)Γ d((τΓ)∗ν)(t)− ν(Xan)gζ0(x, τΓ(ζ))Γ + Cζ0,ζ .

The first term is finite and continuous by Lemma 4.2 and the second term
is as well by Lemma 4.8. Hence uζ0,ν( · , ζ) is finite and continuous on Γ.

In the following, we consider a path Σ := [z, ω]. Recall that H(Xan) is
the set of points of type II, III and IV, and every point of type IV has
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only one tangent direction in Xan [1, Lemma 5.12]. We already know that
uζ0,ν( · , ζ) restricted to every skeleton is finite and continuous. Moreover,
every path [z, ω] for z, ω ∈ I(Xan) lies in some skeleton. Thus it remains to
consider paths of the form [z, τΓ(z)] for a type IV point z and an arbitrary
large skeleton Γ of Xan. From now on let Σ be the considered path [z, ω]
with ω := τΓ(z).

Let ζ0 be some base point in I(Xan)∩Γ, which we may choose that way
by Remark 6.3. Again, we consider each term of

uζ0,ν(x, ζ) =
∫
Xan

gζ0(x, y) dν(y)− ν(Xan)gζ0(x, ζ) + Cζ0,ζ

for x ∈ Σ separately. The second term is finite and continuous in x by
Proposition 4.8 (note that Σ ∩X(K) = ∅).

It remains to consider the first term. Let V be the connected component
of Xan\Γ containing z, which is an open ball with unique boundary point
ω = τΓ(z). We can consider the canonical retraction map τΣ : V → [z, ω],
where a point x ∈ V is retracted to wΓ(x, z) (cf. Remark 4.3). Note that
for x ∈ Σ, we have

gζ0(x, y) =
{
gζ0(ω, τΓ(y))Γ if y /∈ V,
gζ0(ω, τΓ(y))Γ + ρ(wΓ(x, y), ω) if y ∈ V = τ−1

Σ ([z, ω)).

Hence for x ∈ Σ the following is true∫
Xan

gζ0(x, y) dν(y)

=
∫
Xan

gζ0(ω, τΓ(y))Γ dν(y) +
∫
τ−1
Σ ((ω,z])

ρ(wΓ(x, y), ω) dν(y)

=
∫
Xan

gζ0(ω, τΓ(y))Γ dν(y) +
∫
τ−1
Σ ((ω,z])

ρ(wΓ(x, τΣ(y)), ω) dν(y)

=
∫
Xan

gζ0(ω, τΓ(y))Γ dν(y) +
∫

Σ
ρ(wΓ(x, t), ω) d((τΣ)∗ν)(t)

=
∫
Xan

gζ0(ω, τΓ(y))Γ dν(y) +
∫

Σ
gω(x, t)Σ d((τΣ)∗ν)(t).

Note that our path Σ = [z, ω] ⊂ H(Xan) is a metric graph, and so we
can consider the potential kernel gω(x, t)Σ on Σ from Definition 4.1. For
the last identity we used ρ(wΓ(x, t), ω) = ρ(wω(x, t), ω) = gω(x, t)Σ, which
follows by Remark 4.6 and [5, §4.2 p. 77]. Then Lemma 4.2 tells us again
that the second term is finite and continuous. As gζ0(ω, τΓ( · ))Γ = gζ0(ω, · )
(see (6.2)) is finitely valued and continuous on the compact set supp(ν)
by Proposition 4.8, the first one is a finite constant, and hence the claim
follows. �
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Proposition 6.5. Let ζ0 be a chosen base point in I(Xan) and let ν be
a finite positive Borel measure on Xan. Then for every ζ ∈ I(Xan) or
ζ /∈ supp(ν) the following are true:

(1) If ζ /∈ X(K), then uζ0,ν( · , ζ) is finitely valued and continuous on
Xan\ supp(ν) and it is lower semicontinuous on Xan.

(2) If ζ ∈ X(K), then uζ0,ν( · , ζ) is continuous on Xan\(supp(ν) ∪
{ζ}) with uζ0,ν(x, ζ) = ∞ if and only if x = ζ, and it is lower
semicontinuous on Xan\{ζ}.

(3) For each z ∈ Xan and each path [z, ω], we have

lim inf
t→z

uζ0,ν(t, ζ) = lim inf
t→z,

t∈I(Xan)

uζ0,ν(t, ζ)

= lim
t→z,
t∈[ω,z)

uζ0,ν(t, ζ)

= uζ0,ν(z, ζ).(6.3)

Proof. Recall from (6.1) that we can write

uζ0,ν( · , ζ) =
∫
gζ0( · , y) dν(y)− ν(Xan)gζ0( · , ζ) + Cζ0,ζ .

Since gζ0( · , ζ) is finitely valued and continuous on Xan if ζ /∈ X(K) and
gζ0( · , ζ) is finitely valued and continuous on Xan\{ζ} if ζ ∈ X(K) by
Proposition 4.8, it remains to show the assertions (1) and (2) for the func-
tion f(x) :=

∫
gζ0(x, y) dν(y) on Xan. As gζ0 is finitely valued and contin-

uous off the diagonal by Lemma 4.7 and supp(ν) is a compact subset, it
follows that f is finitely valued and continuous on Xan\ supp(ν). For the
lower semicontinuity of f we use techniques from the proof of [5, Proposi-
tion 6.12]. By Lemma 4.7, gζ0 is lower semicontinuous on the compact space
Xan ×Xan, and so it is bounded from below by a constant M . Note that
the finite positive Borel measure ν is a positive Radon measure on Xan by
Proposition 2.5. Using [5, Proposition A.3], we get the identity

f(x) = sup
{∫

Xan
g(x, y) dν(y)

∣∣∣∣ g ∈ C(Xan ×Xan), M ≤ g ≤ gζ0
}

on Xan. Due to the compactness of Xan, the integral function x 7→∫
Xan g(x, y) dν(y) is continuous onXan for every g ∈ C(Xan×Xan). Then [5,
Lemma A.2] tells us that f has to be lower semicontinuous on Xan.

Thus it remains to prove identity (6.3). First, we show the last equation

lim
t→z,t∈[ω,z)

uζ0,ν(t, ζ) = uζ0,ν(z, ζ).

If z /∈ X(K), then by shrinking our path we may assume [z, ω] ⊂ H(Xan),
and so the restriction of uζ0,ν( · , ζ) to [z, ω] is continuous by Lemma 6.4
and the equation is true. If z ∈ X(K), we may assume that [z, ω] lies in a



20 Veronika Wanner

connected component of Xan\Γ for a skeleton Γ of Xan with ζ0 ∈ Γ. Then
τΓ(t) = τΓ(z) for every t ∈ (z, ω], and so for every y ∈ Xan and t ∈ (z, ω]

gζ0(t, y) =
{
gζ0(τΓ(z), τΓ(y))Γ if τΓ(z) 6= τΓ(y),
gζ0(τΓ(z), τΓ(y))Γ + ρ(wΓ(t, y), τΓ(z)) if τΓ(z) = τΓ(y).

Since ρ(wΓ(t, y), τΓ(z)) increases monotonically as t tends to z along (z, ω]
for every y ∈ Xan, the Monotone Convergence Theorem implies as in the
proof of [5, Proposition 6.12] that the integral function

∫
gζ0(t, y) dν(y)

converges to
∫
gζ0(z, y) dν(y) as t tends to z along (z, ω]. Furthermore,

gζ0(t, ζ) converges to gζ0(z, ζ) as t tends to z along (z, ω] by Proposition 4.8.
At most one of the terms

∫
gζ0(z, y) dν(y) and gζ0(z, ζ) is infinite (due to

ζ ∈ I(Xan) or ζ /∈ supp(ν)), so the description stated at the beginning of
the proof (or see (6.1)) implies

lim
t→z,t∈[ω,z)

uζ0,ν(t, ζ) = uζ0,ν(z, ζ).

Now, we deduce the rest of (6.3) from that. When ζ = z ∈ X(K), we
have
lim inf
t→z

uζ0,ν(t, ζ) ≤ lim inf
t→z,

t∈I(Xan)

uζ0,ν(t, ζ) ≤ lim
t→z,
t∈[ω,z)

uζ0,ν(t, ζ) = uζ0,ν(z, ζ) = −∞,

and so clearly (6.3) is true. When ζ /∈ X(K) or ζ 6= z, then uζ0,ν( · , ζ) is
lower semicontinuous at z by (1) and (2), and so we get

uζ0,ν(z, ζ) ≤ lim inf
t→z

uζ0,ν(t, ζ) ≤ lim inf
t→z,

t∈I(Xan)

uζ0,ν(t, ζ) ≤ lim
t→z,
t∈[ω,z)

uζ0,ν(t, ζ)

= uζ0,ν(z, ζ).
Hence we also have equality. �

Proposition 6.6. Let ζ0 be a chosen base point in I(Xan) and let ν be
any finite signed Borel measure on Xan. Then for every ζ ∈ I(Xan) or
ζ /∈ supp(ν), the potential function uζ0,ν( · , ζ) defines a current in D0(Xan)
with

ddcuζ0,ν( · , ζ) = ν(Xan)δζ − ν.

Proof. A function on Xan defines a current in D0(Xan) if and only if its
restriction to I(Xan) is finite (cf. Proposition 3.7). Recall from (6.1) that
for every x ∈ Xan

uζ0,ν( · , ζ) =
∫
gζ0( · , y) dν(y)− ν(Xan)gζ0( · , ζ) + Cζ0,ζ .

If we fix x ∈ I(Xan), the function gζ0(x, ·) = gζ0( · , x) (symmetry fol-
lows by Lemma 4.7) is a finitely valued continuous function on Xan by
Proposition 4.8(1). Hence all terms define currents in D0(Xan), and so
does uζ0,ν( · , ζ). For the first term we also use that supp(ν) is compact.
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Furthermore, we know by Proposition 4.8 that for any fixed y we have
ddcgζ0( · , y) = δζ0 − δy. Due to the calculation

〈ddc
(∫

gζ0( · , y) dν(y)
)
, ϕ〉 =

∫
〈ddcgζ0( · , y), ϕ〉dν(y)

=
∫ (∫

ϕ d(δζ0 − δy)(x)
)

dν(y)

=
∫
ϕd(ν(Xan)δζ0 − ν)(y)

for every ϕ ∈ A0
c(Xan), we obtain

ddc
(∫

gζ0( · , y) dν(y)
)

= ν(Xan)δζ0 − ν.

Hence
ddcuζ0,ν( · , ζ) = ν(Xan)δζ0 − ν − ν(Xan)(δζ0 − δζ) = ν(Xan)δζ − ν. �

7. Arakelov–Green’s functions
Baker and Rumely developed a theory of Arakelov–Green’s functions

on P1,an in [5, §8.10]. This class of functions arise naturally in the study
of dynamics and can be seen as a generalization of the potential kernel
from Section 4. Arakelov–Green’s functions are characterized by a list of
properties which can be found in Definition 7.1. We generalize Baker and
Rumely’s definition of an Arakelov–Green’s function from P1,an to Xan, and
show that the characteristic properties are still satisfied.

Definition 7.1. A symmetric function g on Xan ×Xan that satisfies the
following list of properties for a probability measure µ on Xan is called a
normalized Arakelov–Green’s function on Xan.

(1) (Semicontinuity) The function g is finite and continuous off the
diagonal and strongly lower semicontinuous on the diagonal in the
sense that

g(x0, x0) = lim inf
(x,y)→(x0,x0),x 6=y

g(x, y).

(2) (Differential equation) For each fixed y ∈ Xan the function g( · , y)
is an element of D0(Xan) and

ddcg( · , y) = µ− δy.
(3) (Normalization)∫∫

g(x, y) dµ(x)dµ(y) = 0.

The list of properties is an analogue of the one in the complex case and
can for example also be found in [4, §3.5 (B1)–(B3)].
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Remark 7.2. As in the complex case, the list of properties in Definition 7.1
for a probability measure µ on Xan determines a normalized Arakelov–
Green’s function on Xan uniquely. If g̃ is another symmetric function on
Xan ×Xan satisfying (1)–(3), then for a fixed y ∈ Xan

g( · , y)− g̃( · , y) = hy

on I(Xan) for a harmonic function hy on Xan by property (2) and [13,
Lemme 3.3.12]. This harmonic function hy has to be constant on Xan by
the Maximum Principle (Proposition 3.13). Since I(Xan) is dense in Xan,
the identity holds on all of Xan by property (1).

Thanks to the symmetry of g and g̃, the constant function hy is indepen-
dent of y. The last property (3), implies that this constant has to be zero,
i.e. g = g̃ on Xan ×Xan.

Definition 7.3. A probability measure µ on Xan has continuous potentials
if each ζ ∈ I(Xan) defines a continuous function

Xan −→ R,

x 7−→
∫
Xan

gζ(x, y) dµ(y).

These functions are bounded as Xan is compact.

Remark 7.4. Let µ be a probability measure on Xan. If there exists a
point ζ0 ∈ I(Xan) such that Xan → R, x 7→

∫
Xan gζ0(x, y) dµ(y) defines a

continuous function, thenµ has continuous potentials.

Example 7.5. Let µ be a probability measure supported on a skeleton Γ
of Xan (e.g. µ = δz for some z ∈ I(Xan)), then µ has continuous potentials
(using the last remark and Lemma 4.2).

Definition 7.6. For every probability measure µ on Xan with continuous
potentials and a fixed base point ζ0 ∈ I(Xan), we define gζ0,µ : Xan×Xan →
(−∞,∞] by

gζ0,µ(x, y) := gζ0(x, y)−
∫
Xan

gζ0(x, ζ) dµ(ζ)−
∫
Xan

gζ0(y, ζ) dµ(ζ) + Cζ0 ,

where Cζ0 is a constant chosen such that∫∫
gζ0,µ(x, y) dµ(x)dµ(y) = 0.

Remark 7.7. Recall that gζ0(ζ0, x, y) = gζ0(x, y) (see Definition 4.9) by
Corollary 4.10, and so the potential function from Section 6 can be written
as

uζ0,µ( · , ζ0) =
∫
gζ0(ζ0, ·, ζ) dµ(ζ) =

∫
gζ0( · , ζ) dµ(ζ).
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Hence we have the description

gζ0,µ(x, y) = gζ0(x, y)− uζ0,µ(x, ζ0)− uζ0,µ(y, ζ0) + Cζ0(7.1)

on Xan ×Xan.

In the following lemma, we see that this function is independent of the
chosen base point, and hence we just write gµ.

Lemma 7.8. For every probability measure µ on Xan with continuous po-
tentials, the function gζ0,µ is independent of the chosen base point ζ0.

Proof. First, we determine Cζ0 :

0 =
∫∫

gζ0,µ(x, y) dµ(x)dµ(y) =
∫∫

gζ0(x, y) dµ(x)dµ(y)

−
∫∫

gζ0(x, ζ) dµ(ζ)dµ(x)

−
∫∫

gζ0(y, ζ) dµ(ζ)dµ(y) + Cζ0

= −
∫∫

gζ0(x, y) dµ(x)dµ(y) + Cζ0 .

Hence Cζ0 =
∫∫
gζ0(x, y) dµ(x)dµ(y). Now let ζ ′0 ∈ I(Xan). Applying Lem-

ma 4.7 to Cζ0 , we get

Cζ0 =
∫∫

gζ0(x, y) dµ(x)dµ(y)

=
∫∫ (

gζ′0(x, y)− gζ′0(x, ζ0)− gζ′0(y, ζ0) + gζ′0(ζ0, ζ0)
)

dµ(x)dµ(y)

= Cζ′0 − 2
∫
gζ′0(x, ζ0) dµ(x) + gζ′0(ζ0, ζ0),

where −2
∫
gζ′0(ζ, ζ0) dµ(ζ) + gζ′0(ζ0, ζ0) is a finite constant as µ has contin-

uous potentials.
Using Lemma 4.7 also for the other terms of gζ0,µ, i.e. for gζ0(x, y),

gζ0(x, ζ) and gζ0(y, ζ), and plugging in the identity from above, we get
gζ0,µ(x, y) = gζ′0,µ(x, y). �

Proposition 7.9. Let µ be a probability measure on Xan with continuous
potentials. Then as a function of two variables gµ : Xan ×Xan → (−∞,∞]
is symmetric, finite and continuous off the diagonal, and strongly lower
semicontinuous on the diagonal in the sense that

gµ(x0, x0) = lim inf
(x,y)→(x0,x0),x 6=y

gµ(x, y),

where we understand Xan × Xan set theoretically and endowed with the
product topology.
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Proof. As

gµ(x, y) = gζ0(x, y)−
∫
gζ0(x, ζ) dµ(ζ)−

∫
gζ0(y, ζ) dµ(ζ) + Cζ0

for some base point ζ0 ∈ I(Xan) and as we required µ to has continuous
potentials, Lemma 4.7 implies that gµ : Xan × Xan → (−∞,∞] is sym-
metric, finite and continuous off the diagonal and lower semicontinuous
on Xan ×Xan. Thus we only need to prove

gµ(x0, x0) ≥ lim inf
(x,y)→(x0,x0),x 6=y

gµ(x, y)

= sup
U∈U((x0,x0))

inf
(x,y)∈U\(x0,x0)

gµ(x, y).(7.2)

Here U((x0, x0)) is any basis of open neighborhoods of (x0, x0) in Xan×Xan

endowed with the product topology.
In the following, let Γ be any skeleton of Xan with ζ0 ∈ Γ. If x0 is of type

I, we have gµ(x0, x0) = gζ0(x0, x0) = ∞ by the definition of the potential
kernel, and so (7.2) is obviously true.

If x0 is of type II or III, we may choose ζ0 = x0 by Lemma 7.8, and so

gµ(x0, x0) = gx0(x0, x0)−
∫
gx0(x0, ζ) dµ(ζ)−

∫
gx0(x0, ζ) dµ(ζ)+Cζ0 = Cζ0

as gx0(x0, ζ) = 0 for every ζ ∈ Xan by Lemma 4.7. On the other hand, every
U in U((x0, x0)) contains an element of the form (x0, y) with y ∈ Xan\{x0},
and

gµ(x0, y) = gx0(x0, y)−
∫
gx0(x0, ζ) dµ(ζ)−

∫
gx0(y, ζ) dµ(ζ) + Cζ0

= −
∫
gx0(y, ζ) dµ(ζ) + Cζ0 ≤ Cζ0

since µ and gx0(y, ·) are non-negative (see Lemma 4.7(1)). Thus (7.2) has
to be true.

For the rest of the proof let x0 be of type IV. There is a basis of open
neighborhoods of x0 that is contained in the connected component V of
Xan\Γ that contains x0 (cf. Theorem 2.11). Consider the corresponding
basis of open neighborhoods U((x0, x0)) of (x0, x0) in Xan ×Xan endowed
with the product topology. In every U ∈ U((x0, x0)) we consider tuples of
the form (x0, y) where y lies in the interior of the unique path [x0, τΓ(x0)]
(such tuples always exist). Then τΓ(y) = τΓ(x0) and wΓ(x0, y) = y (recall
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its definition from Remark 4.3), and so

gζ0(x0, x0)− gζ0(x0, y) = gζ0(τΓ(x0), τΓ(x0))Γ + ρ(wΓ(x0, x0), τΓ(x0))
− (gζ0(τΓ(x0), τΓ(y))Γ + ρ(wΓ(x0, y), τΓ(y)))

= ρ(wΓ(x0, x0), τΓ(x0))− ρ(wΓ(x0, y), τΓ(y))
= ρ(x0, τΓ(x0))− ρ(y, τΓ(x0))
= ρ(x0, y).

Consequently, we get

gµ(x0, x0)− gµ(x0, y) = gζ0(x0, x0)− 2
∫
gζ0(x0, ζ) dµ(ζ) + Cζ0

− (gζ0(x0, y)−
∫
gζ0(x0, ζ) dµ(ζ)

−
∫
gζ0(y, ζ) dµ(ζ) + Cζ0)

= gζ0(x0, x0)− gζ0(x0, y)

−
∫
gζ0(x0, ζ) dµ(ζ) +

∫
gζ0(y, ζ) dµ(ζ)

= ρ(x0, y) +
∫
gζ0(y, ζ)− gζ0(x0, ζ) dµ(ζ).(7.3)

To prove (7.2), we need to show that (7.3) is non-negative.
Recall that y lies in the interior of the unique path [x0, τΓ(x0)]. We denote

by V0 the connected component of V \{y} that contains x0 (note that V0 is
an open ball as x0 is of type IV and V is an open ball). We will see that
gζ0(y, ζ)− gζ0(x0, ζ) in (7.3) is zero for every ζ ∈ Xan\V0. Recall that V is
the connected component of Xan\Γ that contains x0. Hence V is an open
ball with ∂V = {τΓ(x0)} and V0 ⊂ V . Furthermore, one should have in
mind that τΓ(y) = τΓ(x0) as y ∈ [x0, τΓ(x0)].

If ζ ∈ Xan\V , then by the definition of the potential kernel

gζ0(y, ζ)− gζ0(x0, ζ) = gζ0(τΓ(y), τΓ(ζ))Γ − gζ0(τΓ(x0), τΓ(ζ))Γ = 0.

If ζ ∈ V \V0, then τΓ(ζ) = τΓ(x0) = τΓ(y) and wΓ(x0, ζ) = wΓ(y, ζ), and
hence

gζ0(y, ζ)− gζ0(x0, ζ) = gζ0(τΓ(y), τΓ(ζ))Γ + ρ(wΓ(y, ζ), τΓ(y))
− (gζ0(τΓ(x0), τΓ(ζ))Γ + ρ(wΓ(x0, ζ), τΓ(x0)))

= 0.

Thus gζ0(y, ζ)− gζ0(x0, ζ) = 0 for every ζ ∈ Xan\V0.
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For every ζ ∈ V0 we have τΓ(ζ) = τΓ(x0) = τΓ(y), wΓ(y, ζ) = y, and
wΓ(x0, ζ) ∈ [x0, y]. Hence

gζ0(y, ζ)− gζ0(x0, ζ) = gζ0(τΓ(y), τΓ(ζ))Γ + ρ(wΓ(y, ζ), τΓ(y))
− (gζ0(τΓ(x0), τΓ(ζ))Γ + ρ(wΓ(x0, ζ), τΓ(x0)))

= ρ(wΓ(y, ζ), τΓ(y))− ρ(wΓ(x0, ζ), τΓ(x0))
= ρ(y, τΓ(x0))− ρ(wΓ(x0, ζ), τΓ(x0))
= −ρ(wΓ(x0, ζ), y)

for every ζ ∈ V0. Plugging everything in (7.3), we get

gµ(x0, x0)− gµ(x0, y) = ρ(x0, y) +
∫
V0
−ρ(wΓ(x0, ζ), y) dµ(ζ)

≥
∫
V0
ρ(x0, y)− ρ(wΓ(x0, ζ), y) dµ(ζ)

≥ 0

as ρ(x0, y) ≥ ρ(wΓ(x0, ζ), y) on V0 and µ is a non-negative measure.
Consequently, (7.2) has to be also true for x0 of type IV. �

Proposition 7.10. For every probability measure µ on Xan with contin-
uous potentials and for every fixed y ∈ Xan, Gµ,y := gµ( · , y) : Xan →
(−∞,∞] defines a current in D0(Xan) and satisfies

ddcGµ,y = µ− δy.

Moreover, Gµ,y is continuous on Xan with Gµ,y(x) = ∞ if and only if
x = y ∈ X(K). In particular, Gµ,y is subharmonic on Xan\{y}.

Proof. By the definition of the Arakelov–Green’s function, we have

Gµ,y(x) = gζ0(x, y)−
∫
gζ0(x, ζ) dµ(ζ)−

∫
gζ0(y, ζ) dµ(ζ) + Cζ0

for every x ∈ Xan. Due to Proposition 4.8, the first term is continuous
on Xan and attains values in R ∪ {∞} with gζ0(x, y) = ∞ if and only if
x = y ∈ X(K). In particular, the first term is finitely valued on I(Xan).
Since µ has continuous potentials, the other two terms are finitely valued
and continuous on Xan. Hence Gµ,y : Xan → (−∞,∞] is continuous on Xan

with Gµ,y(x) =∞ if and only if x = y ∈ X(K). In particular, Gµ,y is finitely
valued on I(Xan), and so defines a current in D0(Xan) by Proposition 3.7.
It remains to calculate the Laplacian of Gµ,y. By (7.1), we have

Gµ,y = gζ0( · , y)− uζ0,µ( · , ζ0)− uζ0,µ(y, ζ0) + Cζ0 .

Proposition 4.8 and Proposition 6.6 imply ddcGµ,y = µ− δy. Hence Gµ,y is
subharmonic on Xan\{y}. �
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Using the previous propositions, gµ is a normalized Arakelov–Green’s
function as defined in Definition 7.1 for every probability measure µ on Xan

with continuous potentials.

Corollary 7.11. Let µ be a probability measure on Xan with continuous
potentials. Then the function gµ is a normalized Arakelov–Green’s function
on Xan.

Proof. We need to know that all properties of the list in Definition 7.1 hold.
Property (1) and symmetry are true due to Proposition 7.9, (2) was shown
in Proposition 7.10, and (3) follows by construction. �

Remark 7.12. For a probability measure µ on Xan and for a point y ∈
I(Xan), Thuillier constructs in his thesis [13, §3.4.3] a unique function
gy,µ : Xan → [−∞,∞) such that ddcgy,µ = µ−δy, gy,µ(y) = 0 and its restric-
tion to Xan\{y} is subharmonic. His construction uses [13, Théorème 3.3.13
& 3.4.12]. If µ has continuous potentials, then gy,µ and Gµ,y define two cur-
rents in D0(Xan) (cf. Proposition 3.11) having the same Laplacian µ− δy.
[13, Lemma 3.3.12] implies that gy,µ and Gµ,y differ only by a harmonic
function on Xan, which has to be constant by the Maximum Principle 3.13.

8. Energy Minimization Principle
The Energy Minimization Principle is a very important theorem in dy-

namics and has many applications. The goal is to translate this principle
into our non-archimedean setting. For X = P1 this was already done in [5,
§8.10], and Matt Baker suggested to generalize their definition of Arakelov–
Green’s functions and their result to the author. In the following section, we
give a proof of the Energy Minimization Principle for a smooth projective
curve X over our non-archimedean field K using the techniques from [5,
§8.10].

Definition 8.1. Let µ be a probability measure on Xan with continuous
potentials. Then for every probability measure ν on Xan, we define the
corresponding µ-energy integral as

Iµ(ν) :=
∫∫

gµ(x, y) dν(y)dν(x).

Note that the integral is well-defined since gµ is lower semicontinuous on the
compact space Xan×Xan by Proposition 7.9, and hence Borel measurable
and bounded from below.

Theorem 8.2 (Energy Minimization Principle). Let µ be a probability mea-
sure on Xan with continuous potentials. Then

(1) Iµ(ν) ≥ 0 for each probability measure ν on Xan, and
(2) Iµ(ν) = 0 if and only if ν = µ.



28 Veronika Wanner

We show the principle in several steps. At first, we prove analogues of
Maria’s theorem (Theorem 8.8) and Frostman’s theorem (Theorem 8.11).
In Maria’s theorem we study the boundedness of the generalized potential
function that is defined in the subsequent definition.

Definition 8.3. Let µ be a probability measure on Xan with continuous
potentials. Then for every probability measure ν on Xan, we define the
corresponding generalized potential function by

uν( · , µ) :=
∫
gµ( · , y) dν(y).

Lemma 8.4. Let µ be a probability measure with continuous potentials
and let ν be an arbitrary probability measure on Xan. Then for every ζ0 ∈
I(Xan) we can write

uν( · , µ) = uζ0,ν( · , ζ0)− uζ0,µ( · , ζ0) + C(8.1)

on Xan for a finite constant C.

Proof. Let ζ0 be a point in I(Xan). Then by Corollary 4.10

uζ0,ν( · , ζ0) =
∫
gζ0(ζ0, ·, ζ) dν(ζ) =

∫
gζ0( · , ζ) dν(ζ).

The same identity is true for µ, i.e. uζ0,µ( · , ζ0) =
∫
gζ0( · , ζ) dµ(ζ), which is

a finitely valued continuous function on Xan as µ has continuous potentials.
Thus we can write using the definition of the Arakelov–Green’s function
(Definition 7.6)

uν(x, µ) =
∫
gµ(x, y) dν(y)

=
∫
gζ0(x, y) dν(y)−

∫
gζ0(x, ζ) dµ(ζ)

−
∫∫

gζ0(y, ζ) dµ(ζ)dν(y) + Cζ0

= uζ0,ν(x, ζ0)− uζ0,µ(x, ζ0)−
∫
uζ0,µ(y, ζ0) dν(y) + Cζ0

for every x ∈ Xan. Since uζ0,µ( · , ζ0) is bounded and continuous on Xan, we
get

uν( · , µ) = uζ0,ν( · , ζ0)− uζ0,µ( · , ζ0) + C

on Xan for a finite constant C. �

Proposition 8.5. Let µ be a probability measure with continuous potentials
and let ν be an arbitrary probability measure on Xan. Then uν( · , µ) : Xan →
(−∞,∞] is continuous on Xan\ supp(ν) and lower semicontinuous on Xan.
Moreover, the restriction of uν( · , µ) to every skeleton Γ of Xan and to every
path [y, z] is finite and continuous.
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Proof. Let ζ0 be some point in I(Xan), then
uν( · , µ) = uζ0,ν( · , ζ0)− uζ0,µ( · , ζ0) + C

on Xan for a finite constant C by Lemma 8.4. Since µ has continuous
potentials, uζ0,µ( · , ζ0) is a finitely valued continuous function on Xan. Thus
it remains to prove the continuity assertions for uζ0,ν( · , ζ0). But these were
all already shown in Lemma 6.4 and Proposition 6.5. �

Proposition 8.6. Let µ be a probability measure with continuous potentials
and let ν be an arbitrary probability measure on Xan. Then uν( · , µ) defines
a current in D0(Xan) with

ddcuν( · , µ) = µ− ν.
In particular, uν( · , µ) is subharmonic on Xan\ supp(ν).

Proof. Let ζ0 be a point in I(Xan), then
uν( · , µ) = uζ0,ν( · , ζ0)− uζ0,µ( · , ζ0) + C

onXan for a finite constant C by Lemma 8.4. By Proposition 6.6 and linear-
ity, the function uζ0,µ( · , ζ0) belongs to D0(Xan) with ddcuν( · , µ) = µ− ν.
Then the generalized potential function uν( · , µ) is therefore subharmonic
on Xan\ supp(ν) as it is upper semicontinuous by Proposition 8.5. �

The key tool of the proof of Maria’s theorem in [5] is [5, Proposition 8.16],
which we can translate to our situation in the following form.

Lemma 8.7. Let W be an open ball or an open annulus in Xan and let f be
a subharmonic function on a connected open subset V of W with V ⊂ W .
For every x ∈ H(V ), there is a path Λ from x to a boundary point y ∈ ∂V
such that f is non-decreasing along Λ.

Proof. Since V is contained in an open ball or in an open annulus, we can
view it is a subset of P1,an. Then [5, Proposition 8.16] and Remark 3.12
yield the claim. �

With the help of Proposition 8.5 and Lemma 8.7, we can prove Maria’s
theorem.

Theorem 8.8 (Maria). Let µ be a probability measure on Xan with con-
tinuous potentials and let ν be an arbitrary probability measure on Xan.
If there is a constant M < ∞ such that uν( · , µ) ≤ M on supp(ν), then
uν( · , µ) ≤M on Xan.

Proof. Let V be a connected component of Xan\ supp(ν) and assume there
is a point x0 ∈ V such that uν(x0, µ) > M . Note that V is path-connected
since Xan is locally path-connected. If B is an open ball in Xan, then
between two points x, y ∈ B there is only one path in Xan by the structure
of Xan. Thus V ∩ B is uniquely path-connected for every open ball B in
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Xan. We have seen in Proposition 8.5 that the generalized potential function
uν( · , µ) is continuous on V ⊂ Xan\ supp(ν). Hence we may assume x0 to
be contained in the dense subset I(V ) of V , and so we can choose a skeleton
Γ of Xan containing x0 by Proposition 2.8.

Let (Yα)α be the directed system of connected strictly affinoid domains
contained in V and containing x0. Note that the union of two connected
strictly affinoid domains Y1, Y2 in Xan both containing x0 with Y1 ∪ Y2 6=
Xan is again a connected strictly affinoid domain in Xan by [13, Corol-
laire 2.1.17]. Then uν( · , µ) is continuous on Yα and subharmonic on the
relative interior Y ◦α by Proposition 8.5 and Proposition 8.6. Hence uν( · , µ)
attains a maximum on Yα in a point zα ∈ ∂Yα (see Maximum Princi-
ple 3.13), i.e.

uν(zα, µ) = max
x∈Yα

uν(x, µ) ≥ max
x∈Y ◦α

uν(x, µ) ≥ uν(x0, µ) > M(8.2)

for every α. Then 〈zα〉α defines a net of type II points in V . As V is
compact, we may assume by passing to a subnet that 〈zα〉α converges to
a point z ∈ V . Due to V =

⋃
α Yα and zα ∈ ∂Yα, the point z has to lie in

∂V ⊂ supp(ν). In the following, we use this net to get a contradiction to
uν( · , µ) ≤M on ∂V . Recall that Γ is a skeleton of Xan containing x0.

If z ∈ ∂V \Γ, there exists an open ball Bz in Xan\Γ containing z. We can
find Bz such that Bz = Bz ∪ {ζz} ⊂ Xan\Γ. We may assume 〈zα〉α to lie
in Bz. Then every path from a zα to x0, or more generally to the skeleton,
goes by construction through ζz. Hence for every α the path [zα, ζz] lies
inside Yα as zα and x0 do, and so uν(zα, µ) ≥ uν( · , µ) on [zα, ζz] by (8.2).
Assume we have equality for every α, then

uν( · , µ) ≡ uν(zα, µ) ≥ uν(x0, µ)

on (z, ζz] since we can write (z, ζz] ⊂
⋃
α[zα, ζz] as zα converges to z. Propo-

sition 8.5 implies

uν(z, µ) = lim
x∈[ζz ,z), x→z

uν(x, µ) = uν(ζz, µ) ≥ uν(x0, µ) > M

contradicting uν( · , µ) ≤M on supp(ν). Consequently, we may assume that
there is a zα and a point yα ∈ (zα, ζz] such that uν(zα, µ) > uν(yα, µ). Our
function uν( · , µ) is subharmonic on the connected open subset V ∩Bz and
zα ∈ I(V ∩Bz), and so there exists a path Λ from zα to a boundary point
of V ∩ Bz by Lemma 8.7 such that uν( · , µ) is non-decreasing along Λ.
The boundary points of V ∩ Bz consist of points in ∂V and ζz. Since we
have already seen that there is a point yα ∈ (zα, ζz] such that uν(zα, µ) >
uν(yα, µ), Λ cannot be the path [zα, ζz]. Hence Λ is a path to a boundary
point z′ ∈ ∂V and we get the contradiction

uν(z′, µ) = lim
x∈Λ◦, x→z′

uν(x, µ) ≥ uν(zα, µ) > uν(x0, µ) > M,
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where uν( · , µ) restricted to Λ is continuous by Proposition 8.5.
If z ∈ ∂V ∩Γ, we show that 〈τΓ(zα)〉α defines a net in V ∩Γ converging to z

with uν(τΓ(zα), µ) ≥ uν(x0, µ) > M for every α. Then we use again Propo-
sition 8.5. Since τΓ is continuous, the net 〈τΓ(zα)〉α converges to τΓ(z) = z.
Clearly, 〈τΓ(zα)〉α lies in Γ. The open set V is path-connected, and so there
exists a path between zα and x0 in V . By the construction of the retraction
map and due to x0 ∈ Γ, τΓ(zα) lies inside this path, and hence it lies in
V . We continue with uν(τΓ(zα), µ) ≥ uν(x0, µ) for every zα. Assume that
zα 6= τΓ(zα) because otherwise we are done by (8.2). Denote by Bα the
connected component of Xan\Γ containing zα, and choose a sequence of
type II points ζn ∈ [zα, τΓ(zα)]◦ converging to τΓ(zα). Note that there is
only one path from zα to τΓ(zα) in Xan, and this path lies in V because
zα, τΓ(zα) ∈ V and V is path-connected. Thus each ζn lies in V as well.
Let Bα,n be the open ball containing zα and having ζn as unique boundary
point. Since uν( · , µ) is subharmonic on V ∩Bα,n for every n ∈ N, there is
a path Λn from zα to a boundary point z′n in ∂(V ∩Bα,n) ⊂ ∂V ∪{ζn} such
that uν( · , µ) is non-decreasing along Λn by Lemma 8.7. If there exists an
n ∈ N with z′n ∈ ∂V , then Proposition 8.5 and (8.2) imply

uν(z′n, µ) = lim
x∈Λ◦n, x→z′n

uν(x, µ) ≥ uν(zα, µ) ≥ uν(x0, µ) > M

contradicting uν( · , µ) ≤ M on supp(ν). Hence Λn = [zα, ζn] for all n ∈ N.
Recall that (ζn)n is a sequence in V converging to τΓ(zα) ∈ V . Since uν( · , µ)
is continuous on V and uν( · , µ) is non-decreasing along Λn = [zα, ζn],
Proposition 8.5 yields

uν(τΓ(zα), µ) = lim
n→∞

uν(ζn, µ) ≥ uν(zα, µ).(8.3)

Altogether, we have a net 〈τΓ(zα)〉α in V ∩ Γ converging to z such that
uν(τΓ(zα), µ) ≥ uν(x0, µ) > M

for every α. Proposition 8.5 tells us that uν( · , µ) restricted to Γ is contin-
uous, and hence using (8.2) and (8.3) we get

uν(z, µ) = lim
α
uν(τΓ(zα), µ) ≥ uν(x0, µ) > M

contradicting uν( · , µ) ≤M on supp(ν).
Hence there cannot exist a point x0 in V with uν(x0, µ) > M . �

Definition 8.9. Let µ be a probability measure with continuous potentials,
then we define the µ-Robin constant as

V (µ) := inf
ν
Iµ(ν),

where ν runs over all probability measures supported on Xan.

Lemma 8.10. We have V (µ) ∈ R≤0 and there exists a probability measure
ω on Xan such that Iµ(ω) = V (µ).
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Proof. First, we explain why V (µ) is a non-positive real number. The nor-
malized Arakelov–Green’s function gµ is bounded from below as a lower
semicontinuous function on the compact space Xan × Xan by Proposi-
tion 7.9, and hence we have

V (µ) =
∫∫

gµ(x, y) dν(x)dν(y) > −∞.

On the other hand,

V (µ) ≤ Iµ(µ) =
∫∫

gµ(x, y) dµ(x)dµ(y) = 0

by the normalization of gµ. Thus V (µ) ∈ R≤0.
We show the second part of the assertion applying the same argument

used to prove the existence of an equilibrium measure in [5, Proposition 6.6].
Let ωi be a sequence of probability measures such that limi→∞ Iµ(ωi) =
V (µ). By Proposition 2.5, we can pass to a subsequence converging weakly
to a probability measure ω on Xan. Due to Iµ(ω) ≥ V (µ) by the definition
of the Robin constant, it remains to show the inequality Iµ(ω) ≤ V (µ).
By Proposition 7.9, the normalized Arakelov–Green’s function gµ is lower
semicontinuous on the compact space Xan×Xan, and so it is bounded from
below by some constant M ∈ R. Proposition 2.5 tells us that ω is a Radon
measure, and so [5, Proposition A.3] yields the following description

Iµ(ω) =
∫∫

gµ(x, y) dω(x)dω(y) = sup
g∈C(Xan×Xan),

M≤g≤gµ

∫∫
g(x, y) dω(x)dω(y),

for the space C(Xan×Xan) of real-valued continuous functions onXan×Xan.
For every g ∈ C(Xan ×Xan) satisfying M ≤ g ≤ gµ, we have∫∫

g(x, y) dω(x)dω(y) = lim
i→∞

∫∫
g(x, y) dωi(x)dωi(y)

≤ lim
i→∞

∫∫
gµ(x, y) dωi(x)dωi(y)

= lim
i→∞

Iµ(ωi) = V (µ),

where the first identity is proven for example in [5, Lemma 6.5] and the
inequality holds as every ωi is positive. Hence Iµ(ω) ≤ V (µ). �

Theorem 8.11 (Frostman). Let µ be a probability measure on Xan with
continuous potentials and let ω be a probability measure on Xan such that
Iµ(ω) = V (µ). Then we have on Xan

uω( · , µ) ≡ V (µ).

Proof. The strategy is as in the proof of [5, Proposition 8.55] with using
analogous capacity results from Section 5.
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Step 1: Show that E :={x∈Xan |uω(x, µ)<V (µ)}⊂X(K). By Lemma 5.5,
it remains to show that E is a proper subset ofXan of capacity zero. Assume
that E ⊂ supp(ω), then we get the contradiction

V (µ) = Iµ(ω) =
∫∫

gµ(x, y) dω(y)dω(x) =
∫
uω(x, µ) dω(x) < V (µ).

Thus there has to be a point ξ ∈ supp(ω)\E, and so E is indeed a proper
subset of Xan. To show that it has capacity zero, we consider

En := {x ∈ Xan | uω(x, µ) ≤ V (µ)− 1/n}

for every n ∈ N≥1. Clearly, ξ /∈ En for every n ∈ N≥1. Since uω( · , µ) is
lower semicontinuous on Xan by Proposition 8.5, each En is closed and so
compact as a closed subset of a compact space. If every En has capacity
zero, then E =

⋃
n∈N≥1

En has capacity zero as well by Corollary 5.7.
We therefore assume that there is an En with positive capacity, i.e. there

exist a probability measure ν supported on En, a base point ζ0 ∈ I(Xan)
and ζ ∈ Xan\En such that Iζ0,ζ(ν) < ∞. Since En is closed and I(Xan) is
a dense subset of Xan, we may choose ζ0 = ζ ∈ I(Xan)\En by Remark 5.4.
Then

Iζ0,ζ0(ν) =
∫∫

gζ0(ζ0, x, y) dν(x)dν(y)

=
∫∫

gζ0(x, y) dν(x)dν(y) <∞,(8.4)

where we used gζ0(ζ0, x, y) = gζ0(x, y) from Corollary 4.10. We can write
by the definition of the Arakelov–Green’s function gµ

Iµ(ν) = Iζ0,ζ0(ν)− 2
∫∫

gζ0(x, ζ) dµ(ζ)dν(x) + Cζ0 .

Since µ has continuous potentials, the term 2
∫∫
gζ0(x, ζ) dµ(ζ)dν(x) is fi-

nite. Hence Iζ0,ζ0(ν) <∞ implies Iµ(ν) <∞.
Recall that ξ is a point in supp(ω)\En and uω(ξ, µ) ≥ V (µ). Since

uω( · , µ) is lower semicontinuous on Xan by Proposition 8.5, we can find an
open neighborhood U of ξ such that uω( · , µ) > V (µ)− 1/(2n) on U . Then
U ∩ En = ∅ and M := ω(U) > 0 using that ω is a positive measure and
ξ ∈ U ∩ supp(ω). We define the following measure on Xan

σ :=


M · ν on En,
−ω on U,
0 elsewhere.
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Then σ(Xan) = M · ν(En) − ω(U) = 0 as ν is a probability measure sup-
ported on En. Moreover, we can consider

Iµ(σ) :=
∫∫

gµ(x, y) dσ(x)dσ(y)

= M2 ·
∫
En

∫
En
gµ(x, y) dν(x)dν(y)

− 2M ·
∫
En

∫
U
gµ(x, y) dν(x)dω(y) +

∫
U

∫
U
gµ(x, y) dω(x)dω(y).

We will explain why Iµ(σ) is finite. Note that gµ is lower semicontinuous on
the compact space Xan ×Xan (cf. Proposition 7.9), and so bounded from
below. The first term is equal to M2 · Iµ(ν), and we have already seen that
Iµ(ν) <∞. Since gµ is bounded from below and ν is a positive measure, the
first term is finite. The second term is finite because U and En are compact
disjoint sets and gµ is continuous off the diagonal (see Proposition 7.9).
The third term has to be finite as well as gµ is bounded from below, ω is a
positive measure, and we have∫∫

gµ(x, y) dω(x)dω(y) = Iµ(ω) = V (µ) ∈ R

by Lemma 8.10. Consequently, Iµ(σ) is finite.
For every t ∈ [0, 1], we define the probability measure ωt := ω + tσ

on Xan. Then

Iµ(ωt)− Iµ(ω) =
∫∫

gµ(x, y) dωt(x)dωt(y)−
∫∫

gµ(x, y) dω(x)dω(y)

=
∫∫

gµ(x, y) dω(x)dω(y) + 2
∫∫

gµ(x, y) dω(x)d(tσ)(y)

+
∫∫

gµ(x, y) d(tσ)(x)d(tσ)(y)−
∫∫

gµ(x, y) dω(x)dω(y)

= 2t ·
∫
uω(y, µ) dσ(y) + t2 · Iµ(σ).

Inserting the definition of the measure σ, we obtain

Iµ(ωt)− Iµ(ω)

= 2t ·
(
M ·

∫
En
uω(y, µ) dν(y)−

∫
U
uω(y, µ) dω(y)

)
+ t2 · Iµ(σ).

Since uω( · , µ) ≤ V (µ)− 1/n on En and supp(ν) ⊂ En, uω( · , µ) > V (µ)−
1/(2n) on U and M = ω(U) > 0, we get

Iµ(ωt)− Iµ(ω) ≤ 2t · (M · (V (µ)− 1/n)−M · (V (µ)− 1/(2n))) + t2 · Iµ(σ)
= (−M/n) · t+ t2 · Iµ(σ).
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The right hand side is negative for sufficiently small t > 0 as Iµ(σ) is finite,
and so this contradicts Iµ(ω) = V (µ). Hence each En has capacity zero,
and so does E. By Lemma 5.5, we get E ∩H(Xan) = ∅.

Step 2: Show that ω(E) = 0. Pick a base point ζ0 ∈ I(Xan). We have seen
in Step 1 that E ⊂ X(K), so ζ0 cannot by contained in E. Because of
Iζ0,ζ0(ω) =

∫∫
gζ0(x, y) dω(x)dω(y) by Corollary 4.10, we have

Iµ(ω) =
∫∫

gµ(x, y) dω(y)dω(x)

=
∫∫

gζ0(x, y) dω(y)dω(x)−
∫∫

gζ0(x, ζ) dµ(ζ)dω(x)

−
∫∫

gζ0(y, ζ) dµ(ζ)dω(y) + Cζ0

= Iζ0,ζ0(ω)− 2
∫∫

gζ0(x, ζ) dµ(ζ)dω(x) + Cζ0 ,

where the double integral is finite since µ has continuous potentials. As
Iµ(ω) = V (µ) is finite by Lemma 8.10, it follows directly from the calcu-
lation that Iζ0,ζ0(ω) < ∞. Moreover, we have seen in the proof of Step 1
that E has capacity zero and we also know that ζ0 /∈ E. Lemma 5.6 yields
ω(E) = 0.

Step 3: Show that uω( · , µ) ≤ V (µ) on Xan. Using Maria’s theorem 8.8, it
remains to prove uω( · , µ) ≤ V (µ) on supp(ω). Assume there is a point
z ∈ supp(ω) such that uω(z, µ) > V (µ). Choose ε > 0 such that uω(z, µ) >
V (µ)+ε. Since uω( · , µ) is lower semicontinuous on Xan by Proposition 8.5,
there is an open neighborhood Uz of z with uω( · , µ) > V (µ) + ε on Uz.
Then ω(Uz) > 0 as z ∈ supp(ω). By the construction of E, we have
uω( · , µ) < V (µ) on E. Hence E and Uz are disjoint and we get the following
decomposition of V (µ) = Iµ(ω)

V (µ) =
∫
Xan

uω(x, µ) dω(x)

=
∫
Uz
uω(x, µ) dω(x) +

∫
Xan\(Uz∪E)

uω(x, µ) dω(x).

Note that we also use that the integral of uω( · , µ) over E has to be zero as
ω(E) = 0 by Step 2. For the first term we know that uω( · , µ) > V (µ) + ε
on Uz and ω(Uz) > 0. Thus∫

Xan
uω(x, µ) dω(x) ≥ ω(Uz) · (V (µ) + ε).(8.5)

We have uω( · , µ) ≥ V (µ) on Xan\E by the definition of E, and so∫
Xan\(Uz∪E)

uω(x, µ) dω(x) ≥ (1− ω(Uz)− ω(E)) · V (µ).(8.6)
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Putting (8.5), (8.6) and ω(E) = 0 together, we get the contradiction

V (µ) ≥ ω(Uz) · (V (µ) + ε) + (1− ω(Uz)− ω(E)) · V (µ)
= ω(Uz) · (V (µ) + ε) + (1− ω(Uz)) · V (µ)
= V (µ) + ω(Uz)ε > V (µ).

Hence uω( · , µ) ≤ V (µ) on supp(ω). Maria’s theorem 8.8, implies that
uω( · , µ) ≤ V (µ) on Xan. This shows the third step.

By the first step we know that uω( · , µ) ≥ V (µ) on Xan\X(K). For every
point y ∈ X(K), we can find a path [z, y] from a point z ∈ I(Xan) to y
such that [z, y) is contained in I(Xan) ⊂ Xan\X(K). Then Proposition 8.5
implies

uω(y, µ) = lim
x∈[z,y)

uω(x, µ) ≥ V (µ).

Hence E = {x ∈ Xan | uω(x, µ) < V (µ)} is empty, and so uω( · , µ) ≥ V (µ)
on Xan. Step 3 implies uω( · , µ) ≡ V (µ) on Xan. �

Proof of Theorem 8.2. Let ω be a probability measure on Xan that mini-
mizes the energy integral, i.e. Iµ(ω) = V (µ). Such a measure always exists
by Lemma 8.10. By Frostman’s theorem 8.11, uω( · , µ) is constant on Xan,
and hence

0 = ddcuω( · , µ) = µ− ω
by Proposition 8.5. Thus ω minimizes the energy integral if and only if
ω = µ. Since Iµ(µ) =

∫∫
gµ(x, y) dµ(y)dµ(x) = 0 by the normalization

of the Arakelov–Green’s function gµ, it follows that Iµ(ν) ≥ 0 for every
probability measure ν on Xan. �

Corollary 8.12. Let ζ ∈ I(Xan) and µ be a probability measure on Xan

with continuous potentials. Then gµ(ζ, ζ) ≥ 0, and gµ(ζ, ζ) = 0 if and only
if µ = δζ .

Proof. Since

gµ(ζ, ζ) =
∫∫

gµ(x, y) dδζ(x)dδζ(y) = Iµ(δζ),

the Energy Minimization Principle (Theorem 8.2) gives the assertion im-
mediately. �

9. Local discrepancy
Let E be an elliptic curve over K with j-invariant jE . In this section, we

give a different proof of the local discrepancy result from [3, Corollary 5.6]
using our Energy Minimization Principle (Theorem 8.2).
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Remark 9.1. In the following, let ΓE be the minimal skeleton of Ean. Then
ΓE is a single point ζ0 when E has good reduction and ΓE corresponds to
the circle R/Z when it has multiplicative reduction. One has a canonical
probability measure µE supported on ΓE , where

(1) µE is the dirac measure in ζ0 if E has good reduction, and
(2) µE is the uniform probability measure (i.e. Haar measure) sup-

ported on the circle ΓE ' R/Z if E has multiplicative reduction.
Then µE has in particular continuous potentials by Example 7.5. Hence we
can consider its corresponding Arakelov–Green’s function gµE on Ean×Ean.

Definition 9.2. Let Z = {P1, . . . , PN} be a set of N distinct points in
E(K). Then the local discrepancy of Z is defined as

D(Z) := 1
N2

∑
i 6=j

gµE (Pi, Pj) + N

12 log+ |jE |

 .
Remark 9.3. Baker and Petsche defined the local discrepancy in [3, §3.4]
and [11, §2.2] of a set Z = {P1, . . . , PN} of N distinct points in E(K) as

1
N2

∑
i 6=j

λ(Pi − Pj) + N

12 log+ |jE |v


for the Néron function λ : E(K)\{O} → R (cf. [12, §VI.1]).

Note that our definition is consistent with theirs. As it is also mentioned
in [3, Remark 5.3], the Néron function can be extend to an Arakelov–
Green’s function corresponding to the canonical measure µ on Ean. By the
uniqueness of the Arakelov–Green’s function (see Remark 7.2), we have
gµE (P,Q) = λ(P −Q) for P 6= Q ∈ E(K).

Baker and Petsche showed in [3, Corollary 5.6] the following result for
the local discrepancy when K = Cv. Here, v is a non-archimedean place
of a number field k and Cv is the completion of the algebraic closure of
the completion of k with respect to v. We can prove this statement for
our general K using our characterization of the local discrepancy and the
Energy Minimization Principle (Theorem 8.2).

Corollary 9.4. For each n ∈ N, let Zn ⊂ E(K) be a set consisting of n
distinct points and let δn be the probability measure on Ean that is equidis-
tributed on Zn. If limn→∞D(Zn) = 0, then δn converges weakly to µE
on Ean.

Proof. By passing to a subsequence we may assume that δn converges
weakly to a probability measure ν on Ean (see Proposition 2.5). We show
that IµE (ν) is zero and we then use the Energy Minimization Principle 8.2.
We have seen in the Energy Minimization Principle that IµE (ν) ≥ 0. Thus



38 Veronika Wanner

it remains to show IµE (ν) ≤ 0. Due to the definition of the µE-energy
integral and [5, Lemma 7.54], the following inequality holds

IµE (ν) =
∫∫

Ean×Ean
gµE (x, y) dν(x)dν(y)

≤ lim inf
n→∞

∫∫
(Ean×Ean)\∆

gµE (x, y) dδn(x)dδn(y)

= lim inf
n→∞

1
n2

∑
P 6=Q∈Zn

gµE (P,Q),

where ∆ := Diag(Ean). Since the term D(Zn) = 1
n2
∑
P 6=Q∈Zn gµE (P,Q) +

1
12n log+ |jE | converges to zero, and 1

12n log+ |jE | does as well, we have

lim
n→∞

1
n2

∑
P 6=Q∈Zn

gµE (P,Q) = 0.

Hence IµE (ν) ≤ 0. The Energy Minimization Principle yields µE = ν. We
just have seen that every convergent subsequence converges weakly to same
limiting measure µE , and so does the overall sequence. �
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