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On a bounded remainder set for a digital
Kronecker sequence

par Mordechay B. LEVIN

Résumé. Soit x0,x1, . . . une suite de points dans [0, 1)s. Un sous-ensemble S
de [0, 1)s est appelé un ensemble à restes bornés s’il existe un nombre réel C
tel que, pour tout entier positif N ,

|card{n < N : xn ∈ S} −mes(S)N | < C.

Soient (xn)n≥0 une suite de Kronecker de dimension s en base b ≥ 2 et γ =
(γ1, . . . , γs), où, pour i = 1, . . . , s, le développement en base b de γi ∈ [0, 1),
γi = γi,1b

−1 + γi,2b
−2 + · · · , vérifie γi,j 6= b − 1 pour une infinité de j. Dans

cet article, nous prouvons que [0, γ1) × · · · × [0, γs) est un ensemble à restes
bornés relativement à la suite (xn)n≥0 si et seulement si

max
1≤i≤s

sup{j ≥ 1 : γi,j 6= 0} <∞.

Nous obtenons ce résultat en conséquence d’un énoncé plus général donné
dans la Proposition.

Abstract. Let x0,x1, . . . be a sequence of points in [0, 1)s. A subset S of
[0, 1)s is called a bounded remainder set if there exists a real number C such
that, for every positive integer N ,

|card{n < N : xn ∈ S} −meas(S)N | < C.

Let (xn)n≥0 be an s-dimensional digital Kronecker sequence in base b ≥ 2,
γ = (γ1, . . . , γs), γi ∈ [0, 1) with base-b expansion
γi = γi,1b

−1 + γi,2b
−2 + · · · for infinitely many γi,j 6= b − 1, i = 1, . . . , s. In

this paper, we prove that [0, γ1)×· · ·× [0, γs) is a bounded remainder set with
respect to the sequence (xn)n≥0 if and only if

max
1≤i≤s

sup{j ≥ 1 : γi,j 6= 0} <∞.

We get this result as a consequence of a more general statement given in the
Proposition.

Manuscrit reçu le 10 septembre 2020, révisé le 10 novembre 2021, accepté le 1er décembre 2021.
Mathematics Subject Classification. 11K38.
Mots-clefs. bounded remainder set, digital Kronecker sequence.
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1. Introduction
1.1. Discrepancy. Let x0,x1, . . . be a sequence of points in [0, 1)s, and
let S ⊆ [0, 1)s be Lebesgue measurable,

(1.1) ∆
(
S, (xn)N−1

n=0

)
=

N−1∑
n=0

(1S(xn)− λ(S)),

where 1S(x) = 1, if x ∈ S, and 1S(x) = 0, if x /∈ S. Here λ(S) denotes the
s-dimensional Lebesgue-measure of S. We define the star discrepancy of an
N -point set (xn)N−1

n=0 as

(1.2) D∗
(
(xn)N−1

n=0

)
= sup0<y1,...,ys≤1

∣∣∣∆([0,y), (xn)N−1
n=0

)
/N
∣∣∣,

where [0,y) = [0, y1) × · · · × [0, ys). The sequence (xn)n≥0 is said to be
uniformly distributed in [0, 1)s if D∗((xn)N−1

n=0 )→ 0 for N →∞.
An s-dimensional sequence (xn)n≥0 is of low-discrepancy if D∗((xn)N−1

n=0 )
= O(N−1(logN)s) for N →∞.

So far, only three classes of multidimensional low-discrepancy sequences
in [0, 1)s have been known: (t, s)-sequences, Halton’s sequences and se-
quences obtained from a module of totally real algebraic number field (see,
e.g., [4, 6, 17, 18, 19, 22]).

In 1954, Roth proved that lim supN→∞N(logN)−
s
2D∗((xn)N−1

n=0 ) > 0.
According to the well-known conjecture (see, e.g., [4, p. 283]), this estimate
can be improved to

(1.3) lim supN→∞N(logN)−sD∗
(
(xn)N−1

n=0

)
> 0.

In [17, 18, 19], we proved this conjecture for known multidimensional low-
discrepancy sequences. For the general case, the best lower bound of the
discrepancy were obtained in [5] : ND∗((xn)N−1

n=0 ) > c(s)(logN)
s−1

2 +η(s) for
some c(s), η(s) > 0.

1.2. Digital Kronecker sequence. For an arbitrary prime power b, let
Fb be the finite field of order b, F∗b = Fb \ {0}, Zb = {0, 1, . . . , b − 1}. Let
Fb[z] be the ring of polynomials over Fb, and let Fb((z−1)) be the field of
formal Laurent series. Every element L of Fb((z−1)) has a unique expansion
into a formal Laurent series

(1.4) L =
∞∑
k=w

ukz
−k with uk ∈ Fb, and w ∈ Z where uw 6= 0.

The discrete degree valuation ν of L is defined by

ν(L) := −w for L 6= 0, and ν(0) := −∞.
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Furthermore, we define the fractional part of L by

(1.5) {L} =
∞∑

k=max(1,w)
ukz
−k.

The elements of Fb are denoted by 0̄, 1̄, . . . , b− 1, respectively, with 0̄, the
neutral element of addition in Fb. We use a bijection ψ : Zb → Fb with
ψ(j) := j̄ for j ∈ Zb. For n = 0, 1, . . ., let

(1.6) n =
∞∑
r=0

ar(n)br

be the digit expansion of n in base b, satisfying ar(n) ∈ Zb for r ≥ 0 and
ar(n) = 0 for all sufficiently large r.

With every n = 0, 1, . . ., we associate the polynomial

(1.7) n(z) =
∞∑
r=0

ar(n)zr ∈ Fb[z]

and if L ∈ Fb((z−1)) is as in (1.4), then we define

(1.8) {L}|z=b =
∞∑

k=max(1,w)
ψ−1(uk)b−k.

In [22], Niederreiter introduced a non-Archimedean analogue of the clas-
sical Kronecker sequences. Here we use a slightly less general construc-
tion proposed by Larcher [11, p. 199], see also [16, p. 3]. For every s-
tuple L = (L1, . . . , Ls) of elements of Fb((z−1)), we define the sequence
S(L) = (ln)n≥0 by

(1.9) ln = (l(1)
n , . . . , l(s)n ),

with l(i)n = {n(z)Li(z)}|z=b, for 1 ≤ i ≤ s, n ≥ 0.

This sequence is sometimes called a digital Kronecker sequence (or Kro-
necker-type sequence) (see [16, p. 4]). The similarity to the classical Kro-
necker sequence is obvious. In analogy to the classical Kronecker sequences,
in [14, Theorem 1], the following theorem has been proven.

Theorem A. A digital Kronecker sequence S(L) is uniformly distributed
in [0, 1)s if and only if 1, L1, . . . , Ls are linearly independent over Zb[x].

Let us consider the famous Littlewood’s conjecture:

(1.10) lim
n→∞

n ‖nα1‖ · · · ‖nαs‖ = 0

for all reals α1, . . . , αs, where ‖x‖ = min({x}, 1−{x}). This problem is also
known in the function fields case (see, e.g., [1]).
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By [23, Theorem 1.1], if (1.10) is false, then the corresponding Kro-
necker sequence is of low-discrepancy. The same result is true for the
digital Kronecker sequence [14, Theorem 2]. In [2], a counterexample for
a p-adic variant of the Littlewood conjecture in a positive characteris-
tic was constructed for s = 2. From this it could be derived that there
exist two-dimensional low-discrepancy digital Kronecker–van der Corput
sequences (l(1)

n ,
∑
r≥0 ar(n)/br+1)n≥0. The digital Kronecker–van der Cor-

put sequences are special cases of the digital Kronecker–Halton sequences
(see [10]). For the ordinary Kronecker–Halton sequences see, e.g., [13]. But
the problem whether two-dimensional low-discrepancy digital Kronecker se-
quences (1.9) exist or not is still unresolved, as it is the case for the ordinary
Kronecker sequences.

By µ1 we denote the normalized Haar-measure on Fb((z−1)) and by µs
the s-fold product measure on Fb((z−1))s. Below we will talk about almost
all the elements L ∈ Fb((z−1))s. In this case, we will keep in mind exactly
the measure µs.

By [24], limn→∞ n logs+ε n ‖nα1‖ · · · ‖nαs‖ = ∞ for all ε > 0 and for
almost all reals α1, . . . , αs. The same result is true for function field cases
[15, Theorem 9].

In [3, Theorem 1], the following metrical upper bound for the star dis-
crepancy of Kronecker’s sequence was proved:

D∗
(
{αn}N−1

n=0

)
= O

(
N−1(logN)s(log logN)2

)
with {αn} = ({α1n}, . . . , {αsn}) for almost all reals α1, . . . , αs. Hence, Kro-
necker’s sequence is of almost low-discrepancy for almost all reals α1, . . . , αs.
The same result is true for function field cases [11, Theorem].

In [3, Theorem 1], the following metrical lower bound for the star dis-
crepancy of Kronecker’s sequence was proved:

D∗
(
{αn}N−1

n=0

)
≥ c(b, s)N−1(logN)s log logN

for infinitely many N ≥ 1 for almost all reals α1, . . . , αs. Therefore, for
almost all real numbers α1, . . . , αs, Kronecker’s sequence is not of low-
discrepancy. The same result is true for digital Kronecker sequences [16,
Theorem 2].

1.3. Bounded remainder set.

Definition 1. Let x0,x1, . . . be a sequence of points in [0, 1)s. A Lebesgue
measurable subset S of [0, 1)s is called a bounded remainder set for (xn)n≥0
if the discrepancy function ∆(S, (xn)N−1

n=0 ) is bounded in N .

Let α be an irrational number, let I be an interval in [0, 1) with length |I|,
let {nα} be the fractional part of nα, n = 1, 2, . . .. Hecke, Ostrowski and
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Kesten proved that ∆(S, ({nα})Nn=1) is bounded if and only if |I| = {kα}
for some integer k (see references in [7]).

The sets of bounded remainder for the classical s-dimensional Kronecker
sequence were studied by Lev and Grepstad [7]. The case of Halton’s se-
quence was studied by Hellekalek [8]. For references to others investigations
on bounded remainder set see [7].

Let γ = (γ1, . . . , γs), γi ∈ (0, 1) with the unique b-adic representation
γi = γi,1b

−1 + γi,2b
−2 + · · · , i = 1, . . . , s with infinitely many digits not

equal to b− 1 is used. In this paper, we prove the following main

Theorem. Let (ln)n≥0 be a uniformly distributed digital Kronecker se-
quence. The set [0, γ1)×· · ·× [0, γs) with γi ∈ (0, 1) is of bounded remainder
with respect to (ln)n≥0 if and only if
(1.11) max

1≤i≤s
sup{j ≥ 1 : γi,j 6= 0} <∞.

In [20], we proved similar results for digital (t, s)-sequences described in
[6, Chapter 8]. Note that according to Larcher’s conjecture [12, p. 215],
the assertion of the Theorem is true for all digital (t, s)-sequences in base
b. By Lemma A (see below), a digital Kronecker sequence in base b can
be expressed as some digital (T, s)-sequence in base b. Therefore, in the
Theorem we consider the generalised conjecture of Larcher.

Let

Γ =

γ̇ = (γ̇1, . . . , γ̇s) ∈ [0, 1)s : γ̇i =
l∑

j=1
γ̇i,j/b

j , l ≥ 1

,
γ̈i = γ̇i+γi ∈ [0, 1) (i = 1, . . . , s, l ≥ 1). Applying the Theorem, we get that
the interval [γ̇1, γ̈1)×· · ·× [γ̇s, γ̈s) with γ̇ ∈ Γ is of bounded remainder with
respect to (ln)n≥0 if and only if (1.11) is true. But for γ̇ /∈ Γ, the problem
is still open.

Now we describe the structure of the paper. In Section 2 we recall some
notation and results about digital sequences. Section 3 proves the main
Theorem based on several lemmas. In Lemmas 1–3, we obtain an estimate
of generalized Walsh’s series of truncated discrepancy function of digital
sequences. In Lemma 4, we use the notation from the duality theory (see,
e.g., [6, Chapter 7]). The main result of this article is the Proposition.
Lemma 5–Lemma 7 are auxiliary.

2. Notations
Let b be an integer greater or equal to 2, and let s ≥ 1 be a dimension.

A subinterval E of [0, 1)s of the form

E =
s∏
i=1

[aib−di , (ai + 1)b−di),
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with ai, di ∈ Z, di ≥ 0, 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary
interval in base b.
Definition 2. Let 0 ≤ t ≤ m be integers. A (t,m, s)-net in base b is a point
set x0, . . . ,xbm−1 in [0, 1)s such that #{n ∈ {0, 1, . . . , bm−1} : xn ∈ E} = bt

for every elementary interval E in base b with vol(E) = bt−m.
Definition 3 ([6, Definition 4.30]). For a given function T : N0 → N0 with
T(m) ≤ m for all m ∈ N0, a sequence (xn)n≥0 of points in [0, 1)s is called
a (T, s)-sequence in base b if for all integers m ≥ 1 and k ≥ 0, the point
set consisting of the points xkbm , . . . ,xkbm+bm−1 forms a (T(m),m, s)-net
in base b.

A (T, s)-sequence in base b is called a strict (T, s)-sequence in base b if
for all functions U : N0 → N0 with U(m) ≤ m for all m ∈ N0 and with
U(m) < T(m) for at least one m ∈ N0, it is not a (U, s)-sequence in base b.

Definition 4 ([6, Definition 4.47]). Let m, s ≥ 1 be integers. Let C(1,m),
. . . , C(s,m) be m×m matrices over Fb. Now we construct bm points in [0, 1)s.
For n = 0, 1, . . . , bm − 1, let n =

∑m−1
j=0 aj(n)bj be the b-adic expansion of

n. We map the vectors

(2.1) y(i,m)
n = (y(i,m)

n,1 , . . . , y(i,m)
n,m ), with y

(i,m)
n,j =

m−1∑
r=0

ar(n)c(i,m)
j,r ∈ Fb

to the real numbers

(2.2) x(i)
n =

m∑
j=1

x
(i,m)
n,j /bj , with x

(i,m)
n,j = y

(i,m)
n,j ,

to obtain the point
xn = (x(1)

n , . . . , x(s)
n ) ∈ [0, 1)s.

The point set {x0, . . . ,xbm−1} is called a digital net (over Fb) (with gen-
erating matrices (C(1,m), . . . , C(s,m))).

For m =∞, we obtain a sequence x0,x1, . . . of points in [0, 1)s which is
called a digital sequence (over Fb) (with generating matrices (C(1,∞), . . . ,
C(s,∞))).

We abbreviate C(i,m) as C(i) for m ∈ N and for m =∞.
Lemma A ([15, Theorem 3]). A digital Kronecker sequence in base b can
be expressed as some digital (T, s)-sequence in base b.

Details on the generating matrices (C(1), . . . , C(s)) here are as follows. For
given s-tuple (L1, . . . , Ls) of elements of Fb((z−1)) with Li =

∑
k≥wi u

(i)
k z
−k,

1 ≤ i ≤ s, we define

C(i) = (c(i)
j,r)j≥1,r≥0 with c

(i)
j,r = u

(i)
r+j for 1 ≤ i ≤ s, j ≥ 1, r ≥ 0.
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Lemma B ([6, Theorem 4.86]). Let b be a prime power. A strict digital
(T, s)-sequence over Fb is uniformly distributed in [0, 1)s, if and only if
lim infm→∞(m−T(m)) =∞.

For k > l, we put
∑l
j=k cj = 0 and

∏l
j=k cj = 1. For x =

∑
j≥1 xjb

−j ,
where xi ∈ Zb = {0, . . . , b− 1}, we define the truncation

[x]m =
∑

1≤j≤m
xjb
−j with m ≥ 1.

If x = (x(1), . . . , x(s)) ∈ [0, 1)s, then the truncation [x]m is defined coordi-
natewise, that is, [x]m = ([x(1)]m, . . . , [x(s)]m).

For x =
∑
j≥1 xjb

−j and y =
∑
j≥1 yjb

−j where xj , yj ∈ Zb, we define
the (b-adic) digital shifted point v by v = x⊕ y :=

∑
j≥1 vjb

−j , where vj ≡
xj + yj (mod b) and vj ∈ Zb. Let x	 y :=

∑
j≥1 vjb

−j , where vj ≡ xj − yj
(mod b) and vj ∈ Zb.

For x = (x(1), . . . , x(s)) ∈ [0, 1)s and y = (y(1), . . . , y(s)) ∈ [0, 1)s, we
define the (b-adic) digital shifted point v by x⊕y = (x(1)⊕ y(1), . . . , x(s)⊕
y(s)). Let x	y := (x(1)	y(1), . . . , x(s)	y(s)). For n1, n2 ∈ {0, 1, . . . , bl−1},
we define n1 ⊕ n2 := (n1/b

l ⊕ n2/b
l)bl. Let n1 	 n2 := (n1/b

l 	 n2/b
l)bl.

For x =
∑
j≥1 xjb

−j , where xj ∈ Zb, xj = 0 for j = 1, . . . , k and xk+1 6= 0,
we define the absolute b-adic valuation ‖ · ‖b of x by ‖x‖b = b−k−1. Let
‖n‖b = bk with k ∈ N0 such that n ∈ {bk, . . . , bk+1 − 1}.

Definition 5. A sequence (xn)n≥0 in [0, 1)s is weakly admissible in base
b if

(2.3) κm := min
0≤k<n<bm

‖xn 	 xk‖b > 0

for all m ≥ 1 where ‖x‖b :=
s∏
i=1

∥∥∥x(i)
∥∥∥
b
.

In the following, we will use truncations [γi]τm (i = 1 . . . , s), with τm =
[|logb(κm)|] + m. By Lemma 1 and the Proposition, which will be stated
and proved in the subsequent Section 3, the weakly admissible property is
important for the proof of the Theorem.

3. Proof of the main Theorem
Lemma 1. Let (xn)n≥0 be an s-dimensional weakly admissible digital se-
quence in base b, m ≥ 1, τm = [|logb(κm)|] + m. Then we have for all
integers A ≥ 0∣∣∣∆([0,γ), (xn)bmA+N−1

n=bmA

)
−∆

(
[0, [γ]τm), (xn)bmA+N−1

n=bmA

)∣∣∣ ≤ s,
∀ N ∈ {1, . . . , bm}.
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Proof. Let

B = [0,γ), Bi =
∏

1≤j<i

∏
i<j≤s

[0, γ(j))× [0, [γ(i)]τm) and B0 =
s⋃
i=1

(B \Bi).

It is easy to see that B = [0, [γ]τm) ∪B0. By (1.1), we get

∆
(
[0,γ), (xn)bmA+N−1

n=bmA

)
= ∆

(
[0, [γ]τm), (xn)bmA+N−1

n=bmA

)
+ ∆

(
B0, (xn)bmA+N−1

n=bmA

)
.

Hence

(3.1)
∣∣∣∆([0,γ), (xn)bmA+N−1

n=bmA

)
−∆

(
[0, [γ]τm), (xn)bmA+N−1

n=bmA

)∣∣∣
≤

s∑
i=1

∣∣∣∆(B \Bi, (xn)bmA+N−1
n=bmA

)∣∣∣.
Suppose that there exist i ∈ {1, . . . , s}, k, n ∈ {0, 1, . . . , bm−1}, k 6= n and
A ≥ 0 such that xn+bmA, xk+bmA ∈ B \Bi. Therefore

x
(i)
n+bmA,j = x

(i)
k+bmA,j for j = 1, . . . , τm.

From (1.6), (2.1) and (2.2), we have

y
(i)
n+bmA,j = y

(i)
k+bmA,j for j = 1, . . . , τm,

y
(i)
n+bmA,j = y

(i)
n,j + y

(i)
bmA,j , and y

(i)
k+bmA,j = y

(i)
k,j + y

(i)
bmA,j for j = 1, . . . , τm.

Hence

y
(i)
n,j = y

(i)
k,j , j = 1, . . . , τm and x

(i)
n,j = x

(i)
k,j , j = 1, . . . , τm.

Therefore ∥∥∥x(i)
n 	 x

(i)
k

∥∥∥
b
< b−τm ≤ κm and ‖xn 	 xk‖b ≥ κm.

By (2.3), we have a contradiction. Thus

card
{
n ∈ {0, 1, . . . , bm − 1} : xn+bmA ∈ B \Bi

}
≤ 1,

and
∣∣∣∆(B \Bi, (xn)bmA+N−1

n=bmA

)∣∣∣ ≤ 1.

Using (3.1), we get the assertion of Lemma 1. �

Let p be a prime, b = pκ,

E(α) := exp(2πiTr(α)/p), α ∈ Fb,
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where Tr : Fb → Fp denotes the usual trace of an element of Fb in Fp. We
identify Fp with Zp. Let

(3.2) δ(T) =
{

1, if T is true,
0, otherwise.

By [21, Ref. 5.6 and Ref. 5.8], we get

(3.3) 1
b

∑
β∈Fb

E(αβ) = δ(α = 0), where α ∈ Fb.

Let β1, . . . , βκ be a Fp base of Fb, and let Tr be a standard trace function.
We need the following special bijection ω : Fb → Zb :

(3.4) ω(α) =
κ∑
j=1

pj−1 Tr(αβj), b = pκ.

We use notations (1.6), (2.1) and (2.2). Let n =
∑
r≥0 ar(n)brbe the b-adic

expansion of n, and let

(3.5) ñ =
∑
r≥0

ω(ar(n))br.

Therefore

(3.6) {ñ : 0 ≤ n < bm} = {0, 1, . . . , bm − 1}.

Hence

(3.7) ar(n) = ω−1(ar(ñ))

and

(3.8) u
(i)
ñ,j :=

∑
r≥0

ω−1(ar(ñ))c(i)
j,r =

∑
r≥0

ar(n)c(i)
j,r = y

(i)
n,j , 1 ≤ i ≤ s.

Let

(3.9) x(s+1)
n := {n/bm}, x

(s+1)
n,j := am−j(n), y

(s+1)
n,j := x

(s+1)
n,j .

Bearing in mind that am−j(n) = ω−1(am−j(ñ)), we put

(3.10) u
(s+1)
ñ,j := ω−1(am−j(ñ)) = am−j(n) = y

(s+1)
n,j , j ∈ {1, . . . ,m}.

Let

u(i)
n = (u(i)

n,1, . . . , u
(i)
n,τm) ∈ Fτmb and u(s+1)

n = (u(s+1)
n,1 , . . . , u(s+1)

n,m ).

We abbreviate s+1-dimensional vectors (u(1)
n , . . . , u

(s+1)
n ), (x(1)

n , . . . , x
(s+1)
n ),

(k(1), . . . , k(s+1)) by symbols ~un, ~xn, ~k, and the s-dimensional vector
(x(1)
n , . . . , x

(s)
n ) by the symbol xn, where x(s+1)

n = {n/bm}.



172 Mordechay B. Levin

By (3.4)–(3.10), we get u(s+1)
n = u

(s+1)
n+bmA, A = 1, 2, . . .,

(3.11) u
(i)
n1⊕n2,j

= u
(i)
n1,j

+ u
(i)
n2,j

, j ≥ 1, i ∈ {1, . . . , s+ 1},
~un1⊕n2 = ~un1 + ~un2 .

In what follows, we will need this linear property. To get this property, we
used u(i)

ñ instead of y(i)
n (i = 1, . . . , s+ 1).

Let N ∈ {1, . . . , bm}, γ(s+1) = N/bm, k = (k1, . . . ,kl) 6= 0, with kj ∈ Fb,

(3.12) v(k) := max{j ∈ {1, . . . , l} : kj 6= 0}, v(0) = 0, l ≥ 1.

We introduce inner products as follows

(3.13)

~k · ~un =
s∑
i=1

τm∑
j=1

k
(i)
j u

(i)
n,j +

m∑
j=1

k
(s+1)
j u

(s+1)
n,j ,

k · u =
l∑

j=1
kjuj , k,u ∈ Flb, l ≥ 1.

In Lemma 2, we derive the generalized Walsh series decomposition of the
discrepancy function.

Although the argument is fairly standard (see, e.g., [6, Lemma 14.8],
[9, Lemma 1], [22, Theorem 3.10]), I have not found it stated explicitly in
the literature in a form that is easily applicable to our case. So, I give the
details in full.

Lemma 2. Let A ≥ 1 be an integer, N ∈ {1, . . . , bm}, γ(s+1) = N/bm, and
let (xn)n≥0 be a digital sequence in base b. Then

∆([0, [γ]τm), (xn)bmA+N−1
n=bmA )

=
bm−1∑
n=0

∑
(k(1),...,k(s))∈(Fτm

b
)s

∑
k(s+1)∈Fm

b

E(~k · ~u ˜n+bmA)1̂(~k)− bm
s+1∏
i=1

[γ(i)]τm ,

where

(3.14) 1̂(~k) =
s+1∏
i=0

1̂(i)(k(i)),

1̂(i)(0) = [γ(i)]τm (1 ≤ i ≤ s+ 1), [γ(s+1)]τm = γ(s+1),
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and

(3.15) 1̂(i)(k) = b−v(k)E

− v(k)−1∑
j=1

kjγ
(i)
j



×


γ

(i)
v(k)−1∑
b=0

E(−kv(k)b) + E(−kv(k)γ
(i)
v(k)){b

v(k)[γ(i)]τm}


with k = (k1, . . . ,kl), l ∈ {τm,m}, i = 1, . . . , s+ 1.

Proof. Let γ =
∑l
j=1 γjb

−j > 0, z =
∑∞
j=1 zjb

−j , with γj , zj ∈ Zb, l ≥ 1 be
integer. It is easy to verify (see also [22, p. 37–38]) that

1[0,γ)(z) =
l∑

r=1

γr−1∑
b=0

r−1∏
j=1

δ(zj = γj)δ(zr = b).

By (2.2) and (3.8), we have that

x
(i)
j,n = b ⇐⇒ y

(i)
j,n = b ⇐⇒ u

(i)
j,ñ = b,

and

1[0,[γ(i)]τm )(x
(i)
n ) =

τm∑
r=1

γ
(i)
r −1∑
b=0

r−1∏
j=1

δ(x(i)
j,n = γ

(i)
j )δ(x(i)

r,n = b)

=
τm∑
r=1

γ
(i)
r −1∑
b=0

r−1∏
j=1

δ(y(i)
j,n = γ

(i)
j )δ(y(i)

r,n = b)

=
τm∑
r=1

γ
(i)
r −1∑
b=0

r−1∏
j=1

δ(u(i)
j,ñ = γ

(i)
j )δ(u(i)

r,ñ = b), i = 1, . . . , s.

Similarly, we derive

(3.16) 1[0,γ(s+1))(x
(s+1)
n ) =

m∑
r=1

γ
(s+1)
r −1∑
b=0

r−1∏
j=1

δ(u(s+1)
j,ñ = γ

(s+1)
j )δ(u(s+1)

r,ñ = b).

By (3.3), we have

(3.17) 1[0,[γ(i)]τm )(x
(i)
n ) =

τm∑
r=1

γ
(i)
r −1∑
b=0

b−r
∑

k1,...,kr∈Fb

1̇(i)(k),

where

1̇(i)(k) = E

r−1∑
j=1

kj(u(i)
j,ñ − γ

(i)
j ) + kr(u(i)

ri,ñ
− b)

 = E(k · u(i)
ñ )1̃(i)(k),
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with

1̃(i)(k) = E

− r−1∑
j=1

kjγ
(i)
j − krb

 .
Hence

1[0,[γ(i)]τm )(x
(i)
n ) =

τm∑
r=1

γ
(i)
r −1∑
b=0

b−r
∑

k1,...,kτm∈Fb

δ(v(k) ≤ r)E(k · u(i)
ñ )1̃(i)(k)

=
∑

k1,...,kτm∈Fb

τm∑
r=1

γ
(i)
r −1∑
b=0

b−rδ(v(k) ≤ r)E(k · u(i)
ñ )1̃(i)(k)

=
∑

k1,...,kτm∈Fb

E(k · u(i)
ñ )1̈(i)(k),

where

1̈(i)(k) =
τm∑

r=v(k)

γ
(i)
r −1∑
b=0

b−r1̃(i)(k).

Applying (3.15) and (3.17), we derive

1̈(i)(k) =
τm∑

r=v(k)

γ
(i)
r −1∑
b=0

b−rE

(
−
r−1∑
j=1

kjγ
(i)
j − krb

)

=
γ

(i)
v(k)−1∑
b=0

b−v(k)E

(
−
v(k)−1∑
j=1

kjγ
(i)
j − kv(k)b

)

+ E

(
−
v(k)−1∑
j=1

kjγ
(i)
j

)
τm∑

r=v(k)+1

γ
(i)
r −1∑
b=0

b−r

= b−v(k)E

(
−
v(k)−1∑
j=1

kjγ
(i)
j

)

×


γ

(i)
v(k)−1∑
b=0

E
(
− kv(k)b

)
+ E

(
− kv(k)(γ

(i)
v(k))

)
{bv(k)[γ](i)τm}


= 1̂(i)(k).

Hence
1[0,[γ(i)]τm )(x

(i)
n ) =

∑
k1,...,kτm∈Fb

E(k · u(i)
ñ )1̂(i)(k).



Bounded remainder set 175

Similarly, we obtain from (3.15) and (3.16) that

1[0,γ(s+1))(x
(s+1)
n ) =

∑
k1,...,km∈Fb

E(k · u(s+1)
ñ )1̂(s+1)(k).

Using (3.13), we obtain

(3.18)
s+1∏
i=1

1[0,[γ(i)]τm )(x
(i)
n ) =

∑
(k(1),...,k(s))∈(Fτm

b
)

∑
k(s+1)∈Fm

b

E(~k · uñ)1̂(~k).

Bearing in mind that x(s+1)
n+bmA = {(n + bmA)/bm} = {n/bm} and γ(s+1) =

N/bm, we have{
n ∈ {0, 1, . . . , N − 1} : xn+bmA ∈ [0, [γ]τm)

}
=

n ∈ {0, 1, . . . , bm − 1} :
~xn+bmA = (xn+bmA, x

(s+1)
n+bmA)

∈ [0, [γ]τm)× [0, γ(s+1))

 .
From (3.18) and (1.1), we derive

∆([0, [γ]τm), (xn)bmA+N−1
n=bmA )

=
bm−1∑
n=0

s+1∏
i=1

1[0,[γ(i)]τm )(x
(i)
n+bmA)− bm

s+1∏
i=1

[γ(i)]τm

=
bm−1∑
n=0

∑
(k(1),...,k(s))∈(Fτm

b
)s

∑
k(s+1)∈Fm

b

E(~k · ~u ˜n+bmA)1̂(~k)− bm
s+1∏
i=1

[γ(i)]τm .

Hence Lemma 2 is proved. �

Let
~k = (k(1), . . . , k(s+1)), k(i) = (k(i)

1 , . . . , k(i)
τm), i ∈ {1, . . . , s},

k(s+1) = (k(s+1)
1 , . . . , k(s+1)

m ),

Gm =
{
~k :

k
(i)
j ∈ Fb with j ∈ {1, . . . , τm}, i ∈ {1, . . . , s},

and j ∈ {1, . . . ,m} for i = s+ 1

}
= (Fτmb )s × Fmb ,

G∗m = Gm \ {0},

and let

(3.19) Dm =
{
~k ∈ Gm : ~k · ~un = 0 for all n ∈ {0, 1, . . . , bm − 1}

}
,

D∗m = Dm \ {0}.
It is easy to see that

(3.20) µ~k ∈ D∗m for all µ ∈ F∗b , ~k ∈ D∗m.
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These definitions, Lemma 3 and Lemma 4 are slight modifications of the
results of the duality theory (see, e.g., [6, Chapter 7]).

Lemma 3. Let (xn)n≥0 be a digital sequence in base b. Then

(3.21) ∆([0, [γ]τm), (xn)bmA+N−1
n=bmA ) =

∑
~k∈G∗m

1̂(~k)
bm−1∑
n=0

E(~k · ~un + ~k · ~u
b̃mA

).

Proof. By (3.14) we have 1̂(0) =
∏s+1
i=1 [γ(i)]τm . Applying Lemma 2, we get

∆([0, [γ]τm), (xn)bmA+N−1
n=bmA ) =

∑
~k∈G∗m

1̂(~k)
bm−1∑
n=0

E(~k · ~u ˜n+bmA).

Using (3.5), (3.8) and (3.11), we obtain

˜n+ bmA = ñ+ b̃mA = ñ⊕ b̃mA and ~u ˜n+bmA = ~uñ + ~u
b̃mA

.

Now from (3.6), we get (3.21). Hence Lemma 3 is proved. �

Lemma 4. Let (xn)n≥0 be a digital sequence in base b. Then

(3.22) σ :=
bm−1∑
n=0

E(~k · ~un) = bmδ(~k ∈ Dm).

Proof. Using (3.8), (3.10) and (3.13), we have

~k · ~uñ =
s∑
i=1

τm∑
j=1

m−1∑
r=0

k
(i)
j ar(n)c(i)

j,r +
m∑
j=1

k
(s+1)
j am−j(n)

=
m−1∑
r=0

ar(n)
(

s∑
i=1

τm∑
j=1

k
(i)
j c

(i)
j,r + k

(s+1)
m−r

)
=

m−1∑
r=0

frξr,

where

(3.23) fr = ar(n) ∈ Fb and ξr =
s∑
i=1

τm∑
j=1

k
(i)
j c

(i)
j,r + k

(s+1)
m−r .

By (3.6), (1.6) and (3.3), we obtain

σ =
bm−1∑
n=0

E(~k · ~un) =
bm−1∑
n=0

E(~k · ~uñ)

=
∑

f0,...,fm−1∈Fb

E

(
m−1∑
r=0

frξr

)
= bm

m−1∏
r=0

δ(ξr = 0).

Now from (3.19) and (3.23), we get that ~k ∈ Dm and Lemma 4 follows. �
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Let

(3.24)

Λm =
{
~k = (k(1), . . . , k(s+1)) ∈ Gm : k(s+1) = 0

}
= (Fτmb )s × {0},

g~w =
{
A ≥ 1 : y(i)

bmA,j = w
(i)
j , i ∈ {1, . . . , s}, j ∈ {1, . . . , τm}

}
,

ρ~w :=
{

0 if g~w = ∅,
min g~w otherwise,

Mm = {ρ~w : ~w ∈ Λm},

~w = (w(1), . . . , w(s+1)), w(i) = (w(i)
1 , . . . , w(i)

τm) ∈ Fτmb , i = 1, . . . , s,

w(s+1) = 0 ∈ Fmb .

Bearing in mind (3.8), we get

(3.25) g~w =
{
A ≥ 1 : u(i)

b̃mA
= w(i), i ∈ {1, . . . , s}

}
.

We consider the following condition :

(3.26) g~w 6= ∅ for all ~w ∈ Λm.

Let Rm be a finite set of integers, and let

(3.27) σ1(Rm) := 1
card(Rm)

∑
A∈Rm

∣∣∣∆([0, [γ]τm), (xn)bmA+N−1
n=bmA

)∣∣∣2.
Lemma 5. Let (xn)n≥0 be a weakly admissible uniformly distributed digital
(T, s)-sequence in base b, satisfying to (3.26) for all m ≥ m0 with some
m0 ≥ 1. Then

(3.28) σ1(Mm) =
∑
~k∈D∗m

b2m|1̂(~k)|2,

where Mm is defined in (3.24).

Proof. By (3.24), (3.13) and (3.3), we obtain

(3.29) 1
bsτm

∑
~w∈Λm

E(~k · ~w)

= 1
bsτm

∑
w

(i)
j ∈Fb, i∈{1,...,s}, j∈{1,...,τm}

E

 s∑
i=1

τm∑
j=1

k
(i)
j w

(i)
j


=

s∏
i=1

τm∏
j=1

δ(k(i)
j = 0̄) =

s∏
i=1

δ(k(i) = 0), where ~k ∈ Gm.
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Using (3.21), we derive

(3.30) |∆([0, [γ]τm), (xn)bmA+N−1
n=bmA )|2

=
∑

~k′,~k′′∈G∗m

1̂(~k′)1̂(~k′′)
bm−1∑
n1,n2=0

E(~k′ · ~un1 +~k′ · ~u
b̃mA
−~k′′ · ~un2 −~k′′ · ~ub̃mA).

Here z is the complex conjugation of z. According to conditions of Lemma 5,
(3.26) is true, i.e. g~w 6= ∅ for all ~w ∈ Λm. Therefore for all ~w ∈ Λm there
exists ρ~w ≥ 1. By (3.24), if ~w1 6= ~w2, then ρ~w1 6= ρ~w2 . So

card(Mm) = card(Λm) = bsτm .

From (3.10), we get that u(s+1)
b̃mA

= 0. In view of (3.24), (3.25), we have
that if A1, A2 ∈Mm, A1 6= A2, then ~ub̃mA1

6= ~u
b̃mA2

. Hence

{~u
b̃mA

: A ∈Mm} = Λm.

Applying (3.24), (3.29), (3.30) and (3.27) with Rm = Mm, we have
σ1(Mm)

=
∑

~k′,~k′′∈G∗m

1̂(~k′)1̂(~k′′)

×
bm−1∑
n1,n2=0

b−sτm
∑

A∈Mm

E(~k′ · ~un1 − ~k′′ · ~un2 + (~k′ − ~k′′) · ~u
b̃mA

)

=
∑

~k′,~k′′∈G∗m

1̂(~k′)1̂(~k′′)

×
bm−1∑
n1,n2=0

E(~k′ · ~un1 − ~k′′ · ~un2)b−sτm
∑
~w∈Λm

E(~k′ − ~k′′) · ~w)

=
∑

~k′,~k′′∈G∗m

1̂(~k′)1̂(~k′′)
bm−1∑
n1,n2=0

E(~k′ · ~un1 − ~k′′ · ~un2)
s∏
i=1

δ(k′(i) = k′′
(i)).

Let n3 = n2 	 n1. From (1.6), we obtain {n3 : 0 ≤ n2 < bm} =
{0, 1, . . . , bm − 1}. By (3.5)–(3.11), we get ~un3 = ~un2 − ~un1 . Hence

σ1(Mm) =
∑

~k′,~k′′∈G∗m

1̂(~k′)1̂(~k′′)
bm−1∑
n1,n3=0

E((~k′ − ~k′′) · ~un1 − ~k′′ · ~un3)

×
s∏
i=1

δ(k′(i) − k′′(i)).

We get ~k′ − ~k′′ = (0, . . . ,0, k′(s+1) − k′′(s+1)).
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From (3.10), we have u(s+1)
ñ,j = am−j(n) and

(~k′ − ~k′′) · ~uñ = (k′(s+1) − k′′(s+1)) · u(s+1)
ñ =

m∑
j=1

(k′(s+1)
j − k′′(s+1)

j )am−j(n).

Taking into account (3.3), we get
bm−1∑
n1=0

E((~k′ − ~k′′) · ~un1) =
bm−1∑
n1=0

E((~k′ − ~k′′) · ~uñ1
)

=
bm−1∑
n=0

E

(
m∑
j=1

(k′(s+1)
j − k′′(s+1)

j )am−j(n)
)

= bm
m∏
j=1

δ(k′(s+1)
j = k′′

(s+1)
j ).

Hence ~k′ = ~k′′. Now using Lemma 4, we obtain

σ1(Mm) = bm
∑

~k′∈G∗m

|1̂(~k′)|2
bm−1∑
n3=0

E(−~k′ · ~un3) =
∑
~k∈D∗m

b2m|1̂(~k)|2.

Therefore Lemma 5 is proved. �

Lemma 6. Let Ak,c := E(−kc̄)
∑

c−1
b=0E(kb), k ∈ Fb, c ∈ Zb, and let

(3.31) Bk,c(x) :=
c−1∑
b=0

E(kb) + E(kc̄)x = E(kc̄/b)(Ak,c + x), x ∈ [0, 1].

Then there exist a1, . . . , a5 ∈ Zb, a2
1 + a2

2 + a2
3 > 0, a4 = a5 = 0 such that

(3.32)
∣∣∣∣∣Bk,c

( 5∑
j=1

aj
bj

+ y

b5

)∣∣∣∣∣ ≥ b−5, ∀ k ∈ Fb, c ∈ Zb, y ∈ [0, 1]

and

(3.33)
∑
k∈F∗

b

|Bk,c(x)|2 ≥ b−2r0 ∀ c ∈ Zb, where ‖x‖ ≥ b−r0 , r0 ≥ 1.

Proof. Let
A1 = {θk,c := Re(Ak,c) : k ∈ Fb, c ∈ Zb}.

We get card(A1) ≤ b2. Let

A2 = {a = (a1, . . . , a5) ∈ Z5
b : a2

1 + a2
2 + a2

3 > 0, a4 = a5 = 0}

and let za = a1/b+ · · ·+ a5/b
5. By (3.31), we derive

|Bk,c(x)| = |Ak,c + x| ≥ |Re(Ak,c) + x|.
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Suppose that (3.32) is not true. Then for all a ∈ A2 there exist k(a), c(a)
and y(a) such that

b−5 >

∣∣∣∣∣Bk(a),c(a)

( 5∑
j=1

aj
bj

+ y(a)
b5

)∣∣∣∣∣ ≥
∣∣∣∣θk(a),c(a) + za + y(a)

b5

∣∣∣∣.
Hence |θk(a),c(a) + za| < b−4. Suppose that θk(a1),c(a1) = θk(a2),c(a2) for
some a1,a2 ∈ A2, a1 6= a2. Hence |za1 − za2 | < b−3. Bearing in mind
that |za1 − za2 | ≥ b−3 for all a1 6= a2, we get a contradiction. Therefore
θk(a1),c(a1) 6= θk(a2),c(a2) for all a1,a2 ∈ A2, a1 6= a2. Thus card(A1) ≥
card(A2). Hence

b2 > card(A1) ≥ card(A2) = b3 − 1 > b2.

We have a contradiction. Therefore (3.32) is true.
Now we consider assertion (3.33). If c = 0, then |Bk,c(x)| = |x| and (3.33)

follows.
Now let c ∈ {1, . . . , b− 1}. By (3.31), we have

(3.34) |Bk,c(x)|2 = |Ak,c|2 + 2xRe(Ak,c) + x2.

Using (3.3), we get

∑
k∈F∗

b

|Ak,c|2 =
∑
k∈F∗

b

∣∣∣∣∣
c−1∑
b=0

E(kb)
∣∣∣∣∣
2

= −c2 +
c−1∑

b1,b2=0

∑
k∈Fb

E(k(b1 − b2))

= −c2 + b
c−1∑

b1,b2=0
δ(b1 = b2) = −c2 + bc.

We obtain∑
k∈F∗

b

Ak,c = −c+
c−1∑
b=0

∑
k∈Fb

E(k(b− c̄)) = −c+ b
c−1∑
b=0

δ(b̄ = c̄) = −c.

Now from (3.34), we derive∑
k∈F∗

b

|Bk,c(x)|2 = c(b−c)−2xc+x2(b−1) ≥ c(1−2x+x2) ≥ (1−x)2 ≥ ‖x‖2

and (3.33) follows. Thus Lemma 6 is proved. �

Corollary. Let a1, . . . , a5 be integers chosen in Lemma 6 and let
γ

(s+1)
v(k(s+1))+j = aj, j = 1, . . . , 5, with some ~k = (k(1), . . . , k(s+1)) ∈ D∗m. Then

(3.35) |1̂(s+1)(µk(s+1))| ≥ b−v(k(s+1))−5 for all µ ∈ F∗b
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and

(3.36)
∑
µ∈F∗

b

|1̂(i)(µk(s))|2 ≥ b−2v(k(s))−2r0 , where
∥∥∥bv(k(s))[γ(s)]τm

∥∥∥ ≥ b−r0 .

Proof. By (3.15) and (3.31), we get

|1̂(i)(µk(i))|

= b−v(k(i))

∣∣∣∣∣∣∣∣
γ

(i)
v(k(i))

−1∑
b=0

E
(
−µk(i)

v(k(i))b
)

+ E
(
−µk(i)

v(k(i))γ
(i)
v(k(i))

)
{bv(k(i))[γ(i)]τm}

∣∣∣∣∣∣∣∣
= b−v(k(i))|B

k(i),c(i)(x(i))|,

where

k
(i) = −µk(i)

v(k(i)) 6= 0̄, c
(i) = γ

(i)
v(k(i)), x

(i) =
{
bv(k(i))[γ(i)]τm

}
, i = s, s+ 1.

Bearing in mind the conditions of the Corollary, we get that x(s+1) have
the following b-adic expansion :

x
(s+1) = γ

(s+1)
v(k(s+1))+1/b+ γ

(s+1)
v(k(s+1))+2/b

2 + · · · = a1/b+ · · ·+ a5/b
5 + · · · .

Now applying Lemma 6, we get the assertion of the Corollary. �

Lemma 7. Let (xn)n≥0 be a digital sequence in base b and let ρ ∈ {2, 3, . . . ,
m− 2} be an integer. Then there exists ~k ∈ D∗m such that

k(1) = · · · = k(s−1) = 0, k
(s)
v(k(s)) = 1̄, 1 ≤ v(k(s)) ≤ ρ− 1

and v(k(s+1)) ≤ m− ρ+ 2.

Proof. From (3.5)–(3.10), (3.19), (3.22) and (3.23), we get that ~k ∈ D∗m if
and only if

(3.37)
s∑
i=1

τm∑
j=1

k
(i)
j c

(i)
j,r + k

(s+1)
m−r = 0̄, for all r = 0, 1, . . . ,m− 1.

We put k(1) = · · · = k(s−1) = 0, k(s)
j = 0̄, for j ≥ ρ and k

(s+1)
j = 0̄, for

j > m− ρ+ 2. Hence (3.37) is true if and only if

(3.38) k
(s+1)
m−r = −

ρ−1∑
j=1

k
(s)
j c

(s)
j,r for r = 0, 1, . . . ,m− 1,

k
(s+1)
m−r = 0 for m− r > m− ρ+ 2.
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Therefore, in order to obtain the statement of the lemma, it is sufficient to
show that there exists a nontrivial solution of the following system of linear
equations

(3.39)
ρ−1∑
j=1

k
(s)
j c

(i)
j,r + k

(s+1)
m−r δ(m− r ≤ m− ρ+ 2) = 0̄, r = 0, . . . ,m− 1.

In this system, we have m+ 1 unknowns k(s)
1 , . . . , k

(s)
ρ−1, k

(s+1)
1 , . . . , k

(s+1)
m−ρ+2

and m linear equations. Hence there exists a nontrivial solution of (3.39).
By (3.39), we get that if k(s) = 0, then k(s+1) = 0. Hence k(s) 6= 0 and
1 ≤ v(k(s)) ≤ ρ − 1. Taking into account that if ~k ∈ Dm then µ~k ∈ Dm

for all µ ∈ F∗b . Therefore there exists ~k ∈ D∗m such that k(s)
v(k(s)) = 1̄ and

1 ≤ v(k(s)) ≤ ρ− 1. Thus Lemma 7 is proved. �

Proposition. Let (xn)n≥0 be a weakly admissible uniformly distributed dig-
ital (T, s)-sequence in base b, satisfying to (3.26) for all m ≥ m0 with some
m0 ≥ 1. Then [0, γ1)× · · · × [0, γs) is of bounded remainder with respect to
(xn)n≥0 if and only if (1.11) is true.

Proof. The sufficient part of the Proposition follows directly from the def-
inition of (T, s) sequence, Lemma A and Lemma B. We will consider only
the necessary part of the Proposition.

Suppose that (1.11) does not hold true. Then

max
1≤i≤s

card
{
j ≥ 1 : γ(i)

j 6= 0
}

=∞.

Suppose, w.l.o.g,

card
{
j ≥ 1 : γ(s)

j 6= 0
}

=∞.

Let

(3.40) W =
{
j ≥ 1 : γ(s)

j ∈ {1, . . . , b− 2} or γ(s)
j = b− 1, andγ(s)

j+1 = 0
}
.

Bearing in mind that {j ≥ 1 : γ(s)
l = b− 1 ∀ l > j} = ∅, we obtain either

γ
(s)
j ∈ {1, . . . , b− 2} for infinitely many j > 1 or γ(s)

j = b− 1, andγ(s)
j+1 = 0

for infinitely many j > 1. In both cases we obtain that card(W) =∞.
Suppose that there exists H > 0 such that b2Hc1 > 4H2,

(3.41)
∣∣∣∆([0,γ), (xn)M+N−1

n=M

)∣∣∣ ≤ H − s for all M ≥ 0, N ≥ 1,

with c1 = γ2
0b
−24, [0,γ) = [0, γ1)× · · · × [0, γs), γ0 = γ1γ2 · · · γs−1.

We arrange the elements W in an ascending order, W = {wj : wi <
wj for i < j, j = 1, 2, . . .}. Furthermore we choose a proper subset of W,
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{r(1), r(2), r(3), . . .} again arranged in ascending order, with

(3.42) r(j + 1) = min
{
wk ∈W : wk ≥ r(j) +H2}

for j = 0, 1, . . . , r(0) = 1.
We choose m and J from the following conditions

(3.43) m = r(J), 2
s−1∏
i=1

[γi]τm ≥
s−1∏
i=1

γi = γ0, J ≥ H2b18γ−2
0 , m ≥ m0,

where m0 is chosen in Lemma 5.
Applying Lemma 1 and (3.41), we have

(3.44)
∣∣∣∆([0, [γ]τm), (xn)bmA+N−1

n=bmA

)∣∣∣ ≤ H ∀ A ≥ 0, N ∈ {1, . . . , bm}.

By Lemma 7, we get that there exists a sequence (~k(j))Jj=1 such that

(3.45)
~k(j) ∈ D∗m, k(1)(j) = · · · = k(s−1)(j) = 0, k

(s)
v(k(s)(j))(j) = 1̄,

v(k(s)(j)) ≤ r(j)− 1, v(k(s+1)(j)) ≤ m− r(j) + 2, j ∈ {1, . . . , J}.

We see that the sequence (~k(j))Jj=1 does not depend on γ(s+1). We will
construct γ(s+1) as follows (see (3.48)). We have{

bv(k(s)(j))[γ(s)]τm
}

= .γ
(s)
v(k(s)(j))+1 . . . γ

(s)
r(j) . . . .

In view of (3.40) and (3.42), we get γ(s)
r(j) ∈{1, . . . , b − 2} or γ(s)

r(j) = b − 1,
and γ(s)

j+1 = 0. In both cases, we obtain from (3.45) that

(3.46)
∥∥∥bv(k(s)(j))[γ(s)]τm

∥∥∥ ≥ bv(k(s)(j))−r(j)−2, j = 1, . . . , J.

Let H1 = {1, 2, . . . , J} if

(3.47) |v(k(s+1)(j0))− v(k(s+1)(j1))| ≥ 6
for all 1 ≤ j0 < j1 ≤ J , and let H1 = {j0} if there exist 1 ≤ j0 < j1 ≤ J
such that (3.47) is false.

Hence card(H1) ∈ {1, J}. Note that the choice of H1 is not unique for
card(H1) = 1.

Let a1, . . . , a5 be integers chosen in Lemma 6 and let

(3.48) N = bmγ(s+1) with γ(s+1) =
∑
j∈H1

5∑
ν=1

aνb−ν−v(k(s+1)(j)).

From Lemma 5, (3.24), (3.27), (3.44) and conditions of the Proposition, we
have
(3.49) H2 ≥ σ1(Mm) =

∑
~k∈D∗m

b2m|1̂(~k)|2.
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By (3.20), we obtain that if ~k(j) ∈ Dm then µ~k(j) ∈ Dm for µ ∈ F∗b . Sup-
pose that card(H1) = J . Taking into account (3.47), we get that µ1~k(j1) 6=
µ2~k(j2) for all µ1, µ2 ∈ F∗b and j1, j2 ∈ H1, j1 6= j2.

For both cases card(H1) = J and card(H1) = 1, we have from (3.14),
(3.45) and (3.49) that

(3.50) σ1(Mm) ≥
∑
µ∈F∗

b

∑
j∈H1

b2m|1̂(µ~k(j))|2

= ([γ1]τm · · · [γs−1]τm)2 ∑
µ∈F∗

b

∑
j∈H1

b2m|1̂(s)(µk(s)(j))|2|1̂(s+1)(µk(s+1)(j))|2.

In the proof of the Proposition, we will use the following heuristic. Apply-
ing the Corollary, we get that summands in (3.50) are not small (see (3.52)
and (3.53)). Hence the case card(H1) = J is simple (see (3.53)). The case
card(H1) = 1 is more complicated. We will prove that in (3.50) there is a
big summand (see also (3.52)).

Let us consider (3.52). According to (3.45), we have r(j1)+v(k(s+1)(j1)) ≤
m + 2 for all j1 ∈ {1, . . . , J}. Taking into account that r(j1) − r(j0) ≥
H2 and that |v(k(s+1)(j1)) − v(k(s+1)(j0))| ≤ 5 (see (3.47)), we get that
m−(r(j0)+v(k(s+1)(j0))) ≥ H2−7. So, we will get a contradiction in (3.52)
(see also (3.54)).

Let us return to (3.50). In view of (3.48), we have that γ(s+1)
v(k(s+1)(j))+ν = aν ,

ν = 1, . . . , 5. Therefore, we can use (3.35) :

|1̂(s+1)(µk(s+1)(j))|2 ≥ b−2v(k(s+1)(j))−10 for all µ ∈ F∗b , j ∈ H1.

Bearing in mind (3.46) and applying (3.36) with r0 = r(j)−v(k(s)(j))+2,
we get

(3.51)
∑
µ∈F∗

b

|1̂(s)(µk(s)(j))|2

≥ b−2v(k(s)(j))−2(r(j)−v(k(s)(j))+2) = b−2r(j)−4, j ∈ H1.

By (3.43), we obtain 4 ≥ γ2
0([γ1]τm · · · [γs−1]τm)−2. In view of (3.49)–(3.51),

we have

(3.52) 4H2 ≥ 4σ1(Mm) ≥ σ1(Mm)γ2
0([γ1]τm · · · [γs−1]τm)−2

≥ γ2
0
∑
j∈H1

∑
µ∈F∗

b

1|1̂(s+1)(µk(s)(j))|2b2(m−v(k(s+1)(j))−5)

≥ γ2
0
∑
j∈H1

b2(m−r(j)−v(k(s+1)(j))−7).
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Suppose that card(H1) = J . From (3.43) and (3.45), we get

(3.53) 4H2 ≥ 4σ1(Mm)≥ γ2
0

J∑
j=1

b2(m−r(j)−v(k(s+1)(j))−7) ≥ γ2
0Jb

−18 > 4H2.

We have a contradiction. Now let card(H1) = 1.
By (3.47), we obtain that there exist j0, j1 ∈ {1, . . . , J} such that j0 ∈

H1, j0 < j1 and |v(k(s+1)(j0))− v(k(s+1)(j1))| ≤ 5.
According to (3.42) and (3.45), we have

r(j0) + v(k(s+1)(j0)) ≤ r(j1)−H2 + v(k(s+1)(j1)) + 5

and

m− r(j0)− v(k(s+1)(j0)) ≥ m− r(j1)− v(k(s+1)(j1)) +H2 − 5 ≥ H2 − 7.

Applying (3.52) and (3.41), we get

(3.54) 4H2 ≥ 4σ1(Mm) ≥ γ2
0b

2(m−r(j0)−v(k(s+1)(j0))−5)

≥ γ2
0b

2H2−24 = b2H
2
c1 > 4H2,

with c1 = γ2
0b
−24. We have a contradiction. By (3.53) and (3.54), the Propo-

sition is proved. �

Note that by Definition 3 and Lemma B, the sufficient part of the state-
ment in the Proposition holds true for any uniformly distributed digital
sequence.

Completion of the proof of the Theorem. By Theorem A, we get that
1, L1, . . . , Ls are linearly independent over Fb[z]. Hence 1, zmL1, . . . , z

mLs
are linearly independent over Fb[z]. Let L(m) = (zmL1, . . . , z

mLs), and let
S(L(m)) = (l(m)

n )n≥0 (see (1.9)) with

l(m)
n = (l(m,1)

n , . . . , l(m,s)n ), l(m,i)n = {n(z)zmLi(z)}|z=b,
for 1 ≤ i ≤ s, n ≥ 0.

Using Theorem A, we obtain that S(L(m)) is a uniformly distributed se-
quence in [0, 1)s. Therefore, for all ~w ∈ Λm there exists an integer A ≥ 1
with

l
(m,i)
bmA,j = w

(i)
j for 1 ≤ i ≤ s, 1 ≤ j ≤ τm.

Thus S(L) satisfies the condition (3.26).
Bearing in mind that 1, L1, . . . , Ls are linearly independent over Fb[z],

we get that {n(z)Li} 6= 0 for all n ≥ 1. Hence {l(i)(n)} 6= 0 for all n ≥ 1
(i = 1, . . . , s). Therefore the sequence S(L) is weakly admissible.

Applying the Proposition, we get the assertion of the Theorem. �
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