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Journal de Théorie des Nombres
de Bordeaux 34 (2022), 309–322

On abelian points of varieties intersecting
subgroups in a torus

par Jorge MELLO

Résumé. Sous certaines conditions naturelles, on montre que l’intersection
de l’ensemble de points abéliens d’un sous-ensemble non-atypique d’une sous-
variété X avec l’union des sous-groupes algébriques connexes de codimension
au moins dimX dans un tore est finie, en généralisant les résultats de Os-
tafe, Sha, Shparlinski and Zannier (2017). Nous généralisons également leur
théorème de structure pour de tels ensembles au cas où les sous-groupes algé-
briques ne sont pas nécesserement connexes et prouvons un résultat connexe
pour les courbes dans le contexte de dynamique arithmétique.

Abstract. We show, under some natural conditions, that the set of abelian
points on the non-anomalous subset of a closed irreducible subvariety X in-
tersected with the union of connected algebraic subgroups of codimension at
least dimX in a torus is finite, generalising results of Ostafe, Sha, Shparlin-
ski and Zannier (2017). We also generalise their structure theorem for such
sets when the algebraic subgroups are not necessarily connected, and obtain
a related result in the context of curves and arithmetic dynamics.

1. Introduction

Given non-zero complex numbers α1, . . . , αn ∈ C∗, we say that they are
multiplicatively dependent if there exist integers k1, . . . , kn ∈ Z, not all zero,
such that

αk1
1 · · ·α

kn
n = 1.

If moreover k1, . . . , kn are relatively prime, then α1, . . . , αn are said to be
primitively dependent.

Multiplicative dependence of algebraic numbers has been studied for a
long time. For examples, see [3, 4, 11, 12, 16, 17].

Multiplicative dependence arises naturally from the study of points on
subvarieties of tori. Namely, for Gm the multiplicative algebraic group over
the complex numbers C, endowed with the multiplicative group law, there
are many works investigating the intersection of an algebraic variety in Gn

m

and the algebraic subgroups in Gn
m; for example [4, 5, 8, 16].
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In [16], it was studied the multiplicative dependence of coordinates of
curves over fields with the Bogomolov property (see Definition 2.11), for
example the abelian closure of a number field. Namely, its authors proved
the following

Theorem ([16, Theorem 2.10]). Let X ⊂ G = Gn
m be an irreducible curve

defined over a number field K and not contained in any translate of a proper
algebraic subgroup of Gn

m. Suppose that L ⊃ K has the Bogomolov Property.
Then there are at most finitely many points in X(L) whose coordinates are
primitively dependent.

For multiplicative dependence of values of rational functions in this con-
text see [17]. In [17] it was also studied the multiplicative dependence of
elements in an orbit of an algebraic dynamical system, and recently in [3]
this was extended to the more general setting of multiplicative dependence
modulo a finitely generated multiplicative group.

In this paper, we want to study the extension of [16, Theorem 2.10] stated
above to higher dimensional varieties, as suggested in [16, Remark 4.1].
The statements studied and obtained require the definition of the open
anomalous set Xoa of an irreducible closed subvariety X ⊂ Gn

m, to be
defined properly further down (Definition 2.1). If C is a curve then Coa = C
if and only if C is not contained in a translate of a proper algebraic subgroup
of Gn

m. Among other results, we prove the following

Theorem 1.1. Let X ⊂ G = Gn
mbe an irreducible closed subvariety defined

over a number field K. Suppose that L ⊃ K has the Bogomolov Property.
Then there are at most finitely many points in Xoa(L) contained in some
connected algebraic subgroup of G of codimension at least dimX

In Section 2 we state preliminar notation, definitions, and results. In
Section 3 we start proving two main results, including a structure theorem
for abelian points for the non-anomalous subset of a variety that gener-
alises [16, Theorem 2.1]. Finally, we consider similar problems in the con-
text of arithmetic dynamics, in particular when curves intersect periodic
hypersurfaces.

Acknowledgments. The author is grateful to Alina Ostafe, Igor Shpar-
linski and Umberto Zannier for helpful comments and discussions.

2. Preliminaries

2.1. Notation. We denote by U the set of roots of unity in Q. For a
field K, we use K to denote the algebraic closure of K, Kc to denote the
cyclotomic closure of K, and Kab to denote the abelian closure of K. We
use h to denote the usual logarithmic Weil height on Q.
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As usual, for given real valued functions U and V , the notations U� V ,
V � U and U = O(V ) are all equivalent to the statement that the inequal-
ity |U | ≤ cV holds with some constant c > 0.

2.2. Preliminar definitions and results. In order to prove our desired
extension results on finiteness of abelian points, we start recalling the gen-
eral concept of anomalous varieties. Namely, let Y ⊂ X ⊂ Gn

m be algebraic
subvarieties of a multiplicative torus, Y irreducible, and let s be a non-
negative integer. Then Y is said s-anomalous (for X) if dimY ≥ 1 and
there exists a coset (translate of a subgroup) H ⊂ Gn

m satisfying

Y ⊂ H and dimY > s+ dimH − n.

Definition 2.1. The non-anomalous s-part of X is

Xoa,s = X \ ( union of all s-anomalous subvarieties ),

and we denote Xoa = Xoa,dimX .

In [5], it was proved the following.

Lemma 2.2 ([5]). Xoa is a Zariski open subset of X.

We aim to intersect varieties with algebraic subgroups of the torus, thus
we use the following notation

Definition 2.3. Let d be a non-negative integer. We denote the union of
all algebraic subgroups of Gn

m of codimension at least d (or dimension at
most n− d) by

G[d] =
⋃

codimH≥d
H(Q).

The following result was in part initially conjectured by Bombieri, Masser
and Zannier [5] and proved by Habegger [8], together with the subsequent
Lemma. They play a crucial role in the verification of the present conclu-
sions.

Lemma 2.4 ([8, Bounded Height Theorem]). Let G = Gn
m and let X ⊂

G be an irreducible closed subvariety defined over Q. Then the height is
bounded from above on Xoa,s ∩ G[s].

Lemma 2.5 ([8]). Under the conditions of Lemma 2.4,

Xoa ∩ G[dimX+1]

is finite.

Maurin [13] obtained a height bound when the algebraic subgroups are
enlarged by a finitely generated subgroup.
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Lemma 2.6. [13] Under the conditions of Lemma 2.4, let Γ ⊂ G(Q) be
a finitely generated subgroup which is a coordinate product of n finitely
generated multiplicative subgroups in Gm. Then

Xoa ∩ Γ.G[dimX+1]

has uniformly bounded height.

In order to work with connected algebraic subgroups, the following spe-
cial concept for lattices and its properties will be useful.

Definition 2.7. We say that a free lattice L =
∑r
j=1 Z(a1j , . . . , anj) in Zn

is primitive if the gcd of the r × r-minors of the matrix (aij)i,j is 1, or
equivalently if QL ∩ Zn = L, according to [20, Proposition 4.2].

In fact, it turns out that primitive lattices characterize connected alge-
braic subgroups.

Lemma 2.8. [20, Corollary 4.5] Let H be an algebraic subgroup of Gn
m.

Then there exists a free lattice L =
∑r
j=1 Z(a1j , . . . , anj) such that H is

defined by the equations
x
a1j

1 . . . x
anj
n = 1, j = 1, . . . , r,

and H is connected if and only if L is primitive.

In higher dimensions, we will also make use of a way to find small bases
for integer lattices as stated below.

Lemma 2.9. [9, Lemma 1] Let L ⊆ Zd be a lattice of rank m. Then L has
a basis b1, . . . ,bm such that, for each x ∈ L, we may write

x =
m∑
j=1

λjbj ,

with
λj �

‖x‖
‖bj‖

.

We also have
detL �

m∏
j=1
‖bi‖ � detL.

In our context, it is natural to consider the following modification of
Definition 2.3:

Definition 2.10. Let d be a non-negative integer. We define
G̃[d] =

⋃
codimH≥d

H(Q),

where the union runs over all connected algebraic subgroups H ⊂ Gn
m of

codimension at least d.
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We also state the so called Bogomolov property for fields that are the
object of our work.

Definition 2.11 ([1]). We say that a subfield L of Q has the Bogomolov
property if there exists a constant C(L) which depends only on L, such that
for any α ∈ L∗ \ U we have h(α) ≥ C(L).

3. Proofs of the main results

Now we generalize [16, Theorem 2.10] for higher dimension varieties.

Theorem 3.1. Let X ⊂ G = Gn
m be an irreducible closed subvariety defined

over a number field K. Suppose that L ⊃ K has the Bogomolov property.
Then

Xoa,s ∩ G̃[s](L)
is finite. In particular, Xoa ∩ G̃[dimX](L) is finite.

Proof. Let P ∈ Xoa,s ∩ G̃[s](L). Then the coordinates ξi = xi(P ) generate
a multiplicative subgroup ΓP ⊂ (L)∗ of rank r ≤ n − s. By elementary
abelian group decomposition, we can write

(3.1) ξi = ζi

r∏
j=1

g
mij

j , i = 1, . . . , n,

for generators gj ∈ L of the torsion-free part of ΓP , integers mij and roots
of unity ζi ∈ L.

It follows from a result of Schlickewei (see [4, Lemma 2]) that one can
find generators gi so that, for any integers b1, . . . , br,

(3.2) h(gb1
1 . . . gbr

r ) ≥ cr(|b1|h(g1) + · · ·+ |br|h(gr)),
where cr > 0 depends only on r. By Lemma 2.4, the height of points in
Xoa,s ∩ G[s](Q) is uniformly bounded, so that

(3.3) h

(
r∏
i=1

g
mij

j

)
� 1,

and the implicit constant depends only on X and n.
By the Bogomolov property of L, we have

(3.4) h(gj)� 1,
where the implicit constant depends only on L. Combining (3.3) and (3.4),
we obtain that the absolute values |mij | are upper bounded independently
of the point P ∈ Xoa,s ∩ G[s](L).

For instance, for such a point P in Xoa,s ∩ G̃[s](L), we recall that

P ∈ Xoa,s ∩
⋃

codimH≥s
H(L),
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and the union is taken over all connected algebraic subgroups H ⊂ Gn
m of

codimension at least s. Since Xoa,s = ∅ for s < dimX, we can suppose
that s ≥ dimX. In this case, there exists a connected subgroup H ⊂ G of
codimension d ≥ s such that P ∈ Xoa,s∩H(L). We may write H as defined
by the equations

x
a1j

1 . . . x
anj
n = 1, j = 1, . . . , d.

The rank r of (3.1) is at most n−d, the linearly independent integer valued
vectors

(a1j , . . . , anj), j = 1, . . . , d
are orthogonal to the vectors (m1j , . . . ,mnj), j = 1, . . . , r and we claim that
the aij ’s can be chosen so that they are also bounded independently of P .
In fact, denoting the lattice generated by the vectors (m1j , . . . ,mnj), j =
1, . . . , r byM, the orthogonal set

M⊥ = {u ∈ Zn : u.m = 0 for all m ∈M}

is also an integer primitive lattice, and has rank n − r according to [15,
Section 2](there the word complete is used instead of primitive), which is
at least d. We can fix a basis for M⊥. Since H is connected, Lemma 2.8
grants that L =

∑d
j=1 Z(a1j , . . . , anj) in Zn is a primitive lattice, and thus

its (d×d)- minors have gcd 1. Moreover, since L ⊂M⊥ are both primitive,
there exists a primitive sublattice N ⊂ M⊥ with dimension d, that is
generated by a fixed subbasis of the chosen basis of M⊥, and such that
L ⊂ N . We conclude that L = N , because otherwise the respective matrices
AL and AN whose lines are the basis vectors of L and N would satisfy
AL = U.AN for some integer (d × d) square matrix U with |det(U)| > 1,
and thus the (d× d)-minors of AL would not have gcd 1, contradicting the
primitivity of L. Since L = N ⊂ M⊥, we obtain det(L) ≤ det(M⊥) ≤
det(M) by [6, Equation (3)]. By Lemma 2.9, we can choose the aij ’s so
that |aij | � det(L) ≤ det(M). Since det(M) is bounded independently of
P , because the mij ’s are, so the aij ’s will be as well, proving the claim.

Now we claim that dim(X ∩ H) = 0 and thus X ∩ H is finite. In fact,
if dim(X ∩H) ≥ 1, then for Y the irreducible component of X ∩H ⊂ H
containing P , we have that

dimY ≥ 1 > 0 ≥ s+ dimH − n = s− d.

Thus, P ∈ Xoa,s ∩ Y with Y s-anomalous for X, which is a contradic-
tion with the definition of Xoa,s. Thus, X ∩H is finite. Since the |aij | are
bounded, P belongs to a finite set. �

Since the abelian closure of a number field has the Bogomolov property
(this was proved by Amoroso–Zannier [2]), we deduce the following
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Corollary 3.2. Under the conditions of Theorem 3.1,
Xoa,s ∩ G̃[s](Kab)

is finite.

Finally, using Lemma 2.6 and similar ideas, we obtain a variant of the
previous results after enlarging the sets using a finitely generated subgroup.

Theorem 3.3. Let X ⊂ G = Gn
m be an irreducible closed subvariety defined

over a number field K, and let Γ ⊂ G(Q) be a finitely generated subgroup
which is a direct product of n finitely generated multiplicative subgroups in
Gm. Suppose that L has the Bogomolov property over K. Then

Xoa ∩ Γ.G̃[dimX+1](L)
is a finite set.

Proof. We suppose that the generators for the set of values of the group of
i-coordinates of Γ are γi1, . . . , γiji .

As with equation (3.1) in the proof of Theorem 3.1, for a point P in
Xoa,s ∩ Γ.G̃[dimX+1](L) with i-coordinate ξi = xi(P ) =

(∏ji
l=1 γ

nil
il

)
x∗i (P ),

and P ∗ = (x∗1(P ), . . . , x∗n(P )) ∈ G̃[dimX+1](L), the i-coordinates ξi generate
altogether a multiplicative subgroup ΓP ⊂ L∗ of rank

r ≤ n− (dimX + 1) + rk(Γ).
Then, we can write

ξi =
ji∏
l=1

γnil
il

ζi r∏
j=1

g
mij

j

 , i = 1, . . . , n,

for generators gj , γil of the torsion-free part of ΓP , integers mij and roots
of unity ζi ∈ L.

As in (3.2), for every b1, . . . , br, ai1, . . . , aiji integers not all zero, one has
that

h(γai1
i1 . . . γ

aiji
iji

gb1
1 . . . gbr

r )
≥ c(|b1|h(g1) + · · ·+ |br|h(gr) + |ai1|h(γi1) + · · ·+ |aiji |h(γiji))
≥ c(|b1|h(g1) + · · ·+ |br|h(gr)) + c(|ai1|+ · · ·+ |aiji |) min

lk
h(γlk)

for a positive constant c. By Lemma 2.6 we have that

h

 ji∏
l=1

γnil
il

r∏
i=1

g
mij

j

� 1,

and by the Bogomolov property of L, we have
h(gj)� 1.
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Thus, the mij ’s and the nil’s are uniformly bounded.
Since P ∗ ∈ G̃[dimX+1](L), there exists a connected subgroup H ⊂ G of

codimension d ≥ dimX + 1 such that P ∗ ∈ H(L), and as in the proof
of Theorem 3.1, we can choose uniformly bounded integers a1j , . . . , anj ,
j = 1, . . . , d such that H is defined by the equations

x
a1j

1 . . . x
anj
n = 1, j = 1, . . . , d.

As P ∈ Xoa ∩ Γ.G̃[dimX+1](L), let γ ∈ Γ be such that P ∈ X ∩ γH.
Now we claim that, for each γ ∈ Γ, dim(X ∩ γH) = 0 and thus X ∩ γH is
finite. In fact, if dim(X ∩ γH) ≥ 1, then for Y the irreducible component
of X ∩ γH ⊂ γH containing P , we have that

dimY ≥ 1 > 0 ≥ dimX + dim γH − n = dimX − d.

Then P ∈ Xoa ∩ Y with Y (dimX)-anomalous for X, which is a contra-
diction with the definition of Xoa. Since the aij ’s chosen and the nil’s are
bounded regardless of P , P belongs to a finite set. �

3.1. A structure theorem over Kab. Here we generalise [16, Theo-
rem 2.1] to higher dimensional varieties.

Definition 3.4. We say that a d-uple

φ : (x1, . . . , xn) 7−→ (xa11
1 . . . xan1

n , . . . , xa1n
1 . . . xann

n )

of characters (called a d-character) is primitive if the lattice
∑r
j=1 Z(a1j ,

. . . , anj) in Zn is primitive. For X ⊂ Gn
m an algebraic variety, we denote

by φX the restriction of φ to X.

Definition 3.5. Let X ⊂ Gn
m be an algebraic variety of dimension dimX =

d. We define Φ[d]
X to be the set of primitive d-characters ϕ = (φ1, . . . , φd) :

Gn
m → Gd

m with the property that there exists a birational map ρ : Gd
m → X

such that
(ϕX ◦ ρ)(t1, . . . , td) = (tm1

1 , . . . , tmd
d )

for integers m1, . . . ,md.
We use Φ[d]

X,c to denote the subset of Φ[d]
X of characters for which ρ is

defined over Kc.

Theorem 3.6. Let X ⊂ G = Gn
m be an irreducible closed subvariety defined

over a number field K of dimension d. If X is not d-anomalous, then Φ[d]
X

is finite. Moreover, for any Galois automorphism σ of Kab over K, there
exists a finite union W of proper cosets of (Gd

m)2 such that Xoa∩G[d](Kab)
is contained in the union of

⋃
φ∈Φ[d]

X,c

φ−1
X (Ud), a finite set, and its points P

satisfying (P, P σ) ∈W .
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Proof. Let X̃ be a smooth projective model defined overK andK-birational
to X, which exists by Hironaka’s resolution of singularities [10]. Given a
d-character ϕ = (ϕ1, . . . , ϕd), its restriction ϕX = (ϕ1X , . . . , ϕdX) to X

is a d-uple of rational functions on X, and also on X̃, so we may consider
(div(ϕ1X), . . . ,div(ϕdX)) inside (Div(X̃))d. We then have a homomorphism
defined by

ϕ 7−→ (div(ϕ1X), . . . ,div(ϕdX)) ∈ (Div(X̃))d.

We note that this map is injective, since any map in the kernel yields ϕiX
constant for each i, and thus X itself would be d-anomalous, which cannot
happen.

Let ϕ ∈ Φ[d]
X , so we may write ϕX ◦ ρ(t1, . . . , td) = (tm1

1 , . . . , tmd
d ), where

ρ : Gd
m → X is a birational isomorphism and (t1, . . . , td) are coordinates

on Gd
m. We may extend ρ to a birational map ρ : (P1)d → X̃, and the

same equation holds on viewing ϕX as a map from X̃ to (P1)d. Hence ϕiX
can only have one zero and one pole, and so its divisor is of the shape
M((Yi)− (Zi)) for each i. And since ϕiX is a monomial in the coordinates,
Yi, Zi necessarily lie among the zeros and poles of the coordinate functions
x1, . . . , xn viewed as functions on X̃, and so there are only finitely many
possibilities for the prime divisors Yi, Zi.

Finally, if ϕ = (ϕ1, . . . , ϕd) and ψ = (ψ1, . . . , ψd) lie in Φ[d]
X , j ∈ N, Yi, Zi

are prime divisors for each i = 1, . . . , j and Dj+1, . . . , Dd are divisors such
that

(div(ϕ1X), . . . ,div(ϕdX)) = (M1(Y1 − Z1), . . . ,Mj(Yj − Zj), Dj+1, . . . , Dd)

and

(div(ψ1X), . . . ,div(ψdX)) = (L1(Y1 − Z1), . . . , Lj(Yj − Zj), Dj+1, . . . , Dd),

then

(div(ϕL1
1X), . . . ,div(ϕLj

jX), . . . ,div(ϕdX))

= (div(ψM1
1X ), . . . ,div(ψMj

jX ), . . . ,div(ψdX)),

and hence

((ϕL1
1X), . . . , (ϕLj

jX), . . . , (ϕdX)) = ((ψM1
1X ), . . . , (ψMj

jX ), . . . , (ψdX))

by injectivity. Both ϕ,ψ are primitive, therefore Li = ±Mi for each i. We
can make an analogous construction with the first i coordinates replaced by
other i random coordinates. So each d-uple of pairs ((Y1, Z1), . . . , (Yd, Zd))
can give rise to at most 2d elements of Φ[d]

X , and the finiteness of Φ[d]
X follows.

Let P ∈ Xoa ∩ G[d](Kab), so the coordinates ξi = xi(P ) generate a mul-
tiplicative subgroup ΓP ⊂ (Kab)∗ of rank r ≤ n − d, and we can assume
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by Lemma 2.5 that r = n− d. By elementary abelian group decomposition
again, we can write

(3.5) ξi = ζi

r∏
j=1

g
mij

j , i = 1, . . . , n,

for generators gi ∈ Kab of the torsion-free part of ΓP , integers mij and
roots of unity ζi ∈ Kab.

As in the proof of Theorem 3.1, we derive that

(3.6) h

(
r∏
i=1

g
mij

j

)
� 1,

and the implicit constant depends only on X and n.
By the Bogomolov property of Kab, we have

(3.7) h(gj)� 1,
where the implicit constant depends only on K. Combining (3.6) and (3.7),
we obtain that the absolute values |mij | are upper bounded independently
of any point P ∈ Xoa ∩ G[d](Kab). For such, we can take

(b1i, . . . , bni) ∈ Zn, i = 1, . . . , d
nonzero integer vectors forming a basis for the orthogonal vector space to
the (m1j , . . . ,mnj), whose associate lattice we can suppose to be primitive
as before. In this way, we see that we can obtain a primitive d− character
π from a prescribed finite set, and for P = (ξ1, . . . , ξn) as above, we have
that π(P ) = (ζP1 , . . . , ζPn) where the ζPi’s are roots of unity. Therefore π
can be taken from a prescribed finite set, and sends the point P to Ud.
Thus we only need to treat the case in which infinitely many points in
Xoa∩G[d](Kab) are sent to Ud by π. The preimage of an element in Ud by π
is a d-dimensional coset H. If X∩H was infinite, X would be d-anomalous,
hence we may assume that πX(Xoa ∩ G[d](Kab)) ∩ Ud is infinite.

Let Tk be the set of torsion points of Gk
m, k ≥ 1. For a rational map

τ from a geometrically irreducible variety Y to Gk
m, the (PB) condition

in [21] means that for any integer m > 0, the pullback Gk
m ×[m],τ Y is

geometrically irreducible, where [m] is the m-th power map. The result
in [21, Theorem 2.1] asserts that:

If τ is a cover (that is, dominant rational map of finite degree)
defined over Kc and satisfies the (PB) condition, there exists a finite
union W of proper cosets such that if v ∈ Tk \W , then v ∈ τ(Y )
and if τ(u) = v, then [Kc(u) : Kc] = deg τ .

We want to apply this.
Recall that πX(Xoa ∩ G[d](Kab)) ∩ Ud is infinite. Note that since πX

is defined by a primitive lattice, the induced pullback map between the
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rings of coordinate functions is injective, and so such map is dominant, and
πX : X → Gd

m is a cover.
We can now factor πX as λ0 ◦ ρ0 according to the second claim of [21,

Proposition 2.1] such that λ0 : Y → Gd
m is an isogeny of algebraic groups

and ρ0 : X → Y is a rational map satisfying the (PB) condition. Since
there is a dual isogeny λ̂0 : Gd

m → Y , we see that Y is isomorphic to a
quotient of Gd

m by a finite subgroup whose elements have coordinates that
are all roots of unity, and hence such subgroup is a kernel of a product of
power maps [m1]× · · · × [md] : Gd

m → Gd
m for integers m1, . . . ,md ≥ 1. We

can see that Gd
m modulo such kernel is isomorphic to Gd

m. Therefore, Y is
isomorphic to Gd

m as algebraic groups. Thus, we may factor

πX = ([m1]× · · · × [md]) ◦ ρ,

where ρ : X → Gd
m is a rational map satisfying the (PB) condition. Since

there are only finitely many πX , there are only finitely many such integers
m1, . . . ,md. Since π and [m1], . . . , [md] are defined over Q, ρ is defined over
Kc. We can enlarge the field K by adding the finitely many mi-th roots of
unity, so that ρ is now supposed to be defined over K.

Moreover, for each point P ∈ X(Kab) and any Galois automorphism σ
over K, denoting by P σ the image of P under σ, we have that ρ(P σ) =
ρ(P )σ.

Since πX is a cover, ρ is also a cover. Thus the product cover

ψ = ρ× ρ : X ×X −→ Gd
m ×Gd

m

is defined over K and also satisfies the (PB) condition, with degψ =
(deg ρ)2.

Since X is defined over K, if P ∈ Xoa ∩ G[d](Kab), then P σ ∈ Xoa ∩
G[d](Kab) for any Galois automorphism σ over K. In view of the infinity
of Ud ∩ πX(X(Kab)), we know that Ud ∩ ρ(X(Kab)) is also infinite. Thus
considering the set S of images of points of the form (P, P σ) under ψ for
any P ∈ ρ−1(Ud) ∩X(Kab) and any Galois automorphism σ over K, S is
an infinite set and is a torsion subset of (Gd

m)2, whose elements have the
form (ζ1, . . . , ζd, ζ

σ
1 , . . . , ζ

σ
d ) ∈ (Gd

m)2 with ζ1, . . . , ζd are roots of unity.
Applying [21, Theorem 2.1] to ρ and ψ, we see that for such points (P, P σ)

outside of a finite union of proper cosets of (Gd
m)2 with P ∈ X(Kab), we

have that

[K(P ) : K] = deg ρ, [K(P, P σ)] = degψ = (deg ρ)2.

Note that [K(P, P σ)] = [K(P ) : K] due to the normality of K(P )/K, and
this implies that deg ρ = 1. Hence, ρ is birational, πX◦ρ−1 = [m1]×· · ·×[md]
is an isogeny of Gd

m, and thus π ∈ Φ[d]
X,c. This completes the proof. �
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Corollary 3.7. Under the conditions of Theorem 3.6, for any σ a Galois
automorphism of Kab over K, there exist a finite union W of proper cosets
of (Gd

m)2 such that Xoa ∩ G[d](Kab) is the union of Xoa ∩ G[d](Kc), a finite
set, and its points P satisfying (P, P σ) ∈W .

Proof. We just use Theorem 3.6, and the fact that⋃
φ∈Φ[d]

X,c

φ−1
X (Ud) ⊂ X(Kc)

by the definition of Φ[d]
X,c. �

3.2. Abelian points in curves and periodic hypersurfaces. Here we
briefly look to similar problems in the context of arithmetic dynamics, in
particular when curves intersect periodic hypersurfaces, following the recent
dynamical version of the bounded height result for curves. We will use this
to obtain a finiteness result over the cyclotomic closure.

Lemma 3.8 ([14, Theorem 4.3]). Let K be a number field. Let f ∈ K[X]
be polynomial that is not linear conjugate to a monomial or Chebyshev
polynomial, and ϕ = (f, . . . , f) : (P1

K)n → (P1
K)n be the corresponding

split polynomial map. Let C be an irreducible curve in (P1
K)n that is not

contained in any periodic hypersurface. Assume that C is non-vertical, by
which we mean C maps surjectively onto each factor P1 of (P1)n. Then the
points in ⋃

V

(C(K) ∩ V (K))

have bounded Weil heights, where V ranges over all periodic hypersurfaces
of (P1

K)n.

The next result is basically contained in the previous one and its proof
reproduced here is contained in the original proof in [14].

Proposition 3.9. Under the conditions of Lemma 3.8, let L/K be an
algebraic extension such that L is a field that has the Bogomolov property.
Then

⋃
V (C(L) ∩ V (L)) for V ranging over all periodic hypersurfaces of

(P1
K)n is the union of a finite set with a set whose elements have at least

one coordinate periodic for f and height bounded by supP∈Per(f) h(P ).

Proof. It is enough to show that the claim is true for each one of the
coordinates xi of the points in the referred set. By [14, Theorem 2.2], it
suffices to show that the claim is true for points in

⋃
(C(K)∩Vij(K)), where

Vij ranges over all periodic hypersurfaces whose equations involve xi and
xj only. Thus, we may assume n = 2 and use coordinates x and y. By [14,
Theorem 2.2], we only need to consider the intersection with periodic curves
given by an equation of the form x = ζ where ζ is f -periodic, or y = g(x)
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where g commutes with an iterate of f . Hence, we only need to deal with
the second case. With this goal, given a point (α, β) in an intersection like
that, we notice that the equation (31) in the proof of [14, Theorem 4.3] and
the paragraph below the same equation give together that

ĥ(α) deg g �
√
ĥ(α) deg g

for deg g sufficiently large and ĥ a certain canonical height associated with
f and commensurate to h. This implies that√

h(α) deg g � 1.

By the Bogomolov property, this yields deg g � 1, and by [14, Proposi-
tion 2.3(d)], there are only finitely many such g’s with bounded degree,
and hence only finitely many points in the intersection C ∩{y = g(x)}. �

Below, our finiteness result follows.
Theorem 3.10. Under the conditions of Lemma 3.8, the set⋃

V

(C(Kc) ∩ V (Kc))

is finite, where V ranges over all periodic hypersurfaces of (P1
K)n.

Proof. Using the proof of Proposition 3.9 and [18, Theorem 1.7], we obtain
the desired conclusion. �

We can afterwards conclude a variant of such fact for general split poly-
nomial maps and the image of the set of cyclotomic points under some split
polynomial map.
Theorem 3.11. Let n ≥ 2, and let f1, . . . , fn ∈ K[X] be polynomials of
degrees at least 2 that are not linear conjugate to monomials or to Cheby-
shev polynomials. Then Theorem 3.10 holds for the dynamics of the split
polynomial map Φ = (f1, . . . , fn) : (P1

K)n → (P1
K)n and the set of points

of
⋃
V (C ∩ V ) lying in the image (p1, . . . , pn)(P1

Kc
)n over Kc of some split

polynomial map. Such set is finite.
Proof. By the proof of [14, Theorem 4.16], it is enough to prove the result for
n = 2. By the same proof we reduce to the case when there are polynomials
p1 and p2 such that f1◦p1 = p1◦q and f2◦p2 = p2◦q, and such that for every
curve V that is Φ-periodic, (p1, p2)−1(V ) is (q, q)-preperiodic. Moreover, q
is also not linear conjugate to monomials or Chebyshev polynomials. Using
all this, the properties of heights under the image of polynomials given
by [19, Theorem 3.11], and the validity of the statement for the split map
(q, q), we have the desired. �

Remark 3.12. It would be interesting to try to obtain higher dimensional
generalisations of Theorem 3.11, using for example the results of [7].
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