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To the memory of Christian Mauduit

Résumé. Soit G = (Gj)j≥0 une suite strictement croissante des entiers définie
par récurrence et telle que G0 = 1. Soit Xd− a1X

d−1− · · · − ad−1X − ad son
polynôme caractéristique. Il est bien connu que tout entier positif ν possède
une écriture glouton unique telle que ν = ε0(ν)G0 + · · ·+ ε`(ν)G` pour ` ∈ N
qui satisfait G` ≤ ν < G`+1. Ici les chiffres sont définis de manière récursive
par la relation 0 ≤ ν − ε`(ν)G` − · · · − εj(ν)Gj < Gj , où 0 ≤ j ≤ `. Dans cet
article, nous étudions la somme des chiffres sG(ν) = ε0(ν) + · · ·+ ε`(ν) sous
certains conditions naturelles sur la suite G. En particulier, nous déterminons
son niveau de distribution. Pour être plus précis, nous montrons que pour
r, s ∈ N avec gcd(a1 + · · ·+ ad − 1, s) = 1 on a

∑
q<xϑ−ε

max
z<x

max
1≤h≤q

∣∣∣∣∣∣∣∣
∑

k<z,sG(k)≡r mod s
k≡h mod q

1− 1
q

∑
k<z,sG(k)≡r mod s

1

∣∣∣∣∣∣∣∣
� x(log 2x)−A

pour tous x ≥ 1 et A, ε ∈ R>0. Dans ce cas, ϑ = ϑ(G) ≥ 1
2 peut être calculé

explicitement, et on obtient ϑ(G) → 1 pour a1 → ∞. Comme application
nous montrons que si le coefficient a1 n’est pas trop petit, alors #{k ≤ x :
sG(k) ≡ r (mod s), k a au plus deux facteurs premiers} � x/ log x. En outre,
en utilisant le crible de Bombieri, on en déduit un théorème des nombres
presque premiers pour sG.

Notre travail étend les résultats antérieurs sur la fonction somme des chiffres
classique en base q obtenus par Fouvry and Mauduit.
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Abstract. Let G = (Gj)j≥0 be a strictly increasing linear recurrent sequence
of integers with G0 = 1 having characteristic polynomial Xd−a1X

d−1−· · ·−
ad−1X − ad. It is well known that each positive integer ν can be uniquely
represented by the so-called greedy expansion ν = ε0(ν)G0 + · · ·+ ε`(ν)G` for
` ∈ N satisfying G` ≤ ν < G`+1. Here the digits are defined recursively in
a way that 0 ≤ ν − ε`(ν)G` − · · · − εj(ν)Gj < Gj holds for 0 ≤ j ≤ `. In
the present paper we study the sum-of-digits function sG(ν) = ε0(ν) + · · ·+
ε`(ν) under certain natural assumptions on the sequence G. In particular, we
determine its level of distribution xϑ. To be more precise, we show that for
r, s ∈ N with gcd(a1 + · · · + ad − 1, s) = 1 we have for each x ≥ 1 and all
A, ε ∈ R>0 that

∑
q<xϑ−ε

max
z<x

max
1≤h≤q

∣∣∣∣∣∣∣∣
∑

k<z,sG(k)≡r mod s
k≡h mod q

1− 1
q

∑
k<z,sG(k)≡r mod s

1

∣∣∣∣∣∣∣∣
� x(log 2x)−A.

Here ϑ = ϑ(G) ≥ 1
2 can be computed explicitly and we have ϑ(G) → 1 for

a1 → ∞. As an application we show that #{k ≤ x : sG(k) ≡ r (mod s), k
has at most two prime factors} � x/ log x provided that the coefficient a1
is not too small. Moreover, using Bombieri’s sieve an “almost prime number
theorem” for sG follows from our result.

Our work extends earlier results on the classical q-ary sum-of-digits func-
tion obtained by Fouvry and Mauduit.

1. Introduction

The present paper is devoted to arithmetic properties of the sum-of-digits
function sG of a digit expansion with respect to a sequence G = (Gj)j≥0
which is defined in terms of a linear recurrence relation. We establish a
version of the theorem of Bombieri and Vinogradov for sG (for the classical
version of this theorem we refer e.g. to [14, Theorem 9.18]). In other words,
we provide a result on the level of distribution of sG (see for instance [14,
Chapters 3, 22, and 25] or Greaves [19, Chapter 5] for information on this
notion). From this result we derive distribution results for sG on the set of
integers having few prime factors. Our tools comprise exponential sum es-
timates and sieve methods. What we do here extends results of Fouvry and
Mauduit [12, 13], where the level of distribution of the q-ary sum-of-digits
function is investigated (see also the recent preprint of Spiegelhofer [30]).
Our results provide a first step towards a generalization of the beautiful
work of Mauduit and Rivat [22] on the q-ary sum of digits of primes to
digit expansions w.r.t. a linear recurrent sequence. We mention that new
ideas are needed in our setting in order to establish the exponential sum
estimates necessary for proving our main results.
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1.1. Linear recurrence number systems. We start with the definition
of digit expansions w.r.t. a sequence of integers. Let G = (Gj)j≥0 be a
strictly increasing sequence of positive integers and suppose that G0 = 1.
Using the greedy algorithm one can associate a unique digit expansion to
each positive integer ν w.r.t. this sequence G. Indeed, for each integer ν ≥ 1
there exists a unique ` ∈ N such that G` ≤ ν < G`+1. With this number `
we can define the digits ε`(ν), . . . , ε0(ν) recursively in a way that

0 ≤ ν − ε`(ν)G` − · · · − εj(ν)Gj < Gj (0 ≤ j ≤ `).
This leads to the digit expansion
(1.1) ν = ε0(ν)G0 + · · ·+ ε`(ν)G`
for ν w.r.t. the sequenceG. It is easy to check that we have 0 ≤ εj(ν) < Gj+1

Gj
for each 0 ≤ j ≤ ` and that this expansion is unique with the property that

0 ≤ ε0(ν)G0 + · · ·+ εj(ν)Gj < Gj+1

for 0 ≤ j ≤ `. Using the greedy expansion for the sequence G, we define
the sum-of-digits function of ν w.r.t. G by
(1.2) sG(ν) = ε0(ν) + · · ·+ ε`(ν) (ν ≥ 1)
and by setting sG(0) = 0 for convenience. In the present paper we deal with
sequences G that are defined in terms of linear recurrences. This idea goes
back to Zeckendorf [35] for the case of Fibonacci numbers (see e.g. [9, 21, 26]
for the general case). We recall the following definition.

Definition 1.1 (Linear recurrence base). We will refer to a strictly in-
creasing sequence G = (Gj)j≥0 as a linear recurrence base, if there exist
a1, . . . , ad ∈ N with ad > 0 such that the following conditions hold:

(1) G0 = 1 and a1Gk−1 + · · ·+ akG0 < Gk for 1 ≤ k < d.
(2) Gn+d = a1Gn+d−1 + · · ·+ adGn holds for each n ∈ N.
(3) (ak, ak+1, . . . , ad) � (a1, a2, . . . , ad−k+1) for 1 < k ≤ d, where “≺”

indicates the lexicographic order.
The polynomial Xd−a1X

d−1−· · ·−ad−1X−ad is called the characteristic
polynomial of the linear recurrence base G. Its dominant root (which is a
positive real number) is called α.

We want to make some comments on this definition which is the same
as the one used in Lamberger and Thuswaldner [21]. Item (3) immediately
yields that a1 ≥ max{a2, . . . , ad}. Moreover, our conditions imply with the
same proof as Steiner [31, Lemma 2.1] that

Gn+d−k > ak+1Gn+d−k−1 + · · ·+ adGn (n ∈ N, 1 ≤ k ≤ d− 1),
a condition that was used for instance in Drmota and Gajdosik [8, 9].
In [8, Lemma 3.1] it is proved (under milder conditions than ours) that the
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characteristic polynomial of G has a dominant root α > 1 and, because all
coefficients of the recurrence satisfy 0 ≤ aj ≤ a1 in our case, we even have
(1.3) α ∈ [a1, a1 + 1).
The fact that α is dominant yields that there are constants c, δ ∈ R>0 such
that
(1.4) Gn = cαn +O(α(1−δ)n) (n ≥ 0).

If item (1) is strengthened to G0 = 1 and a1Gk−1+· · ·+akG0+1 = Gk for
1 ≤ k < d, according to [31, Proposition 2.1] the string ε0, . . . , ε` can occur
as a digit string in (1.1) if and only if (εj , . . . , εj+d−1) ≺ (a1, a2, . . . , ad)
holds for 0 ≤ j ≤ ` (here we have to pad ε0, . . . , ε` with d − 1 zeros).
This is called the Parry condition and goes back to Parry [25] where it
was introduced in the context of beta-numeration. We also mention that
in some earlier papers on linear recurrence bases instead of item (3) the
stronger condition a1 ≥ a2 ≥ · · · ≥ ad > 0 is assumed (see e.g. [17, 26]).

A linear recurrence base together with the associated digit expansions
(1.1) will be called a linear recurrence number system.

1.2. Previous results. The most prominent example of a linear recur-
rence base is the Fibonacci sequence F = (Fj)j≥2 defined by F0 = 0, F1 = 1,
and Fn+2 = Fn+1+Fn for n ≥ 0 (note that we have to start with index j = 2
in the sequence F to meet the conditions of Definition 1.1). The associated
linear recurrence number system was first studied by Zeckendorf [35]. For
this reason expansions of the shape (1.1) are called Zeckendorf expansions
in this case. In the meantime linear recurrence number systems received a
lot of attention and have been studied by many authors. Without making
an attempt to be complete we mention a few results on linear recurrence
number systems with special emphasis on the sum-of-digits function sG
defined in (1.2).

Pethő and Tichy [26] provide an asymptotic formula of the summatory
function of sG. Using analytic methods and results from Coquet, Rhin,
and Toffin [7], Grabner and Tichy [17] prove that (zsG(n))n∈N is equidis-
tributed modulo 1 for each z ∈ R \ Q. By elementary exponential sum
estimates Lamberger and Thuswaldner [21] establish distribution results of
sG(n) in residue classes and derive some consequences including a Barban–
Davenport–Halberstam type theorem for sG. Distribution functions for so-
called G-additive functions (a natural generalization of sG analogous to the
well-known q-additive functions) are investigated by Barat and Grabner [2].
In [2] the authors also provide a dynamic approach to linear recurrence
number systems on the G-compactification KG on which a dynamical sys-
tem can be defined in terms of the addition of 1; this G-odometer goes
back to Grabner et al. [16] (see also [3] for a more recent study of this
object). A local limit law for sG is proved by Drmota and Gajdosik [8].
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In [9] the same authors consider sums of the shape
∑
ν<N (−1)sG(ν). Dr-

mota and Steiner [11, 32] establish a central limit theorem for G-additive
functions along polynomial sequences, and Wagner [34] studies properties
of sets of numbers ν < N characterized by the fact that sG(ν) = k for
some fixed positive integer k. Recently, Miller and his co-authors proved
further distribution results related to linear recurrence number systems.
See for example [4], where run lengths of zeros in Zeckendorf expansions
are studied, or [6], which is concerned with the number of nonzero digits
in Zeckendorf expansions. Motivated by the proof of Gelfond’s old conjec-
ture on the distribution of the sum-of-digits function of primes in residue
classes by Mauduit and Rivat [22] and, more generally, by Sarnak’s con-
jecture [28], the question whether sG has nice distribution properties for
prime arguments came into the focus of research. We mention that Möbius
orthogonality of sF is proved in the Zeckendorf case by Drmota et al. [10].
The exponential sum methods developed in [22] also led to a wealth of new
results on sum-of-digits functions. In the context of Zeckendorf expansions
the joint distribution of the ordinary q-ary sum-of-digits function and sF
is investigated by Spiegelhofer [29] by using methods in the spirit of [22].
Finally, we note that, starting with Barat and Grabner [2], van der Corput
and Halton type sequences using linear recurrence bases are investigated.
Work on this topic can be found in Ninomiya [24], Hofer et al. [20], and
Thuswaldner [33].

We mention that Ostrowski expansions [5] as well as beta-expansions [15,
25, 27] are related to linear recurrence number systems.

1.3. Statement of results and associated exponential sums. Let
G = (Gj)j≥0 be a linear recurrence base satisfying the conditions of Defini-
tion 1.1. The aim of the present article is to study the level of distribution
xϑ(G) of the sum-of-digits function sG. In other words, our main result is
the extension of [12, Théorème] to linear recurrence bases.

Theorem 1.2. Let G = (Gj)j≥0 be a linear recurrence base with charac-
teristic polynomial Xd−a1X

d−1−· · ·−ad−1X−ad satisfying the conditions
of Definition 1.1. Let r, s ∈ N with gcd(a1 + · · ·+ ad − 1, s) = 1. Then for
each x ≥ 1and all A, ε ∈ R>0, we have

(1.5)
∑

q<xϑ−ε

max
z<x

max
1≤h≤q

∣∣∣∣∣∣∣∣∣∣∣
∑
k<z

sG(k)≡r mod s
k≡h mod q

1− 1
q

∑
k<z

sG(k)≡r mod s

1

∣∣∣∣∣∣∣∣∣∣∣
� x(log 2x)−A,

where the implied constant depends on ε and A. Here ϑ = ϑ(G) ≥ 1
2 can be

computed explicitly and we have ϑ(G)→ 1 for a1 →∞.
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Remark 1.3. We are able to give concrete values for ϑ(G). Let α be the
dominant root of the characteristic polynomial of G. We show that ϑ(G) ≥
max{1

2 , 1 − logα(mG + 3)} for mG as in (3.7). Since mG � log a1 � logα
by Lemma 3.7 this already implies that ϑ(G) → 1 for a1 → ∞. On top of
this, in Lemma 5.2 we give better estimates for ϑ(G) for small values of a1.
These estimates are needed in order to prove Corollary 1.4 below.

Similarly as Fouvry and Mauduit [12] we can deduce two applications of
Theorem 1.2. The first one deals with the distribution of the sum-of-digits
function sG evaluated along almost primes.

Corollary 1.4. Let G = (Gj)j≥0 be a linear recurrence base with charac-
teristic polynomial Xd−a1X

d−1−· · ·−ad−1X−ad satisfying the conditions
of Definition 1.1. Let r, s ∈ N with gcd(a1 + · · ·+ ad − 1, s) = 1. Then for
a1 ≥ 59 we have

#{k ≤ x : sG(k)≡ r (mod s), k = p1 or k = p1p2 with p1, p2 prime}(1.6)

� x

log x
for x → ∞. If the characteristic polynomial of G has the particular form
X2 − a1X − 1 then this result even holds for a1 ≥ 15.

It is well known (see for instance Greaves [19, Chapter 5]) that results on
the level of distribution of a set A(x) of positive integers less than x can be
used to get results on the number of almost primes contained in A(x). In
particular, if the level of distribution of A(x) is xϑ−ε with ϑ large enough
to satisfy 1

ϑ < 2 − δ2 for a certain constant δ2, then the number of almost
primes in A(x) can be estimated from below by a constant times x

log x .
There has been a lot of effort to get the constant δ2 as small as possible.
To our knowledge, currently the best value is δ2 = 0.044560 and this is due
to Greaves [18] (although δ2 is conjectured to be equal to 0). Thus in order
to prove Corollary 1.4 we need to make sure that

(1.7) ϑ(G) > 0.5113938 · · · = 1− 0.4886061 . . .

for the linear recurrence bases indicated in its statement. The lower bound
59 (resp. 15) for a1 is an artifact of the methods we are using in the proof.
However, in principle our methods allow (with sufficient computer power)
to extend the result to smaller values of a1 (see Section 4 for details on
this).

In the last section we introduce a block method where we do two steps
at once. This reduces the lower bound on a1 from 59 in the general case to
15 in the special case in Corollary 1.4. This seems a big step and if one uses
blocks of larger size, one might reduce the lower bound further. However,
this is in a special case and already here computation is quite involved and
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with each step it gets longer. Summing up we do not think that it is feasible
to get the result for a1 = 1 with present time computers.

Our second corollary provides a prime number theorem for numbers
whose sum-of-digits function sG lies in a prescribed residue class. Anal-
ogously to the case of the ordinary q-ary sum-of-digits function (see [12,
Corollaire 2]) this corollary gives a nontrivial result only for large values
of a1. In the following statement Λ` = µ ∗ log` denotes the generalized von
Mangoldt function (` ≥ 1; here µ is the Möbius function and “∗” denotes
Dirichlet convolution).

Corollary 1.5. Let G = (Gj)j≥0 be a linear recurrence base with charac-
teristic polynomial Xd−a1X

d−1−· · ·−ad−1X−ad satisfying the conditions
of Definition 1.1. Let `, r, s ∈ N with ` ≥ 2 and gcd(a1 + · · ·+ad−1, s) = 1.
Then there is x0 = x0(G, s, `) such that for x ≥ x0 we have

∑
k<x

sG(k)≡r mod s

Λ`(k) = `

s
x(log x)`−1

(
1 +O

((log log a1)5

log a1

))
,

where the implied constant depends only on s and `.

Corollary 1.5 follows from Theorem 1.2 by an application of the sieve
of Bombieri (cf. [14, Theorem 3.5]). Since the proof of Corollary 1.5 is
verbatim the same as the one of [12, Corollaire 2] in [12, Section VII] we do
not reproduce it here.

The paper is organized as follows. In Section 2 we reduce the problem
of proving Theorem 1.2 to an exponential sum estimate and provide some
preliminaries. Section 3 is devoted to the estimate of the exponential sums
needed in the proof. In Section 4 we give a computer assisted improvement
for these estimates to make them applicable for small values of the coef-
ficient a1. Using these preparations in Section 5 we provide the proof of
Theorem 1.2 and of Corollary 1.4. Moreover, we establish an estimate for
ϑ(G) for small values of a1.

2. Rewriting the problem

Let G = (Gj)j≥0 be a linear recurrence base satisfying the conditions of
Definition 1.1 with characteristic polynomialXd−a1X

d−1−· · ·−ad−1X−ad
having dominant root α. The proof of Theorem 1.2 relies on exponential
sums. Setting e(z) = exp(2π

√
−1z) we get for integers a, b, c with c ≥ 1

that
1
c

c∑
h=1

e

(
h

c
(a− b)

)
=
{

1 if a ≡ b mod c,
0 otherwise.
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Thus the difference inside the absolute value of (1.5) may be written as

R(z) = R(z;u, q, r, s) =
∑
k<z

sG(k)≡r mod s
k≡u mod q

1− 1
q

∑
k<z

sG(k)≡r mod s

1

= 1
sq

s∑
b=1

q−1∑
h=1

∑
k<z

e

(
b

s
(sG(k)− r) + h

q
(k − u)

)
.

Splitting the contribution of b = s apart we get that

(2.1) R(z) = 1
sq

s−1∑
b=1

q−1∑
h=1

e

(
−br
s
− uh

q

)∑
k<z

e

(
b

s
sG(k) + h

q
k

)
+O

(
q log q
s

)
.

In view of (2.1) the proof of Theorem 1.2 boils down to showing that

∑
Q<q≤2Q

q−1∑
h=1

∣∣∣∣∣∣
∑
k<z

e

(
r

s
sG(k) + h

q
k

)∣∣∣∣∣∣� Qx(log 2x)−A

holds for each A > 0 if 1 ≤ r ≤ s − 1, Q ≤ xϑ(G)−ε, and z < x. To make
our proofs easier we want to subdivide the sum over k according to the
greedy expansion (1.1) of z (of course we may assume w.l.o.g. that z is a
positive integer). Since z < x there is N ≤ logα x + C (for some constant
C depending on G) such that

(2.2) z =
∑

0≤n≤N
εn(z)Gn.

For y, β ∈ [0, 1] we define the following exponential sum

Sn(y, β) :=
∑
k<Gn

e (βsG(k) + yk) .

Using (2.2) we gain by splitting off one digit of z after the other (like it is
done for instance in the proof of [17, Lemma 1]),∣∣∣∣∣∣

∑
k<z

e

(
r

s
sG(k) + h

q
k

)∣∣∣∣∣∣ ≤
N∑
n=0

∣∣∣∣εn(z)Sn
(
h

q
,
r

s

)∣∣∣∣� N∑
n=0

∣∣∣∣Sn (hq , rs
)∣∣∣∣ .

Thus, since N ≤ logα x+ C, Theorem 1.2 follows if we prove

∑
Q<q≤2Q

q−1∑
h=1

∣∣∣∣Sn (hq , rs
)∣∣∣∣� Qx(log 2x)−A(2.3)

for each A > 0 if 1 ≤ r ≤ s− 1, Q ≤ xϑ(G)−ε, and n ≤ logα x+ C.
We start by setting up a recurrence relation for Sn(y, β). Let

(2.4) I := {1 ≤ j ≤ d : aj 6= 0}
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be the set of indices corresponding to non-vanishing coefficients of the char-
acteristic polynomial of G. As ad > 0, item (3) of Definition 1.1 implies that
{1, d} ⊂ I. Then the exponential sum Sn(y, β) satisfies the recurrence

(2.5) Sn(y, β) =
∑
j∈I

An,j(y, β)Sn−j(y, β)

with

(2.6) An,j(y, β) =
aj−1∑
`=0

e

(
y

( j−1∑
k=1

akGn−k + `Gn−j

)
+ β

( j−1∑
k=1

ak + `

))
for 1 ≤ j ≤ d (see [21, Equation (3)]). Iterating this recurrence relation we
obtain
Sn(y, β) =

∑
j∈I

An,j(y, β)Sn−j(y, β)

=
∑

j1,j2∈I
An,j1(y, β)An−j1,j2(y, β)Sn−j1−j2(y, β)

=
∑

j1,...,jk∈I
An,j1(y, β) · · ·An−j1−···−jk−1,jk(y, β)Sn−j1−···−jk(y, β),

which makes sense as long as n−j1−· · ·−jk−1 ≥ d holds for all constellations
(j1, . . . , jk−1) ∈ Ik−1. For d ≤ n0 < n and 1 ≤ k < n let

(2.7) Jk(n0) =
{

j = (j1, . . . , jk) ∈ Ik : n−
k−1∑
`=1

j` > n0 ≥ n−
k∑
`=1

j`

}
.

Then

(2.8) |Sn(y, β)|

≤
n−n0∑
k=1

∑
(j1,...,jk)∈Jk(n0)

k∏
`=1

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ · ∣∣∣∣Sn−∑k

r=1 jr
(y, β)

∣∣∣∣ .
The central idea in proving (2.3) is a combination of maximum- and

1-norm estimates of Sn(y, β) and related expressions.

3. Estimates of exponential sums related to Sn(y, β)

We subdivide this section into three parts. First we consider the 1-norm
of Sn( · , β) and of its derivative. These 1-norms play a role in the proof
of Theorem 1.2 after an application of an inequality due to Sobolev and
Gallagher which is an important tool in the context of the large sieve (see
Lemma 5.1 below for its statement). In the second part we estimate the
maximum-norm of sums of certain products related to Sn(y, β). Finally the
third part deals with an estimation of a parameter which occurs in our
estimate of the 1-norm of Sn( · , β).
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3.1. The 1-norm of Sn( · , β). Let G = (Gj)j≥0 be a linear recurrence
base with characteristic polynomial Xd − a1X

d−1 − · · · − ad−1X − ad sat-
isfying the conditions of Definition 1.1. We set a = a1 and let β ∈ R be
fixed. Define for k ∈ N, j ∈ I with k ≥ j, and y ∈ R the functions

fk,j(y) =


∣∣∣∣ sin(πaj(β+yGk−j))

sin(π(β+yGk−j))

∣∣∣∣ if β + yGk−j 6∈ Z,

aj if β + yGk−j ∈ Z.

This permits us to write the modulus of the sums Ak,j(y, β) in (2.6) as

(3.1) |Ak,j(y, β)| =

∣∣∣∣∣∣
aj−1∑
`=0

e (`(β + yGk−j))

∣∣∣∣∣∣ = fk,j(y).

We note that the numerator of fk,j(y) has period (ajGk−j)−1.
For each k ∈ N we subdivide the interval

[
− β
Gk
, 1− β

Gk

)
(which is the

same as [0, 1) modulo 1) into aGk parts

(3.2) Ik(b) =
[
b− aβ
aGk

,
b+ 1− aβ

aGk

)
(0 ≤ b < aGk)

of equal length (aGk)−1. In each of the intervals Ik−j(b) the supremum of
fk,j(y) satisfies
(3.3) sup

y∈Ik−j(b)
fk,j(y) = m(j, b) (0 ≤ b < aGk−j),

with

(3.4) m(j, b) = mG(j, b) = sup
y∈( b

a
, b+1
a

)

∣∣∣∣sin πajysin πy

∣∣∣∣ (j ∈ I, b ∈ Z).

Thus the supremum of |Ak,j(y, β)| = fk,j(y) in (3.3) is independent of k.
It is immediate that for b ≡ 0, a − 1 (mod a) this supremum is equal to
aj (it is attained for b ≡ 0 (mod a) on the left endpoint of Ik−j(b), and
for b ≡ a− 1 (mod a) for the limit towards the right endpoint of Ik−j(b)).
If j = 1 and b 6≡ 0, a − 1 (mod a) then fk,1(y) is a unimodal function on
Ik−1(b) which is equal to zero at its endpoints and whose global maximum
is the unique local maximum in that interval.

We define the piecewise constant function
(3.5) Fk,j(y) = m(j, b) for y ∈ Ik−j(b) (0 ≤ b < aGk−j),
which forms an upper bound for fk,j(y). The functions fk,1(y) and Fk,1(y)
are plotted in Figure 3.1 for a special set of parameters.

We will also need the following notations. With m(j, b) as in (3.4) we
define

(3.6) m(j) = mG(j) = 1
a

a−1∑
b=0

mG(j, b) (j ∈ I)
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and finally
(3.7) m = mG = max

j∈I
mG(j).

0 1
8

1
4

0

1

2

3

4

5

6

7

Figure 3.1. For the linear recurrence base (Gj)j≥0 defined
by G0 = 1, G1 = 8, and Gn+2 = 7Gn+1 +Gn for n ≥ 0 this
image shows the function f3,1(y) together with its piecewise
constant upper bound F3,1(y) in the interval y ∈ [0, 1

4 ] (here
we chose β = 1

3).

It will turn out that the 1-norm of Sn( · , β) can be estimated in terms of
an integral over products of the functions Fk,j(y). Thus we deal with such
products in our first proposition.
Proposition 3.1. Let G = (Gj)j≥0 be a linear recurrence base with charac-
teristic polynomial Xd−a1X

d−1−· · ·−ad−1X−ad satisfying the conditions
of Definition 1.1. Fix k ∈ N and let n0, n1, . . . , nk be a strictly increasing
sequence of integers satisfying j` := n` − n`−1 ∈ I for 1 ≤ ` ≤ k. Then

(3.8)
∫ 1

0

k∏
`=1

fn`,j`(y)dy ≤
∫ 1

0

k∏
`=1

Fn`,j`(y)dy � (m+ 2)k,

where m = mG is given by (3.7).
Proof. Since the first inequality in (3.8) is obvious it remains to prove the
second one. Throughout this proof we set g` = bGn`/Gn`−1c. From the
definition of the intervals Ik(b) it is clear that each interval of the form
In`−1(b) can be covered by g` + 2 adjacent intervals of the form In`(b′). To
be more precise, there is c ∈ N such that
(3.9) In`−1(b) ⊂ In`(c) ∪ In`(c+ 1) ∪ · · · ∪ In`(c+ g` + 1).
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In the first step of our proof we subdivide [−β/Gk, 1−β/Gk) (≡ [0, 1) mod 1)
into intervals of the form In0(b) to obtain (recall that a = a1)

J :=
∫ 1

0

k∏
`=1

Fn`,j`(y)dy =
aGn0−1∑
b0=0

∫
In0 (b0)

k∏
`=1

Fn`,j`(y)dy.

Since n0 = n1 − j1, by definition, we have Fn1,j1(y) = m(j1, b0) for y ∈
In0(b0). Thus we may pull this constant out of the integral yielding

J ≤
aGn0−1∑
b0=0

m(j1, b0)
∫
In0 (b0)

k∏
`=2

Fn`,j`(y)dy.

Now we use (3.9) to cover each In0(b0) by g1 + 2 adjacent intervals of the
form In1(b′). More precisely, to each b0 there is an integer c1(b0) such that

In0(b0) ⊂ In1(c1(b0)) ∪ In1(c1(b0) + 1) ∪ · · · ∪ In1(c1(b0) + g1 + 1).
Since the integrand is nonnegative this yields the estimate

J ≤
aGn0−1∑
b0=0

m(j1, b0)
g1+1∑
b1=0

∫
In1 (c1(b0)+b1)

k∏
`=2

Fn`,j`(y)dy.

As before we have Fn2,j2(y) = m(j2, c1(b0)+ b1) for y ∈ In1(c1(b0)+ b1) and
we may pull this constant out of the integral again to get

J ≤
aGn0−1∑
b0=0

m(j1, b0)
g1+1∑
b1=0

m(j2, c1(b0) + b1)
∫
In1 (c1(b0)+b1)

k∏
`=3

Fn`,j`(y)dy.

Wemay iterate this procedure k−1 times to subsequently pull out all factors
from the integral. After this we end up with (the functions c2, . . . , ck−1 are
chosen in accordance with (3.9))

(3.10)

J ≤
aGn0−1∑
b0=0

m(j1, b0)
g1+1∑
b1=0

m(j2, c1(b0) + b1) · · ·

· · ·
gk−1+1∑
bk−1=0

m(jk, ck−1(b0, . . . , bk−2) + bk−1)

·
∫
Ink−1 (ck−1(b0,...,bk−2)+bk−1)

dy

= 1
aGnk−1

aGn0−1∑
b0=0

m(j1, b0)
g1+1∑
b1=0

m(j2, c1(b0) + b1) · · ·

· · ·
gk−1+1∑
bk−1=0

m(jk, ck−1(b0, . . . , bk−2) + bk−1).
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Thus we have to deal with sums of the form

(3.11) K` =
g`+1∑
b=0

m(j`+1, c+ b) (c ∈ Z, ` ∈ {1, . . . , k − 1}).

We distinguish two cases according to whether j` = n`−n`−1 = 1 or not. If
j` = n`−n`−1 = 1 then, for ` sufficiently large, g` = a (because (1.4) holds,
where the dominant root α of the characteristic polynomial satisfies (1.3))
and, hence, for j = j`+1 we get

(3.12) K` =
a+1∑
b=0

m(j, c+ b) ≤ am(j) + 2 max
0≤b<a

m(j, b)

≤ am(j) + 2aj ≤ a(m(j) + 2) ≤ Gn`
Gn`−1

(m(j) + 2).

If j` = n` − n`−1 > 1 for ` sufficiently large, g` ≥ a2 holds again by (1.4)
and (1.3), and we may write g` + 1 = ha + r with h ≥ a and 0 ≤ r < a
yielding (for j = j`+1)

K` =
h−1∑
t=0

a−1∑
u=0

m(j, c+ ta+ u) +
r∑

u=0
m(j, c+ ha+ u)

≤ ham(j) + (r + 1)aj ≤ ha(m(j) + 1) ≤ Gn`
Gn`−1

(m(j) + 1).

Inserting this in (3.10) for all sufficiently large ` and observing that
aGn0−1∑
b0=0

m(j1, b0) ≤ a2Gn0

we get the result. �

Proposition 3.2. Let G = (Gj)j≥1 be a linear recurrence base with charac-
teristic polynomial Xd−a1X

d−1−· · ·−ad−1X−ad satisfying the conditions
of Definition 1.1. Fix k, n ∈ N and let j1, j2, . . . , jk ∈ I. Then∫ 1

0

k∏
`=1

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ dy � (m+ 2)k,

where m = mG is as in (3.7).

Proof. Using (3.1) the product may be rewritten as
k∏
`=1

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ =

k∏
`=1

f
n−
∑`−1

r=1 jr,j`
(y).

The last product satisfies the conditions of Proposition 3.1 and we obtain
our result by applying this proposition. �
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We now state our estimate for the 1-norm of Sn( · , β). Note that in the
following result the estimate ‖Sn( · , β)‖1 � α

n
2 is derived by easy general

arguments (as in the classical case, see [22, Lemme 7] and [13, remarks after
Théorème 2 and the beginning of Section IV]).

Proposition 3.3. Let G = (Gj)j≥0 be a linear recurrence base satisfy-
ing the conditions of Definition 1.1 with characteristic polynomial Xd −
a1X

d−1 − · · · − ad−1X − ad having dominant root α. Then∫ 1

0
|Sn(y, β)| dy � min{α

1
2 , (m+ 3)}n,

where m = mG is as in (3.7).

Proof. We first show that
∫ 1

0 |Sn(y, β)| dy � α
n
2 . As in [22, Lemme 7],

this immediately follows by applying the Cauchy–Schwarz inequality and
Parseval’s identity. Indeed, using (1.4) we obtain
∫ 1

0
|Sn(y, β)|dy ≤

(∫ 1

0
|Sn(y, β)|2 dy

) 1
2

=
(∫ 1

0

∣∣∣∣ ∑
k<Gn

e (βsG(k))e(yk)
∣∣∣∣2dy

) 1
2
� α

n
2 .

It remains to prove that
∫ 1

0 |Sn(y, β)|dy � (m + 3)n. In view of (2.8)
we have to deal with the cardinality of Jk(d) before we can apply Proposi-
tion 3.2. To this matter let

Ck,d(n) =
{

(j1, . . . , jk) ∈ {1, . . . , d}k : n = j1 + · · ·+ jk
}
.

It easy to see that #Ck,d(n) ≤
(n−1
k−1
)
(there exist exact formulas, see

e.g. Abramson [1]). Since Jk(d) ⊂
⋃d
j=1Ck,d(n− j) we gain #Jk(d)�

(n
k

)
.

Using this in (2.8) together with Proposition 3.2 and the binomial theorem
yields

‖Sn(y, β)‖1 ≤
n−d∑
k=1

∑
(j1,...,jk)∈Jk(d)

∫ 1

0

k∏
`=1

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣

· |Sn−j1−···−jk(y, β)|dy

�
n−d∑
k=1

∑
(j1,...,jk)∈Jk(d)

∫ 1

0

k∏
`=1

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ dy

�
n−d∑
k=1

∑
(j1,...,jk)∈Jk(d)

(m+ 2)k �
n−d∑
k=1

(
n

k

)
(m+ 2)k

� (m+ 3)n. �
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As mentioned at the beginning of Section 3 we also need the 1-norm of
the derivative of Sn(y, β) with respect to the first variable.

Proposition 3.4. Let G = (Gj)j≥0 be a linear recurrence base satisfy-
ing the conditions of Definition 1.1 with characteristic polynomial Xd −
a1X

d−1 − · · · − ad−1X − ad having dominant root α. Then∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣ dy � αn min{α

n
2 , (m+ 3)n},

where m = mG is as in (3.7).

Proof. Again we use the Cauchy–Schwarz inequality, Parseval identity, and
(1.4) to show that∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣dy ≤ (∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣2dy

) 1
2

=
(∫ 1

0

∣∣∣∣ ∑
k<Gn

2πke (βsG(k))e(yk)
∣∣∣∣2dy

) 1
2

=
( ∑
k<Gn

(2πk)2
) 1

2

� α
3n
2 .

It remains to show that
∫ 1

0

∣∣∣∂Sn∂y (y, β)
∣∣∣ dy � αn(m + 3)n. Using Equa-

tion (2.8) we obtain for the 1-norm of the derivative of Sn that∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣� n∑

k=1

∑
(j1,...,jk)∈Jk(d)

∑
1≤i≤k

G
n−
∑i

r=1 jr

k∏
`=1
`6=i

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ .

Since Gk � αk by (1.4) and |Ak,j(y, β)| ≤ aj < α by (3.1) and (1.3) we
obtain∥∥∥∥∂Sn∂y (y, β)

∥∥∥∥
1
�

n∑
k=1

∑
(j1,...,jk)∈Jk(d)

∑
1≤i≤k

αn−
∑i

r=1 jrα
∑i

r=1 jr

·
∫ 1

0

k∏
`=i+1

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ dy.

Now an application of Proposition 3.2 yields∥∥∥∥∂Sn∂y (y, β)
∥∥∥∥

1
�

n∑
k=1

∑
(j1,...,jk)∈Jk(d)

αn
∑

1≤i≤k
(m+ 2)k−i � αn(m+ 3)n,

where we once more used that Jk(d)�
(n
k

)
and the binomial theorem. �
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Remark 3.5. If we deal with particular cases of linear recurrences it is
possible to improve the estimate in Propositions 3.3 and 3.4 slightly by
the following consideration. Let ε > 0 be arbitrary. Then by (1.4) there is
N ∈ N such that bGn/Gn−1c+ 1−Gn/Gn−1 ≥ bαc+ 1− α− ε := u holds
for all n ≥ N . Let r be the smallest positive integer satisfying r−1 < u.
Since In(c) is an interval of length 1/aGn for each b there is t ∈ Rr :=
{0, r−1, . . . , (r − 1)r−1} and c ∈ N such that

In−1(b) ⊂ In(c+ t) ∪ In(c+ 1 + t) ∪ . . . ∪ In(c+ bGn/Gn−1c+ t).

We use this instead of (3.9) in the proof of Proposition 3.1 whenever n` −
n`−1 = 1 and replace the maxima m(a, b) by

m
(t)
G (j, b) = m(t)(j, b) = sup

y∈( b+t
a
, b+t+1

a
)

∣∣∣∣sin πajysin πy

∣∣∣∣ (j ∈ I, b ∈ Z)

in these cases. Moreover, we set

(3.13) m
(r)
G = m(r) = max

j∈I
m(r)(j),

where m(r)
G (j) = maxt∈Rr

{ 1
a

∑a−1
b=0 m

(t)
G (j, b)

}
for j ∈ I. With these modifi-

cations the sum in the definition of K` in (3.11) runs only from 0 to g` and,
hence, we get the better estimate K` ≤

Gn`
Gn`−1

(m(r)
G (j) + 1) in (3.12). This

entails that

(3.14)
∫ 1

0

k∏
`=1

fn`,i`(y)dy � (m(r) + 1)k.

Applying (3.14) in Proposition 3.2 instead of Proposition 3.1 we gain with
the same proofs as the ones of Propositions 3.3 and 3.4 that

(3.15)

∫ 1

0
|Sn(y, β)|dy � (m(r) + 2)n

and
∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣ dy � αn(m(r) + 2)n.

3.2. The maximum norm of sums related to Sn(y, β). For certain
β ∈ Q the maximum norm of Sn(y, β) has been estimated by Lamberger
and Thuswaldner [21]. However, for our purposes we require a variant of
their estimate. To establish this variant we need some notation and some
results from [21]. Let G = (Gj)j≥0 be a linear recurrence base satisfying the
conditions of Definition 1.1 with characteristic polynomial Xd − a1X

d−1 −
· · · − ad−1X − ad having dominant root α. Fix r, s ∈ N and y ∈ R in a way
that gcd(a1 + · · ·+ ad − 1, s) = 1 and r 6≡ 0 (mod s). According to [21], by
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iterating (2.5) in an appropriate way we can obtain a recurrence

(3.16) Sn
(
y,
r

s

)
=

D∑
j=1

Bn,j
(
y,
r

s

)
Sn−j

(
y,
r

s

)
(n ≥ D)

for Sn(y, rs) of order D > d with coefficient functions Bn,j(y, rs) having the
following properties (for a1 > 1 this recurrence is written explicitly in [21,
Equation (5)] and for a1 = 1 it is written in [21, Equation (12)]; however,
we do not need these formulas here):

By [21, Proposition 1] there exist b1, . . . , bD ∈ R with bj ≥ |Bn,j(y, rs)|
for all 1 ≤ j ≤ D and all n ∈ N such that the linear recurrent sequence

(3.17) Tn+D =
D∑
j=1

bjTn+D−j (n ≥ 0)

satisfies

(3.18)
∣∣∣Sn(y, r

s

)∣∣∣ < Tn (n ∈ N)

for certain initial values T0, . . . , TD−1 ∈ R>0. Moreover, from [21, Sec-
tion 4.1] we see that there is a constant λ = λ(G, s) < 1 such that

(3.19) αλn � Tn � αλn (n ∈ N).

We also need an analog of Jk(n0) from (2.7). For D ≤ n0 < n and
1 ≤ k < n let

(3.20) Kk(n0)

=
{

j = (j1, . . . , jk) ∈ {1, . . . , D}k : n−
k−1∑
`=1

j` > n0 ≥ n−
k∑
`=1

j`

}
.

Proposition 3.6. Let G = (Gj)j≥0 be a linear recurrence base satisfy-
ing the conditions of Definition 1.1 with characteristic polynomial Xd −
a1X

d−1 − · · · − ad−1X − ad having dominant root α. Let n, r, s ∈ N and
y ∈ R be given in a way that gcd(a1 + · · · + ad − 1, s) = 1 and r 6≡ 0
(mod s). Then for each n1 ∈ {D, . . . , n− 1} we have

n−n1∑
k=1

∑
(j1,...,jk)∈Kk(n1)

k∏
`=1

∣∣∣∣Bn−∑`−1
r=1 jr,j`

(
y,
r

s

)∣∣∣∣� αλ(n−n1),

where λ = λ(G, s) < 1 and the implied constant depends only on the linear
recurrence base G and the integer s.

Proof. Let (Tn)n≥0 be the linear recurrent sequence given by (3.17) (with
initial values satisfying (3.18)). By the definition of b1, . . . , bD, and Kk(n1)
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we get, using (3.19), that
n−n1∑
k=1

∑
(j1,...,jk)∈Kk(n1)

k∏
`=1

∣∣∣∣Bn−∑`−1
r=1 jr,j`

(
y,
r

s

)∣∣∣∣
≤

n−n1∑
k=1

∑
(j1,...,jk)∈Kk(n1)

k∏
`=1

bj`

� α−λn1
n−n1∑
k=1

∑
(j1,...,jk)∈Kk(n1)

(
k∏
`=1

bj`

)
T
n−
∑k

r=1 jr

= α−λn1Tn

� αλ(n−n1). �

We mention that, analogously to (2.8) we get the estimate

(3.21) |Sn(y, β)|

≤
n−n0∑
k=1

∑
(j1,...,jk)∈Kk(n0)

k∏
`=1

∣∣∣∣Bn−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ · ∣∣∣∣Sn−∑k

r=1 jr
(y, β)

∣∣∣∣
for each n0 ∈ {D, . . . , n− 1}.

3.3. Upper bounds for mG. Let G be a linear recurrence base as in
Definition 1.1 and let α be the dominant root of the characteristic polyno-
mial Xd − a1X

d−1 − · · · − ad−1X − ad of G. According to Proposition 3.3
the 1-norm of Sn( · , β) can be easily bounded by αn/2 by using Cauchy’s
inequality followed by Parseval’s identity. However, often Proposition 3.3 is
of use only if this bound can be sharpened (and the same holds for Propo-
sition 3.4). In particular, in view of (1.7) it will turn out that it is desirable
to get mG + 3 ≤ α0.4886061, where the quantity mG is defined in (3.7). Such
a sharpened bound is needed for instance in the proof of Corollary 1.4.
Unfortunately, we are not able to achieve such an improvement for all G
satisfying the conditions of Definition 1.1, however, we can achieve it if the
coefficient a1 is large enough. To get the threshold value for a1 as low as
possible we will now study mG in some detail. Since the dependence of mG

on the linear recurrence base G will be crucial we keep the index G in mG

as well as in mG(j) (defined in (3.6)) throughout this section.
We start with the following estimate which is related to estimates estab-

lished in [12, Section VI].

Lemma 3.7. Let G be a linear recurrence base as in Definition 1.1 and
let α be the dominant root of the characteristic polynomial Xd− a1X

d−1−
· · · − ad−1X − ad of G. Let mG = maxj∈ImG(j) with mG(j) as in (3.6).
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Then for a1 ≥ 3 we have

(3.22) mG ≤ 2 + 2
a1 sin π

a1

− 2
π

log tan π

2a1
.

This implies that mG � log a1 � logα for large a1.

Proof. For convenience we set a = a1. Fix G in a way that a ≥ 3 and set
I(b) = ( ba ,

b+1
a ) for b ∈ Z. First observe that, since aj ≤ a for j ∈ I,

mG(j) ≤ 2 + 1
a

a−2∑
b=1

sup
y∈I(b)

1
sin πy .

If a ≡ 1 (mod 2) we obtain

(3.23) mG(j) ≤ 2 + 2
a

a−3
2∑
b=1

sup
y∈I(b)

1
sin πy + 1

a
sup

y∈I((a−1)/2)

1
sin πy

≤ 2 + 2
a

a−1
2∑
b=1

sup
y∈I(b)

1
sin πy

for each interval I(b) in the rightmost sum the supremum of 1
sinπy is located

on the left end point of I(b). Thus
a−1

2∑
b=1

sup
y∈I(b)

1
sin πy =

a−1
2∑
b=1

1
sin πb

a

≤ 1
sin π

a

+
∫ a−1

2

1

dx
sin πx

a

= 1
sin π

a

+ a

π
log

tan(π4 −
π
4a)

tan π
2a

≤ 1
sin π

a

− a

π
log tan π

2a.

Inserting this in (3.23) we arrive at

(3.24) mG(j) ≤ 2 + 2
a sin π

a

− 2
π

log tan π

2a.

If a ≡ 0 (mod 2) we obtain

(3.25) mG(j) ≤ 2 + 2
a

a
2−1∑
b=1

sup
y∈I(b)

1
sin πy .
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Similar to the case of odd a we now gain
a
2−1∑
b=1

sup
y∈I(b)

1
sin πy =

a
2−1∑
b=1

1
sin πb

a

≤ 1
sin π

a

+
∫ a

2−1

1

dx
sin πx

a

= 1
sin π

a

+ a

π
log

tan(π4 −
π
2a)

tan π
2a

≤ 1
sin π

a

− a

π
log tan π

2a.

Inserting this in (3.25) we get (3.24) also in this case. The estimate (3.22)
now follows from the definition of mG. The asymptotic result is an imme-
diate consequence of (3.22) since tan x ∼ x for x → 0, and a ≤ α holds
by (1.3). �

The above result immediately implies that mG + 3 < α0.4886061 holds
for all a1 ≥ 72. By calculating mG directly (the suprema have to be ap-
proximated numerically which has been done using Mathematica) we get
that this even holds for a1 ≥ 59. Thus Proposition 3.3 and Proposition 3.4
immediately imply the following lemma.

Lemma 3.8. Let G = (Gj)j≥0 be a linear recurrence base satisfying the
conditions of Definition 1.1 with characteristic polynomial Xd − a1X

d−1 −
· · · − ad−1X − ad having dominant root α. If a1 ≥ 59 then∫ 1

0
|Sn(y, β)| dy � αnη and

∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣ dy � αn(1+η)

hold for some explicitly computable η < 0.4886061.

For the special family (Gj)j≥0 with Gj+2 = a1Gj+1 + Gj we use Re-
mark 3.5 to get this result for even smaller values of a1. Indeed, if a1 ≥ 40
we may choose r = 2 in this remark and, again using Mathematica, we
can calculate the quantity m(2)

G defined in (3.13) for 40 ≤ a1 ≤ 58. Since
m

(2)
G + 2 < α0.4886061 holds for all a1 ≥ 40, the estimate in (3.15) yields the

following result.

Lemma 3.9. Let (Gj)j≥0 be a linear recurrence base whose characteristic
polynomial is given by X2 − a1X − 1 and has dominant root α. If a1 ≥ 40
then ∫ 1

0
|Sn(y, β)| dy � αnη and

∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣ dy � αn(1+η)

hold for some explicitly computable η < 0.4886061.



Sum of digits function of linear recurrence number systems 469

4. Estimates of the 1-norm for smaller values of a1

4.1. Blocking. As mentioned at the beginning of Section 3.3, in order to
derive results on almost primes we need to get good bounds for the 1-norm
of Sn( · , β) and of its derivative. To obtain such good estimates also for
smaller coefficients a1, instead of taking suprema after each step of the
recurrence, we deal with “blocks” or “windows” of “width” w and take the
suprema after each w-th iteration. To keep things as simple as possible we
only do this for recurrences having characteristic polynomial X2−a1X − 1
for some a1 ≥ 1 (it should then be clear how to treat the general case).
Thus in the present section G = (Gn) is defined by

(4.1) Gn+2 = a1Gn+1 +Gn (n ≥ 0)

with G0 = 1 and G1 ≥ a1 + 1. In this case (2.5) becomes

(4.2) Sn(y, β) = An,1(y, β)Sn−1(y, β) +An,2(y, β)Sn−2(y, β) (n ≥ 2).

Now set A(1)
n,j(y, β) = An,j(y, β) for j ∈ {1, 2} and recursively define

A
(`)
n,`(y, β) = A

(`−1)
n,`−1(y, β) ·An−`+1,1(y, β) +A

(`−1)
n,` (y, β) and

A
(`)
n,`+1(y, β) = A

(`−1)
n,`−1(y, β) ·An−`+1,2(y, β).

If we iterate (4.2) appropriately we obtain

(4.3) Sn(y, β) = A(w)
n,w(y, β)Sn−w(y, β) +A

(w)
n,w+1(y, β)Sn−w−1(y, β).

Setting

(4.4) J
(w)
k =

{
(j1, . . . , jk) ∈ {w,w+1}k : n−

k−1∑
`=1

j` > w+1 ≥ n−
k∑
`=1

j`

}

for 1 ≤ k ≤ bn/wc and iterating (4.3) we find in the same way as in the
proof of Proposition 3.3 that

|Sn(y, β)| �
bn/wc∑
k=1

∑
(j1,...,jk)∈J(w)

k

k∏
`=1

∣∣∣∣A(w)
n−
∑`−1

r=1 jr,j`
(y, β)

∣∣∣∣ .
The functions A(w)

n,j (y, β) are exponential sums containing linear combina-
tions of Gn−1, . . . , Gn−w−2 in the exponents. Moreover, their definition im-
plies that |A(w)

n,j (y, β)| ≤ αj for j ∈ {w,w+1}, where α is the dominant root
of the characteristic polynomial ofG. Thus as in the proof of Proposition 3.4
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we get∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣� bn/wc∑

k=1

∑
(j1,...,jk)∈J(w)

k

∑
1≤i≤k

G
n−
∑i

r=1 jr

k∏
`=1
` 6=i

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣

� αn
bn/wc∑
k=1

∑
(j1,...,jk)∈J(w)

k

∑
1≤i≤k

k∏
`=i+1

∣∣∣∣An−∑`−1
r=1 jr,j`

(y, β)
∣∣∣∣ .

For the recurrences in (4.1) the asymptotic estimate (1.4) can clearly be
strengthened to G` = cα` +O(α−`) for some c > 0. Thus if we replace G`
by cα` in A

(w)
n,j (y, β) and call the resulting expression Ã

(w)
n,j (y, β), we have

|Ã(w)
k,j (y, β) − A(w)

k,j (y, β)| � α−k for j ∈ {w,w + 1}. This entails that for
each δ > 0 we have

|Sn(y, β)| �
bn/wc∑
k=1

∑
(j1,...,jk)∈J(w)

k

k∏
`=1

(∣∣∣∣Ã(w)
n−
∑`−1

r=1 jr,j`
(y, β)

∣∣∣∣+ δ

)
,

where the implied constant depends on δ. Obviously, an analogous estimate
holds mutatis mutandis for

∣∣∂Sn
∂y (y, β)

∣∣. Instead of the intervals Ik(b) defined
in (3.2) we now use the intervals (as before we set a = a1 for convenience)

I ′k(b) =
[
b− aβ
acαk

,
b+ 1− aβ
acαk

)
(0 ≤ b < bacαkc).

(For large k, the intervals Ik(b) and I ′k(b) are almost the same.) Now we
define
(4.5) Mw(j, b) = sup

y∈I′n−1(b)

∣∣∣Ã(w)
n,j (y, β)

∣∣∣+ δ (j ∈ {w,w + 1}, b ∈ Z)

and note that Mw(j, b) does not depend on n. Indeed, by (2.6) and the
definition of Ã(w)

n,j (y, β) the variable n in Ã
(w)
n,j (y, β) occurs only in linear

combinations of terms of the form αn−ky for some k depending only on a
and w. Thus n cancels out if we insert the bounds of the interval I ′n−1(b)
for y. However, contrary to m(j, b), the function Mw(j, b) is in general not
periodic in b (also note that, contrary to the definition of m(j, b) we use
n− 1 instead of n− j as index of I ′n−1(b); this is because we want to split
in finer subintervals in each step than we did in Section 3.1). Setting

F
(w)
n,j (y) = Mw(j, b) for y ∈ I ′n−1(b)

and integrating we gain

(4.6)
∫ 1

0
|Sn(y, β)|dy �

bn/wc∑
k=1

∑
(j1,...,jk)∈J(w)

k

∫ 1

0

k∏
`=1

F
(w)
n−
∑`−1

r=1 jr,j`
(y)dy
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and

(4.7)
∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣

� αn
bn/wc∑
k=1

∑
(j1,...,jk)∈J(w)

k

∑
1≤i≤k

∫ 1

0

k∏
`=i+1

F
(w)
n−
∑`−1

r=1 jr,j`
(y)dy.

Writing

(4.8)
n` = n−

k−∑̀
r=1

jr for 0 ≤ ` ≤ k and

i` = n` − n`−1 = jk+1−` for 1 ≤ ` ≤ k

we now consider the integrals
∫ 1

0
∏k
`=1 F

(w)
n`,i`

(y)dy in (4.6) and∫ 1
0
∏k−i
`=1 F

(w)
n`,i`

(y)dy in (4.7). From the definition of the intervals I ′k(b) it
is clear that each interval of the form I ′n`−1(b) can be covered by bαi`c+ 2
adjacent intervals of the form In`(b′). To be more precise, there is c ∈ N
such that

(4.9) I ′n`−1(b) ⊂ I ′n`(c) ∪ I
′
n`

(c+ 1) ∪ · · · ∪ I ′n`(c+ bαi`c+ 1).

We can now argue in a similar way as in (3.10) to gain (the functions
c1, . . . , ck−1 are chosen in accordance with (4.9))

(4.10)

∫ 1

0

k∏
`=1

F
(w)
n`,i`

(y)dy =
∫ 1

0
F

(w)
n1,i1

(y)
k∏
`=2

F
(w)
n`,i`

(y)dy

�
bacαn1−1c∑
b0=0

Mw(i1, b0)
∫
I′n1−1(b0)

k∏
`=2

F
(w)
n`,i`

(y)dy

�
bacαn1−1c∑
b0=0

Mw(i1, b0)
bαi2c+1∑
b1=0

Mw(i2, c1(b0) + b1)

·
∫
I′n2−1(c1(b0)+b1)

k∏
`=3

F
(w)
n`,i`

(y)dy

� 1
acαn−1

bacαn1−1c∑
b0=0

Mw(i1, b0)
bαi2c+1∑
b1=0

Mw(i2, c1(b0) + b1) · · ·

· · ·
bαikc+1∑
bk−1=0

Mw(ik, ck−1(b0, . . . , bk−2) + bk−1).
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Let

(4.11) Mw(r) = sup
q∈Z

bαrc+1∑
b=0

Mw(r, b+ q) (r ∈ {w,w + 1}).

According to (4.8) we have i` = n` − n`−1 ∈ {w,w + 1}. Thus, if

s = s(j1, . . . , jk) = #{1 ≤ ` ≤ k : i` = w} = #{1 ≤ ` ≤ k : j` = w},

we have

(4.12)
∫ 1

0

k∏
`=1

F
(w)
n`,i`

(y)dy � 1
αn
Mw(w)sMw(w + 1)k−s.

If we iterate only k − i− 1 times (instead of k − 1 times) in (4.10) we get

(4.13)

∫ 1

0

k−i∏
`=1

F
(w)
n`,i`

(y)dy � 1
αn
Mw(w)s(i)Mw(w + 1)k−i−s

� 1
αn

max{Mw(w), 1}s max{Mw(w + 1), 1}k−s

with s(i) = #{1 ≤ ` ≤ k − i : i` = w}.
By the definition of J (w)

k in (4.4) the sum ws(j1, . . . , jk) + (w + 1) ×
(k − s(j1, . . . , jk)) must be close to n to make sure that (j1, . . . , jk) ∈ J

(w)
k

holds. Using this fact and inserting (4.12) in (4.6) we finally gain

(4.14)
∫ 1

0
|Sn(y, β)|dy

� 1
αn

bn/wc∑
k=1

∑
(j1,...,jk)∈J(w)

k

Mw(w)s(j1,...,jk)Mw(w + 1)k−s(j1,...,jk)

� 1
αn

bn/wc∑
s=1

(
bn/wc
s

)
Mw(w)sMw(w + 1)(n−ws)/(w+1)

= 1
αn

bn/wc∑
s=1

(
bn/wc
s

)
Mw(w)s(Mw(w + 1)w/(w+1))n/w−s

� 1
αn
(
Mw(w) +Mw(w + 1)w/(w+1))n/w.

Since k ≤ n inserting (4.13) in (4.7) in an analogous way we derive

(4.15)
∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣ dy

� n
(

max{Mw(w), 1}+ max{Mw(w + 1), 1}w/(w+1))n/w.
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As mentioned in Section 3.3 we want to get

(4.16)
∫ 1

0
|Sn(y, β)|dy � αnη and

∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣ dy � αn(1+η)

for some η ≤ 0.4886061. Thus in view of (4.14) and (4.15) we are left with
finding bounds for the suprema Mw(w) and Mw(w + 1) that imply

(4.17) max{Mw(w), 1}+ max{Mw(w + 1), 1}w/(w+1) < α1.4886061·w.

4.2. Blocks of width two. In this section we derive the estimate (4.16)
for the recurrences (4.1) with 15 ≤ a1 ≤ 39 by setting w = 2 for the width
of the blocks. Indeed, if we take w = 2 we get from (4.3) that

Sn(y, β) = A
(2)
n,2(y, β)Sn−2(y, β) +A

(2)
n,3(y, β)Sn−3(y, β)

with

A
(2)
n,2(y, β) = An,1(y, β)An−1,1(y, β) +An,2(y, β) and

A
(2)
n,3(y, β) = An,1(y, β)An−1,2(y, β).

Inserting w = 2 in (4.5) yields therefore (recall that a = a1)

M2(2, b)− δ = sup
y∈I′n−1(b)

|Ãn,1(y, β)Ãn−1,1(y, β) + Ãn,2(y, β)|

≤ sup
y∈I′n−1(b)

∣∣∣∣∣sin πa(β + cαn−1y)
sin π(β + cαn−1y)

sin πa(β + cαn−2y)
sin π(β + cαn−2y)

∣∣∣∣∣+ 1

= sup
y∈( ba , b+1

a )

∣∣∣∣∣sin πaysin πy
sin πa(β(1− α−1) + α−1y)
sin π(β(1− α−1) + α−1y)

∣∣∣∣∣+ 1

and

M2(3, b)− δ = sup
y∈In−1(b)

|Ãn,1(y, β)Ãn−1,2(y, β)| = sup
y∈( ba , b+1

a )

∣∣∣∣sin πaysin πy

∣∣∣∣ .
Thus, setting δ′ = (bα2c+ 2)δ we obtain from (4.11) that

M2(2)− δ′

= sup
q∈Z

bα2c+1∑
b=0

(M2(2, b+ q)− δ)

≤ sup
q∈Z

bα2c+1∑
b=0

(
sup

y∈( b+qa , b+q+1
a )

∣∣∣∣∣sin πaysin πy
sin πa(β(1− α−1) + α−1y)
sin π(β(1− α−1) + α−1y)

∣∣∣∣∣+ 1
)
.
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Since {1, α−1} are rationally independent over Q we can omit the offset in
the arguments of the sine functions in the last quotient without changing
the supremum over Z. This yields that

M2(2)− δ′

≤ sup
q∈Z

bα2c+1∑
b=0

(
sup

y∈( b+qa , b+q+1
a )

∣∣∣∣∣sin πaysin πy
sin πaα−1y

sin πα−1y

∣∣∣∣∣+ 1
)

= sup
q∈Z

bα2c+1∑
b=0

 sup
y∈( ba , b+1

a )

∣∣∣∣∣∣ sin πay
sin π(y + q

a)
sin πa(α−1y + qα−1

a )
sin π(α−1y + qα−1

a )

∣∣∣∣∣∣+ 1

 ,
which is an estimate that is uniform in β ∈ [0, 1). Now we again use the
rational independence of {1, α−1} and the fact that |sin π(y+ q

a)| is periodic
in q ∈ Z with period a to gain (setting γ = {qα−1/a}) that

(4.18) M2(2)− δ′ ≤ bα2c+ 1

+ max
q∈{0,...,a−1}

sup
γ∈[0,1)

bα2c+1∑
b=0

sup
y∈( ba , b+1

a )

∣∣∣∣∣ sin πay
sin π(y+ q

a)
sin πa(α−1y+γ)
sin π(α−1y+γ)

∣∣∣∣∣ .
We have to derive upper bounds for the right hand side. Set

g(x) = sin πax
sin πx and h(y, γ, q) = g

(
y + q

a

)
g(α−1y + γ).

Then, Taylor expansion yields

|h(y, γ, q)|

≤ |h(y0, γ0, q)|+
ε

2 max
(y′,γ′)∈J(ε,η)

|hy(y′, γ′, q)|+
η

2 max
(y′,γ′)∈J(ε,η)

|hγ(y′, γ′, q)|

for (y, γ) ∈ J(ε, η) := (y0 − ε/2, y0 + ε/2) × (γ0 − η/2, γ0 + η/2); note
that these intervals depend on y0 and γ0. We now want to estimate the
derivatives. By the product rule,

|hy(y, γ, q)| ≤
∣∣∣g′(y + q

a

)
g(α−1y + γ)

∣∣∣+ α−1
∣∣∣g(y + q

a

)
g′(α−1y + γ)

∣∣∣,
|hγ(y, γ, q)| =

∣∣∣g(y + q

a

)
g′(α−1y + γ)

∣∣∣.
Now, |g(x)| ≤ a and by expanding g in an exponential series we get

|g′(x)| =

∣∣∣∣∣∣
a−1∑
j=0

2π
√
−1je(jx)

∣∣∣∣∣∣ ≤ πa(a− 1).
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Inserting this in (4.18) yields that for each ε, η > 0

M2(2)− δ′ ≤ bα2c+ 1

+ max
q∈{0,...,a−1}

max
γ0∈{`η:`∈N}
∩[0,1+ η

2 )

bα2c+1∑
b=0

max
y0∈{`ε:`∈N}
∩( ba− ε2 , b+1

a
+ ε

2 )

{
|h(y0, γ0, q)|

+ ε

2 max
(y′,γ′)∈J(ε,η)

|hy(y′, γ′, q)|+
η

2 max
(y′,γ′)∈J(ε,η)

|hγ(y′, γ′, q)|
}
,

and thus, again for each ε, η > 0,

M2(2)− δ′(4.19)

≤ bα2c+ 1 + max
q∈{0,...,a−1}

max
γ0∈{`η:`∈N}
∩[0,1+ η

2 )

bα2c+1∑
b=0

max
y0∈{`ε:`∈N}
∩( ba− ε2 , b+1

a
+ ε

2 )

|h(y0, γ0, q)|

+ εa max
q∈{0,...,a−1}

bα2c+1∑
b=0

sup
y∈( ba− ε2 , b+1

a
+ ε

2 )

∣∣∣g′(y + q

a

)∣∣∣
+ εα−1πa(a− 1) max

q∈{0,...,a−1}

bα2c+1∑
b=0

sup
y∈( ba− ε2 , b+1

a
+ ε

2 )

∣∣∣g(y + q

a

)∣∣∣
+ ηπa(a− 1) max

q∈{0,...,a−1}

bα2c+1∑
b=0

sup
y∈( ba− ε2 , b+1

a
+ ε

2 )

∣∣∣g(y + q

a

)∣∣∣.
The estimation of M2(3) is much easier. By periodicity we have

(4.20) M2(3)− (bα3c+ 2)δ = sup
q∈Z

bα3c+1∑
b=0

(M2(3, b+ q)− δ)

≤ max
q∈{0,...,a−1}

bα3c+1∑
b=0

sup
y∈( ba , b+1

a )

∣∣∣g(y + q

a

)∣∣∣.
Treating the estimates (4.19) and (4.20) with Mathematica (accelerated

by a C program for the calculation of the “main term” in the first line
of (4.19)) and choosing δ = 10−10 led to the results displayed in Table 4.1
(recall again that a = a1). This is used to prove the following lemma.
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Table 4.1. Results of the computer calculations for the
upper bound of M2 := max{M2(2), 1} + max{M2(3), 1}2/3

in comparison with α3; see (4.17) with w = 2. The entry
in the column “Power of α” is just the number κ satisfying
M2 ≤ ακ according to the estimate.

a1 ε η Upper bound for M2 Power of α α3

39 0.005 0.0005 46695.7 2.93416 59436
38 0.005 0.0005 43255.2 2.93405 54986
37 0.005 0.0005 39994.9 2.93398 50764
36 0.005 0.0005 36989.9 2.93458 46764
35 0.005 0.0008 39595.4 2.97694 42980
34 0.005 0.0008 36279.6 2.97656 39406
33 0.005 0.0008 33182.6 2.97641 36036
32 0.005 0.0008 30243.8 2.97603 32864
31 0.005 0.0008 27544.8 2.97627 29884
30 0.005 0.0008 24991.4 2.97630 27090
29 0.005 0.0008 22665.7 2.97719 24476
28 0.005 0.0007 19735.6 2.96693 22036
27 0.005 0.0007 17807.7 2.96839 19764
26 0.005 0.0007 16017.7 2.97016 17654
25 0.005 0.0007 14374.2 2.97261 15700
24 0.005 0.0007 12841.2 2.97517 13896
23 0.005 0.0006 11122.8 2.96960 12236
22 0.005 0.0006 9885.92 2.97399 10714
21 0.005 0.0005 8524.75 2.97059 9324
20 0.005 0.0005 7518.04 2.97678 8060
19 0.005 0.0004 6454.22 2.97655 6916
18 0.001 0.0004 5303.48 2.96398 5886
17 0.001 0.0004 4613.01 2.97415 4964
16 0.001 0.0001 3773.67 2.96628 4144
15 0.001 0.00003 3212.43 2.97692 3420

Lemma 4.1. Let (Gj)j≥0 be a linear recurrence base satisfying the con-
ditions of Definition 1.1 whose characteristic polynomial is given by X2 −
a1X − 1 and has dominant root α. If 15 ≤ a1 ≤ 39 then∫ 1

0
|Sn(y, β)|dy � αnη and

∫ 1

0

∣∣∣∣∂Sn∂y (y, β)
∣∣∣∣ dy � αn(1+η)

hold for some explicitly computable constant η < 0.4886061.
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Proof. In view of (4.14), (4.15) and (4.17) we have to show that

(4.21) M2 := max{M2(2), 1}+ max{M2(3), 1}2/3

< α1.4886061·2 = α2.9772122.

This follows from the results listed in Table 4.1 (see the penultimate col-
umn whose largest value, which is typeset in boldface, is still smaller than
2.9772122). �

Using blocks of length greater than two with increasing effort it should
be possible to treat even smaller values of a1.

5. Proofs of the main results

5.1. Proof of Theorem 1.2. In order to prove Theorem 1.2 we have to
show that the estimate in (2.3) holds. To this end we employ the exponential
sum estimates established in Section 3. Moreover, we use the following
inequality due to Sobolev and Gallagher (see [23, Lemma 1.2]).

Lemma 5.1. Let T0, T ≥ δ > 0 be real numbers and f : [T0, T0 +T ]→ C a
continuously differentiable function. Furthermore let R ⊂ [T0+ δ

2 , T0+T− δ
2 ]

such that |t− t′| ≥ δ holds for t, t′ ∈ R with t 6= t′. Then we have the
inequality

∑
t∈R
|f(t)| ≤ δ−1

∫ T0+T

T0
|f(x)|dx+ 1

2

∫ T0+T

T0

∣∣f ′(x)
∣∣ dx.

Proof of Theorem 1.2. We need to prove the estimate in (2.3). First we
rewrite the sum on the left hand side of (2.3) to get

∑
Q<q≤2Q

q−1∑
h=1

∣∣∣∣Sn (hq , rs
)∣∣∣∣ =

2Q∑
δ=1

∑
Qδ−1<q≤2Qδ−1

q−1∑
h=1

(h,q)=1

∣∣∣∣Sn (hq , rs
)∣∣∣∣ .(5.1)

Now we concentrate on the two innermost sums and set

LQ(δ) :=
∑

Qδ−1<q≤2Qδ−1

q−1∑
h=1

(h,q)=1

∣∣∣∣Sn (hq , rs
)∣∣∣∣ .

Let D ∈ N be the order of the recurrence in (3.16). Since the estimate
in (2.3) is trivially true for n ≤ D we will assume that n > D in the
sequel. Using the product representation for Sn in (3.21) we obtain for each
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n1 ∈ {D, . . . , n− 1} the estimate (we use the abbreviation j = (j1, . . . , jk))

LQ(δ) ≤
∑

Qδ−1<q≤2Qδ−1

q−1∑
h=1

(h,q)=1

n−n1∑
k=1

∑
j∈Kk(n1)

k∏
`=1

∣∣∣∣Bn−∑`−1
r=1 jr,j`

(
h

q
,
r

s

)∣∣∣∣ · ∣∣∣∣Sn−∑k

r=1 jr

(
h

q
,
r

s

)∣∣∣∣ .
Later we will choose n1 depending on Q and δ. By the definition of Kk(n1)
in (3.20) the index n−

∑k
r=1 jr always satisfies n1−D < n−

∑k
r=1 jr ≤ n1.

Thus

LQ(δ) ≤
∑

Qδ−1<q≤2Qδ−1

q−1∑
h=1

(h,q)=1

max
n1−D<i≤n1

∣∣∣∣Si (hq , rs
)∣∣∣∣

n−n1∑
k=1

∑
j∈Kk(n1)

k∏
`=1

∣∣∣∣Bn−∑`−1
r=1 jr,j`

(
h

q
,
r

s

)∣∣∣∣
�

∑
n1−D<i≤n1

∑
Qδ−1<q≤2Qδ−1

q−1∑
h=1

(h,q)=1

∣∣∣∣Si (hq , rs
)∣∣∣∣

n−n1∑
k=1

∑
j∈Kk(n1)

k∏
`=1

∣∣∣∣Bn−∑`−1
r=1 jr,j`

(
h

q
,
r

s

)∣∣∣∣ .
Now we apply Proposition 3.6 which yields (recall that α is the dominant
root of the characteristic polynomial of G)

LQ(δ)�
∑

n1−D<i≤n1

αλ(n−n1) ∑
Qδ−1<q≤2Qδ−1

q−1∑
h=1

(h,q)=1

∣∣∣∣Si (hq , rs
)∣∣∣∣

for some constant λ < 1. In this estimate λ and the implied constant depend
only on G and s. In the next step we apply Lemma 5.1 together with the
1-norm estimates in Propositions 3.3 and 3.4. Setting η = logα min{α

1
2 ,

(m+ 3)} ≤ 1
2 we get

LQ(δ)�
∑

n1−D<i≤n1

αλ(n−n1)
(
Q2δ−2

∥∥∥∥Si (· , rs
)∥∥∥∥

1
+
∥∥∥∥∂Si∂y

(
· , r
s

)∥∥∥∥
1

)
� αλ(n−n1)(Q2δ−2αηn1 + α(1+η)n1).(5.2)

We choose n1 by setting

n1 := min
(
b2 logα(Qδ−1)c+D,n− 1

)
.
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we gain (note that for n1 = b2 logα(Qδ−1)c + D both summands in (5.2)
are roughly of the same size)

LQ(δ)� Q2δ−2αηn + αλnα2(1+η−λ) logα(Qδ−1)

= Q2δ−2αηn + αλn(Qδ−1)2(1+η−λ).

It suffices to prove the theorem for small ε. Thus if η < 1
2 we may assume

that 2η+ ε < 1. On top of this, for all η ≤ 1
2 we may assume that ε is small

enough and that the constant λ < 1 from Proposition 3.6 is close enough
to 1 such that ε(1

2 − ε) < 1 − λ < ε
2 holds (note that if we increase λ, the

estimate in Proposition 3.6 clearly remains valid). This yields

LQ(δ)� Q2δ−2αηn + αλn(Qδ−1)2η+ε

Taking into account the sum over δ in (5.1) we end up with

(5.3)
∑

Q<q≤2Q

q−1∑
h=1

∣∣∣∣Sn (hq , rs
)∣∣∣∣�

{
Q2αηn + αλnQ1+ε if η = 1

2 ,

Q2αηn + αλnQ if η < 1
2 .

Let ϑ = 1 − η. Then ϑ ≥ 1
2 and by Lemma 3.7 we have ϑ → 1 for a1 →

∞. Also recall that Q ≤ xϑ−ε and n ≤ logα x + C for some constant C
depending on G. Thus for η = 1

2 we get

(5.4) Q2αηn + αλnQ1+ε

� Qxη+ϑ−ε +Qxλ+ε(ϑ−ε) = Qx1−ε +Qxλ+ε( 1
2−ε) � Qxγ

for some γ < 1. For η < 1
2 we gain

(5.5) Q2αηn + αλnQ� Qxη+ϑ−ε +Qxλ = Qx1−ε +Qxλ � Qxλ.

Inserting (5.4) and (5.5) in (5.3) we finally see that

∑
Q<q≤2Q

q−1∑
h=1

∣∣∣∣Sn (hq , rs
)∣∣∣∣� Qx(log 2x)−A

holds for each A > 0 and the proof is finished. �

5.2. Improvements on the level of distribution and proof of Corol-
lary 1.4. Let G be a linear recurrence base as in Definition 1.1 and let α
be the dominant root of the characteristic polynomial Xd−a1X

d−1−· · ·−
ad−1X − ad of G. In the proof of Theorem 1.2 we see that the level of dis-
tribution ϑ(G) is equal to 1 − η where η satisfies ‖Sn( · , β)‖1 � αηn and
‖∂Sn∂y ( · , β)‖1 � α(1+η)n. Together with our estimates of these 1-norms, we
gain the following result.
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Lemma 5.2. Let G = (Gj)j≥0 be a linear recurrence base whose charac-
teristic polynomial is given by Xd− a1X

d−1− · · · − ad−1X − ad. If a1 ≥ 59
then in Theorem 1.2 the level of distribution satisfies

ϑ(G) ≥ 0.5113939 = 1− 0.4886061.

If the characteristic polynomial of G is of the special form X2 − a1X − 1
then this estimate even holds for a1 ≥ 15.

Proof. From Lemma 3.8 we see that ‖S( · , β)‖ � α0.4886061 for a1 ≥ 59.
This proves the first assertion.

If the characteristic polynomial of G is of the special form X2 − a1X −
1 then for a1 ≥ 40 the result follows because Lemma 3.9 yields again
‖S( · , β)‖ � α0.4886061. If 15 ≤ a1 ≤ 39 then the result is a consequence of
Lemma 4.1. �

Along the lines indicated in Section 1.3 we can now prove Corollary 1.4.

Proof of Corollary 1.4. From Greaves [19, Proposition 1 (see also Theo-
rem 1) of Chapter 5]) it follows that (1.6) holds provided that 1

ϑ(G) < 2−δ2
for a certain constant δ2. Since δ2 = 0.044560 is an admissible choice for
this constant according to Greaves [18], we conclude that (1.6) holds if
ϑ(G) > 0.5113938 . . . Since this is true in view of Lemma 5.2 whenever the
conditions of the corollary are in force, the result is established. �
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