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Factoring Gleason polynomials modulo 2

par Xavier BUFF, William FLOYD, Sarah KOCH et Walter
PARRY

Résumé. Parmi les composantes connexes de l’intérieur de l’ensemble de
Mandelbrot, on trouve celles qui sont hyperboliques. Ces composantes cor-
respondent aux paramètres c ∈ C pour lesquels le point critique z0 = 0 du
polynôme fc : z 7→ z2 +c est attiré par un cycle attractif. Chaque composante
hyperbolique contient un unique centre ; c’est le paramètre c pour lequel z0
est périodique. Étant donné un entier n ≥ 1, le polynôme de Gleason de pé-
riode n est le polynôme unitaire Gn ∈ Z[c] dont les racines sont précisément
les centres des composantes hyperboliques de période n. On ne sait pas si
Gn se factorise sur Z. Dans cet article, nous factorisons Gn modulo 2. Nous
prouvons le fait remarquable suivant : le nombre de facteurs irréductibles de
Gn modulo 2 est égal au nombre de racines réelles de Gn.

Abstract. Among the connected components of the interior of the Mandel-
brot set are those that are hyperbolic. These components consist of parameters
c ∈ C for which the critical point z0 = 0 of fc : z 7→ z2 + c is attracted to
an attracting periodic cycle. Every hyperbolic component contains a unique
center ; that is, a parameter c for which the critical point z0 is periodic. For
a given n ≥ 1, the Gleason polynomial for period n is the monic polynomial
Gn ∈ Z[c] whose roots are exactly the centers of the hyperbolic components
of period n. It is unknown if Gn factors over Z. In this article, we factor Gn

modulo 2. We prove the following remarkable fact: the number of irreducible
factors of Gn modulo 2 is equal to the number of real roots of Gn.

1. Introduction

Let k = Q be the field of rational numbers or k = F2 be the finite field
with 2 elements. Let k be an algebraic closure of k.

Given c ∈ k, denote by fc ∈ k[z] the quadratic polynomial

fc(z) := z2 + c.

A point z ∈ k is a periodic point for fc if f◦n
c (z) = z for some positive

integer n. The least such integer is called the period of z.
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If z is periodic of period n ≥ 1 for fc, then (c, z) is a zero of the polynomial
Fn ∈ k[c, z] defined by

Fn(c, z) := f◦n
c (z) − z.

An elementary induction shows that Fn has integer coefficients, degree 2n−1

with respect to c and degree 2n with respect to z. The coefficient of c2n−1

is 1 and the coefficient of z2n is 1. If m divides n, then Fm(c, z) = 0 ⇒
Fn(c, z) = 0. In addition, the polynomial

Fm(0, z) = z2m − z ∈ k[z]
has simple roots, so that Fm is square-free. Thus, if m divides n, then Fm

divides Fn in k[c, z]. It follows that there exists a sequence (Φn ∈ k[c, z])n≥1
such that

Fn(c, z) =
∏
m|n

Φm(c, z).

The polynomial Φn is called the n-th dynatomic polynomial.
Let µ : N∖{0} → {−1, 0, 1} be the Möbius function, and let (δn)n≥1 be

the sequence of integers defined by

δn :=
∑
m|n

µ(m)2
n
m .

Then, the polynomial Φn has degree δn/2 with respect to c and degree δn

with respect to z. In this article, we are interested in the factorization of
Φn in k[c, z].

The following result is due to Bousch [1].

Theorem 1.1. If k = Q, then for n ≥ 1, the dynatomic polynomial Φn is
irreducible in Q[c, z].

We shall see that when k = F2, the situation is radically different. Let
(γn)n≥1 be the sequence defined by

γn := 1
2n

∑
m|n

m is odd

µ(m)2
n
m .

Theorem 1.2. If k = F2, then for n ≥ 1, the dynatomic polynomial Φn

has exactly γn irreducible factors in F2[c, z] which are monic with respect
to c. These are of the form Q(z2 + c− z) with Q ∈ F2[c]. If n is odd, then
each factor has degree 2n with respect to z and degree n with respect to c.
If n is even, then there are γn/2 factors of degree n with respect to z and
degree n/2 with respect to c, and there are γn − γn/2 factors of degree 2n
with respect to z and degree n with respect to c.

Our proof in Section 6 relies on studying the restriction of Φn to the slice
{z = 0}. Note that 0 is a critical point of fc, i.e., f ′

c(0) = 0.
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Remark 1.3. For k = F2, all points are critical points since the derivative
of fc identically vanishes.

A parameter c ∈ k is called a center of period n if 0 is a periodic point
of period n for fc. The centers of period n are the roots of the polynomial
Gn ∈ k[c] defined by

Gn(c) = Φn(c, 0).
The polynomial Gn is called the n-th Gleason polynomial. It has degree
δn/2.

The factorization of Gleason and related polynomials in Q[c] as well
as in F2[c] has recently attracted attention (see for example [3] and [4]);
in particular, there are implications regarding the irreducibility over C of
some dynamically defined curves in the space of quadratic rational maps
(see for example [2]). Here is a long-standing conjecture whose origin is
unknown to us. See [7, Remark 3.5].

Conjecture 1.4. If k = Q, then for n ≥ 1, the polynomial Gn is irreducible
in Q[c].

In the following statement, M is the Mandelbrot set. For the notion of
primitive or satellite hyperbolic components, see Section 4.4. The following
result is due to Lutzky [5, 6]. We shall present a proof in Section 4.4 that
differs from Lutzky’s proof (see Section 4.5 for a discussion of Lutzky’s
proof).

Theorem 1.5. If k = Q, then Gn has exactly γn roots in R. When n
is odd, these γn roots are centers of primitive components of M. When n
is even, γn/2 of these roots are centers of satellite components of M and
γn − γn/2 of these roots are centers of primitive components of M.

We shall prove that when k = F2, there is a parallel count for the number
of monic irreducible factors of the n-th Gleason polynomial Gn. A polyno-
mial P ∈ k[c] of degree d is centered if the coefficient of cd−1 is equal to 0.
Otherwise it is noncentered.

Theorem 1.6. If k = F2, then Gn has exactly γn monic irreducible fac-
tors in F2[c]. When n is odd, those factors are the γn irreducible centered
polynomials of degree n in F2[c]. When n is even, those factors are the γn/2
irreducible noncentered polynomials of degree n/2 in F2[c] together with the
γn − γn/2 irreducible centered polynomials of degree n in F2[c].

This will be proved in Section 5.

Remark 1.7. Theorem 1.6 generalizes to cases where the degree d is a
power of a prime. We state this generalization without proof in Theorem 1.8.
We introduce the following notation in order to include the statement of
the theorem in this more general case.
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Let d = pr, where p is a prime number, and r is a positive integer. Let
κn and ρn be the following sequences

κn = −(d− 1)p
dn

∑
p|m|n

µ(m)d
n
m

and
ρn = 1

dn

∑
m|n

µ(m)d
n
m − (p− 1)(d− 1)

dn

∑
p|m|n

µ(m)d
n
m .

Theorem 1.8. If k = Fd, then Gn has exactly ρn monic irreducible factors
in Fd[c]. When p does not divide n, those factors are the ρn irreducible
centered polynomials of degree n in Fd[c]. When p does divide n, those
factors are the κn irreducible noncentered polynomials of degree n/p in Fd[c]
together with the ρn − κn irreducible centered polynomials of degree n in
Fd[c].

Remark 1.9. One might hope that there is a corresponding generalization
of Theorem 1.5 to multibrot sets associated to prime powers. Unfortunately,
the choice of what hyperbolic components to count is not clear. For example,
there are no hyperbolic components with real centers if p is odd.

We thank the referee for many helpful comments.

2. Some sequences of integers

Recall that µ : N∖{0} → {−1, 0, 1} is the Möbius function and that for
n ≥ 1,

δn :=
∑
m|n

µ(m)2
n
m ,

so that
2n =

∑
m|n

δm.

It will be convenient to consider the sequence (εn)n≥1 defined by

εn := −
∑
m|n

m is even

µ(m)2
n
m so that δn + εn =

∑
m|n

m is odd

µ(m)2
n
m .

Lemma 2.1. The sequence (εn)n≥1 is characterized by the recursion
(2.1) ∀ n ≥ 1, ε2n−1 = 0 and ε2n = δn + εn.

Remark 2.2. This shows that the sequence (εn)n≥1 takes nonnegative
values.

Remark 2.3. This lemma asserts that any sequence satisfying recur-
sion (2.1) is equal to the sequence (εn)n≥1.
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Proof. First, assume n ≥ 1. Since 2n − 1 does not have any even divisor,
the sum defining ε2n−1 is empty, so that ε2n−1 = 0. In addition,

δn + εn =
∑
m|n

µ(m)2
n
m −

∑
m|n

m is even

µ(m)2
n
m

=
∑
m|n

m is odd

µ(m)2
n
m

= −
∑

2m|2n
m is odd

µ(2m)2
2n
2m since when m is odd, µ(m) = −µ(2m)

= −
∑
k|2n

k is even

µ(k)2
2n
k since when 4|k, µ(k) = 0

= ε2n.

Second, assume (ε′
n)n≥1 is a sequence satisfying recursion (2.1). Let (un)n≥1

be the sequence defined by un := ε′
n − εn. Then, for n ≥ 1, we have that

u2n−1 = ε′
2n−1 − ε2n−1 = 0 and u2n = δn + ε′

n − δn − εn = un.

It follows by induction that the sequence (un)n≥1 identically vanishes, so
that the sequence (ε′

n)n≥1 is equal to the sequence (εn)n≥1. □

It shall be convenient to consider three related sequences (αn)n≥1,
(βn)n≥1 and (γn)n≥1 defined by

αn := δn

n
= 1
n

∑
m|n

µ(m)2
n
m , βn := εn

n
= − 1

n

∑
m|n

m is even

µ(m)2
n
m

and
γn := δn + ϵn

2n = 1
2n

∑
m|n

m is odd

µ(m)2
n
m .

Lemma 2.4. The sequences (βn)n≥1 and (γn)n≥1 are characterized by the
recursion

∀ n ≥ 1, β2n−1 = 0 and β2n = γn = αn + βn

2 .

Proof. This is an immediate consequence of Lemma 2.1. □

3. Counting periodic sequences

3.1. Symbolic dynamics. Let us consider the set Σ of sequences of 0’s
and 1’s:

Σ := {0, 1}N∖{0}.
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A sequence in Σ shall be denoted by s = (sn)n≥1. Consider the shift σ :
Σ → Σ defined by

σ(s1, s2, s3, . . . ) := (s2, s3, s4, . . . ).
Let Θ ⊂ Σ be the subset of periodic sequences. Given n ≥ 1, set

Θ̂n := {s ∈ Σ ; σ◦n(s) = s
}
.

Note that Θ̂n ⊂ Θ is the set of sequences which are periodic under iteration
of σ with period dividing n. Denote by Θn ⊆ Θ̂n the subset of sequences
which have exact period n, so that

Θ =
⊔

n≥1
Θn.

Lemma 3.1. For n ≥ 1, card(Θn) = δn.

Proof. A sequence s ∈ Θ̂n is uniquely characterized by (s1, s2, . . . , sn) which
may be any element of {0, 1}n. As a consequence card(Θ̂n) = 2n. In addi-
tion,

Θ̂n =
⊔
m|n

Θm so that 2n =
∑
m|n

card(Θm).

It follows from the Möbius inversion formula that for n ≥ 1,
card(Θn) =

∑
m|n

µ(m)2
n
m = δn. □

Consider now the involution ι : Σ → Σ defined by
ι(s1, s2, s3, . . . ) := (1 − s1, 1 − s2, 1 − s3, . . . ).

Note that σ and ι commute. A sequence s ∈ Σ is reflexive if its orbit under
iteration of σ contains ι(s). Let Ξ ⊂ Σ be the subset of reflexive sequences.
A reflexive sequence is necessarily periodic since

σ◦m(s) = ι(s) ⇒ σ◦(2m)(s) = s.
For n ≥ 1, let Ξn be the set of reflexive sequences of period n:

Ξn := Ξ ∩ Θn.

Lemma 3.2. For n ≥ 1, card(Ξn) = εn.

Proof. Assume s ∈ Ξn and σ◦k(s) = ι(s). Let 0 < m < n be congruent to k
modulo n, so that σ◦m(s) = σ◦k(s) = ι(s). Note that σ◦(2m)(s) = s so that
n divides 2m. Since 0 < 2m < 2n, we have n = 2m. As a consequence, for
n ≥ 1,

card(Ξ2n−1) = 0.
For n ≥ 1, set

Ξ̂n := {s ∈ Ξ ; σ◦n(s) = s
}

and Ξ̂′
n := {s ∈ Ξ ; σ◦n(s) = ι(s)

}
.
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Since ι : Σ → Σ does not have any fixed point, Ξ̂n ∩ Ξ̂′
n = ∅. Assume

s ∈ Ξ̂2n, i.e., s is a reflexive sequence of period dividing 2n. Let m ≥ 1 be
the smallest integer such that σ◦m(s) = ι(s). Then s has period 2m which
divides 2n, so that m divides n. If m divides n and n/m is odd, then s ∈ Ξ̂′

n;
and if n/m is even, then s ∈ Ξ̂n. Thus, for n ≥ 1,

(3.1) Ξ̂2n = Ξ̂′
n ⊔ Ξ̂n so that card(Ξ̂2n) = card(Ξ̂′

n) + card(Ξ̂n).

A sequence s ∈ Ξ̂′
n is uniquely characterized by (s1, s2, . . . , sn) which may

be any element of {0, 1}n. Thus

(3.2) card(Ξ̂′
n) = 2n =

∑
m|n

δm.

As in the previous proof,

(3.3) Ξ̂n =
⊔
m|n

Ξm so that card(Ξ̂n) =
∑
m|n

card(Ξm).

In addition, since card(Ξ̂k) = 0 if k is odd, we have that

(3.4) card(Ξ̂2n) =
∑

2m|2n

card(Ξ2m) =
∑
m|n

card(Ξ2m).

Thus, for n ≥ 1,∑
m|n

card(Ξ2m) = card(Ξ̂2n) from (3.4)

= card(Ξ̂′
n) + card(Ξ̂n) from (3.1)

=
∑
m|n

δm +
∑
m|n

card(Ξm) from (3.2) and (3.3)

so that for n ≥ 1,
card(Ξ2n) = δn + card(Ξn).

The sequence
(
card(Ξn)

)
n≥1 satisfies recursion (2.1), thus is equal to

(εn)n≥1. □

3.2. Multiplication by 2 in R/Z. Consider the map τ : Σ → R/Z
defined by

τ(s) :=
∑
j≥1

sj

2j
mod 1.

Note that τ : Σ → R/Z is surjective (every angle in R/Z has a binary ex-
pansion and s is the corresponding sequence of digits) but not injective. For
example, (0, 0, 0, . . . ) and (1, 1, 1, . . . ) have the same image by τ . However,
if two distinct sequences are identified, one is eventually constant equal to
0 and the other is eventually constant equal to 1. It follows that the only
periodic sequences which are identified are (0, 0, 0, . . . ) and (1, 1, 1, . . . ).
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The map τ : Σ → R/Z semi-conjugates the shift σ : Σ → Σ to the
doubling map D : R/Z → R/Z defined by

D(θ) := 2θ,

that is, D ◦ τ = τ ◦ σ. An angle θ ∈ R/Z is periodic under iteration of D
with period dividing n if and only if θ can be written as m/(2n − 1) with
m ∈ Z/(2n − 1)Z. In addition, if s ∈ Θ̂n, i.e., if s is periodic with period
dividing n, then

τ(s) = m

2n − 1 with m :=
n∑

j=1
sj2n−j ∈ Z/(2n − 1)Z.

The map τ : Σ → R/Z semi-conjugates the involution ι : Σ → Σ to the
involution I : R/Z → R/Z defined by

I(θ) := −θ,

that is, I ◦ τ = τ ◦ ι. For n = 1, the doubling map D : R/Z → R/Z has only
one fixed point, namely 0, and this point is fixed by the involution I. For
n ≥ 2, it follows from Section 3.1 that the doubling map has δn periodic
points of exact period n, and that among those, εn have an orbit which is
invariant by the involution I. So, for n ≥ 2, there are αn orbits of period n
and βn among them are invariant by the involution I.

4. Quadratic dynamics in Q

In this section, we are mainly concerned with the dynamics of the qua-
dratic polynomials fc : Q → Q defined by

fc(z) := z2 + c with c ∈ Q.

For c ∈ Q, the periodic points of fc of period dividing n are the roots of
the polynomial f◦n

c (z) − z ∈ Q[z] which has degree 2n. It shall therefore be
convenient to consider the sequence

(
Fn(c, z) ∈ Q[c, z]

)
n≥1 of polynomials

defined by
Fn(c, z) := f◦n

c (z) − z.

Those polynomials satisfy the recursion

F1(c, z) = z2 − z + c and Fn+1(c, z) = Fn(c, z)2 + c.

It follows that they have integer coefficients, degree 2n−1 with respect to
c and degree 2n with respect to z. The coefficient of c2n−1 is 1 and the
coefficient of z2n is 1.
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4.1. The dynamics of f0 : z 7→ z2. The periodic points of f0 of period
dividing n are the roots of the polynomial Fn(0, z) = z2n − z ∈ Q[z], whose
roots are simple. The fixed points are 0 and 1. The periodic points of period
n ≥ 2 are roots of unity.

Let U ⊂ Q be the multiplicative group of roots of unity. The transcen-
dental map Q/Z ∋ θ 7→ exp(2πiθ) ∈ U is a group isomorphism which con-
jugates the doubling map D : Q/Z → Q/Z to the restriction f0 : U → U.
It conjugates the involution I : Q/Z → Q/Z to the involution ι : U → U
defined by ι(z) = 1/z.

It follows from Section 3.2 that for n ≥ 2, the squaring map f0 : Q → Q
has δn periodic points of exact period n, and that among those, εn have an
orbit which is invariant by the involution ι.

4.2. The dynamics of f−2 : z 7→ z2 − 2. Consider the map ψ :
Q∖{0} → Q defined by

ψ(z) := z + 1
z
.

The map ψ is a ramified covering of degree 2. Each point in Q has two
distinct preimages in Q∖{0} except 2 which has a single preimage at z = 1
and −2 which has a single preimage at z = −1. In addition,

ψ ◦ f0(z) = z2 + 1
z2 =

(
z + 1

z

)2
− 2 = f−2 ◦ ψ(z).

So, ψ semi-conjugates f0 : Q∖{0} → Q∖{0} to f−2 : Q → Q.

4.3. Real dynamics. A parameter c ∈ Q is a center if 0 is periodic under
iteration of fc. It is a center of period n if 0 has period n for fc. The centers
of period n are precisely the roots of the Gleason polynomial Gn ∈ Q[c]
defined by

Gn(c) := Φn(c, 0).

Example 4.1. We have that

G1(c) = c, G2(c) = 1 + c, G3(c) = 1 + c+ 2c2 + c3.

We shall say that c is a real center if c ∈ R. The kneading sequence of a
real center c is

κ(c) :=
(
κn

)
n≥0 ∈ {+,−, ⋆}N with κn =


+ if f◦n

c (0) > 0
⋆ if f◦n

c (0) = 0
− if f◦n

c (0) < 0
.
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The kneading angle of a real center c is the angle θ(c) := τ
(
t(c)

)
∈ R/Z

where t(c) := (tn)n≥1 ∈ Σ is defined by

∀ n ≥ 0 tn+1 =


0 if κn = ⋆

tn if κn = +
1 − tn if κn = −

.

Example 4.2. The polynomial G3 has a unique real root c3. We have that

κ(c3) = (⋆,−,+, ⋆,−,+, . . . ), t(c3) = (0, 1, 1, 0, 1, 1, . . . ) and θ(c3) = 3
7 .

Note that by definition, the first digit in the binary expansion of θ(c)
is a 0, so that this angle belongs to the arc [0, 1/2) ⊂ R/Z. The following
result is due to Milnor and Thurston [8].

Theorem 4.3. If c1 < c2 are real centers, then θ(c1) > θ(c2). If c is a
center of period n, then θ(c) is periodic of period n for the doubling map
D : R/Z → R/Z. In addition, a periodic angle θ ∈ [0, 1/2) ⊂ R/Z of period
n is the kneading angle of some real center of period n if and only if θ ∈ R/Z
is the closest angle to 1/2 ∈ R/Z within its orbit under iteration of D.

This result enables us to count the number of real centers of period n
as follows. The doubling map has a unique orbit of period 1. This orbit is
reduced to the angle 0 ∈ R/Z which is the angle of the unique center of
period 1: c = 0. So assume the period is n ≥ 2. On the one hand, assume
O is an orbit for the doubling map D : R/Z → R/Z which is invariant
by the involution I : R/Z → R/Z. Then O contains exactly two angles
closest to 1/2 ∈ R/Z, one in the arc (0, 1/2) ⊂ R/Z, the other in the
arc (−1/2, 0) ⊂ R/Z being its image by the involution I. According to
Theorem 4.3, there is exactly one real center with kneading angle in O.
According to Section 3.2, there are βn such orbits corresponding to βn real
centers of period n. On the other hand, assume O and O′ are two distinct
orbits of period n which are exchanged by the involution I : R/Z → R/Z.
The closest angle to 1/2 ∈ R/Z in one of the two orbits is contained in
the arc (0, 1/2) ⊂ R/Z and the closest angle to 1/2 ∈ R/Z in the other
orbit is contained in the arc (−1/2, 0) ⊂ R/Z. According to Theorem 4.3,
there is exactly one real center with kneading angle in O ∪ O′. There are
(αn − βn)/2 such pairs of orbits corresponding to (αn − βn)/2 real centers
of period n. Thus, the total number of real centers of period n is

βn + αn − βn

2 = αn + βn

2 = γn = 1
2n

∑
m|n

m is odd

µ(m)2
n
m .
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4.4. Complex dynamics. We shall prove Theorem 1.5 in this section. We
have the following description of the kneading angle. Consider the family
of quadratic polynomials (fc : C → C)c∈C defined by

fc(z) := z2 + c.

The Mandelbrot set M is the set of parameters c such that the orbit(
f◦n

c (0)
)

n≥0 is bounded. Douady and Hubbard proved that the Mandelbrot
set is connected. More precisely, let D ⊂ C be the unit disk. There exists
a conformal isomorphism ϕM : C∖M → C∖D which satisfies ϕM(c) =
c+ O(1) as c → ∞. For θ ∈ R/Z, the curve

R(θ) :=
{
c ∈ C∖M ; argument

(
ϕM(c)

)
= 2πθ mod 2π

}
is called the external ray of M of angle θ. If θ ∈ R/Z is periodic for the
doubling map D : R/Z → R/Z, then the ray R(θ) lands at a parameter
c ∈ M, i.e., R(θ)∩M = {c}. Figure 4.1 shows the Mandelbrot set together
with the rays of angle 1/3, 2/3, 3/7 and 4/7.

R(4/7)

R(3/7)

R(2/3)

R(1/3)

Figure 4.1. The Mandelbrot set. The external rays R(1/3)
and R(2/3) land at the root c = −3/4 of the satellite com-
ponent H−1. The rays R(3/7) and R(4/7) land at the root
c = −7/4 of the primitive component Hc3 , where c3 is the
unique real center of period 3.

Assume now that c0 is a center of period n. Then, c0 is contained in
the interior of M. Let Hc0 be the connected component of the interior of
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the Mandelbrot set M containing c0. Such a connected component Hc0 is
called a hyperbolic component of M. If c ∈ Hc0 , the quadratic polynomial
fc : z 7→ z2 + c has an attracting cycle of period n. The product λ(c)
of the derivatives of fc at the points of this cycle is called the multiplier
of this cycle. To say that the cycle is attracting means that λ(c) ∈ D.
The map λ : Hc0 → D is a holomorphic isomorphism which extends as a
homeomorphism λ : Hc0 → D. The parameter c1 := λ−1(1) is called the
root of the hyperbolic component Hc0 . The quadratic polynomial fc1 has
a parabolic cycle, i.e., a cycle whose multiplier is a root of unity. If this
multiplier is 1, then Hc0 is called a primitive component of M. Otherwise,
Hc0 is called a satellite component of M.

If c0 = 0, which corresponds to the unique center of period 1, the root
is c1 = 1/4 and there is a single ray landing at c1: the ray R(0). If c0 is a
center of period n ≥ 2, there are two rays landing at c1. When c0 is real,
then c1 is also real and when the period is not 1, the two rays landing at c1
are R

(
θ(c0)

)
(which is contained in the upper half-plane) and R

(
−θ(c0)

)
(which is contained in the lower half-plane). The angles θ(c0) ∈ R/Z and
−θ(c0) ∈ R/Z belong to the same orbit under iteration of the doubling
map D : R/Z → R/Z if and only if Hc0 is a satellite component of M.

It follows from the count presented in Section 4.3 that among the γn

real centers of period n, βn are centers of satellite components of M and
γn − βn are centers of primitive components of M. Note that βn ̸= 0 only
when n is even. In particular, if n is odd, the γn real centers of period n are
centers of primitive components of M. When n is even, βn = γn/2. Thus,
when n is even, among the γn centers of period n, there are γn/2 centers of
satellite components and γn − γn/2 centers of primitive components. This
completes the proof of Theorem 1.5.

4.5. Lutzky’s proof. The original argument of Lutzky for counting the
number of real centers may be illustrated by Figure 4.2.

For c > 1/4, the polynomial fc has no real periodic point and for c = −2,
the semi-conjugacy in Section 4.2 shows that the polynomial f−2 has αn

cycles of period n. As c increases from −2 to 1/4, the αn cycles must bifur-
cate in order to leave the real axis and become complex conjugate cycles.
At a pitchfork bifurcation (which corresponds to roots of satellite compo-
nents of period n), a single cycle bifurcates, contributing to one real center.
At other bifurcations (which correspond to roots of primitive components),
two cycles bifurcate, still contributing to only one real center. In addition,
each pitchfork bifurcation comes from a bifurcation of period n/2. Thus, if
γ′

n stands for the number of real centers of period n and β′
n stands for the

number of pitchfork bifurcations of period n, then for n ≥ 1,

β′
2n−1 = 0, β′

2n = γ′
n and αn = β′

n + 2(γ′
n − β′

n),
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Figure 4.2. The curves of points (c, z) ∈ [−2, 1/2]× [−2, 2]
such that z is periodic of period n for fc. Red: n = 1; blue:
n = 2, green: n = 3; pink: n = 4. The line of equation z = c
is tangent to those curves at points whose first coordinate
is a real center.

which may be re-written as

β′
2n−1 = 0, β′

2n = γ′
n = αn + β′

n

2 .

According to Lemma 2.4, we have that β′
n = βn and γ′

n = γn for n ≥ 1 as
required.

The justification that each bifurcation contributes to exactly one real
center relies on the result of Milnor and Thurston stated previously.

5. Quadratic dynamics in F2

In this section, we consider the case k = F2. Theorem 1.6 will be estab-
lished at the end of the section. Let us recall that for n ≥ 1, the finite field
F2n with 2n elements is the splitting field of z2n − z over F2. The Fröbenius
endomorphism f0 : F2 → F2 is an automorphism of F2 over F2: it fixes F2
pointwise and satisfies

f0(z + w) = f0(z) + f0(w) and f0(zw) = f0(z)f0(w).
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More precisely, any point z ∈ F2 is periodic for f0. Such a point is
periodic of period exactly n if and only if it is an element of F2n which is
not contained in F2m for some proper positive divisorm of n. The conjugates
of a point z of period n are the points of its orbit under iteration of f0:
z, f0(z), . . . , f◦(n−1)

0 (z). This orbit is the Galois orbit of z. The minimal
polynomial of such a point has degree n and vanishes precisely on its Galois
orbit.

The periodic points of period n are the roots of the dynatomic polynomial

ϕn(z) := Φn(0, z) ∈ F2[z].

The irreducible monic polynomials of degree n in F2[z] are the factors of ϕn.
The polynomial ϕn has degree δn and simple roots (since it divides z2n − z
whose derivative is −1). So, there are precisely αn = δn/n monic irreducible
polynomials of degree n in F2[z]. Equivalently, there are αn Galois orbits
of period n in F2.

5.1. Critical orbit for fc.

Lemma 5.1. Assume c ∈ F2. Then, for all n ≥ 1,

f◦n
c (0) = c0 + c1 + · · · + cn−1 with cj := f◦j

0 (c).

Proof. The proof goes by induction. For n = 1, we have that

fc(0) = c = c0.

And if
f◦n

c (0) = c0 + c1 + · · · + cn−1,

then,

f◦(n+1)
c (0) = c+ f0

(
f◦n

c (0)
)

= c+ f0(c0) + f0(c1) + · · · + f0(cn−1)
= c0 + c1 + c2 + · · · + cn. □

5.2. Points in F2 are centers. We shall say that a Galois orbit is cen-
tered if the associated minimal polynomial is centered, and noncentered
otherwise.

Let us recall that c ∈ F2 is a center of period n if 0 is periodic of period
n under iteration of fc.

Lemma 5.2. Any point c ∈ F2 is a center. Let n be the period of c under
iteration of f0 and let m be the period of 0 under iteration of fc. If the Galois
orbit of c is centered, then m = n. If the Galois orbit of c is noncentered,
then m = 2n.
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Proof. For j ≥ 0, set

cj := f◦j
0 (c) and zj := f◦j

c (0) = c0 + c1 + · · · + cj−1.

On the one hand, if c is periodic of period n for f0, we have that cn+j = cj

for all j ≥ 0, and so

z2n = 2(c0 + c1 + · · · + cn−1) = 0.

Thus, 0 is periodic for fc and the period m divides 2n. On the other hand,
if zm = 0 for some m ≥ 1, then

f◦m
0 (c) = cm = zm + cm = zm+1 = z2

m + c = c.

Thus, the period n of c for f0 divides m. Since m divides 2n and n divides
m, this forces either m = n or m = 2n.

Let P be the minimal polynomial of c. Its roots are the points c0, c1,
. . . , cn−1. As a consequence, 0 is periodic of period n for fc if and only if
zn = 0, i.e., if and only if c0 + c1 + . . . cn−1 = 0, i.e., if and only if P is
centered. □

5.3. From dynamical plane to parameter space. Let ι : F2∖{0} →
F2∖{0} be the involution defined by

ι(ϑ) = 1
ϑ
.

Assume ϑ ∈ F2∖{0}. Then,

ϑ+ ι(ϑ) = 0 ⇐⇒ ϑ2 + 1 = 0 ⇐⇒ ϑ = 1.

We may therefore consider the map ψ : F2∖F2 → F2∖{0} defined by

ψ(ϑ) := 1
ϑ+ ι(ϑ) = ϑ

ϑ2 + 1 .

The involution ι and the map ψ commute with f0. So, they send Galois
orbits to Galois orbits.

Lemma 5.3. The map ψ : F2∖F2 → F2∖{0} is surjective and each fiber
contains two distinct points; those are exchanged by the involution ι.

Proof. Assume c ∈ F2∖{0}. Then, ψ(ϑ) = c if and only if ϑ2 −ϑ/c+ 1 = 0.
The discriminant of this quadratic polynomial is 1/c2 ̸= 0. So, there are
two distinct roots. The product of the roots is 1. So, they are exchanged
by ι. □

Lemma 5.4. Assume ϑ ∈ F2∖F2 and c = ψ(ϑ). Let n be the period of ϑ
for f0 and let m be the period of c for f0. If ϑ is conjugate to 1/ϑ, then
n = 2m and the minimal polynomial of c is noncentered. Otherwise n = m
and the minimal polynomial of c is centered.
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Proof. By assumption, the Galois orbit of ϑ contains n points and the Galois
orbit of c contains m points. Since ψ commutes with f0, it sends the Galois
orbit of ϑ to the Galois orbit of c. According to Lemma 5.3, the fibers of
ψ : F2∖F2 → F2∖{0} contain exactly two points which are exchanged by
the involution ι. So, if the Galois orbit of ϑ is preserved by the involution ι,
then its image by ψ contains m = n/2 points. Otherwise it contains m = n
points. □

Lemma 5.5. Assume ϑ ∈ F2∖F2 and c = ψ(ϑ). Then, for n ≥ 1,

f◦n
c (0) = ϑ+ ϑ2 + ϑ3 + · · · + ϑ2n−1

ϑ2n + 1 .

Proof. For n ≥ 0, set

cn := f◦n
0 (c) = ϑ2n

ϑ2n+1 + 1
= ϑ2n

(ϑ2n + 1)2 .

According to Lemma 5.1, we have that for n ≥ 0,
f◦n

c (0) = c0 + c1 + · · · + cn−1.

Now, the proof goes by induction. For n = 1, we have that

fc(0) = c = 1
ϑ+ 1/ϑ = ϑ

ϑ2 + 1 .

And if

f◦n
c (0) = ϑ+ ϑ2 + ϑ3 + · · · + ϑ2n−1

ϑ2n + 1 ,

then
f◦(n+1)

c (0) = f◦n
c (0) + cn

= ϑ+ ϑ2 + · · · + ϑ2n−1

ϑ2n + 1 + ϑ2n

(1 + ϑ2n)(ϑ2n + 1)

= (ϑ+ ϑ2 + · · · + ϑ2n−1)(1 + ϑ2n) + ϑ2n

(1 + ϑ2n)(ϑ2n + 1)

= (ϑ+ · · · + ϑ2n−1) + ϑ2n + (ϑ2n+1 + · · · + ϑ2n+1−1)
ϑ2n+1 + 1

. □

Lemma 5.6. Assume ϑ ∈ F2∖F2 is periodic of period n ≥ 2 for f0 and
c = ψ(ϑ). Then, 0 is periodic of period n for fc.

Proof. According to Lemma 5.5, for j ≥ 1,

f◦j
c (0) = ϑ+ ϑ2 + ϑ3 + · · · + ϑ2j−1

ϑ2j + 1
= ϑ2j − ϑ

(ϑ− 1)(ϑ2j + 1)
= f◦j

0 (ϑ) − ϑ

(ϑ− 1)2j+1 .

Thus, f◦j
c (0) = 0 if and only if j is a multiple of n. □
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5.4. Counting orbits. For n ≥ 1, let α′
n be the number of Galois orbits

in F2∖{0} which have period n, and let β′
n be the number of those orbits

which are invariant by the involution ι. Then, α′
1 = β′

1 = 1 since the only
fixed point of f0 in F2∖{0} is 1. And α′

n = αn for n ≥ 2.

Lemma 5.7. We have that

β′
1 = 1 and ∀ n ≥ 1

{
β′

2n = α′
n+β′

n
2

β′
2n+1 = 0.

Proof. The only fixed point of ι is 1, which is a fixed point of f0. So, β′
1 = 1

and if a Galois orbit is preserved by ι, then its cardinality must be even. It
follows that β′

2n+1 = 0. Next, a Galois orbit of period n for f0 is the image
by ψ of

• either a Galois orbit of period 2n which is invariant by ι,
• or two distinct Galois orbits of period n which are exchanged by ι.

It follows that

α′
n = β′

2n + α′
n − β′

n

2 so that β′
2n = α′

n + β′
n

2 . □

Lemma 5.8. We have that β′
n = βn for n ≥ 2.

Proof. Consider the sequence (β′′
n)n≥1 defined by

β′′
1 := 0 and ∀ n ≥ 2 β′′

n := β′
n.

Note that α′
1 + β′

1 = 2 = α1 + β′′
1 , so that for n ≥ 1,

α′
n + β′

n = αn + β′′
n.

Thus, according to Lemma 5.7,

∀ n ≥ 1, β′′
2n−1 = 0 and β′′

2n = β′
2n = α′

n + β′
n

2 = αn + β′′
n

2 .

According to Lemma 2.4, we have that β′′
n = βn for n ≥ 1. □

Lemma 5.9. For n ≥ 1, the n-th Gleason polynomial has γn monic irre-
ducible factors in F2[c].

Proof. For n ≥ 1, let γ′
n be the number of Galois orbits of centers of period

n in F2. For n = 1, we have γ′
1 = 1 = γ1. For n ≥ 2, according to Lemma 5.6,

the Galois orbits of centers of period n are the images by ψ of the Galois
orbits of period n for f0. According to Lemma 5.4, the centered ones are
the images of the Galois orbits which are not invariant by the involution ι.
There are (αn − βn)/2 such orbits. The noncentered ones are the images of
the Galois orbits which are invariant by the involution ι. There are βn such
orbits. Therefore,

γ′
n = αn − βn

2 + βn = αn + βn

2 = γn. □
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This completes the proof of Theorem 1.6

6. Dynatomic polynomials in F2[c, z]

We finally prove Theorem 1.2. The proof relies on the following observa-
tion. Recall that for n ≥ 1,

Fn(c, z) := f◦n
c (z) − z.

Lemma 6.1. For n ≥ 1, we have the following equality in F2[c, z]:

Fn(c, z) = Hn(z2 + c− z) with Hn(c) := Fn(c, 0).

Proof. Observe that for n ≥ 1,

Hn+1(c) = f◦(n+1)
c (0) =

(
f◦n

c (0)
)2 + c = H2

n(c) + c.

We shall prove the result by induction on n ≥ 1. For n = 1, we have that

F1(c, z) = fc(z) − z = z2 + c− z.

So, the result holds.
Let us now assume that for some n ≥ 1,

Fn(c, z) = Hn(z2 + c− z).

Then,

Fn+1(c, z) =
(
Fn(c, z) + z

)2 + c− z

=
(
Hn(z2 + c− z) + z

)2 + c− z

= H2
n(z2 + c− z) + z2 + c− z = Hn+1(z2 + c− z).

This completes the proof by induction. □

For n ≥ 1, we now have

Fn(c, z) =
∏
m|n

Φm(c, z) and Hn(c) =
∏
m|n

Gm(c).

As a consequence, for n ≥ 1,

Φn(c, z) = Gn(z2 + c− z).

On the one hand, it follows that if P (c) divides Gn(c), then P (z2 + c− z)
divides Φn(c, z). Thus, Φn has at least γn irreducible factors which are
monic with respect to c. On the other hand, if Q(c, z) is a factor of Φn(c, z)
which is monic with respect to c, then Q(c, 0) is a monic factor of Gn(c).
This shows that Φn(c, z) has at most γn factors which are monic with
respect to c. Thus, Φn(c, z) has exactly γn factors which are monic with
respect to c. Theorem 1.2 now follows easily from Theorem 1.6.



Factoring Gleason polynomials modulo 2 805

Appendix A. Itineraries of roots of low-degree Gleason
polynomials

In this appendix, we present for each period n ∈ [1, 8] two tables. The
first table corresponds to k = Q. It contains:

• the (approximate) value of the real center of period n,
• the initial segment of its kneading sequence (to be repeated period-

ically with period n),
• the kneading angle θ(c) with its binary expansion and
• the cycles in Z/(2n − 1)Z of (2n − 1)θ(c) and −(2n − 1)θ(c).

The second table corresponds to k = F2. It contains:
• the minimal polynomials P ∈ F2[c] of the centers of period n,
• the coefficients of ck of P (c) and
• the minimal polynomials of the numbers ϑ ∈ F2 such that P ◦ψ(ϑ) =

0.
For periods 9 and 10, we only present the first table.

A.1. Period 1.
G1(c) = c and γ1 = 1.

0 (⋆) 0/1 = .0 {0}

c (0, 1) ϑ

A.2. Period 2.
G2(c) = 1 + c and γ2 = 1.
−1 (⋆,−) 1/3 = .01 {1, 2}

1 + c (1, 1) 1 + ϑ+ ϑ2

A.3. Period 3.
G3(c) = 1 + c+ 2c2 + c3 and γ3 = 1.

−1.754878 (⋆,−,+) 3/7 = .011 {1, 2, 4} {6, 5, 3}

1 + c+ c3 (1, 1, 0, 1) (1 + ϑ+ ϑ3)(ϑ3 + ϑ2 + 1)

A.4. Period 4.
G4(c) = 1 + 2c2 + 3c3 + 3c4 + 3c5 + c6 and γ4 = 2.

−1.940800 (⋆,−,+,+) 7/15 = .0111 {1, 2, 4, 8}
{14, 13, 11, 7}

−1.310703 (⋆,−,+,−) 6/15 = 2/5 = .0110 {3, 6, 12, 9}

1 + c+ c4 (1, 1, 0, 0, 1) (1 + ϑ+ ϑ4)(ϑ4 + ϑ3 + 1)
1 + c+ c2 (1, 1, 1) 1 + ϑ+ ϑ2 + ϑ3 + ϑ4
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A.5. Period 5.

G5(c) = 1 + c+ 2c2 + 5c3 + 14c4 + 26c5 + 44c6 + 69c7 + 94c8

+ 114c9 + 116c10 + 94c11 + 60c12 + 28c13 + 8c14 + c15

and
γ5 = 3.

−1.985424 (⋆, −, +, +, +) 15/31 = .01111 {1, 2, 4, 8, 16}
{30, 29, 27, 23, 15}

−1.860783 (⋆, −, +, +, −) 14/31 = .01110 {3, 6, 12, 24, 17}
{28, 25, 19, 7, 14}

−1.625414 (⋆, −, +, −, −) 13/31 = .01101 {5, 10, 20, 9, 18}
{26, 21, 11, 22, 13}

1 + c2 + c5 (1, 0, 1, 0, 0, 1) (1 + ϑ + ϑ2 + ϑ4 + ϑ5)(ϑ5 + ϑ4 + ϑ3 + ϑ + 1)
1 + c3 + c5 (1, 0, 0, 1, 0, 1) (1 + ϑ3 + ϑ5)(ϑ5 + ϑ2 + 1)

1 + c + c2 + c3 + c5 (1, 1, 1, 1, 0, 1) (1 + ϑ + ϑ2 + ϑ3 + ϑ5)(ϑ5 + ϑ4 + ϑ3 + ϑ2 + 1)

A.6. Period 6.

G6(c) = 1 − c+ c2 + 3c3 + 7c4 + 17c5 + 35c6 + 76c7 + 155c8 + 298c9

+ 536c10 + 927c11 + 1525c12 + 2331c13 + 3310c14 + 4346c15

+ 5258c16 + 5843c17 + 5892c18 + 5313c19 + 4219c20 + 2892c21

+ 1672c22 + 792c23 + 293c24 + 78c25 + 13c26 + c27

and
γ6 = 5.

−1.996376 (⋆, −, +, +, +, +) 31/63 = .011111 {1, 2, 4, 8, 16, 32}
{62, 61, 59, 55, 47, 31}

−1.966773 (⋆, −, +, +, +, −) 30/63 = 10/21 = .011110 {3, 6, 12, 24, 48, 33}
{60, 57, 51, 39, 15, 30}

−1.907280 (⋆, −, +, +, −, −) 29/63 = .011101 {5, 10, 20, 40, 17, 34}
{58, 53, 43, 23, 46, 29}

−1.772893 (⋆, −, +, +, −, +) 28/63 = 4/9 = .011100 {7, 14, 28, 56, 49, 35}

−1.476015 (⋆, −, +, −, −, −) 26/63 = .011010 {11, 22, 44, 25, 50, 37}
{52, 41, 19, 38, 13, 26}

1 + c2 + c3 (1, 0, 1, 1) 1 + ϑ3 + ϑ6

1 + c + c6 (1, 1, 0, 0, 0, 0, 1) (1 + ϑ + ϑ2 + ϑ4 + ϑ6)(ϑ6 + ϑ5 + ϑ4 + ϑ2 + 1)
1 + c3 + c6 (1, 0, 0, 1, 0, 0, 1) (1 + ϑ + ϑ2 + ϑ5 + ϑ6)(ϑ6 + ϑ5 + ϑ4 + ϑ + 1)

1 + c + c2 + c4 + c6 (1, 1, 1, 0, 1, 0, 1) (1 + ϑ + ϑ3 + ϑ4 + ϑ6)(ϑ6 + ϑ5 + ϑ3 + ϑ2 + 1)
1 + c + c3 + c4 + c6 (1, 1, 0, 1, 1, 0, 1) (1 + ϑ5 + ϑ6)(ϑ6 + ϑ + 1)
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A.7. Period 7.
deg(G7) = 63 and γ7 = 9.

−1.999096 (⋆,−,+,+,+,+,+) 63
127 = .0111111 {1, 2, 4, 8, 16, 32, 64}

{126, 125, 123, 119, 111, 95, 63}

−1.991814 (⋆,−,+,+,+,+,−) 62
127 = .0111110 {3, 6, 12, 24, 48, 96, 65}

{124, 121, 115, 103, 79, 31, 62}

−1.977180 (⋆,−,+,+,+,−,−) 61
127 = .0111101 {5, 10, 20, 40, 80, 33, 66}

{122, 117, 107, 87, 47, 94, 61}

−1.953706 (⋆,−,+,+,+,−,+) 60
127 = .0111100 {7, 14, 28, 56, 112, 97, 67}

{120, 113, 99, 71, 15, 30, 60}

−1.927148 (⋆,−,+,+,−,−,+) 59
127 = .0111011 {9, 18, 36, 72, 17, 34, 68}

{118, 109, 91, 55, 110, 93, 59}

−1.884804 (⋆,−,+,+,−,−,−) 58
127 = .0111010 {11, 22, 44, 88, 49, 98, 69}

{116, 105, 83, 39, 78, 29, 58}

−1.832315 (⋆,−,+,+,−,+,−) 57
127 = .0111001 {13, 26, 52, 104, 81, 35, 70}

{114, 101, 75, 23, 46, 92, 57}

−1.674066 (⋆,−,+,−,−,+,−) 54
127 = .0110110 {19, 38, 76, 25, 50, 100, 73}

{108, 89, 51, 102, 77, 27, 54}

−1.574889 (⋆,−,+,−,−,−,−) 53
127 = .0110101 {21, 42, 84, 41, 82, 37, 74}

{106, 85, 43, 86, 45, 90, 53}
1+c+c7 (1, 1, 0, 0, 0, 0, 0, 1) (ϑ7+ϑ5+ϑ3+ϑ+1)(ϑ7+ϑ6+ϑ4+ϑ2+1)
1+c3+c7 (1, 0, 0, 1, 0, 0, 0, 1) (ϑ7+ϑ6+ϑ5+ϑ3+ϑ2+ϑ+1)(ϑ7+ϑ6+ϑ5+ϑ4+ϑ2+ϑ+1)

1+c+c2+c3+c7 (1, 1, 1, 1, 0, 0, 0, 1) (ϑ7+ϑ5+ϑ4+ϑ3+ϑ2+ϑ+1)(ϑ7+ϑ6+ϑ5+ϑ4+ϑ3+ϑ2+1)
1+c4+c7 (1, 0, 0, 0, 1, 0, 0, 1) (ϑ7+ϑ5+ϑ4+ϑ3+1)(ϑ7+ϑ4+ϑ3+ϑ2+1)

1+c2+c3+c4+c7 (1, 0, 1, 1, 1, 0, 0, 1) (ϑ7+ϑ4+1)(ϑ7+ϑ3+1)
1+c+c2+c5+c7 (1, 1, 1, 0, 0, 1, 0, 1) (ϑ7+ϑ6+1)(ϑ7+ϑ+1)
1+c+c3+c5+c7 (1, 1, 0, 1, 0, 1, 0, 1) (ϑ7+ϑ3+ϑ2+ϑ+1)(ϑ7+ϑ6+ϑ5+ϑ4+1)
1+c3+c4+c5+c7 (1, 0, 0, 1, 1, 1, 0, 1) (ϑ7+ϑ6+ϑ3+ϑ+1)(ϑ7+ϑ6+ϑ4+ϑ+1)

1+c+c2+c3+c4+c5+c7 (1, 1, 1, 1, 1, 1, 0, 1) (ϑ7+ϑ6+ϑ5+ϑ2+1)(ϑ7+ϑ5+ϑ2+ϑ+1)
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A.8. Period 8.
deg(G8) = 120 and γ8 = 16.

−1.999774 (⋆,−,+,+,+,+,+,+) 127
255 = .01111111 {1, 2, 4, 8, 16, 32, 64, 128}

{254, 253, 251, 247, 239, 223, 191, 127}

−1.997963 (⋆,−,+,+,+,+,+,−) 126
255 = .01111110 {3, 6, 12, 24, 48, 96, 192, 129}

{252, 249, 243, 231, 207, 159, 63, 126}

−1.994333 (⋆,−,+,+,+,+,−,−) 125
255 = .01111101 {5, 10, 20, 40, 80, 160, 65, 130}

{250, 245, 235, 215, 175, 95, 190, 125}

−1.988793 (⋆,−,+,+,+,+,−,+) 124
255 = .01111100 {7, 14, 28, 56, 112, 224, 193, 131}

{248, 241, 227, 199, 143, 31, 62, 124}

−1.981656 (⋆,−,+,+,+,−,−,+) 123
255 = .01111011 {9, 18, 36, 72, 144, 33, 66, 132}

{246, 237, 219, 183, 111, 222, 189, 123}

−1.972200 (⋆,−,+,+,+,−,−,−) 122
255 = .01111010 {11, 22, 44, 88, 176, 97, 194, 133}

{244, 233, 211, 167, 79, 158, 61, 122}

−1.960759 (⋆,−,+,+,+,−,+,−) 121
255 = .01111001 {13, 26, 52, 104, 208, 161, 67, 134}

{242, 229, 203, 151, 47, 94, 188, 121}
−1.941782 (⋆,−,+,+,+,−,+,+) 120

255 = 8
17 = .01111000 {15, 30, 60, 120, 240, 225, 195, 135}

−1.917098 (⋆,−,+,+,−,−,+,−) 118
255 = .01110110 {19, 38, 76, 152, 49, 98, 196, 137}

{236, 217, 179, 103, 206, 157, 59, 118}

−1.896918 (⋆,−,+,+,−,−,−,−) 117
255 = .01110101 {21, 42, 84, 168, 81, 162, 69, 138}

{234, 213, 171, 87, 174, 93, 186, 117}

−1.870004 (⋆,−,+,+,−,−,−,+) 116
255 = .01110100 {23, 46, 92, 184, 113, 226, 197, 139}

{232, 209, 163, 71, 142, 29, 58, 116}

−1.851730 (⋆,−,+,+,−,+,−,+) 115
255 = .01110011 {25, 50, 100, 200, 145, 35, 70, 140}

{230, 205, 155, 55, 110, 220, 185, 115}

−1.810001 (⋆,−,+,+,−,+,−,−) 114
255 = .01110010 {27, 54, 108, 216, 177, 99, 198, 141}

{228, 201, 147, 39, 78, 156, 57, 114}

−1.711079 (⋆,−,+,−,−,+,−,−) 109
255 = .01101101 {37, 74, 148, 41, 82, 164, 73, 146}

{218, 181, 107, 214, 173, 91, 182, 109}

−1.521817 (⋆,−,+,−,−,−,−,−) 106
255 = .01101010 {43, 86, 172, 89, 178, 101, 202, 149}

{212, 169, 83, 166, 77, 154, 53, 106}
−1.381547 (⋆,−,+,−,−,−,+,−) 105

255 = 7
17 = .01101001 {45, 90, 180, 105, 210, 165, 75, 150}

1+c3+c4 (1, 0, 0, 1, 1) ϑ8+ϑ5+ϑ4+ϑ3+1
1+c+c2+c3+c4 (1, 1, 1, 1, 1) ϑ8+ϑ7+ϑ6+ϑ4+ϑ2+ϑ+1
1+c+c3+c4+c8 (1, 1, 0, 1, 1, 0, 0, 0, 1) (ϑ8+ϑ7+ϑ5+ϑ3+1)(ϑ8+ϑ5+ϑ3+ϑ+1)
1+c2+c3+c4+c8 (1, 0, 1, 1, 1, 0, 0, 0, 1) (ϑ8+ϑ7+ϑ5+ϑ+1)(ϑ8+ϑ7+ϑ3+ϑ+1)
1+c+c3+c5+c8 (1, 1, 0, 1, 0, 1, 0, 0, 1) (ϑ8+ϑ6+ϑ5+ϑ4+ϑ2+ϑ+1)(ϑ8+ϑ7+ϑ6+ϑ4+ϑ3+ϑ2+1)
1+c2+c3+c5+c8 (1, 0, 1, 1, 0, 1, 0, 0, 1) (ϑ8+ϑ7+ϑ6+ϑ5+ϑ2+ϑ+1)(ϑ8+ϑ7+ϑ6+ϑ3+ϑ2+ϑ+1)
1+c3+c4+c5+c8 (1, 0, 0, 1, 1, 1, 0, 0, 1) (ϑ8+ϑ6+ϑ5+ϑ2+1)(ϑ8+ϑ6+ϑ3+ϑ2+1)

1+c+c2+c3+c4+c5+c8 (1, 1, 1, 1, 1, 1, 0, 0, 1) (ϑ8+ϑ7+ϑ3+ϑ2+1)(ϑ8+ϑ6+ϑ5+ϑ+1)
1+c2+c3+c6+c8 (1, 1, 1, 1, 0, 0, 1, 0, 1) (ϑ8+ϑ6+ϑ5+ϑ4+1)(ϑ8+ϑ4+ϑ3+ϑ2+1)

1+c+c2+c3+c4+c6+c8 (1, 1, 1, 1, 1, 0, 1, 0, 1) (ϑ8+ϑ7+ϑ6+ϑ5+ϑ4+ϑ3+1)(ϑ8+ϑ5+ϑ4+ϑ3+ϑ2+ϑ+1)
1+c+c5+c6+c8 (1, 1, 0, 0, 0, 1, 1, 0, 1) (ϑ8+ϑ4+ϑ3+ϑ+1)(ϑ8+ϑ7+ϑ5+ϑ4+1)
1+c2+c5+c6+c8 (1, 0, 1, 0, 0, 1, 1, 0, 1) (ϑ8+ϑ5+ϑ3+ϑ2+1)(ϑ8+ϑ6+ϑ5+ϑ3+1)
1+c3+c5+c6+c8 (1, 0, 0, 1, 0, 1, 1, 0, 1) (ϑ8+ϑ7+ϑ6+ϑ+1)(ϑ8+ϑ7+ϑ2+ϑ+1)
1+c4+c5+c6+c8 (1, 0, 0, 0, 1, 1, 1, 0, 1) (ϑ8+ϑ7+ϑ4+ϑ3+ϑ2+ϑ+1)(ϑ8+ϑ7+ϑ6+ϑ5+ϑ4+ϑ+1)

1+c+c2+c4+c5+c6+c8 (1, 1, 1, 0, 1, 1, 1, 0, 1) (ϑ8+ϑ6+ϑ5+ϑ4+ϑ3+ϑ+1)(ϑ8+ϑ7+ϑ5+ϑ4+ϑ3+ϑ2+1)
1+c+c3+c4+c5+c6+c8 (1, 1, 0, 1, 1, 1, 1, 0, 1) (ϑ8+ϑ6+ϑ4+ϑ3+ϑ2+ϑ+1)(ϑ8+ϑ7+ϑ6+ϑ5+ϑ4+ϑ2+1)
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A.9. Period 9.
deg(G9) = 252 and γ9 = 28.

−1.999944 (⋆,−,+,+,+,+,+,+,+) 255
511 = .011111111 {1, 2, 4, 8, 16, 32, 64, 128, 256}

{510, 509, 507, 503, 495, 479, 447, 383, 255}

−1.999491 (⋆,−,+,+,+,+,+,+,−) 254
511 = .011111110 {3, 6, 12, 24, 48, 96, 192, 384, 257}

{508, 505, 499, 487, 463, 415, 319, 127, 254}

−1.998587 (⋆,−,+,+,+,+,+,−,−) 253
511 = .011111101 {5, 10, 20, 40, 80, 160, 320, 129, 258}

{506, 501, 491, 471, 431, 351, 191, 382, 253}

−1.997223 (⋆,−,+,+,+,+,+,−,+) 252
511 = .011111100 {7, 14, 28, 56, 112, 224, 448, 385, 259}

{504, 497, 483, 455, 399, 287, 63, 126, 252}

−1.995419 (⋆,−,+,+,+,+,−,−,+) 251
511 = .011111011 {9, 18, 36, 72, 144, 288, 65, 130, 260}

{502, 493, 475, 439, 367, 223, 446, 381, 251}

−1.993130 (⋆,−,+,+,+,+,−,−,−) 250
511 = .011111010 {11, 22, 44, 88, 176, 352, 193, 386, 261}

{500, 489, 467, 423, 335, 159, 318, 125, 250}

−1.990376 (⋆,−,+,+,+,+,−,+,−) 249
511 = .011111001 {13, 26, 52, 104, 208, 416, 321, 131, 262}

{498, 485, 459, 407, 303, 95, 190, 380, 249}

−1.987004 (⋆,−,+,+,+,+,−,+,+) 248
511 = .011111000 {15, 30, 60, 120, 240, 480, 449, 387, 263}

{496, 481, 451, 391, 271, 31, 62, 124, 248}

−1.983810 (⋆,−,+,+,+,−,−,+,+) 247
511 = .011110111 {17, 34, 68, 136, 272, 33, 66, 132, 264}

{494, 477, 443, 375, 239, 478, 445, 379, 247}

−1.979458 (⋆,−,+,+,+,−,−,+,−) 246
511 = .011110110 {19, 38, 76, 152, 304, 97, 194, 388, 265}

{492, 473, 435, 359, 207, 414, 317, 123, 246}

−1.974781 (⋆,−,+,+,+,−,−,−,−) 245
511 = .011110101 {21, 42, 84, 168, 336, 161, 322, 133, 266}

{490, 469, 427, 343, 175, 350, 189, 378, 245}

−1.969419 (⋆,−,+,+,+,−,−,−,+) 244
511 = .011110100 {23, 46, 92, 184, 368, 225, 450, 389, 267}

{488, 465, 419, 327, 143, 286, 61, 122, 244}

−1.964024 (⋆,−,+,+,+,−,+,−,+) 243
511 = .011110011 {25, 50, 100, 200, 400, 289, 67, 134, 268}

{486, 461, 411, 311, 111, 222, 444, 377, 243}

−1.957325 (⋆,−,+,+,+,−,+,−,−) 242
511 = .011110010 {27, 54, 108, 216, 432, 353, 195, 390, 269}

{484, 457, 403, 295, 79, 158, 316, 121, 242}

−1.949575 (⋆,−,+,+,+,−,+,+,−) 241
511 = .011110001 {29, 58, 116, 232, 464, 417, 323, 135, 270}

{482, 453, 395, 279, 47, 94, 188, 376, 241}

−1.932244 (⋆,−,+,+,−,−,+,+,−) 238
511 = .011101110 {35, 70, 140, 280, 49, 98, 196, 392, 273}

{476, 441, 371, 231, 462, 413, 315, 119, 238}

−1.922286 (⋆,−,+,+,−,−,+,−,−) 237
511 = .011101101 {37, 74, 148, 296, 81, 162, 324, 137, 274}

{474, 437, 363, 215, 430, 349, 187, 374, 237}

−1.911446 (⋆,−,+,+,−,−,+,−,+) 236
511 = .011101100 {39, 78, 156, 312, 113, 226, 452, 393, 275}

{472, 433, 355, 199, 398, 285, 59, 118, 236}

−1.903117 (⋆,−,+,+,−,−,−,−,+) 235
511 = .011101011 {41, 82, 164, 328, 145, 290, 69, 138, 276}

{470, 429, 347, 183, 366, 221, 442, 373, 235}

−1.890775 (⋆,−,+,+,−,−,−,−,−) 234
511 = .011101010 {43, 86, 172, 344, 177, 354, 197, 394, 277}

{468, 425, 339, 167, 334, 157, 314, 117, 234}

−1.878383 (⋆,−,+,+,−,−,−,+,−) 233
511 = .011101001 {45, 90, 180, 360, 209, 418, 325, 139, 278}

{466, 421, 331, 151, 302, 93, 186, 372, 233}

−1.841289 (⋆,−,+,+,−,+,−,+,−) 230
511 = .011100110 {51, 102, 204, 408, 305, 99, 198, 396, 281}

{460, 409, 307, 103, 206, 412, 313, 115, 230}

−1.822756 (⋆,−,+,+,−,+,−,−,−) 229
511 = .011100101 {53, 106, 212, 424, 337, 163, 326, 141, 282}

{458, 405, 299, 87, 174, 348, 185, 370, 229}

−1.785866 (⋆,−,+,+,−,+,−,−,+) 228
511 = .011100100 {55, 110, 220, 440, 369, 227, 454, 397, 283}

{456, 401, 291, 71, 142, 284, 57, 114, 228}

−1.690142 (⋆,−,+,−,−,+,−,−,−) 218
511 = .011011010 {75, 150, 300, 89, 178, 356, 201, 402, 293}

{436, 361, 211, 422, 333, 155, 310, 109, 218}

−1.656133 (⋆,−,+,−,−,+,−,+,−) 217
511 = .011011001 {77, 154, 308, 105, 210, 420, 329, 147, 294}

{434, 357, 203, 406, 301, 91, 182, 364, 217}

−1.595681 (⋆,−,+,−,−,−,−,+,−) 214
511 = .011010110 {83, 166, 332, 153, 306, 101, 202, 404, 297}

{428, 345, 179, 358, 205, 410, 309, 107, 214}

−1.555283 (⋆,−,+,−,−,−,−,−,−) 213
511 = .011010101 {85, 170, 340, 169, 338, 165, 330, 149, 298}

{426, 341, 171, 342, 173, 346, 181, 362, 213}
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A.10. Period 10.

deg(G10) = 495 and γ10 = 51.

−1.999986 (⋆,−,+,+,+,+,+,+,+,+) 511
1023 = .0111111111 {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}

{1022, 1021, 1019, 1015, 1007, 991, 959, 895, 767, 511}

−1.999873 (⋆,−,+,+,+,+,+,+,+,−) 510
1023 = .0111111110 {3, 6, 12, 24, 48, 96, 192, 384, 768, 513}

{1020, 1017, 1011, 999, 975, 927, 831, 639, 255, 510}

−1.999647 (⋆,−,+,+,+,+,+,+,−,−) 509
1023 = .0111111101 {5, 10, 20, 40, 80, 160, 320, 640, 257, 514}

{1018, 1013, 1003, 983, 943, 863, 703, 383, 766, 509}

−1.999308 (⋆,−,+,+,+,+,+,+,−,+) 508
1023 = .0111111100 {7, 14, 28, 56, 112, 224, 448, 896, 769, 515}

{1016, 1009, 995, 967, 911, 799, 575, 127, 254, 508}

−1.998856 (⋆,−,+,+,+,+,+,−,−,+) 507
1023 = .0111111011 {9, 18, 36, 72, 144, 288, 576, 129, 258, 516}

{1014, 1005, 987, 951, 879, 735, 447, 894, 765, 507}

−1.998289 (⋆,−,+,+,+,+,+,−,−,−) 506
1023 = .0111111010 {11, 22, 44, 88, 176, 352, 704, 385, 770, 517}

{1012, 1001, 979, 935, 847, 671, 319, 638, 253, 506}

−1.997608 (⋆,−,+,+,+,+,+,−,+,−) 505
1023 = .0111111001 {13, 26, 52, 104, 208, 416, 832, 641, 259, 518}

{1010, 997, 971, 919, 815, 607, 191, 382, 764, 505}

−1.996805 (⋆,−,+,+,+,+,+,−,+,+) 504
1023 = .0111111000 {15, 30, 60, 120, 240, 480, 960, 897, 771, 519}

{1008, 993, 963, 903, 783, 543, 63, 126, 252, 504}

−1.995924 (⋆,−,+,+,+,+,−,−,+,+) 503
1023 = .0111110111 {17, 34, 68, 136, 272, 544, 65, 130, 260, 520}

{1006, 989, 955, 887, 751, 479, 958, 893, 763, 503}

−1.994889 (⋆,−,+,+,+,+,−,−,+,−) 502
1023 = .0111110110 {19, 38, 76, 152, 304, 608, 193, 386, 772, 521}

{1004, 985, 947, 871, 719, 415, 830, 637, 251, 502}

−1.993748 (⋆,−,+,+,+,+,−,−,−,−) 501
1023 = .0111110101 {21, 42, 84, 168, 336, 672, 321, 642, 261, 522}

{1002, 981, 939, 855, 687, 351, 702, 381, 762, 501}

−1.992479 (⋆,−,+,+,+,+,−,−,−,+) 500
1023 = .0111110100 {23, 46, 92, 184, 368, 736, 449, 898, 773, 523}

{1000, 977, 931, 839, 655, 287, 574, 125, 250, 500}

−1.991121 (⋆,−,+,+,+,+,−,+,−,+) 499
1023 = .0111110011 {25, 50, 100, 200, 400, 800, 577, 131, 262, 524}

{998, 973, 923, 823, 623, 223, 446, 892, 761, 499}

−1.989601 (⋆,−,+,+,+,+,−,+,−,−) 498
1023 = .0111110010 {27, 54, 108, 216, 432, 864, 705, 387, 774, 525}

{996, 969, 915, 807, 591, 159, 318, 636, 249, 498}

−1.987941 (⋆,−,+,+,+,+,−,+,+,−) 497
1023 = .0111110001 {29, 58, 116, 232, 464, 928, 833, 643, 263, 526}

{994, 965, 907, 791, 559, 95, 190, 380, 760, 497}
−1.985482 (⋆,−,+,+,+,+,−,+,+,+) 496

1023 = 16
33 = .0111110000 {992, 961, 899, 775, 527, 31, 62, 124, 248, 496}

−1.982719 (⋆,−,+,+,+,−,−,+,+,−) 494
1023 = .0111101110 {35, 70, 140, 280, 560, 97, 194, 388, 776, 529}

{988, 953, 883, 743, 463, 926, 829, 635, 247, 494}

−1.980577 (⋆,−,+,+,+,−,−,+,−,−) 493
1023 = .0111101101 {37, 74, 148, 296, 592, 161, 322, 644, 265, 530}

{986, 949, 875, 727, 431, 862, 701, 379, 758, 493}

−1.978293 (⋆,−,+,+,+,−,−,+,−,+) 492
1023 = .0111101100 {39, 78, 156, 312, 624, 225, 450, 900, 777, 531}

{984, 945, 867, 711, 399, 798, 573, 123, 246, 492}

−1.976042 (⋆,−,+,+,+,−,−,−,−,+) 491
1023 = .0111101011 {41, 82, 164, 328, 656, 289, 578, 133, 266, 532}

{982, 941, 859, 695, 367, 734, 445, 890, 757, 491}

−1.973497 (⋆,−,+,+,+,−,−,−,−,−) 490
1023 = .0111101010 {43, 86, 172, 344, 688, 353, 706, 389, 778, 533}

{980, 937, 851, 679, 335, 670, 317, 634, 245, 490}

−1.970858 (⋆,−,+,+,+,−,−,−,+,−) 489
1023 = .0111101001 {45, 90, 180, 360, 720, 417, 834, 645, 267, 534}

{978, 933, 843, 663, 303, 606, 189, 378, 756, 489}

−1.967743 (⋆,−,+,+,+,−,−,−,+,+) 488
1023 = .0111101000 {47, 94, 188, 376, 752, 481, 962, 901, 779, 535}

{976, 929, 835, 647, 271, 542, 61, 122, 244, 488}

−1.965822 (⋆,−,+,+,+,−,+,−,+,+) 487
1023 = .0111100111 {49, 98, 196, 392, 784, 545, 67, 134, 268, 536}

{974, 925, 827, 631, 239, 478, 956, 889, 755, 487}

−1.962379 (⋆,−,+,+,+,−,+,−,+,−) 486
1023 = .0111100110 {51, 102, 204, 408, 816, 609, 195, 390, 780, 537}

{972, 921, 819, 615, 207, 414, 828, 633, 243, 486}

−1.959098 (⋆,−,+,+,+,−,+,−,−,−) 485
1023 = .0111100101 {53, 106, 212, 424, 848, 673, 323, 646, 269, 538}

{970, 917, 811, 599, 175, 350, 700, 377, 754, 485}

−1.955423 (⋆,−,+,+,+,−,+,−,−,+) 484
1023 = .0111100100 {55, 110, 220, 440, 880, 737, 451, 902, 781, 539}

{968, 913, 803, 583, 143, 286, 572, 121, 242, 484}

−1.951900 (⋆,−,+,+,+,−,+,+,−,+) 483
1023 = .0111100011 {57, 114, 228, 456, 912, 801, 579, 135, 270, 540}

{966, 909, 795, 567, 111, 222, 444, 888, 753, 483}

−1.946873 (⋆,−,+,+,+,−,+,+,−,−) 482
1023 = .0111100010 {59, 118, 236, 472, 944, 865, 707, 391, 782, 541}

{964, 905, 787, 551, 79, 158, 316, 632, 241, 482}

−1.935391 (⋆,−,+,+,−,−,+,+,−,−) 477
1023 = .0111011101 {69, 138, 276, 552, 81, 162, 324, 648, 273, 546}

{954, 885, 747, 471, 942, 861, 699, 375, 750, 477}

−1.929320 (⋆,−,+,+,−,−,+,+,−,+) 476
1023 = .0111011100 {71, 142, 284, 568, 113, 226, 452, 904, 785, 547}

{952, 881, 739, 455, 910, 797, 571, 119, 238, 476}

−1.925034 (⋆,−,+,+,−,−,+,−,−,+) 475
1023 = .0111011011 {73, 146, 292, 584, 145, 290, 580, 137, 274, 548}

{950, 877, 731, 439, 878, 733, 443, 886, 749, 475}

−1.919635 (⋆,−,+,+,−,−,+,−,−,−) 474
1023 = .0111011010 {75, 150, 300, 600, 177, 354, 708, 393, 786, 549}

{948, 873, 723, 423, 846, 669, 315, 630, 237, 474}
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−1.914480 (⋆,−,+,+,−,−,+,−,+,−) 473
1023 = .0111011001 {77, 154, 308, 616, 209, 418, 836, 649, 275, 550}

{946, 869, 715, 407, 814, 605, 187, 374, 748, 473}

−1.899832 (⋆,−,+,+,−,−,−,−,+,−) 470
1023 = .0111010110 {83, 166, 332, 664, 305, 610, 197, 394, 788, 553}

{940, 857, 691, 359, 718, 413, 826, 629, 235, 470}

−1.894002 (⋆,−,+,+,−,−,−,−,−,−) 469
1023 = .0111010101 {85, 170, 340, 680, 337, 674, 325, 650, 277, 554}

{938, 853, 683, 343, 686, 349, 698, 373, 746, 469}

−1.887172 (⋆,−,+,+,−,−,−,−,−,+) 468
1023 = .0111010100 {87, 174, 348, 696, 369, 738, 453, 906, 789, 555}

{936, 849, 675, 327, 654, 285, 570, 117, 234, 468}

−1.882408 (⋆,−,+,+,−,−,−,+,−,+) 467
1023 = .0111010011 {89, 178, 356, 712, 401, 802, 581, 139, 278, 556}

{934, 845, 667, 311, 622, 221, 442, 884, 745, 467}

−1.874315 (⋆,−,+,+,−,−,−,+,−,−) 466
1023 = .0111010010 {91, 182, 364, 728, 433, 866, 709, 395, 790, 557}

{932, 841, 659, 295, 590, 157, 314, 628, 233, 466}
−1.861558 (⋆,−,+,+,−,−,−,+,+,−) 465

1023 = 5
11 = .0111010001 {930, 837, 651, 279, 558, 93, 186, 372, 744, 465}

−1.846627 (⋆,−,+,+,−,+,−,+,−,−) 461
1023 = .0111001101 {101, 202, 404, 808, 593, 163, 326, 652, 281, 562}

{922, 821, 619, 215, 430, 860, 697, 371, 742, 461}

−1.835159 (⋆,−,+,+,−,+,−,+,−,+) 460
1023 = .0111001100 {103, 206, 412, 824, 625, 227, 454, 908, 793, 563}

{920, 817, 611, 199, 398, 796, 569, 115, 230, 460}

−1.829510 (⋆,−,+,+,−,+,−,−,−,+) 459
1023 = .0111001011 {105, 210, 420, 840, 657, 291, 582, 141, 282, 564}

{918, 813, 603, 183, 366, 732, 441, 882, 741, 459}

−1.816295 (⋆,−,+,+,−,+,−,−,−,−) 458
1023 = .0111001010 {107, 214, 428, 856, 689, 355, 710, 397, 794, 565}

{916, 809, 595, 167, 334, 668, 313, 626, 229, 458}

−1.802436 (⋆,−,+,+,−,+,−,−,+,−) 457
1023 = .0111001001 {109, 218, 436, 872, 721, 419, 838, 653, 283, 566}

{914, 805, 587, 151, 302, 604, 185, 370, 740, 457}

−1.721915 (⋆,−,+,−,−,+,−,−,+,−) 438
1023 = .0110110110 {147, 294, 588, 153, 306, 612, 201, 402, 804, 585}

{876, 729, 435, 870, 717, 411, 822, 621, 219, 438}

−1.701701 (⋆,−,+,−,−,+,−,−,−,−) 437
1023 = .0110110101 {149, 298, 596, 169, 338, 676, 329, 658, 293, 586}

{874, 725, 427, 854, 685, 347, 694, 365, 730, 437}
−1.629433 (⋆,−,+,−,−,+,−,+,−,−) 434

1023 = 14
33 = .0110110010 {868, 713, 403, 806, 589, 155, 310, 620, 217, 434}

−1.536243 (⋆,−,+,−,−,−,−,−,−,−) 426
1023 = .0110101010 {171, 342, 684, 345, 690, 357, 714, 405, 810, 597}

{852, 681, 339, 678, 333, 666, 309, 618, 213, 426}

−1.501717 (⋆,−,+,−,−,−,−,−,+,−) 425
1023 = .0110101001 {173, 346, 692, 361, 722, 421, 842, 661, 299, 598}

{850, 677, 331, 662, 301, 602, 181, 362, 724, 425}

−1.447009 (⋆,−,+,−,−,−,+,−,+,−) 422
1023 = .0110100110 {179, 358, 716, 409, 818, 613, 203, 406, 812, 601}

{844, 665, 307, 614, 205, 410, 820, 617, 211, 422}
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