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Factoring Gleason polynomials modulo 2

par Xavier BUFF, WiLriam FLOYD, SARAH KOCH et WALTER
PARRY

RESUME. Parmi les composantes connexes de l'intérieur de 1’ensemble de
Mandelbrot, on trouve celles qui sont hyperboliques. Ces composantes cor-
respondent aux parametres ¢ € C pour lesquels le point critique zp = 0 du
polynome f. : z — 22 +c est attiré par un cycle attractif. Chaque composante
hyperbolique contient un unique centre ; c’est le parametre ¢ pour lequel zq
est périodique. Etant donné un entier n > 1, le polynome de Gleason de pé-
riode n est le polynome unitaire G,, € Z[c|] dont les racines sont précisément
les centres des composantes hyperboliques de période n. On ne sait pas si
G, se factorise sur Z. Dans cet article, nous factorisons G,, modulo 2. Nous
prouvons le fait remarquable suivant : le nombre de facteurs irréductibles de
G, modulo 2 est égal au nombre de racines réelles de G,,.

ABSTRACT. Among the connected components of the interior of the Mandel-
brot set are those that are hyperbolic. These components consist of parameters
¢ € C for which the critical point zy = 0 of f. : z — 2% + ¢ is attracted to
an attracting periodic cycle. Every hyperbolic component contains a unique
center; that is, a parameter ¢ for which the critical point z is periodic. For
a given n > 1, the Gleason polynomial for period n is the monic polynomial
G, € Z|c] whose roots are exactly the centers of the hyperbolic components
of period n. It is unknown if G,, factors over Z. In this article, we factor G,
modulo 2. We prove the following remarkable fact: the number of irreducible
factors of GG,, modulo 2 is equal to the number of real roots of G,,.

1. Introduction

Let k = Q be the field of rational numbers or k = Fa be the finite field
with 2 elements. Let k be an algebraic closure of k.
Given ¢ € k, denote by f. € k[z] the quadratic polynomial

fol2) =22 +c.

A point z € k is a periodic point for f. if fo"(z) = z for some positive
integer n. The least such integer is called the period of z.

Manuscrit regu le 16 mai 2021, révisé le 23 aout 2022, accepté le 21 octobre 2022.
Mathematics Subject Classification. 37F10, 37P35, 37P05.
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If z is periodic of period n > 1 for f., then (c, z) is a zero of the polynomial
F, € K[, z] defined by

Fo(c,z) = f"(z) — 2.

C
An elementary induction shows that F), has integer coefficients, degree 271
with respect to ¢ and degree 2™ with respect to z. The coefficient of 2!
is 1 and the coefficient of 22" is 1. If m divides n, then F,(c,z) = 0 =
F,(c,z) = 0. In addition, the polynomial

Fpn(0,2) = 22" — 2z € k2]

has simple roots, so that F},, is square-free. Thus, if m divides n, then F,,
divides F}, in k]c, z]. It follows that there exists a sequence (®,, € k[c, 2])n>1

such that
F,(c,z) = H D, (c, 2).
mln
The polynomial ®,, is called the n-th dynatomic polynomial.
Let p: N\{0} — {—1,0,1} be the Mobius function, and let (0,,)n>1 be
the sequence of integers defined by

Op i= Zu(m)Q%.
mln
Then, the polynomial ®,, has degree 6, /2 with respect to ¢ and degree 6,
with respect to z. In this article, we are interested in the factorization of
®,, in klc, z].
The following result is due to Bousch [1].

Theorem 1.1. If k = Q, then for n > 1, the dynatomic polynomial ®,, is
irreducible in Q[c, z].

We shall see that when k = s, the situation is radically different. Let
(Yn)n>1 be the sequence defined by

1 n
Tn 5:% Z p(m)2m .

mln
m is odd

Theorem 1.2. If k = Fq, then for n > 1, the dynatomic polynomial ®,,
has exactly v, irreducible factors in Falc, z] which are monic with respect
to c. These are of the form Q(2% + ¢ — z) with Q € Fy[c]. If n is odd, then
each factor has degree 2n with respect to z and degree n with respect to c.
If n is even, then there are vy, o factors of degree n with respect to z and
degree n/2 with respect to ¢, and there are ~, — Ynj2 factors of degree 2n
with respect to z and degree n with respect to c.

Our proof in Section 6 relies on studying the restriction of ®,, to the slice
{z = 0}. Note that 0 is a critical point of f., i.e., f.(0) = 0.
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Remark 1.3. For k = [Fy, all points are critical points since the derivative
of f. identically vanishes.

A parameter ¢ € k is called a center of period n if 0 is a periodic point
of period n for f.. The centers of period n are the roots of the polynomial
G, € k[c] defined by

Gn(c) = @,(c,0).
The polynomial G, is called the n-th Gleason polynomial. It has degree
On /2.

The factorization of Gleason and related polynomials in Q[c] as well
as in Fa[c] has recently attracted attention (see for example [3] and [4]);
in particular, there are implications regarding the irreducibility over C of
some dynamically defined curves in the space of quadratic rational maps
(see for example [2]). Here is a long-standing conjecture whose origin is
unknown to us. See [7, Remark 3.5].

Conjecture 1.4. Ifk = Q, then forn > 1, the polynomial G, is irreducible
in Q[c].

In the following statement, M is the Mandelbrot set. For the notion of
primitive or satellite hyperbolic components, see Section 4.4. The following
result is due to Lutzky [5, 6]. We shall present a proof in Section 4.4 that
differs from Lutzky’s proof (see Section 4.5 for a discussion of Lutzky’s
proof).

Theorem 1.5. If k = Q, then G, has exactly v, roots in R. When n
s odd, these v, roots are centers of primitive components of M. When n
is even, 7y, /o of these roots are centers of satellite components of M and
Tn = Vn/2 of these roots are centers of primitive components of M.

We shall prove that when k = Fy, there is a parallel count for the number
of monic irreducible factors of the n-th Gleason polynomial G,. A polyno-
mial P € k[c] of degree d is centered if the coefficient of c¢~! is equal to 0.
Otherwise it is noncentered.

Theorem 1.6. If k = Fy, then G, has exactly ~y, monic irreducible fac-
tors in Fa[c]. When n is odd, those factors are the -y, irreducible centered
polynomials of degree n in Fa[c]. When n is even, those factors are the 7, /5
irreducible noncentered polynomials of degree n/2 in Fa[c| together with the
Yn — Yns2 irreducible centered polynomials of degree n in Fa[c|.

This will be proved in Section 5.

Remark 1.7. Theorem 1.6 generalizes to cases where the degree d is a
power of a prime. We state this generalization without proof in Theorem 1.8.
We introduce the following notation in order to include the statement of
the theorem in this more general case.
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Let d = p”, where p is a prime number, and 7 is a positive integer. Let
kn and p, be the following sequences

Fin = —(d;nl)p > u(m)dm

plm|n
and

po= 2 pmyat — P 5 g

mln plm|n

Theorem 1.8. Ifk =y, then G, has exactly p, monic irreducible factors
in Fylc]. When p does not divide n, those factors are the p, irreducible
centered polynomials of degree n in Fylc]. When p does divide n, those
factors are the Kk, irreducible noncentered polynomials of degree n/p in Fy[c]
together with the pn, — Kk, irreducible centered polynomials of degree m in

Fylcl.

Remark 1.9. One might hope that there is a corresponding generalization
of Theorem 1.5 to multibrot sets associated to prime powers. Unfortunately,
the choice of what hyperbolic components to count is not clear. For example,
there are no hyperbolic components with real centers if p is odd.

We thank the referee for many helpful comments.

2. Some sequences of integers

Recall that p: NN{0} — {—1,0,1} is the Mdbius function and that for
n>1,

Op, i= Z pu(m)2m

mln

2" =" 6.

mln

so that

It will be convenient to consider the sequence (gy,)n>1 defined by

eni=— > p(m)2m sothat &, +ep= > p(m)2m.
m is even m is odd

Lemma 2.1. The sequence (en)n>1 95 characterized by the recursion
(2.1) Vn>1, €91 =0 and &9, =0n+¢cn.

Remark 2.2. This shows that the sequence (ey,),>1 takes nonnegative
values.

Remark 2.3. This lemma asserts that any sequence satisfying recur-
sion (2.1) is equal to the sequence (&5, )n>1.
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Proof. First, assume n > 1. Since 2n — 1 does not have any even divisor,
the sum defining 9,1 is empty, so that 9,1 = 0. In addition,

Op +éen = Zu(m)Q% - Z w(m)2m

m is even

= Y. u(m)2

m|n
m is odd

=— Z u(2m)222771 since when m is odd, pu(m) = —u(2m)

2m|2n
m is odd

=— Z ,u(k:)22Tn since when 4|k, p(k) =0

k|2n
k is even

= E9n.-

Second, assume (e}, )p>1 is a sequence satisfying recursion (2.1). Let (up)n>1
be the sequence defined by u,, := &), — €,,. Then, for n > 1, we have that

! !
Ugn—1 = €9y —Eam—1 =0 and wugy = oy + €, — 0y — €n = Up.

It follows by induction that the sequence (up)n>1 identically vanishes, so
that the sequence (],),>1 is equal to the sequence (gy,)n>1. O

It shall be convenient to consider three related sequences (ou,)n>1,
(Bn)n>1 and (%)n>1 defined by

== Zu 27, fui= == 3 u(m

n
m is even

and

On + €n
T T T o Z pulm

m|n
m is odd

Lemma 2.4. The sequences (fBn)n>1 and (yn)n>1 are characterized by the
TEeCUrsion

o + Bn
72 .

Proof. This is an immediate consequence of Lemma 2.1. O

Vn>1 PBoawm-1=0 and [op ="y =

3. Counting periodic sequences

3.1. Symbolic dynamics. Let us consider the set ¥ of sequences of 0’s
and 1’s:
5 = {0, 1} 03,
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A sequence in ¥ shall be denoted by s = (sp)n>1. Consider the shift o :
> — ¥ defined by
o(81,82,83,...):= (s2,83,54,...).
Let © C X be the subset of periodic sequences. Given n > 1, set
O, ={seX; oc™(s) =s}.

Note that (:)n C O is the set of sequences which are periodic under iteration
of o with period dividing n. Denote by 6, C O, the subset of sequences
which have exact period n, so that

©=|]6n..
n>1

Lemma 3.1. Forn > 1, card(0,) = d,.

Proof. A sequence s € 0, is uniquely characterized by (s1, s2, .. ., sy ) which
may be any element of {0,1}". As a consequence card(©,,) = 2". In addi-
tion,
0, = |_| O,, sothat 2" = Z card(©
It follows from the Mobius inversion formula that for n > 1,
card(© Z w(im 2m = 0p. O
mln
Consider now the involution ¢ : 3 — > defined by
t(s1,82,83,...):=(1—s1,1 — 89,1 —83,...).

Note that ¢ and ¢« commute. A sequence s € ¥ is reflexive if its orbit under
iteration of o contains ¢(s). Let = C X be the subset of reflexive sequences.
A reflexive sequence is necessarily periodic since

o (s) =u(s) = o°@M(s)=5s.
For n > 1, let Z,, be the set of reflexive sequences of period n:
Zn i =ZN0,.
Lemma 3.2. Forn > 1, card(Z,) = ¢,.
Proof. Assume s € Z,, and 0°%(s) = «(s). Let 0 < m < n be congruent to k
modulo n, so that ¢ (s) = ¢°%(s) = «(s). Note that 0°™)(s) = s so that
n divides 2m. Since 0 < 2m < 2n, we have n = 2m. As a consequence, for
n>1,
card(Zg,-1) = 0.
For n > 1, set

E,={s€Z; 0™(s)=s} and E,:={se€Z; 0”(s) =u(s)}.
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Since ¢ : ¥ — ¥ does not have any fixed pomt, =, NE =/ = (. Assume
s € égn, i.e., s is a reflexive sequence of period dividing 2n. Let m > 1 be
the smallest integer such that ¢°”*(s) = «(s). Then s has period 2m which
divides 2n, so that m divides n. If m divides n and n/m is odd, then s € é;t,

and if n/m is even, then s € Z,. Thus, for n > 1,
(3.1) Son ==/ LUE, sothat card(Zs,) = card(Z) + card(E,,).

A sequence s € é;z is uniquely characterized by (si, s2,...,S,) which may
be any element of {0,1}". Thus

(3.2) card(Z Z Om.-

mln
As in the previous proof,
(3.3) Z, = |_| =, sothat card(Z,) Z card(Z,,)

In addition, since card(Z;) = 0 if k is odd, we have that

(3.4) card(Zg,) = Z card(Zgy,) Z card(Zam,)

2m|2n mln

Thus, for n > 1,

Z card(Zg,) = card(égn) from (3.4)
mln
= card(Z)) + card(E,,) from (3.1)
= Z Om + Z card(Z,,) from (3.2) and (3.3)
mln mln

so that for n > 1,

card(Egy,) = 0y, + card(Z,).
The sequence (card(Z,)) ., satisfies recursion (2.1), thus is equal to
(En)n>1- - O

3.2. Multiplication by 2 in R/Z. Consider the map 7 : ¥ — R/Z
defined by
5.
T(s) == Z 2—? mod 1.
Jj21

Note that 7 : ¥ — R/Z is surjective (every angle in R/Z has a binary ex-
pansion and s is the corresponding sequence of digits) but not injective. For
example, (0,0,0,...) and (1,1,1,...) have the same image by 7. However,
if two distinct sequences are identified, one is eventually constant equal to
0 and the other is eventually constant equal to 1. It follows that the only
periodic sequences which are identified are (0,0,0,...) and (1,1,1,...).
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The map 7 : ¥ — R/Z semi-conjugates the shift o : ¥ — X to the
doubling map D : R/Z — R/Z defined by

D(0) = 26,

that is, Do 7 = 7 oo. An angle § € R/Z is periodic under iteration of D
with period dividing n if and only if € can be written as m/(2" — 1) with
m € 7/(2" — 1)Z. In addition, if s € ©,, i.e., if s is periodic with period
dividing n, then

n
T(s) = m . with m := Z s;2" 7 eZ/(2" - 1)Z.
— =

The map 7 : ¥ — R/Z semi-conjugates the involution ¢ : ¥ — ¥ to the
involution I : R/Z — R/Z defined by

1(0) := —0,

that is, o7 = 7o¢. For n = 1, the doubling map D : R/Z — R/Z has only
one fixed point, namely 0, and this point is fixed by the involution I. For
n > 2, it follows from Section 3.1 that the doubling map has §,, periodic
points of exact period n, and that among those, £, have an orbit which is
invariant by the involution I. So, for n > 2, there are «, orbits of period n
and (B, among them are invariant by the involution I.

4. Quadratic dynamics in Q

In this section, we are mainly concerned with the dynamics of the qua-
dratic polynomials f.: Q — Q defined by

fo(2) =2+ ¢ with cecQ.

For ¢ € Q, the periodic points of f. of period dividing n are the roots of
the polynomial f"(z) — z € Q[z] which has degree 2". It shall therefore be
convenient to consider the sequence (F),(c, z) € Q[c,z2]) ., of polynomials
defined by

n>1
Fo(c,z):= f"(z) — =.
Those polynomials satisfy the recursion
Fi(c,2) =2 —z4+c and Fhii(c,2) = Fulc,2)* +c.

It follows that they have integer coefficients, degree 2"~! with respect to
c and degree 2" with respect to z. The coefficient of ¢ is 1 and the
coefficient of 22" is 1.
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4.1. The dynamics of fo : z — 22. The periodic points of fy of period
dividing n are the roots of the polynomial F},(0, z) = 22" — z € Q[z], whose
roots are simple. The fixed points are 0 and 1. The periodic points of period
n > 2 are roots of unity.

Let U C Q be the multiplicative group of roots of unity. The transcen-
dental map Q/Z > 6 — exp(27if) € U is a group isomorphism which con-
jugates the doubling map D : Q/Z — Q/Z to the restriction fy : U — U.
It conjugates the involution I : Q/Z — Q/Z to the involution ¢ : U — U
defined by ¢(z) = 1/z.

It follows from Section 3.2 that for n > 2, the squaring map fo: Q — Q
has d,, periodic points of exact period n, and that among those, ¢, have an
orbit which is invariant by the involution .

4.2. The dynamics of f_5 : z — 22 — 2. Consider the map 1 :
Q~{0} — Q defined by
1
P(z) =2+ pt

The map ¢ is a ramified covering of degree 2. Each point in Q has two
distinct preimages in @~ {0} except 2 which has a single preimage at z = 1
and —2 which has a single preimage at z = —1. In addition,

2
o fo(z) :z2+é: (z—l—i) —2=f_90(2).
So, 1 semi-conjugates fo : Q~{0} — Q~{0} to f2: Q — Q.

4.3. Real dynamics. A parameter ¢ € Q is a center if 0 is periodic under
iteration of f.. It is a center of period n if 0 has period n for f.. The centers
of period n are precisely the roots of the Gleason polynomial G, € Q[
defined by

Gn(c) = ®p(c,0).
Example 4.1. We have that
Gi(c)=¢, Ga(c)=1+¢, Gz(c)=1+c+2+c .

We shall say that c is a real center if ¢ € R. The kneading sequence of a
real center c is

+ O om(0) > 0
k(c) := (kn),y € {+ —* N with ok, =% if £7(0)=0.
- — i f0) < 0
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The kneading angle of a real center ¢ is the angle (c) := 7(¢(c)) € R/Z
where t(c) := (tp)n>1 € X is defined by

0 if kK, =%
V>0 thtr = (ta if kK, =+ .
1—-t, ifk,=-—

Example 4.2. The polynomial G3 has a unique real root c3. We have that

K(c3) = (%, —, +, %, —,+,...), t(c3) =(0,1,1,0,1,1,...) and O(c3) = 2

Note that by definition, the first digit in the binary expansion of 8(c)
is a 0, so that this angle belongs to the arc [0,1/2) C R/Z. The following
result is due to Milnor and Thurston [8].

Theorem 4.3. If ¢; < ¢y are real centers, then 0(c1) > 6(c2). If ¢ is a
center of period n, then 0(c) is periodic of period n for the doubling map
D :R/Z — R/Z. In addition, a periodic angle 6 € [0,1/2) C R/Z of period
n is the kneading angle of some real center of period n if and only if 0 € R/7Z
is the closest angle to 1/2 € R/Z within its orbit under iteration of D.

This result enables us to count the number of real centers of period n
as follows. The doubling map has a unique orbit of period 1. This orbit is
reduced to the angle 0 € R/Z which is the angle of the unique center of
period 1: ¢ = 0. So assume the period is n > 2. On the one hand, assume
O is an orbit for the doubling map D : R/Z — R/Z which is invariant
by the involution I : R/Z — R/Z. Then O contains exactly two angles
closest to 1/2 € R/Z, one in the arc (0,1/2) C R/Z, the other in the
arc (—1/2,0) C R/Z being its image by the involution I. According to
Theorem 4.3, there is exactly one real center with kneading angle in O.
According to Section 3.2, there are (3, such orbits corresponding to 3, real
centers of period n. On the other hand, assume O and O are two distinct
orbits of period n which are exchanged by the involution I : R/Z — R/Z.
The closest angle to 1/2 € R/Z in one of the two orbits is contained in
the arc (0,1/2) C R/Z and the closest angle to 1/2 € R/Z in the other
orbit is contained in the arc (—1/2,0) C R/Z. According to Theorem 4.3,
there is exactly one real center with kneading angle in O U O’. There are
(atn, — Bn)/2 such pairs of orbits corresponding to (ay, — 5,,)/2 real centers
of period n. Thus, the total number of real centers of period n is

e D D G
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4.4. Complex dynamics. We shall prove Theorem 1.5 in this section. We
have the following description of the kneading angle. Consider the family
of quadratic polynomials (f, : C — C).cc defined by

fo(2) =22 4.
The Mandelbrot set M is the set of parameters c¢ such that the orbit
(f&™0)), 5 is bounded. Douady and Hubbard proved that the Mandelbrot
set is connected. More precisely, let D C C be the unit disk. There exists

a conformal isomorphism ¢ : C~\M — C~ID which satisfies ppq(c) =
c+ O(1) as ¢ — co. For 6§ € R/Z, the curve

R(0) := {c € C~M ; argument(¢rq(c)) = 270 mod 27}

is called the external ray of M of angle 6. If # € R/Z is periodic for the
doubling map D : R/Z — R/Z, then the ray R(6) lands at a parameter
c€ M,ie., R(O)NM = {c}. Figure 4.1 shows the Mandelbrot set together
with the rays of angle 1/3, 2/3, 3/7 and 4/7.

FIGURE 4.1. The Mandelbrot set. The external rays R(1/3)
and R(2/3) land at the root ¢ = —3/4 of the satellite com-
ponent H_1. The rays R(3/7) and R(4/7) land at the root
¢ = —7/4 of the primitive component H.,, where cs is the
unique real center of period 3.

Assume now that ¢y is a center of period n. Then, ¢y is contained in
the interior of M. Let H., be the connected component of the interior of
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the Mandelbrot set M containing cy. Such a connected component H,, is
called a hyperbolic component of M. If ¢ € H,,, the quadratic polynomial
fo : z — 2% + ¢ has an attracting cycle of period n. The product A(c)
of the derivatives of f. at the points of this cycle is called the multiplier
of this cycle. To say that the cycle is attracting means that A(c) € D.
The map A : H,, — D is a holomorphic isomorphism which extends as a
homeomorphism A : H., — D. The parameter c¢; := A~!(1) is called the
root of the hyperbolic component H,,. The quadratic polynomial f., has
a parabolic cycle, i.e., a cycle whose multiplier is a root of unity. If this
multiplier is 1, then H,, is called a primitive component of M. Otherwise,
He, is called a satellite component of M.

If ¢g = 0, which corresponds to the unique center of period 1, the root
is ¢; = 1/4 and there is a single ray landing at ¢;: the ray R(0). If ¢g is a
center of period n > 2, there are two rays landing at c¢;. When ¢ is real,
then ¢, is also real and when the period is not 1, the two rays landing at ¢;
are R(0(cp)) (which is contained in the upper half-plane) and R(—6(co))
(which is contained in the lower half-plane). The angles 0(cy) € R/Z and
—0(cp) € R/Z belong to the same orbit under iteration of the doubling
map D : R/Z — R/Z if and only if H,, is a satellite component of M.

It follows from the count presented in Section 4.3 that among the ~,
real centers of period n, 3, are centers of satellite components of M and
Yn — Bpn are centers of primitive components of M. Note that 5, # 0 only
when n is even. In particular, if n is odd, the -, real centers of period n are
centers of primitive components of M. When n is even, f, = 7,/2. Thus,
when n is even, among the v, centers of period n, there are v, /, centers of
satellite components and 7, — 7,2 centers of primitive components. This
completes the proof of Theorem 1.5.

4.5. Lutzky’s proof. The original argument of Lutzky for counting the
number of real centers may be illustrated by Figure 4.2.

For ¢ > 1/4, the polynomial f. has no real periodic point and for ¢ = —2,
the semi-conjugacy in Section 4.2 shows that the polynomial f_s has a,
cycles of period n. As ¢ increases from —2 to 1/4, the «,, cycles must bifur-
cate in order to leave the real axis and become complex conjugate cycles.
At a pitchfork bifurcation (which corresponds to roots of satellite compo-
nents of period n), a single cycle bifurcates, contributing to one real center.
At other bifurcations (which correspond to roots of primitive components),
two cycles bifurcate, still contributing to only one real center. In addition,
each pitchfork bifurcation comes from a bifurcation of period n/2. Thus, if
;. stands for the number of real centers of period n and g/, stands for the
number of pitchfork bifurcations of period n, then for n > 1,

Bon-1=0, Pon =15 and an=F;,+2(y, = B),
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FIGURE 4.2. The curves of points (¢, z) € [—2,1/2] x [-2, 2]
such that z is periodic of period n for f.. Red: n = 1; blue:
n = 2, green: n = 3; pink: n = 4. The line of equation z = ¢
is tangent to those curves at points whose first coordinate
is a real center.

which may be re-written as

o, + B
5én—1 = 07 Bén = %Im = %
According to Lemma 2.4, we have that 8/, = 8, and v}, = 7, for n > 1 as
required.

The justification that each bifurcation contributes to exactly one real
center relies on the result of Milnor and Thurston stated previously.

5. Quadratic dynamics in Fa

In this section, we consider the case k = Fo. Theorem 1.6 will be estab-
lished at the end of the section. Let us recall that for n > 1, the finite field
Fon with 2™ elements is the splitting field of 22" — 2 over Fy. The Frobenius
endomorphism fy : Fo — Fy is an automorphism of Fy over Fa: it fixes Fy
pointwise and satisfies

folz +w) = fo(2) + fo(w) and  fo(z2w) = fo(2) fo(w).
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More precisely, any point z € Fy is periodic for fy. Such a point is
periodic of period exactly n if and only if it is an element of For which is
not contained in Fom for some proper positive divisor m of n. The conjugates
of a point z of period n are the points of its orbit under iteration of fy:

z, fo(2), ..., Smfl)(z). This orbit is the Galois orbit of z. The minimal
polynomial of such a point has degree n and vanishes precisely on its Galois
orbit.

The periodic points of period n are the roots of the dynatomic polynomial

On(2) = @,(0, 2) € Folz].

The irreducible monic polynomials of degree n in Fa[z] are the factors of ¢y,.

The polynomial ¢,, has degree 6, and simple roots (since it divides 22" — z

whose derivative is —1). So, there are precisely oy, = 0, /n monic irreducible
polynomials of degree n in Fa[z]. Equivalently, there are «,, Galois orbits
of period n in Fs.

5.1. Critical orbit for f..

Lemma 5.1. Assume ¢ € Fo. Then, for alln > 1,
c0)=co+ci+ - F+cepo1 with ¢ = fgj(c).

Proof. The proof goes by induction. For n = 1, we have that

fe(0) = ¢ = co.
And if
M0)=co+c1+ -+ eno,
then,

FE0) = ¢+ fo(£(0))
= c+ folco) + foler) + -+ + folen—1)
=co+e+et+on .

5.2. Points in Fy are centers. We shall say that a Galois orbit is cen-
tered if the associated minimal polynomial is centered, and noncentered
otherwise.

Let us recall that ¢ € Fy is a center of period n if 0 is periodic of period
n under iteration of f..

Lemma 5.2. Any point ¢ € Fy is a center. Let n be the period of ¢ under
iteration of fo and let m be the period of 0 under iteration of f.. If the Galois
orbit of ¢ is centered, then m = n. If the Galois orbit of c is noncentered,
then m = 2n.
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Proof. For j > 0, set
¢j = fgj(c) and  zj:= fI(0) =co+er+ o+
On the one hand, if ¢ is periodic of period n for fy, we have that c,4; = ¢;
for all 7 > 0, and so
zon =2(co+c1+ -+ ep—1) =0,

Thus, 0 is periodic for f. and the period m divides 2n. On the other hand,
if z,, = 0 for some m > 1, then

0 (C) = Cm = Zm + Cm = Zm1 :z,zn—l—c:c.
Thus, the period n of ¢ for fy divides m. Since m divides 2n and n divides
m, this forces either m =n or m = 2n.
Let P be the minimal polynomial of c. Its roots are the points ¢y, c1,
.., tn—1- As a consequence, 0 is periodic of period n for f. if and only if
zp = 0, ie., if and only if ¢cg +¢1 +...¢cp—1 = 0, i.e., if and only if P is
centered. 0

5.3. From dynamical plane to parameter space. Let ¢ : Fon{0} —
F3~{0} be the involution defined by

1
9) = -
(0) =
Assume ¥ € Fo~{0}. Then,
D+ =0 <= P+1=0 — 9=1
We may therefore consider the map 1) : FoxFy — Fa~{0} defined by
1 9
) = = .
¥(v) 9+u(d)  92+1

The involution ¢ and the map 1 commute with fy. So, they send Galois
orbits to Galois orbits.

Lemma 5.3. The map v : FoxFy — Fo~{0} is surjective and each fiber
contains two distinct points; those are exchanged by the involution .

Proof. Assume ¢ € Fo~{0}. Then, ¥(9) = c if and only if ¥? —9/c+1 = 0.
The discriminant of this quadratic polynomial is 1/c? # 0. So, there are

two distinct roots. The product of the roots is 1. So, they are exchanged
by ¢. O

Lemma 5.4. Assume ¥ € Fo~Fo and ¢ = 1(9). Let n be the period of ¥
for fo and let m be the period of ¢ for fo. If 9 is conjugate to 1/9, then
n = 2m and the minimal polynomial of ¢ is noncentered. Otherwise n = m
and the minimal polynomial of c is centered.
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Proof. By assumption, the Galois orbit of ¥/ contains n points and the Galois
orbit of ¢ contains m points. Since ¥ commutes with fy, it sends the Galois
orbit of ¢ to the Galois orbit of ¢. According to Lemma 5.3, the fibers of
Y : FoxJFy — Fo~{0} contain exactly two points which are exchanged by
the involution ¢. So, if the Galois orbit of ¥ is preserved by the involution ¢,
then its image by v contains m = n/2 points. Otherwise it contains m = n
points. O

Lemma 5.5. Assume ¥ € FoxFy and ¢ = (9). Then, for n > 1,

R A e A R S
B 92" +1

f"(0)
Proof. For n > 0, set
92" 92"
IR (92" +1)%
According to Lemma 5.1, we have that for n > 0,
fEM0) =co+er+ -+ cnot.
Now, the proof goes by induction. For n = 1, we have that
1 0

cn = fo'(c)

JeO) =c=5oa7y = a1
And if
on(0) = D+ 0%+ + - 092!
C - 192n + 1 9
then
FED(0) = £(0) + en
_19+192+_”+,l92"—1+ 192”
N 92"+ 1 (14 92")(92" + 1)

(9 +9% 4+ 92" (1 +097") + 9"
(1+92")(9*" +1)
4+ 0 407 4 (0 92T

_ T . O

Lemma 5.6. Assume ¥ € Fo~IFy is periodic of period n > 2 for fy and
¢ =(9). Then, 0 is periodic of period n for f..

Proof. According to Lemma 5.5, for j > 1,
PP 4 9P 9¥ — o () =9

°7 (0 : = . = —.
f*(0) v +1 W-1W¥ +1) (W-1)F+
Thus, f27(0) = 0 if and only if j is a multiple of n. O
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5.4. Counting orbits. For n > 1, let o/, be the number of Galois orbits
in Fo~{0} which have period n, and let 3/, be the number of those orbits
which are invariant by the involution ¢. Then, o) = 3] = 1 since the only
fixed point of fy in Fo~{0} is 1. And o/, = o, for n > 2.

Lemma 5.7. We have that
/B/ _ a6,
2n — 2

/Bén+1 =0.

Proof. The only fixed point of ¢ is 1, which is a fixed point of fy. So, 5] =1
and if a Galois orbit is preserved by ¢, then its cardinality must be even. It
follows that /33, ; = 0. Next, a Galois orbit of period n for fj is the image
by v of

e cither a Galois orbit of period 2n which is invariant by ¢,

e or two distinct Galois orbits of period n which are exchanged by .

It follows that

Bizl and Vn>1 {

Il ’ ’
= B+ 25 sothat g, = 221 N

2
Lemma 5.8. We have that (3], = B, for n > 2.

Proof. Consider the sequence (3/),>1 defined by
Bl:=0 and Vn>2 Bl:=4.
Note that o) + 8] =2 = a1 + Y, so that for n > 1,
oy, + By, = an + .
Thus, according to Lemma 5.7,

/ / !
Y1 B =0 and B =g, = T P Cnt P

According to Lemma 2.4, we have that ], = 3, for n > 1. O

Lemma 5.9. For n > 1, the n-th Gleason polynomial has ~y, monic irre-
ducible factors in Fa[c].

Proof. For n > 1, let ~}, be the number of Galois orbits of centers of period
ninFy. For n = 1, we have v} = 1 = 1. For n > 2, according to Lemma 5.6,
the Galois orbits of centers of period n are the images by v of the Galois
orbits of period n for fy. According to Lemma 5.4, the centered ones are
the images of the Galois orbits which are not invariant by the involution ¢.
There are (o, — ()/2 such orbits. The noncentered ones are the images of
the Galois orbits which are invariant by the involution ¢. There are 3,, such
orbits. Therefore,

Qp +
2 +Bn=4n2ﬁn=%- H

/ Oén_ﬁn
Tn =
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This completes the proof of Theorem 1.6

6. Dynatomic polynomials in F3[c, z]

We finally prove Theorem 1.2. The proof relies on the following observa-
tion. Recall that for n > 1,

Fale,2) = f2(2) — =
Lemma 6.1. For n > 1, we have the following equality in Fa[c, 2]:
Fo(c,2) = Hy(2* +c—2) with Hy(c) := Fu(c,0).
Proof. Observe that for n > 1,
Hyy1(e) = f20(0) = (£2(0))* + = H(c) +c.
We shall prove the result by induction on n > 1. For n = 1, we have that
Fi(c,2)=fuz) —2=2+c— 2.

So, the result holds.
Let us now assume that for some n > 1,

Fu(c,2) = Ho(2% + ¢ — 2).

Then,
Foti(c,z) = (Fu(c,2) + 2)2 +c—2z
— (Hp(2+c—2)+2) +c—2
=HX (P 4c—2)+ 22 +ec—z2=Hop1 (2 +c—2).
This completes the proof by induction. O

For n > 1, we now have

Fo(c,2z) = H ®,,(c,z) and Hy(c) = H Gm(c).

As a consequence, for n > 1,
®,(c,2) = Gu(2* +c— 2).

On the one hand, it follows that if P(c) divides G, (c), then P(z? 4 ¢ — 2)
divides ®,(c,2). Thus, ®, has at least -, irreducible factors which are
monic with respect to c. On the other hand, if Q(c, z) is a factor of ®,(c, 2)
which is monic with respect to ¢, then Q(c,0) is a monic factor of Gy (c).
This shows that ®,(c,z) has at most -, factors which are monic with
respect to c¢. Thus, ®,(c, z) has exactly v, factors which are monic with
respect to ¢. Theorem 1.2 now follows easily from Theorem 1.6.
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Appendix A. Itineraries of roots of low-degree Gleason
polynomials

In this appendix, we present for each period n € [1,8] two tables. The
first table corresponds to k = Q. It contains:

e the (approximate) value of the real center of period n,
e the initial segment of its kneading sequence (to be repeated period-
ically with period n),
e the kneading angle 6(c) with its binary expansion and
e the cycles in Z/(2" — 1)Z of (2" — 1)6(c) and —(2™ — 1)0(c).
The second table corresponds to k = Fy. It contains:
e the minimal polynomials P € Fa[c] of the centers of period n,
e the coefficients of ¢* of P(c) and

e the minimal polynomials of the numbers ¥ € Fy such that Poy (1)) =
0.

For periods 9 and 10, we only present the first table.

A.1. Period 1.
Gi(c)=c and 1 =1.

(0] (»)][0/1=.0]{0}]
[ [O.D]9]

A.2. Period 2.
Ga(c)=1+c¢ and 7y =1.

| —1[(x—-)[1/3=.01]{1,2}]
[T+ D [1+9+0%]

A.3. Period 3.
Gs(c)=1+c+2%+c* and ~3=1.
| —1.754878 | (»,—,+) | 3/7 =011 {1,2,4} {6,5,3} |
[ 1+c+A[(1L,1L,0,) [+ 4+ PP +9* +1) |
A.4. Period 4.
Gi(c) =142 +334+3c*+3°+ and ~y=2.

- - T T{.2458)
1.940800 | (= 4, +) | T/15=011 | 14 55"y5 7y

—1.310703 | (x,—,+,—) | 6/15 = 2/5 = .0110 | {3,6, 12,9}

IL+c+c](1,1,0,0,1) [ (1 4+ 9+ 90+ 93+ 1)
l+c+c] (1,1,1) T+9+ 92+ 93+ 92
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Gs(c) = 1+ ¢+ 2¢2 + 5¢3 + 14¢* 4 26¢° + 4465 + 69¢7 + 943
+114¢° 4 11660 + 94¢! 4 60c'? + 28¢13 + 8¢t + 1P

and
Vs = 3.
B  ——[{1,2,4,8,16}

1.985424 | (%, —,+,+,+) | 15/31 = .01111 (30,29, 27,23, 15}

B _  ————11{3,6,12,24,17}
1.860783 | (x, —,+, +,—) | 14/31 = .01110 {28,25.19.7, 14)
B - — ——1{5,10,20,9, 18}

1.625414 | (%, —,+,—,—) | 13/31 = .01101 (26,21, 11,22, 13}
1+7+¢ (1,0,1,0,0,1) | A+ 9+ P+ + )P+ +9° +9+1)
1++¢° (1,0,0,1,0,1) A+ P+ +97+1)

T+c+Z+E+0 | (1L,1,1,4,0,1) [ (T+9+ 97+ 97 +9°)(0° +9* +9° +9% +1)
A.6. Period 6.

Ge(c) =1 —c+ 2 +3c3 +7¢* + 17¢° 4 35¢5 + 76¢" + 155¢° 4 298¢°
+ 536¢10 4 927¢! 4 1525¢12 + 2331¢3 + 3310c! 4 434610
+ 5258¢10 + 5843¢!7 + 5892¢1® 4 5313c1 4 4219¢%° + 2892
+ 1672¢%2 4 792¢3 + 293¢** 4 78¢%° + 13620 + &7

and
Y6 = 9.
- B [ — {1,2,4,8,16,32}
1.996376 | (%, —, +, +, +,+) 31/63 = .OI1111 {62, 61.50.55, 47,31}
- B B B [ {3,6,12,24,48,33}
1.966773 | (%, —,+,+,+,—) | 30/63 = 10/21 = .011110 (60,57, 51,39, 15,30}
B B - [ — {5,10,20,40,17, 34}
1.907280 | (%, —, 4+, +, —, —) 29/63 = .011101 (58, 53, 43,23, 46, 29}
—1.772893 | (x,—, +,+,—, +) | 28/63 =4/9 = .011100 | {7,14,28,56,49,35}
_ . [ — {11,22,44,25,50, 37}
1.476015 | (%, —, +, —, —, —) 26/63 = .011010 (52.41.19. 38,13, 26}
1+c24+6 (1,0,1,1) 14+ 93 +0°
1+c+c° (1,1,0,0,0,0,1) | (1 + 9+ 9% +9* +95)(W° +9° + 9% + 97 +1)
I+ +c° (1,0,0,1,0,0,1) | 1+ 9+ +9° +9°)(° +9° + 9" + 9+ 1)

1+c+E+c+c°

(1,1,1,0,1,0,1)

A+ + P+ + 9O+ + 95+ 07 +1)

1+c+E++c°

(1,1,0,1,1,0,1)

A+ +9)W°+9+1)
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A.7. Period 7.

deg(G7) =63 and ~7;=09.

{1,2,4,8,16, 32, 64}

_ _ 63 _ AT T
1999096 | (6, =+, 4,4, +) | 1op = OTHIIL | 656" 105 193 119,111, 95, 63)
B _ | 62 e | 1356, 12,24,48,96,65)
1.991814 | (%, —, +, +,+,+, =) | 157 = 0111110 {124,121, 115,103, 79, 31, 62}
_ _ V| 6l _ s | 19, 10,20,40,80, 33,66}
L977180 | (%, —, +, +,+, =, —) | 137 = 0111101 {122,117, 107, 87, 47,94, 61}
_ _ _ 60 _ mrran | 170 14,28,56,112,97,67}
1.953706 | (%, —, +, +,+, =, +) | 157 = 0111100 {120, 113,99, 71, 15, 30, 60}
B B o 59 e | 19, 18,36,72,17, 34,68}
1.927148 | (%, —, +,+, —, —,+) | 137 = .0111011 {118,109, 91,55, 110,93, 59}
B _ |58 _ arraan | 111,22,44,88,49,98,69}
1.884804 | (%, —, +,+,—, —, - = -0111010 {116,105, 83, 39, 78, 29, 58}
B B | 57 arraar | 113,26,52,104,81, 35,70}
1.832315 | (%, —, +,+, =, +,—) | 197 = -0111001 {114,101, 75, 23, 46, 92, 57}
B 54 orrnrn | 119, 38,76, 25,50, 100, 73}
1674066 | (x, =+, = =+, =) | g7 = 010110 | 50 "09 =1 102, 77, 27, 54)
_ _ |53 _ arvaaar | 121,42,84,41,82,37, 74}
1.574889 | (%, —, +,—, —, —, 157 = 0110101 {106, 85, 43, 86, 45, 90, 53}
T4c+c’ (1,1,0,0,0,0,0,1) T+ +934+941) (97 +95+914+92+1)
1+ +c7 (1,0,0,1,0,0,0,1) | (¢0"+0°+° +P+9>+0+1) (" +° + P +9"+ 97 +9+1)
I+c+E+S+c (1,1,1,1,0,0,0,1) [ (07 +P° +9*+03+92 +9+1) (07 + 9 +9° + 0+ 93 +092+1)
T+t 7 (1,0,0,0,1,0,0,1) O+ P+ + P+ 1) (T +I+ P +9%+1)
1+ +E+A+ 7 (1,0,1,1,1,0,0,1) @O+ 1) (I +97+1)
I+t +c7 (1,1,1,0,0,1,0,1) O+ +1) (97 +9+1)
T+c+S+P+c (1,1,0,1,0,1,0,1) T+ P +97 9+ 1) (7 + 0% +9° 9%+ 1)
1+ +cT++7 (1,0,0,1,1,1,0,1) (T +95+ P +9+1) (I +0°+ 9T +9+1)
1+cet+ P+ +t++c7 | (1,1,1,1,1,1,0,1) (07 + 954+ 95 + 097+ 1) (97 + 095+ 92 +09+1)
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A.8. Period 8.
deg(Gg) =120 and
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Y8 = 16.

7 17— |{1,2,4,8,16, 32,64, 128}
—1.999774 | (%, —, +, +, 4+, +, 4+, +) 121 — pIII1111 {254,253, 951, 247, 239, 923,191, 127}
B 196 | 13,6,12,24,48,96, 192,129}
—L997963 | (e = b =) | g5 = OTITIHIO | rono 540 943,231, 207, 159, 63, 126}
- - 195 _ aorrar | 45, 10,20,40, 80,160, 65,130}
—1994333 | (o — bbb — ) | g5 = OHITTIOL | rons 54 935,915, 175, 95, 100, 125}
B 194 | {7,14,28,56,112,224,193,131}
—1.988793 | (%, —, +, +, +,+, —, +) 121 — DII11100 {218,241 227,199, 143, 31. 62, 124}
__ 193 _ morr | 49,18, 36, 72,144, 33,66, 132}
~LOBI656 | (= by = —o k) | g5 = OTITIOIL | roli a7 910, 183, 111, 222, 189, 123}
- 2 | {11,22,44,88,176,97, 194, 133}
—1972200 | (e = bbby == =) | g55 = OHITIOT0 1 po 17553 911 167, 79, 158, 61, 122}
L 191 aeer | 413, 26,52, 104, 208, 161, 67, 134}
—1.960759 | (%, —, +, +, 4+, — +, —) 121 — DI111001 {242,229 903, 151, 47,94, 188, 121}
—1.941782 | (%, —, +, +, +, —, +,+) | 12 = & = 0IIII000 | {15, 30,60, 120, 240,225, 195, 135}
_ - 18 _ ~nrs | 419, 38,76, 152, 49,98, 196, 137}
—LOT098 | (e = s = = =) | g5 = OTHIOLI0 | roag 517 179, 103, 206, 157, 59, 118}
- - 17 _ et | 121, 42,84,168, 81,162, 69, 138}
—1896918 | (e, =ty = == =) | g = OHIIOIOL g 13 71, 87, 174,03, 186, 117}
- 6 | {23,46,92, 184,113,226, 197, 139}
—1.870004 | (%, —, 4, +, = — —, +) 16 — DI110100 {232,200, 163, 71, 142, 29,55 116}
_ L 15~ | 125, 50,100,200, 145, 35,70, 140}
—L8BIT30 | (6 = by —o b —o ) | 55 = OHIIO0IT | roas 05 455 55, 110, 220, 185, 115}
L 14— | 127,54, 108,216, 177,99, 198, 141}
~L8I0001 | (e, = by =k = =) | g55 = OHIT00T0 | 190 501 147, 30,78, 156, 57, 114}
L 100 _ ~rar | 487, 74, 148,41, 82,164, 73,146}
SLTHOTY | G = = = = =) | g5 = OTIOTIOT | o160 481 107, 214, 173,91, 182, 109}
. 106 _ mrarn | 143, 86,172,89, 178,101,202, 149}
—L521817 | (% —, +, ’ ) 255 — 01101010 {212,169, 83,166, 77,154, 53,106}
—1.381547 | (%, —, +, —, —, —,+,—) | 32 = L = 01101001 | {45,90, 180, 105,210, 165, 75,150}
1+3+c7 (1,0,0,1,1) PP 9193 +1
1+ct+E+S3+ct (1,1,1,1,1) B+ I+ I 92 9 +1
T+ct+B+cf+c8 (1,1,0,1,1,0,0,0,1) (B I+ +P 1) (OB + P+ P+ +1)
1+3+ 3+t +c (1,0,1,1,1,0,0,0,1) (B I+ P +I9+1) (B +I+P +9+1)
1+ct++co+c (1,1,0,1,0,1,0,0,1) | (¥ +9°+0° +91+92 +9+1) (B +I7 +95+ 91+ +9% +1)
1+ +E+4c (1,0,1,1,0,1,0,0,1) | (FB+97+95+9P+92+9+1)( P+ +I95+ 93 +9% +9+1)
1+3+c 4+ +c (1,0,0,1,1,1,0,0,1) P+ P+ P+ D) (P 0+ 97+ 92 +1)
I+ct+l+ct+o+8 | (1,1,1,1,1,1,0,0,1) (B9 + P+ + 1) (0B +0+ P +9+1)
1+ +c3+c0+c (1,1,1,1,0,0,1,0,1) (798+196r+195+194+1)(19 +9 P +97+1)
T+ct+S+ct+8+8 | (1,1,1,1,1,0,1,0,1) | (B +97+95+9° +91+ 93+ 1) (B + P + 0 +95+92 +9+1)
1+ct+P+5+E8 (1,1,0,0,0,1,1,0,1) € +19r4+19(5+19+1)(19 +z97+z95r+194_+1)
1+ +E+E+¢ (1,0,1,0,0,1,1,0,1) (B0 + P +2+ 1) (PP + 9+ +9341)
1+3+5+8+¢ (1,0,0,1,0,1,1,0,1) (B0 + I+ 9+ 1) (B +I97 +92 +9+1)
1+ ++548 (1,0,0,0,1,1,1,0,1) | B+ +0*+93+92+9+1)(F+07 +95+ P +9T+09+1)
T+ct++ct++8+8 | (1,1,1,0,1,1,1,0,1) | (B +9+0° +91+ 93 +9+1) (B +97 +9° + 91+ + 9% +1)
I+cet+E+ct+P+c8+c8 [ (1,1,0,1,1,1,1,0,1) | (BB +95+ 09T+ P +097+09+ 1) (8 +97 +9° +9° + 91 +92 +1)




A.9. Period 9.

Factoring Gleason polynomials modulo 2

809

deg(Gg) =252 and 9 = 28.
—L999944 | (x, = &+, ) | £} = OTTITII %1?):ibg:{5?)’73.%()%4,74192;112759247,383,255}
L9 | (n, =+ by, ) | 25 = DEITITIO | E00 82, B0 e e e o a5y
~LLO9BSST | (r, =+ by oy, =) | 25 = OEITITIOE | (20000 (050 J00 20 IO )
~LO9T223 | (n, =+ o, ) | 2 = DIITIIIOO | L e, o0, 252)
~LOOBLY | (r =,y ooy, ) | b = DIITIIOIE | 8 O i a1, 251)
~LO9BI30 | (n, =y, ) | B = DIITIIOND | L e e oo 195 250}
~LODOITO | (x, =+, o, =) | 3 = DEITIIOOE | 0, 3 240}
~LOSTOOL | (n, =4+, =, ) | 3 = DEITITO0O | 103 o o1k}
~L9BBIO | (x,—.-+.+,+, =, =, ) | 3 = DIITIOIL | 10 s 70, 247)
—LOTOISS | (r, =+ -+, =, =) | 3§ = DIITIONIO | 1 a7 198 216)
SLOTATSL | (n, =+, -, -, ) | B2 = DLITIOIOL | e o o e b5}
~LOGOILY | (r,— 4.+, -, —, ) | 24 = DTITIOIO | £t S, )
~LOBI0RA | (r, =+, o, ) | 28] = DEITIOOIT | E0 S O O i3y
~LOSTIE5 | (n, =+, oy, —) | 3 = DIITIOOIO | E0 S S oy
~LOIOSTS | (r =y, o) | B = BIITIOOOT | e, e e, o
~LO322 | (n =y, o) | B = DIIIOIIO | T ot 116 235)
1922280 | (s b o) | B = OTTIOTION | o B o s, s a7 2o
SLOLMG | (b b =) | B = OTIIOTIOO | o0 o S ok, 30, 115,236}
~LOOBIIT | (n, =+ =, ===, ) | B = DTIIOIOIT | e . o . 235
—1.890775 | (%, —, 4, — = —, = — ) | it = OIII0I010 Eiz88221373365;4;16;7;3354115;921‘;94111?24}
~LTSIS3 | (n,— 4o+, -, -, ) | B = DTIIOIO0E | o O )
LSS | (n, =+, oo, ) | 2= DITIOOTIO | Fce b o o O e )
~L822T50 | (n, =4+ -y, —, ) | B = TIIO0IOL | 1 e o ooe]
~LTSB860 | (n, = -+.-+—, -, ) | B = DIIIO0I00 | 1o o sy
~LO90L42 | (n =, =, o, =) | 3 = BIIOTIOND | o o o o1
~LO56133 | (n =+, =, =, o, ) | 3 = SIIOTIONE | 110t 5 2 e ot ot7)
SLBSSL| (s b o) | B = OTIOTOTTD | e o 1000107 214
1555288 | o= o) | B = OTIOIOT | {3 s i, 151,302 20
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A.10. Period 10.
deg(G1p) =495 and 19 = 51.

{1,2,4,8,16, 32, 64, 128, 256, 512}

B B 51 _ o7
1999986 | O, = 44,4 ok b b ) | gy = OLIIIIIIIL 00 51 1019, 1015, 1007, 991, 959, 895, 767, 511}

{3,6,12, 24, 48,96, 192, 384, 768, 513}

_ _ _ 510 _ /111313170
LO99STS | (6, = b bbb =) | gy = OTIIIIIIIO 000 5007 1011, 999, 975, 927, 831, 639, 255, 510}

{5,10, 20,40, 80, 160, 320,640, 257, 514}

~1.9996 _ _ 509 _ OTTTTTTI0T
199964 | (e, = b bbby = ) | gy = OTTITIIIOL | 00075 5 3003, 083, 943, 863, 703, 383, 766, 500}

{7,14,28,56,112, 224,448,896, 769,515}

1 999: - _ 508 _ OTITITII00
1999308 | (5 =+, by bbby =) | g = OHTIIINO0 | 4y616™ 009 995, 067, 911, 799, 575, 127, 254, 508}

{9,18,36, 72,144, 288,576, 129, 258,516}

_ (- __ 50T _ OTITITIoT
1998856 | (5, =+, bbb = =0 4) | g = OTIIINIOTL v 014" 005 987, 051, 879, 735, 447, 894, 765, 507}

{11,22,44,88,176,352, 704, 385, 770, 517}

_ _ o 506 _ ATTT117070
199828 | (e =+ bbb o) | gy = OLTILIOI0 ) 4015 1001, 979, 935, 847, 671,319, 638, 253, 506}

{13,26, 52,104, 208, 416, 832, 641, 259, 518}
{1010,997,971,919, 815,607,191, 382, 764, 505}

—1.997608 | (%, =+, +, +, +,+, =+, =) | {355 = OITII1100T

{15, 30,60, 120, 240, 480, 960, 897, 771,519}
{1008, 993, 963,903, 783, 543, 63,126, 252, 504}

—1.996805 | (%, =, +,+,+, +,+, =, +.+) | g = 0111111000

{17,34, 68,136,272, 544, 65, 130, 260, 520}

1.995 _ __ 508 _ GO
1995924 ) (6, = 44, = =) | gy = OHIITIOIIL | 1 006 000" 055 887, 751, 479, 958, 893, 763, 503}
- - . sm o | {19,38,76, 152,304, 608, 193, 386, 772,521
1994889 | 0, = 44, b b = = b ) | gy = OTIITIOTI0 | 1004 ocr” 047 871,719, 415, 830, 637, 251, 502}
o - T s e [ {21,42,84,168, 336, 672, 321, 642, 261, 522}
1993748 | (e, = bt === ) | gy = OTTITIONOL | 000 061 039 855, 687, 351,702, 381,762, 501}
092079 | (ot b bty | 2 orrTrorop | 125,46,02, 154,368, 736, 440, 808, 73,523)

{1000,977,931, 839, 655, 287, 574, 125, 250, 500}

{25, 50, 100, 200,400, 800, 577,131,262, 524}

_ - 4 499 _ GTTTTIO0NT
L9921 | (%, =+, 4,45+, =+ = +) | {go3 = O1IT110011 {098,973,923, 823,623, 223, 446, 892, 761,499}

{27,54,108, 216,432,864, 705, 387, 774, 525}

- - IR TR —
1989601 | G =+t = =) | gy = OTTIIIO0I0. 1 05 060 915, 807, 501, 150, 318, 636, 249, 498}

{29, 58,116, 232, 464, 928, 833, 643,263, 526 }

_ _ _ _ 497 _ DT1111000T
LOSTOAL | (e — 44— b ) | gy = OLIITIOO0L | e} o 07, 701, 559, 95, 190, 380, 760, 497}

—1.985482 | (%, —, +,+,+,+,—, +,+,+) % = % = .0111110000 | {992,961,899, 775,527, 31, 62, 124, 248,496 }

{35,70,140, 280, 560, 97, 194, 388, 776,529}

_ _ o _ 494 _ ATII1I0i190
1982719 | (% =+, 4,4+, =, =+, ) = OITHOLI0 | roqq 953 883,743, 463, 926, 829, 635, 247, 494}

{37, 74,148,296, 592, 161, 322, 644, 265, 530}

_ [ _ o o 493 _ ATTIa07101
1980577 | (6, = 4,4+ = =+, = ) = OITHOMOL | roqq 919,875,727, 431, 862, T01, 379, 758, 493}

{39, 78, 156, 312, 624, 225, 450, 900, 777, 531}
{984,945, 867, 711, 399, 798, 573, 123, 246, 492}

—1.978293 | (x,—, +,+,+,— —,+,—,+) 492 — DIT1101100

{41, 82, 164, 328, 656, 289, 578, 133, 266, 532}
{982,941, 859, 695, 367, 734, 445, 890, 757, 491}

—1.976042 | (%, —, +, 4+, +,—, —, —, —, +) 1 = DI11101011

{43, 86,172, 344,688, 353, 706, 389, 778, 533}

— 2/ T 490 __
LOTBAIT| (o =y = === =) | g = OTIIIOM0T0. | 0y 037 551 679, 335, 670, 317, 634, 245, 490}

{45,90, 180, 360, 720,417, 834, 645,267, 534}

_ _ o — 4+ .y a8 _ orrTi0TOOT
1.970858 | (x, =, +,+, 4= — =+ =) | 1o = 0111101001 {978,933, 843, 663, 303, 606, 189, 378, 756, 489}

{47,94,188, 376, 752,481,962, 901,779, 535}

- - - 488 OTITT0T000
LOGTTAS | (= b= b H) | g = OTTTIOI000 | o765 959 35 647, 271, 542, 61, 122, 244, 488}

{49,98,196, 392, 784,545, 67, 134, 268, 536 }
{974, 925,827, 631, 239,478, 956, 889, 755, 487}

—1.965822 | (%, —,+,+,+ —+ =+ +) | fog = OILI100111

{51,102, 204, 408, 816, 609, 195, 390, 780, 537}
{972,921, 819, 615,207,414, 828, 633, 243,486}

—1.962379 | (x,—,+,+,+ —+ —+—) | fog = OILII00110

{53,106, 212, 424, 848, 673, 323, 646, 269, 538}

—1.95 _ _ _ 485 _ 00101
1959098 | (6, = 44 === =) | gy = OLIIIO0I0L | vty 017617 509, 175, 350, 700, 377, 754, 485}

{55,110, 220, 440, 830, 737, 451, 902, 781, 539}

—1.955 _ o 81 _ OITTI00100
1955423 | (xy = oy = b = =) | g = OTITIO0T00 |y 013 303 583, 143, 286, 572, 121, 242, 484}

{57, 114, 228, 456, 912, 801, 579, 135, 270, 540}

_1.05 _ _ _ 48 _ OTTTT000TT
1951900 | (e, = 4, =kt = ) | gy = OTTIIO00TT | v 009 705 567,111, 222, 444, 888, 753, 483}

{59,118, 236,472,944, 865, 707,391, 782, 541}

_1.046873 | (x. — _ ~ ] %2 _ Girro00m0
LO4GSTS | (o, =4y = bt = ) | g = OTTII000T0. |y 05767 551,79, 158, 316, 632, 241, 482}

{69, 138,276,552, 81,162, 324, 648,273, 546}

~1.935391 | (%, =+, +, =, = +,+ =, =) | {55 = OIII0III01 {954,885, 747,471,942, 861, 699, 375, 750, 477}
1929820 | (5= ) | = BT | o o 1285, 176}
v oo o || [ B 8
1919635 | (5411t ——) | 45 _ grrioTIOm | 475 190: 300, 600 177,354, 708, 393, 786, 549}

{948,873, 723,423, 846,669, 315, 630, 237,474}
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77,154, 308, 616, 200, 418, 836, 649, 275, 550}

e —
—LOMMBO | (%, — b — b = b o) | gy = OTHIOTIO0L | g6 60”715 407, 814, 605, 187, 374, 748, 473}
- - T o [ {53,166, 332, 664, 305, 610, 197, 394, 785, 553}
1899832 | (6 — byt = = = = b =) | g = OTHIOTOTI0 . g a5 601 350, 718, 413, 826, 629, 235, 470}
- — oo | {85,170, 340, 630, 337, 674, 325, 650, 277, 554}
1894002 | (6 =ty by = = === =) | g = OTTIOTOT0L | o aos s 343, 686, 349, 698, 373, 746, 469}
- — s | {87,174, 318, 696, 369, 733, 453, 006, 739, 555}
L8STIT2 | (o bt = = = H) | gy = OTTIOIOI00 a6 049 675,397, 654, 285, 570, 117, 234, 468)
- - . o1 | {89, 178,356, 712, 401, 802, 581, 139, 278, 556}
1882408 | (o = oty oy b =) | gy = OTTIOTO0TL | v} 0y 667 311,622, 221, 442, 884, 745, 467)
I T [ ms [ {91, 152,304, 728, 433, 866, 709, 305, 790, 557}
LSTASLS | (o =ty oo b =) | gy = OTTIOT0010 | v 041 650, 95, 500, 157, 314, 628, 233, 466
1861538 | (% — 22— — .. —) | 255 = 5 — OTII01000T | {930, 837, 651, 279, 558, 93, 186, 372, 744, 465}

—1.846627 | (%, — +,+,— +,—+ — =) | 735 = .0IT1001101

{101, 202, 404, 808, 593, 163, 326, 652, 281, 562}
{922,821, 619, 215,430, 860, 697, 371, 742, 461}

—1.835159 | (%, —, +, 4+, — +, — 4+, —, +) e = 0111001100

{103,206, 412, 824, 625, 227, 454, 908, 793, 563}
{920,817, 611,199, 398, 796, 569, 115, 230, 460}

{105,210, 420, 840, 657, 201, 582, 141, 282, 564}

(1]
2]
(3]
(4]
(5]
[6]
[7]

(8]

. I3 o o o 459 _ AT 00 01
1829510 | (6 — oty = b = 4) | gy = OTHIO0I0TL ) g 37605 183, 366, 732, 441, 882, 741, 459}
- - 1 am o [{107,214,428, 856,69, 355, 710, 397, 794, 565}
1816295 | (r, =,y =y = = = =) | gy = OTTIO0T0T0. | £y 6”000 505 167, 334, 68, 313, 626, 229, 458}
- - 1w e [{109,218,436,572, 721, 419, 838, 653, 253, 566}
1802436 | (x, =y = b, = =4 =) | gy = OTTIO0T00T | g ) g5 597" 151,302, 604, 185, 370, 740, 457}
- [ wm [ {147,294,588, 153,306, 612, 201, 402, 804, 535}
L7295 | (o =ty == = =6 =) | gy = OTIOTIONIO | por” 00" 435" 70,717, 411, 822, 621, 219, 438}
- T am o [{149,298,596, 169, 333, 676, 329, 655, 203, 536}
LTOTTOL | (o =ty = =, = == =) | gy = OTTOTIOI0T | per) ™05 407 854,685, 347, 694, 365, 730, 437}
Z1629433 | (x4, —, 41— — 0 — 1 —0—) | 225 = I GTTOTT0010 | {868, 713, 403, 806,589, 155, 310,620, 217, 434}
e T o | {171, 342,681,315, 690, 357, 714, 405, 810, 507}
1536243 | (o =y === === =) | gy = OTTOTOTOT0. | pees” 07 " 330” 678, 333, 66, 300, 618, 213, 426}
- - T s o [ {173,316,692, 361,722,421, 842, 661, 299, 508}
LSOITAT | (6 =ty == = = =) | gy = OTIOTOT00L | g’ 7331 669" 301, 602, 181, 362, 724 425}
B T m  ————— {179,358, 716,409,518, 613,203,406, 512, 601}
LAAT009 | (x =ty = = = F =6 =) | gy = OTIOT00TI0 .| b )" e 307 614, 205, 410, 820, 617, 211, 422}
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