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Congruences between modular forms and
lowering the level mod `n

par Luis DIEULEFAIT et Xavier TAIXÉS I VENTOSA

Résumé. Dans cet article, nous étudions le comportement des
groupes d’inertie pour des représentations galoisiennes modulaires
mod `n et dans quelques cas on démontre une généralisation du
resultat de descente de niveau de Ribet (cf. [9]).

Abstract. In this article we study the behavior of inertia groups
for modular Galois mod `n representations and in some cases we
give a generalization of Ribet’s lowering the level result (cf. [9]).

1. Introduction

Let f = q +
∑∞

2 aiq
i and g = q +

∑∞
2 biq

i be two newforms of weight
2, trivial Nebentypus character and level Nf and Ng respectively. Let Kf

and Kg be the fields generated by the coefficients of f and g, and let K be
their composite field. We denote by Of , Og and O their rings of integers.
Let ` > 2 be a prime and let ρf (resp. ρg) be the 2-dimensional `-adic
representation associated to f (resp. g), with values in Of,` := Of ⊗ Z`

(resp. Og,`).
Recall that the representation ρf ramifies exactly at the primes in the

level of Nf and at `. For any unramified prime t, the image of the arithmetic
Frobenius Frob t has trace(ρf (Frob t)) = at, the Fourier coefficient and t-th
Hecke eigenvalue of f . Also, the determinant of ρf is the `-adic cyclotomic
character χ.

For a given integer n, we use the projection

Of,` → Of,`/`nOf,`

and we semi-simplify to obtain the mod `n representation

ρf,`n : GQ → GL2(Of,`/`nOf,`).

Using the decomposition of ` in Kf , ` = λe1
1 · . . . · λek

k and the projection∏
Of,λi

/λein
i Of,λi

→ Of,λi
/λn

i Of,λi

we obtain the mod λn representation attached f for a fixed place λ | ` in
Kf

ρf,λn : GQ → GL2(Of,λ/λnOf,λ).
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Let us fix a place λ | ` in K and let us denote also by λ its restrictions
to Kf and to Kg.

From now on let us assume that the mod λ representation ρf,λ is irre-
ducible (then ρf,λ is odd and absolutely irreducible), that Ng | Nf and that
` - Nf .

If we take the ideal λn ⊂ O and the projection

π : O → O/λn,

then we say that two numbers α ∈ Of and β ∈ Og are congruent modulo
λn if π(α) = π(β).

Definition 1. f and g are congruent modulo λn if ap ≡ bp mod λn for
almost every prime p.

In fact, this is equivalent to say that their associated mod λn Galois
representations are isomorphic.

Theorem 1. f ≡ g mod λn ⇐⇒ ρf,λn ∼ ρg,λn.

This is just an automatic consequence of Cebotarev’s density theorem
since we are assuming that the traces of the images of almost all Frobe-
nius elements are congruent to each other. The Brauer-Nesbitt theorem
guarantees that these elements determine the representation for ` > 2 and
n = 1, and for n > 1 Mazur ([7], p.253) gives an analogous result. Observe
that we do not have to consider the semi-simplifications of the mod λn

representations since we are assuming that they are absolutely irreducible.
Given a representation ρ, let nρ,p (resp. nρ,p) be the conductor of ρ

(resp. ρ) in the prime p. In [1], Carayol studies for a given mod ` represen-
tation, how much the conductor of a deformation can increase. He proves
the following result.

Proposition 1. Let N = p
np1
1 . . . p

npk
k and N = p

np1
1 . . . p

npk
k be the con-

ductors of a λ-adic representation ρ and the corresponding mod λ represen-
tation ρλ, respectively. Let p be a prime dividing N , p 6= `, and suppose ρ
is such that np > np. Then locally at p ρ is of one of the following types

(1) ρp = µ⊕ v, with nµ,p = 1 and nµ,p = 0, and then np = nv,p + 1
(2) ρp = µ⊗ sp(2), with nµ,p = 0, and then np = 1.
(3) ρp = µ⊗ sp(2), with nµ,p = 1 and nµ,p = 0, and then np = 2.
(4) The irreducible case in which np = 2.

In our case, since we are working without nebentypus, the first case
reduces to ρp = µ⊕µ−1 and then np = nv,p + 1 = nµ,p + 1 = 2. Since in all
the cases np ≤ 2 we get the following Corollary.

Corollary 1. If f and g are congruent mod λ with Ng | Nf , then for any
prime p dividing Nf but not dividing `Ng, p3 - Nf .
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More specifically, if we fix a mod λ representation ρ of conductor N , the
level of all the modular deformations of ρ with trivial character, unramified
outside pN for a prime p - `N and minimal at N , divides N = p2N .

In the following section we state the main results of this article. They
describe, under certain conditions, how the inertia group of the Galois
representations discussed above behave. In the next section we introduce
Taylor-Wiles’ Theorem as we need it for our proof, which will be given in
§4. Finally we discuss possible developments of this work.

Acknowledgments: the second named author wants to thank G. Böckle
for interesting conversations and also Prof. G. Frey and G. Wiese for their
several helpful corrections and remarks.

2. Main results

When we have two newforms f and g as in the previous section, such
that they are congruent mod λ, Ng | Nf , and g is minimal in the sense that
the conductor N of the residual representations ρf,λ ∼ ρg,λ equals Ng, we
ask ourselves the following two related questions: Which is the biggest n
such that f and g are congruent modulo λn? Once this value of n is known,
is there a reason that explains why f and g are not congruent anymore
mod λn+1?

In [11] we give an algorithm that answers the first question for every
possible λ. Theorem 2 below is a result that answers the second question
in some cases.

Definition 2. Let L = Q(
√

(−1)(`−1)/2`). Then ρg,λ is strongly irreducible
if ρg,λ|GL

is irreducible.

Proposition 2. Let ` > 3. Then ρg,λ is strongly irreducible.

Proof. Assuming that ρg,λ is irreducible as in our case, if g is a newform of
weight 2 and ` does not divide its level, clearly the residual representation
ρg,λ has Serre’s weight 2. Thus, this gives a precise information of the action
of inertia at `, and this is enough to show that ρg,λ|GL

is irreducible if ` > 3.
This is proved in [10] as part of the proof that the dihedral case can not
occur for semistable weight 2 representations. �

Let us remark that the condition of ρ|GL
being irreducible for ` = 3 is

easily checked just by finding a prime p ≡ 2 (mod 3) such that bp 6≡ 0
(mod λ), λ | 3, or equivalently, such that Norm(bp) 6≡ 0 (mod 3) (where bp

is the p-coefficient of g).

Theorem 2. Let `, p - Ng, ` > 2 be two different prime numbers. Let f

be in S2(pkNg), k ≥ 1, and let g ∈ S2(Ng) be minimal with respect to λ
in the sense defined above. Both cusp forms are assumed to have trivial
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nebentypus. Suppose that ρf,λ ∼ ρg,λ and they are irreducible, and assume
that for any other h ∈ S2(Ng), ρg,λ 6∼ ρh,λ. If ` = 3, let L = Q(

√
−3) and

suppose that ρg,λ|GL
is irreducible. Then,

m := min{n ∈ N : ρf,λn 6∼ ρg,λn} = min{n ∈ N : ρf,λn |Ip 6∼ ρg,λn |Ip}.

Hence, what we show is that in many cases the cause of the break of
the congruence when increasing the power of λ is due precisely to the non-
triviality of the action of the inertia group at a prime in Nf/Ng. Let us
remark that this is specific to the situation we are in, namely when Ng is a
proper divisor of Nf . If this were not the case and Nf = Ng were congruent
modulo some λn (in [11] we compute dozens of examples), it is clear that
the reason of not being congruent anymore modulo λn+1 can not be related
to ramification at any place.

Theorem 2 can be reinterpreted as a generalization to higher exponents
of Ribet’s Lowering the Level result [9].

Corollary 2 (Lowering the level modulo λn). Let f be a newform of weight
2, trivial character and level pkN (p - N) such that for a given λ - 2pN and
an integer n, ρf,λn does not ramify at p. Let us suppose that there exists
exactly one modular form g of weight 2 and level N congruent to f modulo
λ (Ribet’s lowering the level provides at least one) satisfying the strong
irreducibility condition. Then, lowering the level can be generalized modulo
λn, i.e., f and g are congruent also modulo λn.

In the previous section we saw that there is no congruence between two
newforms of level N and pkN if k > 2. In the case k = 1, we can rewrite
the Theorem as follows.

Corollary 3. With the same conditions as in Theorem 2, let k = 1. Then

ρf |Ip =<

(
1 a
0 1

)
>

where v`(a) = m − 1. So, the image of the mod λm representation of f
contains an `-group.

Proof. It is well known that if a representation is semi-stable at p, the
restriction of ρ on the inertia at p is(

1 ∗
0 1

)
for some ∗ 6= 0. Since we know that the inertia at p vanishes modulo λn

exactly when n < m, then we know that ∗ ≡ 0 (mod λn) if and only if
n < m. Then v`(∗) = m− 1. �
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In [11] we computed several examples where we can apply Theorem 2. It
is easy to check that most of them satisfy also the hypothesis of Corollary
3.

In Table 1 we show some of these examples. In particular, we can see
that all but one of them (the one with p = 132) satisfy also the conditions
from Corollary 3.

We divided the table in 3 different parts: the first one has some of the
elements with the biggest `’s that we found. The greatest one is as big as
1.75·1018. The next part includes the elements with a big p. Since we worked
with elements with N ≤ 2000 and the smallest level appearing is N = 11,
we know that p can not be bigger than 181. We have actually precisely one
example with this p. Finally, in the last section we have the couples with
the biggest m’s. It is remarkable to see that there is one element where m
is bounded between m ≥ 10 and m ≤ 11.

Every pair (N, i) in Table 1 corresponds to the i-th element of the basis
of Snew

2 sorted with the SortDecomposition function of Magma [6].

For any two-dimensional Galois representation ρ, let us denote by ρ′ its
projectivization. Then we have the following:

Corollary 4. With the same conditions as in Theorem 2, let k = 1. Let
us suppose also that g has Complex Multiplication (in this case, Im(ρ′g,λ) is
a dihedral group). Then the image of ρ′f,λ is not dihedral and the number
m of the Theorem is the smallest one such that the first of the following
inclusions is not an equality:

Dihedral group ( ρ′f,λm ( PGL2(Of,λ/λmOf,λ).

Proof. It is clear that for m − 1, ρ′g,λm−1 ∼ ρ′f,λm−1 , and since g has CM,
ρ′f,λm−1 must be a dihedral group. However, for m, since ρ′f,λm contains an
element provided by Theorem 2 which can not be contained in a dihedral
group, it is clear that ρ′f,λm is not a dihedral group anymore.

For the other inequality it is clear that it is never an equality, because if it
were, ρ′f,λn would always equal PGL2(Of,λ/λnOf,λ), for every n. And this
is impossible, since we know that for n < m, ρ′f,λn is a dihedral group. �

Let us remark that the conditions in the Theorem are not too restrictive.
For example, just by taking one newform g of level N with residual mod λ
representation satisfying the strong irreducibility condition, minimal with
respect to λ and not congruent to any other newform of the same level,
using Ribet’s Raising the Level we can find infinitely many examples in
which we can apply our results.

The conditions we are imposing on the pair (g, `) are generic in the
following sense: given g they are satisfied for almost every prime `. In fact,
given g it is well-known that for almost every prime ` the representation
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Table 1. Examples satisfying Theorem 2

Nf i Ng j `m−1 pk m

1678 = 2 · 839 8 839 2 1750283935190857471 2 2
1707 = 3 · 569 4 569 2 122272440801294601 3 2
1941 = 3 · 647 4 647 3 5539230441648341 3 2
1839 = 3 · 613 4 613 3 3726338419619653 3 2
1757 = 7 · 251 5 251 2 902088490528867 7 2
1797 = 3 · 599 6 599 3 779881437372101 3 2
1941 = 3 · 647 3 647 3 665741756680589 3 2
1945 = 5 · 389 5 389 5 571255479184807 5 2
1754 = 2 · 877 4 877 3 551522526259063 2 2
1706 = 2 · 853 5 853 2 372293980443053 2 2
1906 = 2 · 953 6 953 2 303408887531093 2 2
1851 = 3 · 617 7 617 2 286866593268389 3 2

1991 = 11 · 181 4 11 1 32 ≤ `m−1 ≤ 33 181 3 ≤ m ≤ 4
1969 = 11 · 179 4 11 1 3 179 2
1903 = 11 · 173 4 11 1 7 173 2
1859 = 11 · 132 8 11 1 3 132 2
1837 = 11 · 167 5 11 1 13 167 2

1937 = 13 · 149 4 149 2 39 ≤ `m−1 ≤ 310 13 10 ≤ m ≤ 11
1934 = 2 · 967 2 967 1 625 = 54 2 5

1708 = 22 · 7 · 61 6 22 · 61 2 33 ≤ `m−1 ≤ 34 7 4 ≤ m ≤ 5
1643 = 31 · 53 3 53 2 53 ≤ `m−1 ≤ 54 31 4 ≤ m ≤ 5

1426 = 2 · 23 · 31 13 23 · 31 5 81 = 34 2 5
1401 = 3 · 467 1 467 2 625 = 54 3 5

1298 = 2 · 11 · 59 11 11 · 59 4 81 = 34 2 5
1158 = 2 · 3 · 193 13 2 · 193 4 625 = 54 3 5
1115 = 5 · 223 8 223 2 81 = 34 5 5

ρg,λ is irreducible, as proved by Ribet in [8] (see also [5] for an explicit
determination of the finite set of reducible primes), and as we have already
explained the strong irreducibility condition is automatic if ` > 3. It is also
well-known that the number of primes giving congruences between modular
forms of fixed (or bounded) level, called “congruence primes”, is finite: this
can easily be proved by applying Dirichlet’s principle (there are only finitely
many cusp forms of bounded level) and the fact that two newforms that are
congruent modulo infinitely many primes must be equal. Also, the condition
of being minimal with respect to λ is equivalent, by Ribet’s lowering the
level, to the fact that g is not congruent to some modular form g′ of level
equal to a proper divisor of N , and so if this condition is not satisfied `
has to be a congruence prime and we know that there are only finitely
many of them because the levels of g and g′ are both bounded by N . We
conclude that for any level N there is constant C such that for any weight
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2 modular form g of level N and any prime ` > C the pair (g, λ) satisfies
the conditions of the Theorem.

3. Taylor-Wiles

To prove Theorem 2, the main result we need is an extended version of
the Taylor-Wiles Theorem. In order to state it, we have to introduce some
notation.

Let ρ := ρg,λ, which we assume to be strongly irreducible. Let Σ be a
finite set of prime numbers. We say that a representation ρ deforming ρ is
of type Σ if

(1) χ−1
` det ρ has finite order not divisible by `.

(2) ρ is minimally ramified outside Σ.
(3) ρ is flat at ` in the sense of [3] (see also [2]).

Let RΣ be the Og,λ-algebra corresponding to the universal deformation
of type Σ. Let ΦΣ be the set of newforms f such that ρf,λ is a deformation
of ρ of type Σ.

For every f in ΦΣ, consider the map RΣ → Of,λ corresponding to ρf,λ.
We define TΣ ⊂

∏
f∈ΦΣ

Of,λ as the image of RΣ.
Let φΣ be the surjective map

φΣ : RΣ → TΣ.

Theorem 3 (Taylor-Wiles). Let ` be an odd prime. If ` = 3, let L =
Q(
√
−3) and suppose ρ|GL

is irreducible. Then φΣ is an isomorphism and
RΣ is a complete intersection.

Proof. In [3] and [4] this is proved with the condition ρ|GL
irreducible with

L = Q(
√

(−1)(`−1)/2`) and in Proposition 2 we already saw that for ` > 3
this condition is always satisfied. �

4. Proof of the Theorem

We will need first to introduce three auxiliary results.

Proposition 3. Let f be a modular form in S2(N), and suppose that there
exists no other modular form g of level N congruent to f modulo λ. Then
Kf is unramified at λ.

Proof. If Kf ramifies at λ, there exists a non trivial Galois conjugation
σ such that α ≡ σ(α) mod λ for every algebraic integer α in Kf . In
this case, σ(f) is congruent with f modulo λ, which is not possible by
hypothesis. �

Proposition 4. Let ρ be a mod λ irreducible representation of conductor
N , with ` > 2. If ` = 3, suppose that ρ|GL

is irreducible. Let us suppose that
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there exists only one newform g of weight 2, trivial character, and level N
such that ρ = ρg,λ. Let Q be the following set of deformation conditions:

• The deformations are unramified outside `N .
• The deformations are minimally ramified everywhere.
• The determinant of the deformations is the cyclotomic character.
• The deformations are flat (locally at `).

Then, the deformation ring RQ is the ring of integers Og,λ.

Proof. What we are considering is the problem of deformations of type Σ =
∅. By the Theorem of Taylor-Wiles, we know that the universal deformation
ring RΣ must be isomorphic to TΣ. By hypothesis, there is only one Q`-
point in TΣ. Then RΣ must be Og,λ itself. �

Lemma 1. Let Oλ be the ring of integers of a finite unramified extension
of Q`. Let ρ1 and ρ2 be two representations, both deforming ρ

ρ1, ρ2 : GQ → GL2(Oλ/λnOλ)

satisfying the same deformation conditions Q, such that for these conditions
the universal deformation ring is Oλ. Then, ρ1 is equivalent to ρ2.

Proof. We suppose they are different. The universal deformation (under
conditions Q) is

ρuniv : GQ → GL2(Oλ).
Then, we have that there exist two homomorphisms h1 and h2

h1, h2 : Oλ → Oλ/λnOλ

such that they induce the identity in the residue fields and also hi ◦ρuniv =
ρi. Then h1 and h2 must be different homomorphisms, but since there exists
only one natural projection from Oλ to Oλ/λnOλ fixing the residue fields,
we arrive at a contradiction. �

Proof of Theorem 2. We consider the same set of deformation conditions
Q as in Proposition 4, with N = Ng. We consider also the set of conditions
Q′ as follows:

• The deformations are unramified outside `pNg.
• The deformations are minimally ramified locally at every place q 6=

p.
• The determinant of the deformations is the cyclotomic character.
• The deformations are flat locally at `.

So, the set of conditions Q′ is different from the set of conditions Q only
because now we allow ramification at p.

By Carayol’s result, we know that all such deformations must be in level
pkNg with k ≤ 2. Then, by Taylor-Wiles RQ′ is isomorphic to a Hecke
algebra TQ′ of level p2Ng.
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Obviously ρg,λm−1 and ρg,λm satisfy conditions Q and Q′. Since ρf,λm−1 ∼
ρg,λm−1 , ρf,λm−1 satisfies also Q and Q′.

By Proposition 4, RQ = Og,λ. Since Kg is unramified by Proposition 3,
we can apply Lemma 1 to assert that any two mod λn deformations sat-
isfying the deformation conditions Q must be the same. By hypothesis we
know that ρf,λm 6∼ ρg,λm . This means that ρf,λm can not satisfy conditions
Q. However, ρf,λm clearly satisfies conditions Q′. Since the only difference
between both conditions is the ramification at p, the reason for ρf,λm not
to satisfy Q must be precisely that ρf,λm ramifies at p, as we wanted to
prove. �

5. Further work

It would be interesting to improve the main result by relaxing the as-
sumptions. For example, one should consider in which cases it is possible
to eliminate the condition “for any other h ∈ S2(Ng), ρg,λ 6∼ ρh,λ” in the
main theorem. In this more general case, the minimal universal deformation
ring will be more complicated, though it is known to be finite flat complete
intersections by the result of Taylor-Wiles.

Looking at Table 1 we saw that ` and p seem not to be bounded (p is
clear). However, we wonder if there is any global bound for m or there are
examples with m arbitrarily large.
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