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Journal de Théorie des Nombres
de Bordeaux 21 (2009), 175-201

Kloosterman sums for prime powers in P-adic
fields

par Stanley J. GURAK

Résumé. Soit K un corps de degré n sur Qp, le corps des nombres
p-adiques, de degré résiduel f , indice de ramification e et valuation
de la différente d. Soient O l’anneau des entiers de K et P son
unique idéal premier. Les applications trace et norme de K/Qp

sont notées Tr et N , respectivement. Fixons q = pr, une puissance
du nombre premier p, et η un caractère défini modulo q et d’ordre
o(η). Ce caractère η s’étend naturellement à l’anneau des entiers
p-adiques Zp ; précisément η(u) = η(ũ), où ũ désigne la classe
résiduelle de u modulo q, et de même pour la racine de l’unité ζu

q =
exp(2πiũ/q). Fixons un entier positif γ ≥ re−d pour lequel N(1+
Pγ) ⊆ 1 + qZp, de sorte que les sommes (todues) de Kloosterman

R(η, z) =
∑

α∈(O/Pγ)∗

η(Nα)ζTr α+z/Nα
q (z ∈ Z/qZ∗)

sont bien définies.
Saliè a déterminé explicitement R(η, z) dans le cas classique

n = 1 (donc K = Qp) pour q = pr avec r > 1 et o(η) = 1 ou 2.
Ici, je généralise le résultat de Saliè dans le cas général n > 1 pour
des caractères η avec o(η)|p − 1 (et aussi o(η) = 2 quand p = 2),
et pour tout γ ≥ re − d > 1 sauf un petit nombre de valeurs
exceptionnelles de r. Mon évaluation repose sur la détermination
récente et explicite par l’auteur des sommes de Gauss pour les
puissances de nombres premiers dans les corps p-adiques, et des
sommes d’exponentielles de la forme

∑
χ(x)axζbx

q .

Abstract. Let K be a field of degree n over Qp, the field of
rational p-adic numbers, say with residue degree f , ramification
index e and differential exponent d. Let O be the ring of integers
of K and P its unique prime ideal. The trace and norm maps for
K/Qp are denoted Tr and N , respectively. Fix q = pr, a power
of a prime p, and let η be a numerical character defined modulo
q and of order o(η). The character η extends to the ring of p-
adic integers Zp in the natural way; namely η(u) = η(ũ), where
ũ denotes the residue class of u modulo q, and similarly for the
root of unity ζu

q = exp(2πiũ/q). Fix a positive integer γ ≥ re− d
for which N(1+Pγ) ⊆ 1+ qZp so that the (twisted) Kloosterman
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sums

R(η, z) =
∑

α∈(O/Pγ)∗

η(Nα)ζTr α+z/Nα
q (z ∈ Z/qZ∗)

are well-defined.
Saliè explicitly determined R(η, z) in the classical case n = 1

(so K = Qp) for q = pr with r > 1 and o(η) = 1 or 2. Here I
generalize Saliè’s result for the general case n > 1 for characters
η with o(η)|p − 1 (also o(η) = 2 when p = 2), and for all γ ≥
re−d > 1 but for a few small exceptional values r. My evaluation
relies on the author’s recent explicit determination of Gauss sums
for prime powers in p-adic fields and exponential sums of the form∑
χ(x)axζbx

q .

1. Introduction

Let K be a finite extension of the p-adic rational field Qp of degree n
with residue degree f and ramification index e. Let T denote the maximal
unramified subfield of K. The trace and norm maps for K/Qp will be
denoted Tr = TrK/Qp

andN = NK/Qp
, respectively. The rings of integers of

K, T and Qp are denoted by O, OT and Zp respectively. Fix a uniformizant
Π to generate the prime ideal P of O. It is known that Π satisfies an
Eisenstein polynomial of degree e over T with Πe = pu for some unit u
of K (when K/Qp is tamely ramified Π may be chosen so u ∈ OT ). The
differential exponent d of K/Qp is the largest non-negative integer r such
that TrP−r is contained in Zp. The ideal Pd is known as the different of
K/Qp. It is known that d ≥ e − 1 with d = e − 1 if and only if K/Qp is
tamely ramified; otherwise K/Qp is wildly ramified and p|e. Furthermore,
for any integer r,

Tr Pr = pr′Zp

where r′ = [(r + d)/e]. (Here [x] denotes the largest integer less than or
equal to x.)

Now fix q = pr, a power of a prime, writing r = 2s or 2s+ 1 with s′ = s
or s + 1 according as r is even or odd. Consider a numerical character η
defined modulo q and of conductor f(η) and order o(η). Any such character
η modulo q extends to Zp in the natural way; namely, η(u) = η(ũ) where ũ
denotes the residue class of u modulo q, and similarly for the root of unity
ζu
q = exp(2πiũ/q). Fix a positive integer γ satisfying

(1.1) γ ≥ re− d and

(1.2) N(1 + Pγ) ⊆ 1 + qZp



P-adic Kloosterman sums 177

Then for any z ∈ Z/qZ∗ one may form the (twisted) Kloosterman sum

(1.3) R(η, z) =
∑

α∈(O/Pγ)∗

η(Nα)ζTr α+z/Nα
q .

Conditions (1.1) and (1.2) ensure that R(η, z) is well-defined.
The twisted Kloosterman sums (1.3) lie in Q(ζq(p−1)) and are easily seen

to satisfy for (v, q(p− 1)) = 1

(1.4) σv(R(η, z)) = η̄vn(v)R(ηv, zvn+1),

where σv is the automorphism induced by sending ζq(p−1) to ζv
q(p−1). Indeed,

σv(R(η, z)) =
∑

α∈(O/Pγ)∗

ηv(Nα)ζv(Tr α+z/Nα)
q

=
∑

α∈(O/Pγ)∗

ηv(v̄n)ηv(Nα)ζTr α+zvn+1/Nα
q

= η̄vn(v)R(ηv, zvn+1).

Replacing η by ηv̄ in (1.4) above where v̄ is the multiplicative inverse of v
modulo q(p− 1), one finds

(1.5) R(η, z′vn+1) = ηn(v)σv(R(ηv̄, z′))

for any z′ ∈ Z/qZ∗.
The twisted Kloosterman sums can be elegantly expressed in terms of

Gauss sums. For any numerical character χ defined modulo q one forms the
Gauss sum

(1.6) GPγ (χ) =
∑

α∈(O/Pγ)∗

χ(Nα)ζTr α
q ,

which is well-defined in view of (1.1) and (1.2). A routine exercise (see
[Lemma 3.1, 6] or [14, p. 47] for instance) yields the relation

(1.7) R(η, z) =
1

φ(q)

∑
χ

χ̄(z)Gq(χ)GPγ (χη),

where Gq(χ) =
∑

x∈Z/qZ∗ χ(x)ζx
q is the ordinary Gauss sum over Z/qZ∗.

The sum here is over all the numerical characters χ defined modulo q.
Now set γ0 = max( e

p−1 , re − d). Recently, I evaluated the Gauss sum
(1.6) for s′ ≥ δ and γ ≥ γ0, where δ = 1+ ε if K/Qp is tamely ramified but
otherwise

(1.8) δ =


2d
e if p > 3
2d
e + 1 if p = 3
max(2d

e , 1 + 3d
2e ) if p = 2,

in terms of explicit values of GPγ (ψ) for characters ψ normalized in the
sense of Mauclaire (chiefly (2.1) and (3.1) in sections 2 and 3). Specifically,
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GPγ (ψ) is found to be (chiefly Theorem 1 and 2 in [13] and their corollaries)
of the form

(1.9) GPγ (ψ) = pf(γ− re−d
2

)ζn
q ζ

κ
8 ,

where κ is explicitly determined (mod 8) depending on the parity of re−d.
Saliè [18] explicitly determined R(η, z) in the classical case n = 1 (so

K = Qp) for q = pr with r > 1 and o(η) = 1 or 2. Recently R. Evans
[6] determined R(η, z) when K is totally and tamely ramified over Qp. My
aim here is to generalize these results for the general case n > 1 using the
relation (1.7) and relying on the author’s recent explicit evaluation of the
Gauss sums GPγ (χ) [13] and exponential sums of the form

∑
χ(x)axζbx

q

[10]. To best describe this analog, I write n + 1 = pby for b ≥ 0 and p - y,
and set l = gcd(n+1, p−1) if p is odd or l = gcd(n+1, 2) if p = 2. For odd
primes p, let H denote the group of l-roots of unity modulo pr−b (or just
modulo p when r ≤ b ). I show in section 2 that for r > b+ 1 with s′ ≥ δ,
γ ≥ γ0 and o(η)|p− 1 that R(η, z) vanishes if z

p−1
l 6≡ 1(mod pb+1), else up

to a 4l-root of unity is a conjugate of

(1.10) pf(γ− re−d
2

)+ b
2

∑
x∈H

(
x

p
)b+ε+f(re−d)η̄(x)ζx

pr−b .

Under the same hypotheses, I also determine R(η, z) for smaller powers
r ≤ b + 1. However, the important case when q = p, an odd prime, and
K/Qp is tamely ramified remains unresolved.

In section 3 I treat the case p = 2. I show that for r > b+ 4 with n odd,
s′ ≥ δ, γ ≥ γ0 and o(η)|l, that R(η, z) vanishes if z 6≡ 1(mod 2b+2), else up
to sign is a conjugate of

(1.11) 2f(γ− re−d
2

)+ b
2 · 2 cos(

2π
2r−b

).

I separately determine R(η, z) for smaller powers r ≤ b+ 4 under the same
hypotheses.

I wish to mention some consequences and related results regarding the
explicit values for R(η, z) found here. Expressions (1.10) and (1,11) lead to
a bound

|R(η, z)| ≤ lpf(γ− re−d
2

)+ b
2

for r > b + 1 (r > b + 4 if p = 2), that is a modest improvement of
the customary Deligne [5] bound |R(η, z)| ≤ (n + 1)pf(γ− re−d

2
) when b >

0. Moreover, from such expressions (1.10) and (1.11), the non-vanishing
sums R(η, z) are seen to be integer multiples of ordinary Gauss periods for
pr−b or a twist of such by the character η . Thus additional improvement
in the upper bound |R(η, z)| may be obtained using recent estimates for
Gauss periods obtained by Bourgain and Chang (chiefly, Theorem 4.7 in
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[4]; see also [3]). When l > 1 one may essentially replace l by lp−ω in the
bound above, where ω > 0 depends on l and pr−b. These details and the
extent to which ω can be effectively determined are beyond the scope of
the presentation here, but will be discussed elsewhere.

The author has recently studied Gauss periods and quadratic twists of
such for prime powers [9] to obtain formulas for the beginning coefficients
of their minimal polynomials and associated power sums of zeros. When
|H| = 2 in (1.10) and o(η) = 1 or 2, a closed form expression for the
minimal polynomial and the associated power sums is actually obtained
[7]. Those results can be applied with these here to describe the polynomial
satisfied by the Kloosterman sums R(η, z) for z ∈ Z/qZ∗ when o(η) = 1
or 2. This determination, which generalizes the author’s previous results
[8,11] for Kloosterman polynomials and hyper-Kloosterman polynomials,
will appear elsewhere.

2. Kloosterman sums for odd prime powers pr, r > 1

Here I evaluate the twisted Kloosterman sums (1.3) for odd prime powers
when o(η)|p− 1. As in the introduction I write n+ 1 = pby, for b ≥ 0 and
p - y, and set l = gcd(n + 1, p − 1). I consider q = pr, r > 1, with r = 2s
or 2s + 1 where s′ = s + ε with ε = 0 or 1 according as r is even or odd.
For any w 6≡ 0(mod p), let w̄ denote the multiplicative inverse of w mod
pr. Let H denote the group of l-roots of unity modulo pr−b, or just modulo
p when r ≤ b. Choose a numerical character ψ modulo q which generates
the numerical characters modulo q and is normalized so that

(2.1) ψ(1 + ps) = ζ−1
ps for α = 2s ≥ 2 even, or

ψ(1 + ps + (
p+ 1

2
)p2s) = ζ−1

ps+1 for α = 2s+ 1 ≥ 3 odd.

Note that χ = ψv is primitive whenever p - v. Now η = ψw for some integer
w, 1 ≤ w ≤ φ(q), and it follows from (1.7) that

(2.2) R(η, z) =
1

φ(q)

φ(q)∑
j=1,p-j

ψ̄j(z)Gq(ψj)GPγ (ψj+w)

for any z ∈ Z/qZ∗ since Gq(χ) = 0 if χ is imprimitive. The Gauss sums
GPγ (χ) have been determined in [13].

Proposition 2.1. For any v ∈ Z/qZ∗, q = pr odd with s′ ≥ δ and γ ≥ γ0,

GPγ (ψv) =

p
f(γ− re−d

2
)ψnv(v)ζnv

q

V (v
p)f (

NT/Qp (TrK/T Πe−d−1u1−ε)

p )ψnv(v)ζnv
q

where V = (−1)f−1ζ
(1−p)f
8 pf(γ− re−d

2
), according as re− d is even or odd.
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Proof. For any v ∈ Z/qZ∗ write v ≡ tl(mod q(p−1)) with t = 1+(v−1)q ≡
1(mod q) and l = v− (v− 1)q2 ≡ 1(mod p− 1). Then χ = ψt is normalized
modulo q, so GPγ (ψv) = GPγ (χl) is easily seen to equal χln(l)σl(GPγ (χ)),
where σl is the automorphism given by σl(ζq(p−1)) = ζ l

q(p−1). Thus from
Theorem 1 and Corollary 1 in [13]

GPγ (ψv) =

ψ
vn(l)pf(γ− re−d

2
)ζ ln

q

V ( l
p)f (

NT/Qp (TrK/T Πe−d−1u1−ε)

p )ψvn(l)ζ ln
q

according as re− d is even or odd. Since t ≡ 1(mod q), the result as stated
in the proposition follows. �

When K = Qp with γ = r > 1, Proposition 2.1 reduces to Mauclaire’s
evaluation of the ordinary Gauss sums Gq(χ) for primitive characters χ
modulo q. (See also Evans [6]).

Corollary 2.1. For any v ∈ Z/qZ∗, q = pr odd with r > 1,

Gq(ψv) =

{
pr/2ψv(v)ζv

q if r even
(v

p)ζ1−p
8 pr/2ψv(v)ζv

q if r odd.

The following lemmas will prove crucial in the evaluation of R(η, z) here.

Lemma 2.1. If ψ is normalized modulo pr for r > 2, then ψp is normalized
modulo pr−1. The sole exception occurs for r = 4 with p = 3 where ψ3(22) =
ζ−4
9 not ζ−1

9 in (2.1).

Proof. First note that for s > 0 that (1 + ps + p+1
2 p2s)p ≡ (1 + ps)p ≡

1+ps+1(mod p2s+1). Thus for odd r = 2s+1 ≥ 3, ψp(1+ps) = ψ(1+ps+1) =
ζ−1
ps from (2.1) so ψp is normalized modulo pr−1. In addition, one readily

sees that (1 + ps + p+1
2 p2s)p ≡ 1 + ps+1 (mod p2s+2), except for s = 1

with p = 3 where 223 ≡ 37(mod 81). Thus for even r = 2s + 2 > 2,
ψp(1 + ps + p+1

2 p2s) = ψ(1 + ps+1) = ζ−1
ps+1 from (2.1) so ψp is normalized

modulo pr−1, though in the exceptional case s = 1 and p = 3, ψ3(22) =
ψ(37) = ζ−4

9 since 37 ≡ 104(mod 81). The proof of the lemma is now
complete. �

Lemma 2.2. Let χ be any numerical character modulo pr for r > 1 and
normalized as in (2.1). Then for any integer w

χ(1 + wps′) = ζ−w
ps .

Proof. The proof of Lemma 2.2 follows routinely from the Binomial Theo-
rem and the observation made at the outset of the proof of Lemma 2.1. �

Before proceeding to the statement of the main results here I require a
fact from [10] concerning certain incomplete exponential sums.
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Proposition 2.2. Let χ be a normalized generator for the group of numer-
ical characters modulo pα, α > 1, and y 6≡ 0(mod p). For any character η
defined modulo q but of order dividing p− 1,
φ(pα)/(y,p−1)∑

v=1,p-v
χ(v)yvη(v)ζyv

pα =


p−1

(y,p−1)p
α−2

2
∑

x∈H′ η(x)ζyx
pα

p−1
(y,p−1)(

y
p )p

α−3
2 ζp−1

8
√
p

∑
x∈H′ η(x)(x

p )ζyx
pα ,

according as α is even or odd. (Here H ′ is the group of (y, p − 1)-roots of
unity modulo pα.)

The above proposition is readily demonstrated by the argument used
in the proof of Theorem 3 and Corollary 10 in [10]. Since that argument
required only minor modification, I shall omit the proof here. Additionally,
since (y, p − 1) and y have the same parity, a re-examination of the proof
there shows that the modified sum

∑φ(pα)/(y,p−1)
v=1,p-v (v

p)yχ(v)yvη(v)ζyv
pα has the

same value as above.
I am now ready to determine the values R(η, z) for odd prime powers.

The computation of R(η, z) naturally breaks into two cases r > b + 1 and
1 < r ≤ b+ 1. I consider the case r > b+ 1 first, with re− d even.

Theorem 2.1. Let q = pr with r > b + 1, s′ ≥ δ, γ ≥ γ0 and o(η)|p − 1,
where re− d is even. Then

R(η, 1) = ζ
(p−1)b(b+2ε)
8 (

y

p
)b+εpf(γ− re−d

2
)+ b

2

∑
x∈H

(
x

p
)bη̄(x)ζyx

pr−b .

The sole exception when p = 3 and r = b+ 3 > 3 is

R(η, 1) = ib(b+2ε)(
y

3
)3f(γ− re−d

2
)+ b

2

∑
x∈H

(
x

3
)bη̄(x)ζ19yx

27 .

Furthermore, R(η, z) = 0 if z
p−1

l 6≡ 1(mod pb+1) else R(η, z) is deter-
mined from R(ηv̄, 1) by (1.5) where z ≡ vn+1(mod q).

Proof. One may write η = ψw with pr−1|w. Then from (1.7) and Proposi-
tion 2.1, one finds for any z ∈ Z/qZ∗ that

R(η, z) =
1

φ(q)

φ(q)∑
j=1,p-j

ψ̄j(z)Gq(ψj)GPγ (ψj+w)

=
pf(γ− re−d

2
)+ r

2

φ(q)
ζ
(1−p)ε
8

φ(q)∑
j=1,p-j

(
j

p
)εψ̄j(z)ψj(j)ψ(j+w)n(j + w)ζj(n+1)+nw

q

when re− d is even. One may write the expression for R(η, z) above as

pf(γ− re−d
2

)+ r
2

φ(q)
ζ
(1−p)ε
8

h∑
v=1,p-v

lpb−1∑
i=0

(
v

p
)εψ̄v+hi(z)ψv+hi(v + hi)ζv+hi

q L,
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where L = ψ(v+hi+w)n(v + hi + w)ζnv+nhi+nw
q and each j is uniquely ex-

pressed j = v + hi with 1 ≤ v ≤ h = φ(pr−b)/l, 0 ≤ i < lpb and p - v, or
equivalently as

(2.3)
pf(γ− re−d

2
)+ r

2

φ(q)
ζ
(1−p)ε
8

h∑
v=1,p-v

(
v

p
)εψ̄v(z)ψv(n+1)(v)ψwn(v)ζv(n+1)

q

·
lpb−1∑
i=0

ψ̄hi(z)ψv(n+1)(1 + v̄hi)ψhi(v + hi)ψvn(1 + v̄w)M,

where M = ψhin(v+hi+w)ψnw(1+v̄(hi+w))ζhi(n+1)+nw
q , since (1+v̄hi)(1+

v̄w) ≡ 1+v̄(hi+w) mod q as r > b+1. But ψv(n+1)(1+v̄hi) = ζ
−(n+1)hi
q and

ψvn(1 + v̄w) = ζ−nw
q from (2.1) and the fact ψhin(v+ hi+w)ψhi(v+ hi) =

ψhi(n+1)(v + hi) = 1 as φ(q)|h(n+ 1). In addition ψnw(1 + v̄(hi+ w)) = 1,
so the inner sum reduces to

lpb−1∑
i=0

ψ̄hi(z) =

{
lpb if z ∈ (Z/qZ)∗n+1

0 otherwise,

since ψh has order lpb. Thus R(η, z) = 0 for r > b + 1 whenever z 6∈
(Z/qZ)∗n+1. But z ∈ (Z/qZ)∗n+1 if and only if z

p−1
l ≡ 1(mod pb+1) from

Euler’s criterion, so the last statement of the theorem follows. In view of
(1.5) it is enough now to compute R(η, 1). From (2.3) one obtains

R(η, 1) =
pf(γ− re−d

2
)+ r

2

h
ζ
(1−p)ε
8

h∑
v=1,p6|v

(
v

p
)εψv(n+1)(v)ηn(v)ζv(n+1)

q(2.4)

=
pf(γ− re−d

2
)+ r

2

h
ζ
(1−p)ε
8

h∑
v=1,p-v

(
v

p
)εψpbyv(v)ηn(v)ζyv

pr−b .

Now ψpb generates the group of numerical characters modulo pr−b, and is
normalized modulo pr−b (except when p = 3 and r = b + 3, ψ3b

= χw for
some normalized character χ modulo 27 with w ≡ 4(mod 9)), by repeatedly
applying Lemma 2.1. By applying Proposition 2.2 with character choice
ηn(v)(v

p)ε if l is even, and in view of the comment that immediately followed

h∑
v=1,p-v

(
v

p
)εψpbyv(v)ηn(v)ζyv

pr−b =

p− 1
l

p
r−b−2

2 ζ
(p−1)(b−ε)2

8 (
y

p
)b+ε

∑
x∈H

(
x

p
)bηn(x)ζyx

pr−b
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since l = (y, p − 1) (but in the exceptional case p = 3 and r = b +
3 direct calculation here finds

∑18/l
v=1,3-v(

v
3 )εψ3byv(v)ηn(v)ζyv

27 = 2
l i
√

3(y
3 ) ·∑

x∈H(x
3 )ηn(x)ζ19yx

27 ). This together with (2.4) yields the expressions for
R(η, 1) as stated in the theorem. �

I next consider the case re−d is odd. Set τ = NT/Qp
(TrK/T Πe−d−1u1−ε).

Theorem 2.2. Let q = pr with r > b + 1, s′ ≥ δ, γ ≥ γ0 and o(η)|p − 1,
where re− d is odd. Then

R(η, 1) =

(−1)f−1ζ
(p−1)(b2+2bε−f)
8 (

y

p
)b+ε(

τ

p
)pf(γ− re−d

2
)+ b

2

∑
x∈H

(
x

p
)b+f η̄(x)ζyx

pr−b .

The sole exception when p = 3 and r = b+ 3 > 3 is

R(η, 1) = i(b
2+2bε−f)(

yτ

3
)3f(γ− re−d

2
)+ b

2

∑
x∈H

(
x

3
)b+f η̄(x)ζ19yx

27 .

Furthermore, R(η, z) = 0 if z
p−1

l 6≡ 1(mod pb+1) else R(η, z) is deter-
mined from R(ηv̄, 1) by (1.5) where z ≡ vn+1(mod q).

Proof. The argument is similar to the case re− d is even. Writing η = ψw

with pr−1|w, one again finds from (1.7) and Proposition 2.1 that for any
z ∈ Z/qZ∗,

R(η, z) =
(−1)f−1

φ(q)
ζ
(1−p)(f+ε)
8 (

τ

p
)pf(γ− re−d

2
)+ r

2

·
φ(q)∑

j=1,p-j
(
j

p
)f+εψ̄j(z)ψj(j)ψ(j+w)n(j + w)ζj(n+1)+nw

q

when re− d is odd. One may rewrite the expression for R(η, z) above as

(−1)f−1

φ(q)
ζ
(1−p)(f+ε)
8 (

τ

p
)pf(γ− re−d

2
)− r

2

h∑
v=1,p-v

·
lpb−1∑

i

(
v

p
)f+εψ̄v+hi(z)ψv+hi(v + hi)ψ(v+hi+w)n(v + hi+ w)ζ(n+1)(v+hi)+nw

q ,
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where each j = v+hi with 1 ≤ v ≤ h, 0 ≤ i < lpb and p - v, or equivalently
as

(−1)f−1

φ(q)
ζ
(1−p)(f+ε)
8 (

τ

p
)pf(γ− re−d

2
)− r

2 ·

h∑
v=1,p-v

(
v

p
)f+εψ̄v(z)ψv(n+1)(v)ψwn(v)ζv(n+1)

q W,

whereW is the inner sum in (2.3). Arguing as before one finds thatR(η, z) =
0 for r > b+ 1 whenever z 6∈ (Z/qZ)∗n+1 and otherwise that R(η, z) is de-
termined from R(ηv̄, 1) by (1.5) where z ≡ vn+1(mod q). This time

R(η, 1) =
(−1)f−1

h
ζ
(1−p)(f+ε)
8 (

τ

p
)pf(γ− re−d

2
)+ r

2

·
h∑

v=1,p-v
(
v

p
)f+εψv(n+1)(v)ηn(v)ζv(n+1)

q .

Applying Proposition 2.2 with character choice ηn(v)(v
p)f+ε in place of

ηn(v) if l is even yields the expression for R(η, 1) as stated. Direct computa-
tion yields the result in the exceptional case when p = 3 with r = b+3 > 3.
The proof of the theorem is now complete. �

Next I consider the case 1 < r ≤ b + 1, where H is just the group of
l-roots of unity modulo p and h = (p− 1)/l.

Theorem 2.3. Let q = pr with 1 < r ≤ b+1, s′ ≥ δ, γ ≥ γ0 and o(η)|p−1.
Then for z ≡ 1(mod pr−1),

R(η, z) =


ζ
(1−p)ε
8 pf(γ− re−d

2
)+ r

2
−1 ∑

x∈H ζ
(n+z)x/pr−1

p (x
p )εη̄(x)

(−1)f−1ζ
(1−p)(f+ε)
8 ( τ

p )pf(γ− re−d
2

)+ r
2
−1

·
∑

x∈H ζ
(n+z)x/pr−1

p (x
p )f+εη̄(x)

according as re− d is even or odd.
Furthermore, R(η, z) = 0 if z(p−1)/l 6≡ 1(mod pr−1) else R(η, z) is deter-

mined from some R(ηv̄, z′) above with z′ ≡ 1(mod pr−1) by (1.5).

Proof. First note that ψn+1 has order dividing p − 1, and write η = ψw

with pr−1|w as before. For the case re − d even, one has from (1.7) and
Proposition 2.1 again

R(η, z) =
pf(γ− re−d

2
)+ r

2

φ(q)
ζ
(1−p)ε
8

φ(q)∑
j=1,p-j

(
j

p
)εψ̄j(z)ψj(j)ψ(j+w)n(j+w)ζj(n+1)+wn

q ,
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which equals

(2.5)
pf(γ− re−d

2
)+ r

2

φ(q)
ζ
(1−p)ε
8

p−1∑
x=1

(
x

p
)εψ̄x(z)ψx(n+1)+wn(x)ζx(n+1)

q

·
φ(pr−1)−1∑

t=0

ψ̄pt(z)ψpt(x+ pt)ψx(1 + x̄pt)ψ(x+w)n(1 + x̄(w + pt))V,

where V = ψptn(x + pt + w)ζ(n+1)pt+wn
q , and each j is uniquely expressed

j = x + pt with 1 ≤ x < p and 0 ≤ t < φ(pr−1). Since ψn+1 and ψw both
can be defined modulo p, the inner sum above is easily seen to become

φ(pr−1)−1∑
t=0

ψ̄pt(z)ψpt(n+1)(x)ψx(1 + x̄pt)ψxn(1 + x̄(w + pt))ζwn
q .

But ψxn(1− x̄w) = ζwn
q from (2.1) and

ψx(1 + x̄pt)ψxn(1 + x̄(w+ pt))ψxn(1− x̄w) = ψx(1 + x̄pt)ψxn(1 + x̄pt) = 1,

so the inner sum in turn reduces to

φ(pr−1)−1∑
t=0

ψ̄pt(z)ψpt(n+1)(x) =
φ(pα−1)−1∑

t=0

ψpt(z̄xn+1)(2.6)

=

{
pα−2(p− 1)
0

according as xn+1 ≡ z(mod pr−1) or not. The last equality above holds
since ψp has conductor pr−1 and generates the numerical characters modulo
pr−1. Thus R(η, z) = 0 unless z ∈ (Z/pr−1Z)∗n+1 in this case. But when
z ≡ vn+1(mod pr−1) then R(η, z) is determined from some R(η, z′) for
z′ = zv̄n+1 ≡ 1(mod pr−1) using (1.5). Thus, it suffices to consider z ≡
1(mod pr−1), say z = 1 + λpr−1 for some integer λ. Then from (2.5) and
Lemma 2.2

R(η, z) = ζ
(1−p)ε
8 pf(γ− re−d

2
)+ r

2
−1

∑
x∈H

(
x

p
)εψ̄x(1 + λpr−1)ψx(n+1)+wn(x)ζx(n+1)

q

= pf(γ− re−d
2

)+ r
2
−1ζ

(1−p)ε
8

∑
x∈H

ζλx+(n+1)x/pr−1

p (
x

p
)εηn(x)

= pf(γ− re−d
2

)+ r
2
−1ζ

(1−p)ε
8

∑
x∈H

ζ(n+z)x/pr−1

p (
x

p
)εη̄(x)

since ψ(xn+1) = 1 for x ∈ H here as lpr−1|(n+ 1).
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Arguing similarly when 1 < r ≤ b + 1 when re − d is odd, one obtains
the expression

(−1)f−1ζ
(1−p)(f+ε)
8 (

τ

p
)
pf(γ− re−d

2
)+ r

2

φ(q)

p−1∑
x=1

(
x

p
)f+εψ̄x(z)ψx(n+1)(x)ζx(n+1)

q · V

for R(η, z), where V is the same inner sum in (2.5). Again R(η, z) = 0
unless z ∈ (Z/pr−1Z)∗n+1, limiting consideration to z = 1+λpr−1 for some
integer λ as before. This time for such z,

R(η, z) = (−1)f−1ζ
(1−p)(f+ε)
8 (

τ

p
)pf(γ− re−d

2
)+ r

2
−1

·
∑
x∈H

(
x

p
)f+εψ̄x(1 + λpr−1)ψx(n+1)+wn(x)ζ(n+1)x

q

= (−1)f−1ζ
(1−p)(f+ε)
8 (

τ

p
)pf(γ− re−d

2
)+ r

2
−1

∑
x∈H

(
x

p
)f+εη̄(x)ζ(n+z)x/pr−1

p

as before. The proof is now complete. �

The following corollary is the special case K = Qp in Theorems 2.1 and
2.2. It includes the results of Saliè [18] when o(η) = 1 or 2.

Corollary 2.2. For any γ ≥ r > 1 with o(η)|p− 1,

R(η, 1) = (
2
p
)rpγ− r

2

∑
x∈H

η̄(x)ζ2x
q .

In particular, R(η, z) = 0 if ( z
p) = −1 else R(η, z) is determined from

R(ηv̄, 1) by (1.5) where v2 ≡ z(mod q) with (v, p− 1) = 1.

Example. To illustrate the results above consider the tamely ramified
extension K = Q5(

√
−3,

√
5) with e = f = 2 and d = 1. One has l =

(n+1, p−1) = 1 here, b = 1 and y = 1 with δ = 1+ε and γ0 = re−d = 2r−1.
For q = 25, one obtains from Theorem 2.3 for γ ≥ γ0 = 3

R(η, z) = −52γ−3ζ
(4+z)/5
5

for z ≡ 1(mod 5) and any character η with f(η)|5.
For r > 2, one may choose Π =

√
5 as uniformizant to find u = 1 so

τ = NT/Qp
(TrK/T Πe−d−1u1−ε) = 4 in Theorem 2.2. Then for γ ≥ γ0,

R(η, 1) = 52γ−2r+ 3
2 ζ1

q

for any character η with f(η)|5. The value R(η, z) for z ∈ (Z/qZ)∗n+1 are
found from (1.5) to satisfy

R(η, z) = (
v

5
)52γ−2r+ 3

2 ζv
q ,
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where v satisfies vn+1 ≡ z(mod q) since o(η)|4. These are in agreement with
values of R(η, z) computed directly using (1.3) for several small values of r.

I conclude this section with a comment concerning the case r = 1. While
the determination of R(η, z) is largely unresolved when K/Qp is tamely
ramified, one finds when K/Qp is wildly ramified that R(η, z) is a multiple
of a twisted ordinary Gauss period with p−1

(e,p−1) terms. To be more precise,
let ψ be a generator for the group of numerical characters modulo p with
η = ψw for some integer 0 ≤ w < p − 1. The Gauss sums GPγ (χ) in (1.6)
for q = p have been determined for any numerical character χ modulo p
(chiefly, Proposition 5 in [13]). When K/Qp is wildly ramified

GPγ (χ) =

{
pf(γ−1)(pf − 1) if o(χ)|e
0 otherwise.

Thus one finds from (1.7) with t = (e, p− 1) that

R(η, z) =
1

p− 1

p−1∑
i=1

ψ̄i(z)Gp(ψi)GPγ (ψw+i)

= pf(γ−1) p
f − 1
p− 1

t∑
j=1

ψw− (p−1)j
t (z)Gp(ψ−w+

(p−1)j
t )

= pf(γ−1) p
f − 1
p− 1

t∑
j=1

ψw− (p−1)j
t (z)

p−1∑
x=1

ψ−w+
(p−1)j

t (x)ζx
p

= pf(γ−1) p
f − 1
p− 1

p−1∑
x=1

ψ̄w(z̄x)ζx
p

t∑
j=1

ψ
(p−1)j

t (z̄x).

Hence

R(η, z) = tpf(γ−1) p
f − 1
p− 1

∑
v∈(Z/pZ)∗t

η̄(v)ζvz
p ,

an integer multiple of a Gauss period twisted by the character η̄.

3. Kloosterman sums for q = 2r

Here I evaluate the Kloosterman sums (1.3) when p = 2. When r = 1
direct computation using (1.3) yields

R(1, z) =

{
2f(γ−1) if K/Q2 is wildly ramified
2f(γ−1)(2f − 1) if K/Q2 tamely ramified

for any γ ≥ γ0. For r > 1, I consider q = 2r, r > 1, with r = 2s or
r = 2s + 1 where s′ = s + ε with ε = 0 or 1, according as r is even or
odd. For any odd integer w, let w̄ denote the multiplicative inverse of w
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modulo 2r, and ( 2
w ) = (−1)

w2−1
8 and (−2

w ) = (−1)
w−1

2 ( 2
w ) be the primitive

quadratic characters modulo 8. As before I write n+ 1 = 2by for b ≥ 0 and
y odd, and set l = gcd(n+ 1, 2). Choose a numerical character ψ modulo q
which generates the even numerical characters modulo q and is normalized
so

ψ(1 + 2s) = ζ−1
2s for r = 2s > 2 even,(3.1)

ψ(1 + 2s + 22s−1) = ζ−1
2s+1 for r = 2s+ 1 > 3 odd, or

ψ(5) = −1 for r = 3.

Let ξ(x) denote the quadratic character modulo q given by ξ(x) = (−1)
x−1
2 .

Any primitive numerical character modulo q has the form χ = ψv or ξ · ψv

for some odd integer v, 1 ≤ v ≤ 2r−2. So it follows from (1.7) that

(3.2)

R(η, z) =
1

φ(q)

2r−2∑
j=1,j odd

ψ̄j(z)Gq(ψj)GPγ (ψjη)+ξ·ψ̄j(z)Gq(ξ·ψj)GPγ (ξ·ψjη)

for any z ∈ Z/qZ∗ since Gq(χ) = 0 if χ is imprimitive.
The Gauss sums GPγ (χ) have been determined in [13]. To state the

result it will be necessary to consider, when e is even, the unique solution
x0, x1, ..., xe/2−1 modulo 2OT of the following triangular system of linear
congruences:

u1x0 ≡ z1(3.3)
u2x0 + u1x1 ≡ z2

.......................

.......................

.......................

ue/2x0 + ue/2−1x1 + · · ·+ u1xe/2−1 ≡ ze/2

where for 1 ≤ i ≤ e/2, ui ≡ 2TrK/T Π−d−iuε and zi uniquely satisfy modulo
2OT the congruence

z2
i ≡

{
TrK/T Π−w−2iu if r odd
TrK/T Π−w−2i + (TrK/T Π−w

2
−i)2 if r even,

with w = max(2[d/2]− e, 0). One may also uniquely express

(3.4) u1 ≡ ω0 + 2ω1 modulo 4OT with ω0 ∈ U and ω1 ∈ U ∪ {0},

where U denotes the group of 2f − 1 roots of unity lying in T .
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The Gauss sums GPγ (χ) are given by

Proposition 3.1. For any odd integer v, q = 2r 6= 8 with s′ ≥ δ and
γ ≥ γ0,

GPγ (ψv) = 2f(γ− re−d
2

)ζnv
q ζκv

8 (
2
v
)f(re−d)ψvn(v)

and

GPγ (ξ · ψv) = 2f(γ− re−d
2

)ζnv
q ζκv

8 (
2
v
)f(re−d)ξn(v)ψvn(v),

where for tamely ramified extensions

κ =

{
n+ (4 + e2−1

2 )f − 4 if r = 2s+ 1
0 if r = 2s.

Otherwise for wildly ramified extensions if d is even,

κ =

{
2Tr(Π−dR2) if r odd
4Tr(Π−(e+d)R2 −Π− e+d

2 R) if r even ,

and if d is odd,

κ =


5f − 4 + 2TrT/Q2

(TrK/T Π−d−1R2

−(TrK/T Π
e
2
−d−1R)2/u1) if r odd

5f − 4 + 4Tr(Π−(e+d+1)R2 + Π− e+d+1
2 R)

−2TrT/Q2
(v/u1 + ω1/ω0) if r even.

Here R = x0 + x1Π + · · ·+ xe/2−1Πe/2−1 where x0, x1, ... ,xe/2−1 uniquely
solve (3.3) modulo 2OT , u1 = ω0 + 2ω1 (mod 4OT ) as in (3.4) and

v = (TrK/T Π− d+1
2 )2 + (2TrK/T Π−d− e

2
−1R)2

when d is odd.
For q = 8 with K/Q2 tamely ramified and χ = ξνψ (ν = 0 or 1),

GPγ (χ) = (−1)f−1(
2
e
)f2f(γ− 2e+1

2
)ζ

n(1−χ(−1))
8 for γ ≥ γ0.

The result follows immediately from Theorem 2 and Corollary 3 in [13]
since GPγ (χv) = χvn(v)σv(GPγ (χ)) for any numerical character χ defined
modulo q. When K = Q2 and r > 1, Proposition 3.1 reduces to Mauclaire’s
evaluation of the ordinary Gauss sums Gq(χ) for primitive characters mod-
ulo q.

Corollary 3.1. For any odd v, where q = 2r with r > 1, r 6= 3

Gq(ψv) = 2r/2(
2
v
)εζεv

8 ψ
v(v)ζv

q
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and

Gq(ξ · ψv) = 2r/2(
2
v
)εζεv

8 ξ(v)ψ
v(v)ζv

q .

For r = 3,

G8(χ) =
√

8ζ1−χ(−1)
8 if χ(5) = −1.

The next result is the analog of Lemma 2.2 in section 2 and follows
routinely from the Binomial Theorem.

Lemma 3.1. Let χ be any numerical character modulo 2r normalized as
in (3.1) with r ≥ 3. Then for any integer w

χ(1 + w2s′) = ζ−w
2s .

Before stating the main result of this section I require some facts about
imcomplete exponential sums of the form

2α−2∑
v=1, v≡1(mod 4)

χλv(v)ζv
2α , λ ≡ 1(mod 4),

where χ is a primitive character modulo 2α (α ≥ 4) normalized as in (3.1).
It is shown in [10] that

(3.5)
2α−2∑

v=1, v≡1(mod 4)

χ(v)λvζv
2α = 2

α−4
2 ζ

t(λ)
2α ,

where t(λ) is a certain integer-valued function of λ (chiefly from Proposition
5 and Theorem 2 in [10] in view of (27) there.).

For r odd one has (chiefly, Corollaries 3 and 4 in [10])

(3.6) t(λ) =

{
1− 2α−3 if λ ≡ 1(mod 2

α+1
2 )

1 + 2α−3 if λ ≡ 1 + 2
α−1

2 (mod 2
α+1

2 ),

independent of the choice of normalized character χ modulo 2α. For r even
one has (chiefly, Corollary 3 in [10])

(3.7) t(λ) = 1 if λ ≡ 1(mod 2α/2).

I am now ready to determine the sums R(η, z). The following result treats
the case b = 0 where l = 1, so η must be trivial.

Proposition 3.2. For n even with r > 3, s′ ≥ δ and γ ≥ γ0,

R(1, 1) = (−1)ε[n+2
4

]2f(γ− re−d
2

)ζκ−εn
8 ζn+1

q .

The sole exception occurs for r = 5 when f(5e− d) + κ is odd, where

R(1, 1) = (−1)[
n+2

4
]2f(γ− 5e−d

2
)ζκ+n+2

8 ζn+1
q .

In general for any odd z, R(1, z) is determined from R(1, 1) by (1.5).
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Proof. From Proposition 3.1, Corollary 3.1 and (3.2) above,

R(1, 1) =
1

φ(q)

2r−2∑
j=1,j odd

(1 + ξ(j))Gq(ψj)GPγ (ψj)

=
2

φ(q)

2r−2∑
j=1,j≡1(mod 4)

Gq(ψj)GPγ (ψj)

= 2f(γ− re−d
2

)− r
2
+2

2r−2∑
j=1,j≡1(mod 4)

(
2
j
)f(re−d)+εζ

(ε+κ)j
8 ψj(n+1)(j)ζj(n+1)

q

= 2f(γ− re−d
2

)− r
2
+2ζε+κ

8

2r−2∑
j=1,j≡1(mod 4)

(
2
j
)f(re−d)+κψj(n+1)(j)ζj(n+1)

q

since ζj
8(

2
j ) = ζ8 for any j ≡ 1(mod 4). Since (2

j )ψj(j) = ψj(1+2r−3)(j), it
follows from (3.5), (3.6) and (3.7) that the sum

2r−2∑
j=1,j≡1(mod 4)

(
2
j
)f(re−d)+κψj(n+1)(j)ζj(n+1)

q = 2
r−4
2 ζn+1

q ζ
−ε(n+1)
8

for r > 5 and for r = 4 or 5 when f(re − d) + κ is even. The exceptional
case occurs for r = 5 when f(re − d) + κ is odd. The case r = 4 with
f(re− d) + κ odd cannot occur here since from Proposition 3.1, κ is odd if
and only if d is odd. In particular, for r even, f(re − d) + κ is odd only if
f even, d ≥ e+ 1 is odd and κ is odd, so δ > 2 and consequently r > 4. As
(Z/qZ)∗n+1 = Z/qZ∗, R(1, z) is determined from R(1, 1) for any odd z by
(1.5). This completes the proof of the proposition. �

I now assume that b > 0 (so n is odd) throughout the remainder of the
section and r > 3. The computation naturally breaks into the cases r > b+4
and 3 < r ≤ b+ 4. I consider the case r > b+ 4 first, where character sums
of the form

∑
x∈X( 2

x)βψ2byx(x)ζyx
2r−b naturally arise, where β = 0 or 1 and

X = {1, 5, 9, ..., 2r−b−2 − 3}. These exponential sums have been evaluated
in [10] in terms of the normalized characters ψα modulo 2α in Proposition
6 there. Specifically, let {kα} (α > 3) be given modulo 2α−2 by

(3.8) kα =

{
−R(1− 2

α
2
−1) if α ≥ 4 even

−R if α ≥ 5 odd,

where R is the 2-adic unit R = 1
4 log 5. Then the normalized characters ψα

modulo 2α are given by

(3.9) ψα(5) = ζkα

2α−2 , ψα(−1) = 1 (α > 3).

and satisfy
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Proposition 3.3. For r > b+ 4 with b > 0 and normalized characters ψr

as given in (3.9) above, the sum

(3.10)
∑
x∈X

(
2
j
)βψ2bx

r (x)ζx
2r−b = 2

r−b−4
2 ζ1

2r−bζ
−1
8 (β = 0 or 1),

with the following exceptions. The sum (3.10) equals 2
r−b−4

2 ζ1
2r−bζ

1
8 if r =

b+ 5 > 6 with β = 1, or if b = 1 and r even with r > 6 or β = 0. It equals
−2

r−b−4
2 ζ1

2r−bζ
−1
8 if r = b + 6 6= 8 with β = 0, or if b = 2 and r even with

r > 8 or β = 1.

Proof. I consider the case r is even first. For b odd, one finds from (3.8)
that

ψ2b

r = ψ
kr

kr−b

r−b where
kr

kr−b
≡

{
1 mod 2

r−b+1
2 if b > 1

1− 2
r−2
2 mod 2

r
2 if b = 1,

so

kr

kr−b
+ β2r−b−3 ≡



1 mod 2
r−b+1

2 if b > 1 and r > b+ 6
1 + β22 mod 23 if b > 1 and r = b+ 5
1− 2

r−2
2 mod 2

r
2 if b = 1 and r > 6

1 + 22 mod 23 if b = 1, β = 0 and r = 6
1 mod 23 if b = 1, β = 0 and r = 6.

For b ≥ 2 even, one similarly has from (3.8) that

ψ2b

r = ψ
kr

kr−b

r−b where
kr

kr−b
≡

{
1 + 2

r−b−2
2 mod 2

r−b+2
2 if b > 2

1− 2
r−4
2 mod 2

r
2 if b = 2,

so

kr

kr−b
+ β2r−b−3 ≡


1 + 2 r−b−2

2 mod 2
r−b+2

2 if b > 2 and r > b+ 6
1 + 22 + β23 mod 24 if b > 2 and r = b+ 6
1− 2

r−4
2 mod 2

r
2 if b = 2 and r > 8

1− 22 + β23 mod 24 if b = 2 and r = 8.

The corresponding values of (3.10) with r even when b > 0 follows from
(3.6) and (3.7) or Corollaries 4 and 5 in [10] in view of formula (27) there.

It remains to consider the case r is odd. For b > 0 even, ψ2b
= ψr−b so

1 + β2r−b−3 ≡
{

1 mod 2
r−b+1

2 if r > b+ 5
1 + β22 mod 23 if r = b+ 5.

For b odd, one finds from (3.8) that

ψ2b

r = ψ
kr

kr−b

r−b where
kr

kr−b
≡ 1 + 2

r−b−2
2 mod 2

r−b+2
2
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so

kr

kr−b
+ β2r−b−3 ≡

{
1 + 2

r−b−2
2 mod 2

r−b+2
2 if r > b+ 6

1 + 22 + β23 mod 24 if r = b+ 6.

The corresponding values of (3.10) with r odd when b > 0 now follow as
before. �

I am ready to state the main result when r > b+4 with b > 0 (so l = 2),
and η of order 1 or 2 so of the form η = ξνψw with ν = 0 or 1, w = 0 or
2r−3. For convenience I set ρ = f(re− d) + κ+ w/2r−3.

Theorem 3.1. Let q = 2r with r > b+4 ≥ 5, s′ ≥ δ, λ ≥ λ0 and η = ξνψw,
where ν = 0 or 1 and w = 0 or 2r−3 with ψ normalized as in (3.1). Then

R(η, 1) = (
2
y
)r−b2f(γ− re−d

2
)+ b

2 (ζε+κ−y
8 ζn+1

q + (−1)νζ−ε−κ+y
8 ζ−n−1

q ),

except when r = b+ 6 with b 6= 2 or r > 8 even with b = 2

R(η, 1) = −(
2
y
)r−b2f(γ− re−d

2
)+ b

2 (ζε+κ−y
8 ζn+1

q + (−1)νζ−ε−κ+y
8 ζ−n−1

q )

or when r = b+ 5 > 6 or r > 6 even with b = 1

R(η, 1) = (
2
y
)2f(γ− re−d

2
)+ b

2 (ζε+κ+y
8 ζn+1

q + (−1)νζ−ε−κ−y
8 ζ−n−1

q ).

Furthermore, R(η, z) = 0 if z 6≡ 1(mod 2b+2) else R(η, z) is determined
from R(ηv̄, 1) by (1.5) where z ≡ vn+1 (mod q).

Proof. From Proposition 3.1, Corollary 3.1 and (3.2) one finds for the choice
of η here that

R(η, z) =
1

φ(q)

2r−2∑
j=1, j odd

(1 + ξ(z))ξν(j)ψ̄j(z)Gq(ψj)GPγ (ψj+w)

vanishes for z ≡ 3(mod 4); while for z ≡ 1(mod 4),

(3.11)

R(η, z) = 2f(γ− re−d
2

)− r
2
+2

2r−2∑
j=1, j odd

ξν(j)ψ̄j(z)(
2
j
)f(re−d)+εζ

(ε+κ)j
8 ψj(j)V,

where V = ψn(j+w)(j+w)ζj(n+1)+nw
q . Writing j = v+hi where h = 2r−b−2

uniquely with 0 < v < h odd and 0 ≤ i < 2b, one may express the sum
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(3.11) above as

2f(γ− re−d
2

)− r
2
+2

h∑
v=1,v odd

2b−1∑
i=0

ξν(v)ψ̄v+hi(z)(
2
v
)f(re−d)+εζ

(ε+κ)v
8

· ψv+hi(v + hi)ψn(v+hi+w)(v + hi+ w)ζ(v+hi)(n+1)+nw
q

or equivalently as

2f(γ− re−d
2

)− r
2
+2

·
h∑

v=1, v odd

ξν(v)ψ̄v(z)(
2
v
)f(re−d)+εζ

(ε+κ)v
8 ψv(n+1)(v)ψnw(v)ζv(n+1)

q

·
2β−1∑
i=0

ψ̄hi(z)ψv(1 + v̄hi)ψhi(v + hi)ψvn(1 + v̄(hi+ w))Y,

where Y = ψnw(1 + v̄(hi+w))ψhin(v+ hi+w)ζhi(n+1)+nw
q . Since (1 + v̄hi)

(1+v̄w) ≡ 1+v̄(hi+w) (mod q) as r > b+4, ψv(1+v̄hi)ψvn(1+v̄(hi+w)) =
ψv(n+1)(1 + v̄hi)ψvn(1 + v̄w) = ζ

−(n+1)hi
q · ζ−nw

q from Lemma 3.1. Also
ψhin(v + hi+ w)ψhi(v + hi) = ψhi(n+1)(v + hi) = 1 since 2r−2|h(n+ 1). In
addition ψnw(1 + v̄(hi+ w)) = 1, so the inner sum above reduces to

2b−1∑
i=0

ψ̄hi(z) =

{
2b if z ∈ (Z/qZ)∗n+1

0 otherwise,

since ψh has order 2b. Thus R(η, z) = 0 for r > b + 4 whenever z 6∈
(Z/qZ)∗n+1. But if z ∈ (Z/qZ)∗n+1 then z ≡ 1(mod 2b+2) and setting
B = ψv(n+1)(v)ζv(n+1)

q ,

(3.12)

R(η, z) = 2f(γ− re−d
2

)− r
2
+b+2

h∑
v=1, v odd

ψ̄v(z)ξν(v)(
2
v
)ε+f(re−d)ζ

(ε+κ)v
8 ψwn(v)B

is determined from R(ηv̄, 1) by (1.5) where z ≡ vn+1 (mod q), so it suffices
to compute R(η, 1). Now

ψ(v−h)(n+1)(v − h)ζ(v−h)(n+1)
q = ψv(n+1)(v)ζv(n+1)

q ψv(n+1)(1− v̄h)ζ−y
4 = B

since ψ is normalized of order 2r−2 and ψ(1 − v̄h)v(n+1) = ζy
4 from (3.1)

and Lemma 3.1. Consequently, since ψwn(v) = ( 2
v )w/2r−3 , one may write
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R(η, 1) from (3.12) as

2f(γ− re−d
2

)− r
2
+b+2

·
h∑

v=1,v≡1(mod 4)

(
2
v
)ε+f(re−d)+ w

2r−3 (ζ(ε+κ)v
8 ψv(n+1)(v)ζv(n+1)

q

+ (−1)νζ
−(ε+κ)v
8 ψ−v(n+1)(v)ζ−v(n+1)

q )

or equivalently

(3.13) 2f(γ− re−d
2

)− r
2
+b+2(ζε+κ

8

∑
x∈X

(
2
x

)ρψ2byx(x)ζyx
2r−b

+(−1)νζ−ε−κ
8

∑
x∈X

(
2
x

)ρψ−2byx(x)ζ−yx
2r−b)

where X = {1, 5, 9, · · · , 2r−b−2 − 3}. It follows now from Proposition 3.3
that if ρ is even then

R(η, 1) = 2f(γ− re−d
2

)+ b
2 (

2
y
)r−b(ζε+κ−y

8 ζn+1
q + (−1)νζ−ε−κ+y

8 ζ−n−1
q )

except when r = b+ 6 with b 6= 2 or r > 8 even with b = 2

R(η, 1) = −2f(γ− re−d
2

)+ b
2 (ζε+κ−y

8 ζn+1
q + (−1)νζ−ε−κ+y

8 ζ−n−1
q ),

or when r ≥ 6 is even with b = 1

R(η, 1) = 2f(γ− re−d
2

)+ b
2 (

2
y
)(ζε+κ+y

8 ζn+1
q + (−1)νζ−ε−κ−y

8 ζ−n−1
q ).

On the other hand, if ρ is odd then

R(η, 1) = 2f(γ− re−d
2

)+ b
2 (

2
y
)r−b(ζε+κ−y

8 ζn+1
q + (−1)νζ−ε−κ+y

8 ζ−n−1
q ),

except when r is even with b = 2

R(η, 1) = −2f(γ− re−d
2

)+ b
2 (ζε+κ−y

8 ζn+1
q + (−1)νζ−ε−κ+y

8 ζ−n−1
q ),

or when r = b+ 5 > 6 or r > 6 is even with b = 1

R(η, 1) = 2f(γ− re−d
2

)+ b
2 (

2
y
)(ζε+κ+y

8 ζn+1
q + (−1)νζ−ε−κ−y

8 ζ−n−1
q ).

This completes the proof of the theorem. �

Next consider the case 4 < r ≤ b+ 4 with b > 0. One finds here that
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Theorem 3.2. Let q = 2r with r > 4, s′ ≥ δ, γ ≥ γ0 and η = ξνψw, where
ν = 0 or 1 and w = 0 or 2r−3 with ψ normalized as in (3.1). For r < b+4,
if z ≡ 1 + ρ2r−3(mod 2r−2) then

R(η, z) = 2f(γ− re−d
2

)+ r
2
−2(ζε+κ

8 ζn+z
q + (−1)νζ−ε−κ

8 ζ−n−z
q )

and otherwise is 0. For r = b+ 4, if z ≡ 1 + (ρ+ 1)2r−3(mod 2r−2) then

R(η, z) = 2f(γ− re−d
2

)+ b
2 (ζε+κ

8 ζn+z
q + (−1)νζ−ε−κ

8 ζ−n−z
q )

and otherwise is 0.
The sole exceptions occur for r = 5 where the above formulas hold with

κ replaced by κ− 2 if z ≡ 5(mod 8) and with ε replaced by ε− 2n if w = 4.

Proof. As before one finds R(η, z) = 0 if z ≡ 3(mod 4), so assume z ≡
1(mod 4). From (3.2) and Proposition 3.1 one again has that

R(η, z) =
1

2r−2

2r−2∑
j=1, j odd

ξν(j)ψ̄j(z)Gq(ψj)GPγ (ψj+w) = 2f(γ− re−d
2

)− r
2
+2

·
2r−2∑

j=1, j odd

ξν(j)ψ̄j(z)(
2
j
)ε+f(re−d)ζ

(ε+κ)j
8 ψj(j)ψn(j+w)(j + w)ζj(n+1)+nw

q .

I consider the case r > 5 or w = 0 first, leaving a discussion of the excep-
tional cases until the end of the proof. In this case the above expression
becomes

2f(γ− re−d
2

)− r
2
+2

2r−2∑
j=1,j≡1(mod 4)

(ψ̄j(z)ζε+κ
8 (

2
j
)ρψj(n+1)(j)ζj(n+1)

q +

(−1)νψj(z)ζ−ε−κ
8 (

2
j
)ρψ−j(n+1)(j)ζ−j(n+1)

q )

upon noting that

(3.14) ψj(j)ψn(j+w)(j + w)ζnw
q = (

2
j
)

w
2r−3 ψj(n+1)(j) for j ≡ 1(mod 4)
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and that

ψ̄j−2r−2
(z)ψ(j−2r−2)(n+1)(j − 2r−2)ζ(j−2r−2)(n+1)

q = ψ̄j(z)ψj(n+1)(j)ζj(n+1)
q

since ψj(n+1)(1− j̄2r−2)ζ−2r−2(n+1)
q = 1 by (3.1) and Lemma 3.1. Thus

(3.15)

R(η, z) = 2f(γ− re−d
2

)− r
2
+2(ζε+κ

8

2r−2∑
j=1,j≡1(mod 4)

(
2
j
)ρψ̄j(z)ψj(n+1)(j)ζj(n+1)

q

+ (−1)νζ−ε−κ
8

2r−2∑
j=1,j≡1(mod 4)

(
2
j
)ρψj(z)ψ−j(n+1)(j)ζ−j(n+1)

q ).

In particular, for r < b+ 4,

2r−2∑
j=1, j≡1(mod 4)

ψ̄j(z)(
2
j
)ρψj(n+1)(j)ζj(n+1)

q = ψ̄(z)ζn+1
q

2r−4−1∑
t=0

(−1)tρψ̄4t(z)

since ψj(n+1)(j)ζj(n+1)
q = ζn+1

q again from (3.1) and Lemma 3.1 for j ≡
1(mod 4). Now

2r−4−1∑
t=0

(−1)tρψ̄4t(z) =

{
2r−4 if z ≡ 1 + ρ2r−3(mod 2r−2)
0 otherwise,

since ψ̄4 has order 2r−4. Thus from (3.14) with r < b + 4, one finds for
z ≡ 1 + ρ2r−3(mod 2r−2) that

(3.16) R(η, z) = 2f(γ− re−d
2

)+ r
2
−2(ζε+κ

8 ψ̄(z)ζn+1
q + (−1)νζ−ε−κ

8 ψ(z)ζ−n−1
q ),

and otherwise R(η, z) = 0.
When r = b + 4 one sees that ψj(n+1)(j)ζj(n+1)

q = ζn+1
q or −ζn+1

q ac-
cording as j ≡ 1 or 5(mod 8) by (3.1) and Lemma 3.1, in view of the
expansion

jj(n+1) = (1 + 4 · j − 1
4

)2
r−4jy ≡ 1 + 2r−2jy

j − 1
4

+ 2r−1 j − 1
4

(mod 2r).
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Now

2r−2∑
j=1,j≡1(mod 4)

ψ̄j(z)(
2
j
)ρψj(n+1)(j)ζj(n+1)

q

= ζn+1
q (

2r−2∑
j=1,j≡1(mod 8)

ψ̄j(z)− (−1)ρ
2r−2∑

j=1,j≡5(mod 8)

ψ̄j(z))

= ζn+1
q ψ̄(z)(

2r−4−1∑
t=0,t even

ψ̄4t(z)− (−1)ρ
2r−4−1∑

t=0,t odd

ψ̄4t(z))

= ζn+1
q ψ̄(z)(1− (−1)ρψ̄4(z))

2r−5−1∑
t=0

ψ̄8t(z).

But

2r−5−1∑
t=0

ψ̄8t(z) =

{
2r−5 if z ≡ 1(mod 2r−3)
0 otherwise,

as ψ̄8 has order 2r−5 and ψ̄4(z) = 1 for z ≡ 1(mod 2r−2) or −1 for z ≡
1+2r−3(mod 2r−2). Thus one finds for z ≡ 1+(ρ+1)2r−3(mod 2r−2) when
r = b+ 4 that

(3.17) R(η, z) = 2f(γ− re−d
2

)+ b
2 (ζε+κ

8 ψ̄(z)ζn+1
q + (−1)νζ−ε−κ

8 ψ(z)ζ−n−1
q ),

and otherwise R(η, z) = 0. Since ψ(z) = ζ1−z
q for z ≡ 1(mod 4) here, one

obtains the expressions as stated from (3.16) and (3.17).
It remains to consider the exceptional cases when r = 5. If w = 4 the

right side of the expression in (3.14) is found from direct computation to
equal −(2

j )ψj(n+1)(j)ζn
4 , leading to the formulas for R(η, z) in (3.16) and

(3.17), but with ε replaced by ε − 2n. If z ≡ 5(mod 8) one finds that
ψ(z) = ζ4ζ

1−z
q instead of ψ(z) = ζ1−z

q in formulas (3.16) and (3.17). These
changes result in the modifications as stated for the exceptional cases.

This concludes the proof of the theorem. �

For completeness I include the evaluation of R(η, z) for the small values
of r, 1 < r ≤ 4, for which the Gauss sums are given in Proposition 3.1,
but R(η, z) is not considered in Proposition 3.2 and Theorems 3.1 and 3.2.
For these cases K/Q2 is tamely ramified with δ = 1 + ε. For r > 2 write
η = ψwξν for w = 0 or 2r−3 and ν = 0 or 1, where ψ is an even character
modulo q normalized as in (3.1). The values R(η, z) are readily computed
from Proposition 3.1 using (1.7) (see also [Proposition 3, 13]).
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Proposition 3.4. Let K/Q2 be tamely ramified with η as above and γ ≥ γ0.

For q = 4, R(η, z) =

{
2f(γ− e+1

2
)ζn+z

4 if η = 1
0 if η = ξ.

For q = 8, R(η, z) =


(−1)f−1(2

e )f (2
z )iνz(1 + in+(−1)νz)

·2f(γ− 2e+1
2

)− 1
2 if w = 0

0 if w = 1.

For q = 16 with n odd,

R(η, z) =


2f(γ− 3e+1

2
)

·(ζ(−1)w/2z+n
16 + (−1)νζ

−(−1)w/2z−n
16 ) if z ≡ 1(mod 4)

0 if z ≡ 3(mod 4).

I note that Proposition 3.2 already includes the case for q = 16 with n
even, so there is no need to repeat it above.

Example. To illustrate Theorems 3.1 and 3.2 and Proposition 3.4 above
consider the field K = Q2(21/3) where f = 1, e = 3 and d = 2. K/Q2 is
tamely ramified with κ = 0 or −1 according as r > 3 is even or odd from
Proposition 3.1, γ0 = re−d = 3r−2, b = 2 and y = 1. Choosing Π = 21/3 as
a uniformizant, one also has u = 1. Using (1.3) directly to compute R(η, z)
for several small values of r yields:

For q = 4,

R(η, z) =

{
2γ−2ζ3+z

4 if η = 1
0 if η = ξ.

For q = 8,

R(η, z) =


2γ−4(2

z )(1 + i3+z) if η = 1
2γ−4(2

z )(iz − i) if η = ξ

0 otherwise.

For q = 16 with z ≡ 1(mod 4)

R(η, z) =


2γ−5(ζz+3

16 + ζ−z−3
16 ) if η = 1

2γ−5(ζz+3
16 − ζ−z−3

16 ) if η = ξ

2γ−5(ζ−z+3
16 + ζz−3

16 ) if η = (2
p)

2γ−5(ζ−z+3
16 − ζz−3

16 ) if η = (−2
p ),

else for z ≡ 3(mod 4), R(η, z) = 0.
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For q = 32,

R(η, z) =


2γ−6(ζz+3

32 + ζ−z−3
32 ) for z ≡ 1(mod 8) with η = 1

2γ−6(ζz+3
32 − ζ−z−3

32 ) for z ≡ 1(mod 8) with η = ξ

2γ−6(ζz+3
32 + ζ−z−3

32 ) for z ≡ 5(mod 8) with η = (2
p)

2γ−6(ζz+3
32 − ζ−z−3

32 ) for z ≡ 5(mod 8) with η = (−2
p ),

else R(η, z) = 0.
For q = 64,

R(η, z) =


2γ−7(ζz+3

64 + ζ−z−3
64 ) for z ≡ 9(mod 16) with η = 1

2γ−7(ζz+3
64 − ζ−z−3

64 ) for z ≡ 9(mod 16) with η = ξ

2γ−7(ζz+3
64 + ζ−z−3

64 ) for z ≡ 1(mod 16) with η = (2
p)

2γ−7(ζz+3
64 − ζ−z−3

64 ) for z ≡ 1(mod 16) with η = (−2
p ),

else R(η, z) = 0.
The values above agree with those given from Proposition 3.4 and The-

orem 3.2, where ρ is seen to satisfy ρ ≡ w
2r−3 (mod 2). For r > 6, R(η, z) is

determined from Theorem 3.1.
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