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Patterns and periodicity in a family of resultants

par Kevin G. HARE, David MCKINNON et Christopher D.
SINCLAIR

Résumé. Étant donné un polynôme f(x) ∈ Z[x], unitaire de de-
gré N , et un entier positif `, on peut définir un nouveau polynôme
f`(x) ∈ Z[x], unitaire de degré N , en élevant chaque racine de
f à la puissance `. Nous généralisons un lemme de Dobrowolski
pour montrer que, si m < n et p est un nombre premier, alors
pN(m+1) divise le réesultant de fpm et fpn . Nous considérons alors
la fonction (j, k) 7→ Res(fj , fk) mod pm. Nous montrons, pour p
et m fixés, que cette fonction est périodique en j et k, et exhibons
un grand nombre de symétries. Une étude de la structure comme
réunion de réseaux est également faite.

Abstract. Given a monic degree N polynomial f(x) ∈ Z[x]
and a non-negative integer `, we may form a new monic degree N
polynomial f`(x) ∈ Z[x] by raising each root of f to the `th power.
We generalize a lemma of Dobrowolski to show that if m < n and
p is prime then pN(m+1) divides the resultant of fpm and fpn . We
then consider the function (j, k) 7→ Res(fj , fk) mod pm. We show
that for fixed p and m that this function is periodic in both j
and k, and exhibits high levels of symmetry. Some discussion of
its structure as a union of lattices is also given.

1. Introduction

Here and throughout f(x) ∈ Z[x] will be a monic polynomial of degree
N > 0. We will assume that f(x) is irreducible unless stated otherwise.
Further, we will assume that f(x) is not a cyclotomic polynomial, or, in
the case where f(x) is reducible, that none of the factors are cyclotomic
polynomials. (The questions studied in this paper are uninteresting and
trivial for cyclotomic polynomials.) If α1, α2, . . . , αN are the roots of f ,
and ` is an integer, then we may construct a new degree N polynomial,
f`(x), specified by

f`(x) :=
N∏

i=1

(x− α`
i).
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If ` ≥ 0 then f` has integer coefficients. To see this, we note that f`(x) can
be written as the resultant of f(y) and x− y`:

f`(x) = Res(f(y), x− y`).

By writing the latter resultant as the determinant of a Sylvester matrix we
conclude that f` is monic with integer coefficients.

If the constant coefficient of f is ±1, then f−` also has integer coefficients.
This can be seen by noticing that

f−1(x) = ±xNf(1/x).

That is, f−1 can also be realized as the polynomial whose coefficient vector is
formed by reversing the coefficient vector of f (and possibly alternating the
sign). In this situation f−1 clearly has integer coefficients, and we conclude
that f−` has integer coefficients by noticing that f−` = (f−1)`.

We use N to represent the set of non-negative integers, and define Rf :
N× N → Z by

Rf (j, k) := Res(fj , fk).

For each integer M ≥ 2, we define the functions Rf,M : N×N → {0, 1, . . . ,
M − 1} and Qf,M : N× N → {0, 1} by

Rf,M (j, k) ≡ Rf (j, k) mod M

and

Qf,M (j, k) :=
{

0 if Rf (j, k) ≡ 0 mod M ;
1 otherwise.

We notice that if we know the properties of Rf,M1 and Rf,M2 where
M1 and M2 are co-prime, then we know the properties of Rf,M1·M2 by the
Chinese remainder theorem. Hence, it suffices to look at this problem for
M = pm, a prime power.

For example, let f(x) = x4− x3 + x2 + 1. Figure 1 shows patterns in the
density graphs of Qf,5, where we plot a black square if Qf,5(j, k) = 0.

Even more striking patterns emerge when we consider reciprocal polyno-
mials. A monic polynomial f is called reciprocal if f−1 = f . In this case
Rf , and hence Qf , are even in both variables (i.e. Rf (j, k) = Rf (±j,±k),
and this symmetry induces new patterns in the range of Qf . For instance,
Figure 2 shows Qf,5 where f(x) = x4 − x3 − x2 − x + 1.

If the constant coefficient of f is ±1 then we extend the domains of Rf

and Qf,p to Z × Z. The purpose of this manuscript is to partially explain
patterns of the sort which appear in the range of Qf,p and Qf,pm for primes
and prime powers. Here and throughout p will always represent a prime
number.
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Figure 1. A density plot of Qf,5 for f(x) = x4 − x3 + x2 + 1.
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Figure 2. A density plot of Qf,5 for f(x) = x4 − x3 − x2 − x + 1.

2. Statement of results

In order to partially explain these patterns that arise e.g. in Figures 1
and 2, we will show that for any monic f(x) ∈ Z[x], of degree N , that
Rf (j, k) is ‘often’ divisible by pN , a fact which implies that there are ‘a
lot’ of black squares in the density graph of Qf,pN . We will then show that
Rf,pm , and hence Qf,pm , are periodic in both arguments. We will also give
an algorithm for computing the period of Rf,pm which takes f and pm as
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inputs. Lastly, we will show a number of symmetry results that this function
exhibits.

The first result we give is an extension of Dobrowolski’s Lemma.

Theorem 2.1 (Extended Dobrowolski’s Lemma). If 0 ≤ m < n, then
pN(m+1) divides Rf (pn, pm).

E. Dobrowolski [1] proved the case when m = 0 and n = 1. The proof of
this extended result is the subject of Section 3.

Given a positive integer M , we define the period of Rf,M as the least
positive integer t = t(M) such that

Rf,M (j, k) = Rf,M (j + t, k) = Rf,M (j, k + t)

for all j and k in the domain of Rf . This will be denoted by Perf (M).
The main results of Section 4 is showing that these periods exist (Theo-

rem 4.2) and how to compute periods for M = pm a prime power (Theorem
4.3).

Sections 5 and 6 discuss some of the internal structure of the density
graph modulo pm. We show that these density graphs can be decomposed
into a finite number of different lattices (Theorem 5.1). Moreover for m ≤
N , all of these lattices have discriminant equal to the period Perf (pN )
(Theorem 5.2).

Lastly, in Section 7 we look at the symmetry of the density graph of
Qf,M (j, k) to get the following result:

Theorem 2.2. Consider the density graph of Qf,M (j, k).
• There is a symmetry along the line y = x.
• There is a symmetry along the line y = Per− x.
• If f(x) is reciprocal, then there is a symmetry along the line y =

Per/2 and along x = Per/2.

The first of these results is immediate from noticing that Res(f, g) =
±Res(g, f). The second and third are given as corollaries of Theorems 7.2
and 7.3.

The last section, Section 8 makes some comments and suggests possible
directions for future work.

3. Extended Dobrowolski’s lemma

In 1979, E. Dobrowolski proved the result (using a different language)
that:

Lemma 3.1 (Dobrowolski [1]). For any prime p and positive integer N ,
pN divides Rf (p, 1).

He used this result to find lower bounds on the Mahler measure of a non-
cyclotomic polynomial as a function of the degree. We extend this result
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to show that pm+1N divides Rf (pm, pn) for 0 ≤ m < n (Theorem 2.1). An
obvious corollary to this is that Qf,p(pn, pm) = 0 for all positive integers n
and m.

We will denote by K the splitting field of f over Q, and by OK its
ring of integers. Furthermore (p) ⊆ OK will denote the principal ideal
generated by p. The following two congruences will prove useful in our
analysis of resultants of the form Res(fpn , fpm). If α and β are in OK then
(α+β)p ≡ αp+βp mod (p). This follows from the fact that when 0 < k < p,
p divides

(p
k

)
. A similar analysis of multinomial coefficients together with

Fermat’s Little Theorem implies that

(1) f(xp) ≡ f(x)p mod p

(By this we mean that there exists h(x) ∈ Z[x] so that f(xp) = f(x)p +
p · h(x).) This second congruence is the key to the proof of Dobrowolski’s
Lemma. We provide the proof of Lemma 3.1 for illustration only.

Proof of Lemma 3.1. Let g(x) := f(xp)− f(x)p, and let α1, . . . , αN be the
roots of f(x) in C. Since g(x) ≡ 0 mod p, we may find h(x) ∈ Z[x] such
that g(x) = p · h(x). And thus,

Rf (p, 1) = Res(fp, f)

=
N∏

i=1

f(αp
i )

=
N∏

i=1

f(αp
i )− f(αi)p

=
N∏

i=1

g(αi)

= pN
N∏

i=1

h(αi)

= pN Res(f, h).

This proves the lemma since Res(f, h) is an integer. �

The proof of Theorem 2.1 relies on several lemmas including that of
Dobrowolski. The following lemma is of some independent interest in our
understanding of the patterns which arise in the range of Rf (j, k).

Lemma 3.2. Suppose j, k and ` are positive integers. Then Rf (j, k) divides
Rf (j · `, k · `).
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Proof. First, notice that

Rf (j · `, k · `) = Res(fj·`, fk·`)(2)

=
N∏

i′=1

N∏
i=1

(αj·`
i′ − αk·`

i )

= Res
(

f(y),
N∏

i=1

(yj·` − αk·`
i )
)

=
N∏

i=1

Res
(
f(y), yj·` − αk·`

i

)
,(3)

where in the last equality we have used the fact that the resultant is mul-
tiplicative in each of its arguments. Notice that

(4) yj·` − αk·`
i = (yj)` − (αk

i )
` = (yj − αk

i ) H`(yj , αk
i ),

where

(5) H`(x, y) :=
y` − x`

y − x
= y`−1 + y`−2x + · · ·+ yx`−2 + x`−1

Substituting (5) into (3) and exploiting the multiplicativity of the resultant,
we find

Rf (j · `, k · `) =

(
N∏

i=1

Res
(
f(y), yj − αk

i

))
·
(

N∏
i=1

Res(f(y),H`

(
yj , αk

i )
))

= Rf (j, k) · Res
(

f(y),
N∏

i=1

H`(yj , αk
i )
)

.(6)

It suffices to prove that the second resultant in (6) is an integer. We do this
by noticing that

(7)
N∏

i=1

H`(yj , αk
i ) = Res

(
f(x),H`(yj , xk)

)
.

The latter is in Z[y] since H`(yj , xk) ∈ Z[x, y]. It follows that the second
resultant in (6) is an integer. �

Lemma 3.3. Let m be a positive integer, then

fpm(x) ≡ f(x) mod p.

Proof. Let A = {α1, · · · , αN} be the multiset of roots of f(x) mod p. Then
the Frobenius map

σ : αi 7→ αpm

i

is an automorphism of the splitting field of f(x) over Z/pZ, and there-
fore permutes A. Thus, fpm(x) and f(x) have the same multiset of roots
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over Z/pZ, and so, since f(x) and fpm(x) are both monic, they must be
congruent modulo p. �

Lemma 3.4. Suppose F (x, y) and H(x, y) are polynomials in Z[x, y] such
that F ≡ H mod pm. Then, as polynomials in Z[x],

Res
(
f(y), F (x, y)

)
≡ Res

(
f(y),H(x, y)

)
mod pm.

Proof. This follows directly by considering the resultant as the determinant
of the Sylvester matrix modulo pm. In fact, it is easy to see that we need
not require pm to be a prime power. �

We are finally ready to prove Theorem 2.1, the Extended Dobrowolski’s
Lemma.

Proof of Theorem 2.1. We will induct on m. By noticing that f(xpn
) ≡

f(x)pn we see that the proof of Lemma 3.1 can be modified to show that
pN divides Rf (1, pn) for all n ≥ 1. This is our base case m = 0.

Assume the result is true for m− 1. By combining equations (6) and (7)
we get

Rf (pn, pm) = Rf

(
pn−1, pm−1)Res

(
f(y),Res

(
f(x),Hp

(
xpm−1

, ypn−1)))
.

By the inductive hypothesis pNm divides R(pn−1, pm−1). To complete the
induction, we need to prove pN divides

Res
(
f(y),Res

(
f(x),Hp

(
xpm−1

, ypn−1)))
.

Notice that by equation (1)

Hp
(
xpm−1

, ypn−1)
(ypn−1 − xpm−1

) = (ypn − xpm
)

≡
(
ypn−1 − xpm−1)p mod p.

This in turn implies that

Hp
(
xpm−1

, ypn−1) ≡ (ypn−1 − xpm−1)p−1 mod p,

and hence

Res
(
f(x),Hp

(
xpm−1

, ypn−1)) ≡ Res
(
f(x),

(
ypn−1 − xpm−1)p−1

)
mod p

≡
N∏

i=1

(
ypn−1 − αpm−1

i

)p−1 mod p

≡ fpm−1

(
ypn−1)p−1 mod p

≡ f
(
ypn−1)p−1 mod p

≡ f(y)pn−1(p−1) mod p.
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If we set

p · g(y) = Res
(
f(x),Hp

(
xpm−1

, ypn−1))− f(y)pn−1(p−1),

then

Res
(
f(y),

(
Res

(
f(x),Hp

(
xpm−1

, ypn−1)))
= Res

(
f(y), p · g(y) + f(y)pn−1(p−1)

)
=

N∏
i=1

(
p · g(αi) + f(αi)pn−1(p−1)

)

= pN
N∏

i=1

g(αi),

which gives the required divisibility by pN . �

4. Periodicity

Recall, we define the period of Rf,M as the least positive integer t = t(M)
such that

Rf,M (j, k) = Rf,M (j + t, k) = Rf,M (j, k + t)
for all j and k in the domain of Rf . This will be denoted by Perf (M).

It is not immediately obvious that Perf (M) need exist. The next result
will show that for certain primes p, Perf (p) does in fact exist, and moreover
gives an upper bound for Perf (p).

First we recall the definition and some results about the order of a poly-
nomial.

Definition (Definition 3.2 of [3]). Let f ∈ Fp be a irreducible polynomial
with f(0) 6= 0. Then the least positive integers e for which f(x) divides
xe − 1 is called the order of f , and denoted ord(f).

Theorem 4.1 (Theorem 3.3 of [3]). Let f ∈ Fp be an irreducible polynomial
over Fp of degree N with f(0) 6= 0. Then ord(f) is equal to the order of
any root of f in the multiplicative group F∗

pN .

Corollary 4.1 (Corollary 3.4 of [3]). If f ∈ Fp is an irreducible polynomial
over Fp of degree N , then ord(f) divides pN − 1.

These results give us:

Theorem 4.2. Suppose f(x) is irreducible modulo p. Then Perf (p) =
ord(f). Furthermore Perf (p) | pdeg(f) − 1.

Proof. Let f be a monic polynomial of degree N . Since f is irreducible
modulo p, it follows that its splitting field over Z/pZ is the field F with
pN elements. This is a Galois extension of Z/pZ with a cyclic Galois group
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generated by the Frobenius map x 7→ xp. Thus, if γ is a root of f(x) mod p,
then we know that the complete set of roots of f(x) is{

γ, γp, γp2
, · · · , γpN−1}

.

See for example [2, Section 14.1]. Let e be the order of γ, (hence the order
of f by Theorem 4.1). This order is independent of the choice of γ as f(x)
is irreducible mod p and thus all its roots are conjugate mod p. Hence
γe ≡ 1 mod p for all roots γ.

Rf (j, k + e) ≡
∏∏

(γj
i − γk+e

i′ ) mod p

≡
∏∏

(γj
i − γe

i′γ
k
i′) mod p

≡
∏∏

(γj
i − γk

i′) mod p

≡ Rf (j, k) mod p.

In the same way Rf (j + e, k) ≡ Rf (j, k) mod p. The last comment follows
directly from Corollary 4.1. �

Before stating the next theorem regarding the period of f modulo prime
powers, we pause to make a few remarks. Again suppose that f is irreducible
modulo p and let t = Perf (p). Let Qp be the p-adic extension of Q, and
γ ∈ Qp be a p-adic root of f . Then by Theorem 4.2 we know that

γt ≡ 1 mod p.

Further, as f(x) is not a cyclotomic polynomial, then there exists a κ = κ(γ)
such that

γt ≡ 1 mod pκ

γt 6≡ 1 mod pκ+1.

Proposition 4.1. If f is irreducible modulo p, and γ and γ′ are any two
roots of f over Qp, then κ(γ) = κ(γ′). That is, κ is a function of f and p.

Proof. To see that κ is independent of γ, we note that if f(x) is monic
and irreducible modulo p, then f(x) is irreducible over Qp. Let F be a
splitting field for f(x) over Qp. Then F/Qp is Galois, and the Galois group
acts transitively on the roots of f(x) in Qp. Moreover, for any prime power
pm, the set of roots of f(x) in F will have the same reduction modulo
pm as the set of roots of f(x) in C. (This is because f(x) mod pm doesn’t
remember whether it was reduced from Q or from Qp.) Thus, if we can
show that for every element σ ∈ Gal(F/Qp) and every root γ of f(x) in F ,
we have κ(γ) = κ

(
σ(γ)

)
, then we will have shown that κ is independent

of γ since it only depends on the reduction of γ modulo powers of p. To
see this, we appeal to a classical result in p-adic number theory. Since Qp



224 Kevin G. Hare, David McKinnon, Christopher D. Sinclair

is complete with respect to the non-archimedean p-adic valuation, there is
a unique extension of this valuation to Qp(γ) for any root γ of f(x). By
[4, Theorem II.4.8], the valuation of an element γ of a degree N extension
of Qp is

(
NF/Qp

(γ)
)1/N . Since the norm of σ(γ) equals the norm of γ, we

conclude that κ is independent of γ. �

Lemma 4.1. Let p be a prime, and f irreducible of degree N . Then
Perf (p) = Perf (pN ). Moreover, Perf (pm) = Perf (pd(m/N)e·N ).

Proof. We know that the Galois action on the roots of an irreducible poly-
nomial mod p is cyclic, generated by the Frobenius map σ. If pm divides
γj

i −γk
i′ then σr

(
γj

i − γk
i′

)
is in the ideal (pm) for r = 0, 1, · · · , N −1, hence

if pm divides Rf (j, k) then pd(m/N)e·N divides Rf (j, k) which proves the
desired result. �

Theorem 4.3. Let p be prime and f(x) be an irreducible polynomial mod
p. Let t = Perf (p) = Perf (pN ). Let κ = κ(f, p). Then, if p = 2 and κ = 1
we have

Perf (2Ns) =
{

t for s = 1;
t · 2s+1 for s ≥ 2.

otherwise

Perf (pNs) =
{

t for s = 1, 2, · · · , κ;
t · ps−κ for s ≥ κ + 1.

As was noted earlier, it suffices to know what happens to prime powers by
the Chinese remainder theorem. For example, if M1 and M2 are co-prime,
then we can see that Perf (M1 ·M2) = lcm(Perf (M1),Perf (M2)).

Theorem 4.3 is a consequence of Lemma 4.1 and the following lemma.

Lemma 4.2. If p is an odd prime and κ ≥ 1, or if p is any prime and
κ ≥ 2, then (

γt
)p
≡ 1 mod pκ+1 and

(
γt
)p
6≡ 1 mod pκ+2

Proof. There exists some n with gcd(n, p) = 1 such that

γt ≡ 1 + npκ mod pκ+2.

This implies that(
γt
)p
≡ (1 + npκ)p mod pκ+2

≡ 1 +

(
p

1

)
npκ +

p∑
i=2

(
p

i

)
nipiκ mod pκ+2

≡ 1 + npκ+1 mod pκ+2

under the hypotheses of the lemma. �
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We will use the notation pm ‖ M to mean that m is the highest power
of p to divide M . From a computational point of view, to find κ we notice
that pκN ‖ (1 − γt

1) · · · (1 − γt
N ) = ft(1), where the last quantity is easily

computed.
So far we have used the assumption that f is irreducible modulo p. This

might not be the case. It is probably easiest to demonstrate how one would
compute the period for a reducible polynomial by example.

Example. Let us look at two examples

f := x4 + 2x3 + 2x + 1

g := f + 11(5x3 + 3x2 + 5x)

Both of these factor as

g ≡ f ≡ (x + 4)(x + 3)(x2 + 6x + 1) mod 11

It is easily verified that (x + 4) and (x + 3) have order 10 and x2 + 6x + 1
has order 12. This tells us that Perg(11) = Perf (11) = lcm(10, 12) = 60.

Let us factor f as f = f ′ · f ′′ where f ′ ≡ (x + 4)(x + 3) mod 11 and
f ′′ ≡ x2 + 6x + 1 mod 11. So f ′ is the order 10 factor of f , and f ′′ is the
order 12. Similarly, let us factor g as g′ · g′′.

To determine the κ associated with f ′ we need to check the divisibility
by powers of 11 of f ′

10(1). We know that 11 - f ′′
10(1) hence we can instead

check the divisibility by powers of 11 of f10(1). Similarly we can figure out
the κ associated with f ′′, g′ and g′′.

We see that 112 ‖ f10(1), 114 ‖ g10(1), 112 ‖ f12(1) and 114 ‖ g12(1). This
tells us that

• Perf ′(112k) = 10 · 11k−1

• Perf ′′(112k) = 12 · 11k−1

• Perg′(112k) = max(10, 10 · 11k−2)
• Perg′′(112k) = max(12, 12 · 11k−1)

Hence this implies that
• Perf (112m) = lcm(Perf ′(112m),Perf ′′(112m)) = 60 · 11m−1

• Perg(112m) = lcm(Perg′(112m),Perg′′(112m)) = max(60, 60·11m−2).
See Figure 3.

5. Lattices

Let us revisit Theorem 2.1, the Extended Dobrowolski’s Lemma, now
that we have the added notation of periodicity. First though, let us examine
in more detail Rf,p(j, k) for f irreducible modulo p.

Let f be a degree N monic irreducible polynomials modulo p. We know
that the Galois group for f over Fp is cyclic, generated by the Frobenius
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(d) Rg(j, k) mod 114

Figure 3. Periodicity modulo 112 and 114

map σ. We see that

Res(fj , fk) =
N∏

i=1

N∏
i′=1

αj
i − αk

i′

=
N∏

i=1

N−1∏
i′=0

σi′(αj
1 − αk

i )

=
N∏

i=1

norm(αj
1 − αk

i )

Here the norm is the norm over Fp, and is typically different from the
norm over Q. We see that each factor norm(αj

1−αk
i ) is in Fp, so it suffices to

find m such that norm(αj
1 − αk

i ) ≡ 0 mod pm for each i, and then combine
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them together, to find the number of factors of p in Res(fj , fk). As was
the case for Lemma 4.1, if (αj

1 − αk
i ) ≡ 0 mod pn then norm(αj

1 − αk
i ) ≡

0 mod pnN .
Now each of these factors norm(αj

1−αk
i ) has a different set of j and k that

give rise to a factor of p. Let Λi = {(j, k) : norm(αj
1 − αk

i+1) ≡ 0 mod p}.
Now, something that is worth observing is that

Theorem 5.1. The set Λi is a lattice in Z.

Proof. We see that (j, k) ∈ Λi implies that αj
1 ≡ αk

i mod p. This relation-
ship is clearly closed under addition and inversion of (j, k) ∈ Λi �

As f is irreducible modulo p we know that we can write the roots as

γ1, γp, · · · , γpN−1
.

Reordering as necessary, we let αi = γpi−1 . Then

(8) Λi = {(j, k) : γj ≡ γk·pi
mod p}

Using this notation, we get Λi = Λi+N .

Example. Consider f(x) = x4 − x3 − x2 − x + 1 mod 5. This polynomial
is irreducible, and has period 26. In Figure 4 we give Λ0, Λ1, Λ2 and Λ3,
on the grid [0, 52]2. A quick check shows that the combination of the four
lattices gives the complete description of Res(fj , fk) mod p.

So in particular, we have

{(j, k) : Qf,p(j, k) = 1} = Λ1 ∪ · · · ∪ ΛN .

As a point of interest, to check if (j, k) ∈ Λi, we checked if xj − xk·pi ≡
0 mod f , where the calculation is done modulo p.

By equation (8) we have a few elements that are clearly in Λi. Namely

(pi, 1), (1, pN−i), (0,Perf (p)), (Perf (p), 0) ∈ Λi.

The next result gives us an idea of how to find the discriminant of Λi.

Theorem 5.2. The generators of Λi are given by

Λi = 〈(0,Perf (p)), (1, pN−i)〉

Thus disc(Λi) = Perf (p).

Proof. Assume that (j, k) ∈ Λi. Clearly this implies that (j, k)−j(1, pN−i) =
(0, k − jpN−i) ∈ Λi. But then Per(f) | (k − jpN−i) which proves the re-
sult. �

It is worth observing that this simplifies immensely in the case when f
is an irreducible quadratic.
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Figure 4. Combining the lattices
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(c) Res(fj , fk)

Figure 5. f = x2 − 3x + 1

Theorem 5.3. Let f be an irreducible monic quadratic of norm N . Then

Res(fj , fk) = N k−jfj−k(1)fk+j(N j)

Corollary 5.1. If f has norm 1 we have

Res(fj , fk) = fj−k(1)fj+k(1)

Proof. Let f have roots α and β. Without loss of generality let j ≥ k, as
Res(fj , fk) = Res(fk, fj) when f has even degree.

Res(fj , fk) = (αj − αk)(βj − βk)(βj − αk)(αj − βk)

= (αβ)k(αj−k − 1)(βj−k − 1)(αβ)−j((βα)j − αk+j)

× ((αβ)j − βk+j)

= N k−jfj−k(1)fj+k(N j)

�

Example. Consider f = x2 − 3x + 1, which is irreducible modulo 7. This
has Perf (7) = 8. Notice that f0(1) = 0. This gives us that fj+k(1) ≡ 0
when 8 | j +k, and fj−k(1) ≡ 0 when 8 | j−k. The first of these conditions
gives diagonal lines, with slope −1, and the second gives diagonal lines with
slope 1. (See Figure 5.)

We could consider instead the polynomial f = x2 − 3x − 1, which is
irreducible modulo 7. This has Perf (7) = 16. By Theorem 5.3 we have
Res(fj , fk) ≡ 0 implies fj−k(1) ≡ 0 or fj+k((−1)k) ≡ 0.

We first notice that f0(1) = 0. This implies that fm−n(1) ≡ 0 when
16 | m− n.

By noticing that f0(−1) ≡ 4 6≡ 0 along with the above comment, we
have that fm+n((−1)m) ≡ 0 when 16 | m + n and m even.

Next we notice that f8(x) ≡ x2+2x+1 mod 7, and in particular f8(−1) ≡
0 and f8(1) ≡ 4 6≡ 0. This gives us that fm+n((−1)m) ≡ 0 when 16 | m+n+8
and m is odd.
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Figure 6. f = x2 − 3x− 1

The first condition (that 16 | m − n) gives the diagonal line with slope
1. The second condition (that 16 | m + n with m even) gives the dotted
diagonal line with slope −1 through (8, 8). The third condition (that 16 |
m+n+8 with m odd) gives the dotted diagonal line with slope −1 through
(3, 5). (See Figure 6.)

6. Sub-lattices modulo pm

In the previous section, we looked at the lattices that combine to give
the density plot of Qf,p(j, k). Here we look at the equivalent problem, when
we examine the density plot modulo pm.

We start with two definitions, which are the obvious extensions for the
definition of Λi in the previous section.

Definition. Let f(x) ∈ Q[x] be a polynomial of degree N whose reduction
mod p is irreducible, and let γ be a root of f in a finite extension of the
p-adic field Qp. We define

Λi,i′ = {(j, k) : (j, k) ∈ Λi and (j, k) ∈ Λi′}
= Λi ∩ Λi′
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and

Λi,i = {(j, k) : γj − γkpi ≡ 0 mod p2}

= {(j, k) : norm(γj − γkpi
) ≡ 0 mod p2N}

We can extend these definitions in a straightforward way to Λi1,i2,··· ,in .

6.1. Structure of Λi,i. If κ = 1, then Λi,i = pΛi; namely, Λi,i is the
sub-lattice of Λi of index p2 obtained by multiplying every vector in Λi by
p. If κ ≥ 2 then Λi = Λi,i.

This follows directly from Lemma 4.2, and noticing that γm − γnpi ≡
0 mod p2 if and only if γm−npi ≡ 1 mod p2.

6.2. Structure of Λi,i′. This is the more interesting case. Assume with-
out loss of generality that i < i′. Assume that (j, k) ∈ Λi,i′ . This then
implies that we have

(j, k) ∈ Λi ∩ Λi′

∈ 〈(0,Per), (1, pk−i)〉 ∩ 〈(0,Per), (1, pk−i′)〉

where Per = Perf (p). This in turn implies that

k = k1Per + j · pk−i

= k2Per + j · pk−i′

This in turn implies that

(k2 − k1)Per = j(pk−i − pk−i′)

hence
Per | j(pk−i − pk−i′)

We see that p is co-prime to Per as Per | pN − 1, hence we can rewrite this
to get

Per | j(pi′−i − 1)

Using a similar argument, we also get that

Per | k(pi′−i − 1)

Example. Consider the polynomial x3−x−1 mod 3. We see that this has
period 13. This in turn implies that if (j, k) ∈ Λi,i′ then j ≡ k ≡ 0 mod Per
as gcd(Per, 3i′−i− 1) = 1 for 0 ≤ i < i′ ≤ 2. In fact, we see in this case that
Λi,i′ = 〈(0,Per), (Per, 0)〉 is a square lattice. (See Figure 7.)
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(g) Lattice sum modulo 36

Figure 7. f = x3 − x− 1

7. Symmetry

A nice consequence of Sections 5 and 6 is that it helps explain some of
the symmetry that is observed. Let Per = Perf (p).

Theorem 7.1. If (j, k) ∈ Λi then (k, j) ∈ ΛN−i.

Proof. Assume that (k, j) ∈ Λi. This implies that γk = γjpi
mod p. Here

we can apply σN−i to both sides to get (γpN−i
)k = (γpN−i

)jpi which implies
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γkpN−i
= γjpipN−i which implies γkpN−i

= γj which implies (k, j) ∈ ΛN−i.
�

Theorem 7.2. If (j, k) ∈ Λi then (Per− j, Per− k) ∈ Λi.

Proof. As Λi is a lattice, then (j, k) ∈ Λi implies (−j,−k) ∈ Λi. By period-
icity this implies (Per− j, Per− k) ∈ Λi. �

Corollary 7.1. There is a symmetry along the line y = Per− x.

We get a further symmetry if p(x) is reciprocal.

Theorem 7.3. If f(x) is a reciprocal polynomial, and (j, k) ∈ Λi, then
there exists integers i1, i2 such that (j, Per−k) ∈ Λi1 and (Per−j, k) ∈ Λi2.

Proof. If γ is a root then so is 1/γ, which gives us the desired result. �

Corollary 7.2. If f(x) is reciprocal, then there is a symmetry along the
line y = Per/2 and along x = Per/2.

By observing that Λi1,··· ,in is an intersection and/or sub-lattice of lattices
of the form Λi′1,··· ,i′n−1

, we get that these symmetries results carry over to
higher powers of p by induction.

8. Comments and questions

The original motivation for this study was to see if this extended result of
Dobrowolski could be used to improve the bounds on the Mahler measure
of the polynomial. It was only after looking at the problem that we realized
how rich the area was, and we never followed up on the original motivation.
This would still be worthwhile doing.

Two other obvious generalizations of this problem would be looking at
Res(fj , gk) where f and g are not the same polynomial, and to look at
this problem where f , (or f and g) are multivariate polynomials instead of
univariate polynomials.
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