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Problems in additive number theory, II:
Linear forms and complementing sets

par Melvyn B. NATHANSON

Résumé. Soit ϕ(x1, . . . , xh, y) = u1x1 + · · · + uhxh + vy une
forme linéaire à coefficients entiers non nuls u1, . . . , uh, v. Soient
A = (A1, . . . , Ah) un h-uplet d’ensembles finis d’entiers et B un
ensemble infini d’entiers. Définissons la fonction de représentation
associée à la forme ϕ et aux ensembles A et B comme suit :

R
(ϕ)
A,B(n) = card


{

(a1, . . . , ah, b) ∈ A1 × · · · ×Ah ×B :

ϕ(a1, . . . , ah, b) = n
}

 .

Si cette fonction de représentation est constante, alors l’ensemble
B est périodique, et la période de B est bornée en termes du
diamètre de l’ensemble fini {ϕ(a1, . . . , ah, 0) : (a1, . . . , ah) ∈ A1 ×
· · ·×Ah}. D’autres résultats sur les ensembles se complétant pour
une forme linéaire sont également prouvés.

Abstract. Let ϕ(x1, . . . , xh, y) = u1x1 + · · · + uhxh + vy be
a linear form with nonzero integer coefficients u1, . . . , uh, v. Let
A = (A1, . . . , Ah) be an h-tuple of finite sets of integers and let
B be an infinite set of integers. Define the representation function
associated to the form ϕ and the sets A and B as follows :

R
(ϕ)
A,B(n) = card


{

(a1, . . . , ah, b) ∈ A1 × · · · ×Ah ×B :

ϕ(a1, . . . , ah, b) = n
}

 .

If this representation function is constant, then the set B is peri-
odic and the period of B will be bounded in terms of the diameter
of the finite set {ϕ(a1, . . . , ah, 0) : (a1, . . . , ah) ∈ A1 × · · · × Ah}.
Other results for complementing sets with respect to linear forms
are also proved.

This work was supported in part by grants from the NSA Mathematical Sciences Program
and the PSC-CUNY Research Award Program.
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inverse problems in additive number theory.



344 Melvyn B. Nathanson

1. Complementing sets

Let A and B be sets of integers, and let S(A,B) denote the sumset of
A and B, that is, S(A,B) = {a + b : a ∈ A and b ∈ B}. The pair (A,B)
is called a complementing pair if every element of the sumset S(A,B) has
a unique representation as the sum of an element of A and an element of
B. Equivalently, if a1, a2 ∈ A and b1, b2 ∈ B, and if a1 + b1 = a2 + b2,
then a1 = a2 and b1 = b2. If (A,B) is a complementing pair, then we write
A⊕B = S(A,B).

A classical problem in additive number theory is the study of comple-
menting pairs for the set of all integers, that is, pairs (A,B) such A⊕B = Z.
There are many beautiful results and open problems about complementing
sets for the integers. For example, if A is a finite set of integers and if B is
an infinite set of integers such that the pair (A,B) is complementing, then
B must be a periodic set, that is, a union of congruence classes modulo
m for some positive integer m (Newman [7]). There are upper and lower
bounds on the period m as a function of the diameter of the set A (Biro [1],
Kolountzakis [3], Ruzsa [11, Appendix], Steinberger [9]), but these bounds
are not sharp.

There are compactness arguments that prove that if a finite set A admits
a sequence {Bi}∞i=1 of finite sets that are complementary to arbitrarily long
intervals of integers, then A will have an infinite complement, that is, there
exists B such that A⊕B = Z.

In general, it is known that every pair (A,B) of complementing sets with
A finite must satisfy a certain cyclotomy condition, but it is a open problem
to determine if a finite set A of integers has a complement.

Complementing pairs have also been studied for sets of lattice points
(Hansen [2], Nathanson [5], Niven [8]). If (A,B) is a pair of sets of lattice
points such that A is finite and every lattice point has a unique represen-
tation in the form a+ b with a ∈ A and b ∈ B, then it is an open problem
to determine if the set B must be periodic (cf. Lagarias and Wang [4] and
Szegedy [10]).

The problem of complementing pairs for the set of integers is a special
case of the general problem of the representation of integers by linear forms.
The object of this paper is to introduce this problem and to initiate the
study of complementing sets of integers with respect to an arbitrary linear
form ϕ(x1, . . . , xh, y1, . . . , y`).
Notation. Let Z and N0 denote the set of integers and the set of nonnegative
integers, respectively. We denote the cardinality of the set S by |S| or by
card(S). We denote the integer part of the real number x by [x].
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2. Representation functions for linear forms

Let h ≥ 1 and let

ψ(x1, . . . , xh) = u1x1 + · · ·+ uhxh

be a linear form with nonzero integer coefficients u1, . . . , uh. Let

A = (A1, . . . , Ah)

be an h-tuple of sets of integers. The image of ψ with respect to A is the
set

ψ(A) = {ψ(a1, . . . , ah) : (a1, . . . , ah) ∈ A1 × · · · ×Ah} .
Then ψ(A) 6= ∅ if and only if Ai 6= ∅ for all i = 1, . . . , h. For ψ(A) 6= ∅, we
define the diameter of A with respect to ψ by

D
(ψ)
A = diam(ψ(A)) = sup(ψ(A))− inf(ψ(A)).

We have D(ψ)
A > 0 if and only if |Ai| > 1 for some i.

For every integer n, we define the representation function associated to
ψ by

R
(ψ)
A (n) = card ({(a1, . . . , ah) ∈ A1 × · · · ×Ah : ψ(a1, . . . , ah) = n}) .

Then n ∈ ψ(A) if and only if R(ψ)
A (n) > 0.

Let ` ≥ 1 and let

ω(y1, . . . , y`) = v1y1 + · · ·+ v`y`

be another linear form with nonzero integer coefficients v1, . . . , v`. Consider
the linear form

ϕ(x1, . . . , xh, y1, . . . , y`) = ψ(x1, . . . , xh) + ω(y1, . . . , y`).

Let A = (A1, . . . , Ah) be an h-tuple of sets of integers and let B =
(B1, . . . , B`) be an `-tuple of sets of integers. The image of ϕ with respect
to (A,B) is the set

ϕ(A,B) =ψ(A) + ω(B)

= {ψ(a1, . . . , ah) + ω(b1, . . . , b`) : (a1, . . . , ah) ∈ A1 × · · · ×Ah

and (b1, . . . , b`) ∈ B1 × · · · ×B`} .

We define the representation function associated to ϕ, A, and B by

R
(ϕ)
A,B(n) =card ({(a1, . . . , ah, b1, . . . , b`) ∈ A1 × · · · ×Ah ×B1 × · · · ×B` :

ϕ(a1, . . . , ah, b1, . . . , b`) = n}) .

If ` = 1 and B = (B), then we write ϕ(A,B) = ϕ(A, B) and R
(ϕ)
A,B(n) =

R
(ϕ)
A,B(n),
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Let A be an h-tuple of sets of integers and B an `-tuple of sets of integers.
The pair (A,B) is called complementing with respect to ϕ if R(ϕ)

A,B(n) = 1
for all n ∈ Z, that is, if every integer n has a unique representation in the
form n = ψ(a1, . . . , ah) + ω(b1, . . . , b`), where ai ∈ Ai for i = 1, . . . , h and
bj ∈ Bj for j = 1, . . . , `. The pair (A,B) is called t-complementing with
respect to ϕ if R(ϕ)

A,B(n) = t for all n ∈ Z.
Let A be an h-tuple of finite sets of integers. For every positive integer

m, we define the modular representation function associated to ψ by

R
(ψ)
A;m(n) = card ({(a1, . . . , ah) ∈ A1 × · · · ×Ah :

ψ(a1, . . . , ah) ≡ n (mod m)}) .

Then A is called t-complementing modulo m with respect to ψ if R(ϕ)
A;m(`) =

t for all ` ∈ {0, 1, . . . ,m− 1}.
The pair (A,B) is called periodic with respect to ϕ if the representation

function R(ϕ)
A,B is periodic, that is, if there is a positive integer m such that

R
(ϕ)
A,B(n + m) = R

(ϕ)
A,B(n) for all integers n. The pair (A,B) is eventually

periodic with respect to ϕ if the representation function R
(ϕ)
A,B is eventu-

ally periodic, that is, if there exist positive integers m and n0 such that
R

(ϕ)
A,B(n+m) = R

(ϕ)
A,B(n) for all integers n ≥ n0.

We consider the case ` = 1. Suppose that ϕ(x1, . . . , xh, y) =
ψ(x1, . . . , xh) + vy is a linear form with nonzero integer coefficients, and
that A is an h-tuple of finite sets of integers and B is a set of integers such
that the pair (A, B) is t-complementing with respect to ϕ. We shall prove
that the set B is periodic, and obtain an upper bound for the period of B
in terms of the diameter Dψ

A of the finite set ψ(A). We also obtain a cyclo-
tomic condition related to t-complementing sets modulo m, and describe a
compactness argument that allows us to solve an inverse problem related
to representation functions associated with linear forms.

The problem of complementing sets A ⊕ B = Z is the special case h =
1, ψ(x) = x, ω(y) = y, and ϕ(x, y) = x + y of the general problem of
representations of integers by linear forms.

3. Linear forms and periodicity

Theorem 1. Let h ≥ 1 and let

ψ(x1, . . . , xh) = u1x1 + · · ·+ uhxh

and

ϕ(x1, . . . , xh, y) = ψ(x1, . . . , xh) + vy
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be a linear forms with nonzero integer coefficients u1, . . . , uh, v. Let A =
(A1, . . . , , Ah) be an h-tuple of nonempty finite sets of integers, and let B
be an infinite set of integers. If the pair (A, B) is t-complementing respect
to ϕ, then B is periodic, that is, there is a positive integer m such that
B is a union of congruence classes modulo m. Moreover, m ≤ 2d, where
d = diam(ψ(A))/|v|.

Remark. In the case that h = t = 1, ψ(x) = x, and v = 1, then ϕ(x, y) =
x+ y and the Theorem specializes to a classical result of D. J. Newman [7]
for tiling by finite sets in additive number theory.

Proof. If v < 0, then we replace ϕ with −ϕ. Then R
(−ϕ)
A,B;m(n) =

R
(ϕ)
A,B;m(−n) = t for all n ∈ Z, and the pair (A, B) is t-complementing

respect to ϕ. Thus, we can assume without loss of generality that v ≥ 1.
If |Ai| = 1 for all i = 1, . . . , h, then card(ψ(A)) = 1. It follows that the

linear form ϕ is t-complementing if and only if t = v = 1 and B = Z, and
so the Theorem holds with m = 1. Thus, we can also assume that |Ai| > 1
for at least one i.

Let gmin = min (ψ(A)) and gmax = max (ψ(A)). Since |Ai| > 1 for some
i ∈ {1, 2, . . . , h}, it follows that gmin < gmax and

D
(ψ)
A = diam(ψ(A)) = gmax − gmin ≥ 1.

Let

Gmin = {(a1, . . . , ah) ∈ A1 × · · · ×Ah : ψ(a1, . . . , ah) = gmin}

and

Gmax = {(a1, . . . , ah) ∈ A1 × · · · ×Ah : ψ(a1, . . . , ah) = gmax} .
Then

|Gmin| = R
(ψ)
A (gmin) ≥ 1

and

|Gmax| = R
(ψ)
A (gmax) ≥ 1.

Let χB : R → {0, 1} denote the characteristic function of the set B, that
is,

χB(x) =

{
1 if x ∈ B
0 if x /∈ B.

We have
ϕ(a1, . . . , ah, b) = ψ(a1, . . . , ah) + vb = n

if and only if

b =
n− ψ(a1, . . . , ah)

v
∈ B.
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It follows that, for all n ∈ Z,

R
(ϕ)
A,B(n) =

∑
(a1,...,ah)∈A1×···×Ah

χB

(
n− ψ(a1, . . . , ah)

v

)

=
∑

(a1,...,ah)∈A1×···×Ah

(a1,...,ah)/∈Gmin

χB

(
n− ψ(a1, . . . , ah)

v

)

+ |Gmin|χB
(
n− gmin

v

)
.

Replacing n by vn+ gmin, we obtain the identity

R
(ϕ)
A,B(vn+ gmin) =

∑
(a1,...,ah)∈A1×···×Ah

(a1,...,ah)/∈Gmin

χB

(
vn+ gmin − ψ(a1, . . . , ah)

v

)

+ |Gmin|χB (n) .

Equivalently,

|Gmin|χB(n) =R(ϕ)
A,B(vn+ gmin)

−
∑

(a1,...,ah)∈A1×···×Ah

(a1,...,ah)/∈Gmin

χB

(
n− ψ(a1, . . . , ah)− gmin

v

)
.(1)

Since gmin < ψ(a1, . . . , ah) ≤ gmax for all h-tuples (a1, . . . , ah) /∈ Gmin, it
follows that

0 <
1
v
≤ ψ(a1, . . . , ah)− gmin

v
≤ gmax − gmin

v
.

Similarly,

R
(ϕ)
A,B(n) =

∑
(a1,...,ah)∈A1×···×Ah

(a1,...,ah)/∈Gmax

χB

(
n− ψ(a1, . . . , ah)

v

)
+

+ |Gmax|χB
(
n− gmax

v

)
.

Replacing n by vn+ gmax, we obtain

|Gmax|χB(n) =R(ϕ)
A,B(vn+ gmax)

−
∑

(a1,...,ah)∈A1×···×Ah

(a1,...,ah)/∈Gmax

χB

(
n+

gmax − ψ(a1, . . . , ah)
v

)
.(2)

Since gmin ≤ ψ(a1, . . . , ah) < gmax for (a1, . . . , ah) /∈ Gmax, it follows that

0 <
1
v
≤ gmax − ψ(a1, . . . , ah)

v
≤ gmax − gmin

v
.
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Define the nonnegative integer

d =
[

diam(ψ(A))
v

]
=

[
gmax − gmin

v

]
.

Formulae (1) and (2) enable us to use the representation function R(ϕ)
A,B to

compute the characteristic function χB recursively for all integers n if we
know the value of χB for any d consecutive integers.

If the pair (A, B) is t-complementing with respect to ϕ, then R(ϕ)
A,B(n) = t

for all n ∈ Z, and we can rewrite the recursion formulae (1) and (2) in the
form

χB(n) =
1

|Gmin|

t− ∑
(a1,...,ah)∈A1×···×Ah

(a1,...,ah)/∈Gmin

χB

(
n− ψ(a1, . . . , ah)− gmin

v

)
and

χB(n) =
1

|Gmax|

t− ∑
(a1,...,ah)∈A1×···×Ah

(a1,...,ah)/∈Gmax

χB

(
n+

gmax − ψ(a1, . . . , ah)
v

) .

Consider the d-tuple

B(j) = (χB(j), χB(j + 1), . . . , χB(j + d− 1)) ∈ {0, 1}d.

Since there only 2d binary sequences of length d, it follows from the pigeon-
hole principle that there are integers j1, j2 such that 0 ≤ j1 < j2 ≤ 2d and
B(j1) = B(j2). Let m = j2 − j1. Then

1 ≤ m ≤ 2d

and χB(n) = χB(n+m) for n = j1, . . . , j1 + d− 1. The recursion formulae
imply that χB(n) = χB(n + m) for all integers n. This completes the
proof. �

4. Linear forms and cyclotomy

Theorem 2. Let h ≥ 1 and let

ψ(x1, . . . , xh, y) = u1x1 + · · ·+ uhxh

be a linear form with nonzero integer coefficients u1, . . . , uh, . Let A =
(A1, . . . , Ah) be an h-tuple of nonempty finite sets of integers. Consider
the Laurent polynomials

FAi(z) =
∑
ai∈Ai

zai for i = 1, . . . , h.
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For m ≥ 1, define the polynomial

Λm(z) = 1 + z + z2 + · · ·+ zm−1.

The h-tuple A is t-complementing modulo m with respect to ψ if and only
if

(3) zLFA1(z
u1) · · ·FAh

(zuh) ≡ tΛm(z) (mod zm − 1)

where L is any nonnegative integer such that zLFA1(z
u1) · · ·FAh

(zuh) is a
polynomial.

Proof. The function

F (z) = FA1(z
u1) · · ·FAh

(zuh)

is a nonzero Laurent polynomial with integer coefficients. Choose a non-
negative integer L such that zLF (z) is a polynomial.

The sets A1, . . . , Ah are finite, and so ψ(A) is finite. We have R(ψ)
A (n) ≥ 1

if and and only if n ∈ ψ(A). For ` = 0, 1, . . . ,m− 1, we consider the finite
set

I` = {i ∈ Z : R(ψ)
A (`+ im) ≥ 1}.

Since FAi(z
ui) =

∑
ai∈Ai

zuiai for i = 1, . . . , h, it follows that

F (z) = FA1(z
u1) · · ·FAh

(zuh)

=
∑
a1∈A1

· · ·
∑

ah∈Ah

zu1a1+···+uhah

=
∑
a1∈A1

· · ·
∑

ah∈Ah

zψ(a1,...,ah)

=
∑

n∈ψ(A)

R
(ψ)
A (n)zn

=
m−1∑
`=0

∑
n∈ψ(A)

n≡` (mod m)

R
(ψ)
A (n)zn

=
m−1∑
`=0

∑
i∈I`

R
(ψ)
A (`+ im)z`+im.

Since

zLF (z) =
m−1∑
`=0

∑
i∈I`

R
(ψ)
A (`+ im)z`+L+im

is a polynomial, it follows that `+ L+ im ≥ 0 for all ` ∈ {0, 1, . . . ,m− 1}
and i ∈ I`. Applying the division algorithm for integers, we can write

`+ L = α(`) + β(`)m
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where 0 ≤ α(`) ≤ m−1 for ` = 0, 1, . . . ,m−1. Moreover, if ` 6≡ `′ (mod m),
then α(`) 6= α(`′) and so

{α(0), α(1), . . . , α(m− 1)} = {0, 1, . . . ,m− 1}.

Equivalently,
m−1∑
`=0

zα(`) =
m−1∑
`=0

z` = Λm(z).

If i ∈ I`, then the inequality

`+ L+ im = α(`) + (β(`) + i)m ≥ 0

implies that β(`) + i ≥ 0. Therefore, for each ` ∈ {0, 1, . . . ,m− 1} there is
a polynomial p`(z) with nonnegative integral coefficients such that∑

i∈I`

R
(ψ)
A (`+ im)z`+L+im =

∑
i∈I`

R
(ψ)
A (`+ im)zα(`)+(β(`)+i)m

=
∑
i∈I`

R
(ψ)
A (`+ im)zα(`) (1 + (zm − 1))β(`)+i

=
∑
i∈I`

R
(ψ)
A (`+ im)zα(`) + (zm − 1)p`(z)

= R
(ψ)
A,m(`)zα(`) + (zm − 1)p`(z).

It follows that

zLF (z) =
m−1∑
`=0

∑
i∈I`

R
(ψ)
A (`+ im)z`+L+im

=
m−1∑
`=0

R
(ψ)
A,m(`)zα(`) + (zm − 1)

m−1∑
`=0

p`(z)

= rL(z) + (zm − 1)qL(z),

where

qL(z) =
m−1∑
`=0

p`(z)

and

rL(z) =
m−1∑
`=0

R
(ψ)
A,m(`)zα(`).

Since the degree of the polynomial rL(z) is at most m − 1, the division
algorithm for polynomials implies that this representation of zLF (z) is
unique.
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Suppose that A = (A1, . . . , Ah) is a t-complementing h-tuple modulo m.
Then RA,m(`) = t for all `, and

rL(z) =
m−1∑
`=0

tzα(`) = t
m−1∑
`=0

z` = tΛm(z).

Therefore,
zLF (z) = tΛm(z) + (zm − 1)qL(z)

and condition (3) is satisfied.
Conversely, suppose that the generating functions FA1(z), . . . , FAh

(z)
satisfy condition (3) for some nonnegative integer L. By the uniqueness
of the polynomial division algorithm, we have

m−1∑
`=0

tz` = tΛm(z) = rL(z) =
m−1∑
`=0

R
(ψ)
A,m(`)zα(`).

Since
{α(0), α(1), . . . , α(m− 1)} = {0, 1, . . . ,m− 1},

it follows that R
(ψ)
A,m(`) = t for all ` ∈ {0, 1, . . . ,m − 1}, and so A =

(A1, . . . , Ah) is a t-complementing h-tuple modulo m. This completes the
proof. �

5. An inverse problem for linear forms

Let ϕ(x1, . . . , xh, y) be a form in h+1 variables and let f : Z → N0∪{∞}
be a function. If A = (A1, . . . , Ah) is an h-tuple of sets of integers, does
there exist a set B such that the pair (A, B) satisfies R(ϕ)

A,B(n) = f(n) for
all n ∈ Z? This is the complementing set inverse problem for representation
functions associated to linear forms. In this section we use a compactness
argument to obtain a result in the case that A = (A1, . . . , Ah) is an h-tuple
of finite sets.

Theorem 3. Let h ≥ 1 and let

ϕ(x1, . . . , xh, y) = u1x1 + · · ·+ uhxh + vy

be a linear form with nonzero integer coefficients u1, . . . , uh, v. Let A =
(A1, . . . , Ah) be an h-tuple of nonempty finite sets of integers. Let f : Z →
N0∪{∞} be a function. Suppose that there is a strictly increasing sequence
{kN}∞N=1 of positive integers with the property that, for every N ≥ 1, there
exists a set BN of integers that satisfies

R
(ϕ)
A,BN

(n) = f(n) for |n| ≤ kN .

Then there exists a set B such that

R
(ϕ)
A,B(n) = f(n) for all n ∈ Z.
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Proof. Since kN ≥ N for allN ≥ 1, we can assume without loss of generality
that kN = N.

Consider the linear form

ψ(x1, . . . , xh) = u1x1 + · · ·+ uhxh

Then
ϕ(a1, . . . , ah, b) = ψ(a1, . . . , ah) + vb

for all integers a1, . . . , ah, b. Moreover, since the sets A1, . . . , Ah are finite,
there is a positive integer g∗ such that ψ(A) ⊆ [−g∗, g∗]. If (a1, . . . , ah) ∈
A1 × · · · ×Ah, if b ∈ Z, and if ϕ(a1, . . . , ah, b) = n ∈ [−N,N ], then

|b| =
∣∣∣∣n− ψ(a1, . . . , ah)

v

∣∣∣∣ ≤ |n|+ |ψ(a1, . . . , ah)|
|v|

≤ N + g∗

|v|
.

Replacing the set BN with BN∩[−(N+g∗)/|v|, (N+g∗)/|v|], we can assume
without loss of generality that

BN ⊆
[
−N + g∗

|v|
,
N + g∗

|v|

]
for all N ≥ 1.

We shall construct inductively a sequence {B′
N}∞N=1 of finite sets with

the following properties:
(1) B′

N ⊆ B′
N+1 for all N ≥ 1,

(2) For every positive integer N we have

R
(ϕ)
A,B′

N
(n) = f(n) for |n| ≤ N

(3) For every positive integer N there is a strictly increasing sequence
{Mj,N}∞j=1 of positive integers such that N ≤ M1,N and B′

N ⊆
BMj,N

for all j ≥ 1.
We begin by constructing the set B′

1. If (a1, . . . , ah) ∈ A1 × · · · × Ah, if
b ∈ Z, and if ϕ(a1, . . . , ah, b) ∈ [−1, 1], then |b| ≤ (1+g∗)/|v|. For all N ≥ 1
we have R(ϕ)

A,BN
(n) = f(n) for |n| ≤ N, and so R(ϕ)

A,BN
(n) = f(n) for |n| ≤ 1.

Let
B

(1)
N = BN ∩

[
−1 + g∗

|v|
,
1 + g∗

|v|

]
for N ≥ 1. Then

{
B

(1)
N

}∞
N=1

is an infinite sequence of subsets of the finite
set [−(1 + g∗)/|v|, (1 + g∗)/|v|] ∩ Z. By the pigeonhole principle, there is
a strictly increasing sequence of positive integers {Mj,1}∞j=1 and a set B′

1

such that
B′

1 = B
(1)
Mj,1

⊆ BMj,1

for all j ≥ 1. The set B′
1 and the sequence {Mj,1}∞j=1 satisfy proper-

ties (1), (2), and (3).



354 Melvyn B. Nathanson

Suppose that we have constructed an increasing sequence of sets B′
1 ⊆

B′
2 ⊆ · · · ⊆ B′

N and sequences {Mj,k}∞j=1 for k = 1, . . . , N that satisfy
properties (1), (2), and (3). For j ≥ 1 we define the finite set

B
(N+1)
Mj,N

= BMj ,N ∩
[
−N + 1 + g∗

|v|
,
N + 1 + g∗

|v|

]
.

Then
{
B

(N+1)
Mj,N

}∞
j=1

is an infinite sequence of subsets of the finite set [−(N+

1+g∗)/|v|, (N+1+g∗)/|v|]∩Z. By the pigeonhole principle, there is a strictly
increasing sequence {Mj,N+1}∞j=1 of positive integers and a set B′

N+1 such
that N + 1 ≤M1,N+1 and

B′
N ⊆ B′

N+1 = B
(N+1)
Mj,N+1

⊆ BMj,N+1

for all j ≥ 1. Properties (1), (2), and (3) are satisfied for N + 1. This com-
pletes the induction. Moreover, the set B =

⋃∞
N=1B

′
N satisfies R(ϕ)

A,B(n) =
f(n) for all n ∈ Z. This completes the proof. �

Theorem 4. Let h ≥ 1 and ϕ(x1, . . . , xh, y) = u1x1 + · · · + uhxh + y.
Let A = (A1, . . . , Ah) be an h-tuple of nonempty finite sets of integers and
let t ≥ 1. Suppose that there is a strictly increasing sequence {kN}∞N=1 of
positive integers such that, for every N ≥ 1, there exists a set BN of integers
and a set IN consisting of 2kN + 1 consecutive integers such that

RA,BN
(n) = t for n ∈ IN .

Then there exists a set B such that

RA,B(n) = t for all n ∈ Z.

Proof. For every integer N ≥ 1, there is an integer cN such that IN =
[cN −kN , cN +kN ]∩Z. Replace the set BN with the set BN −cN and apply
Theorem 3. This completes the proof. �

A related result appears in Nathanson [6].
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