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Permuting the partitions of a prime

par Stéphane VINATIER

Résumé. Étant donné un nombre premier p impair, on caracté-
rise les partitions ` de p à p parts positives ou nulles `0 ≥ `1 ≥
. . . ≥ `p−1 ≥ 0 pour lesquelles il existe des permutations σ, τ

de l’ensemble {0, . . . , p − 1} telles que p divise
∑p−1

i=0 i`σ(i) mais
ne divise pas

∑p−1
i=0 i`τ(i). Cela se produit si et seulement si le

nombre maximal de parts égales de ` est strictement inférieur à
p − 2. Cette question est apparue en manipulant des sommes de
puissances p-ièmes de résolvantes, en lien avec un problème de
structure galoisienne.

Abstract. Given an odd prime number p, we characterize the
partitions ` of p with p non negative parts `0 ≥ `1 ≥ . . . ≥ `p−1 ≥
0 for which there exist permutations σ, τ of the set {0, . . . , p− 1}
such that p divides

∑p−1
i=0 i`σ(i) but does not divide

∑p−1
i=0 i`τ(i).

This happens if and only if the maximal number of equal parts of `
is less than p− 2. The question appeared when dealing with sums
of p-th powers of resolvents, in order to solve a Galois module
structure problem.

1. Formulation of the main result

Let p denote an odd prime number and consider the set C of all p-uples
` = (`0, `1, . . . , `p−1) of non negative integers such that

`0 + `1 + · · ·+ `p−1 = p .

We call the elements of the set C the compositions of p and the integers `i

appearing in the composition ` its parts, even for the zero ones. The length
of the composition ` is the number of its non zero parts.

Let S denote the permutation group of {0, 1, . . . , p − 1}. We let S act
on C through its action on the indices of the compositions:

σ(`) = (`σ(0), `σ(1), . . . , `σ(p−1))

for all σ ∈ S, ` ∈ C. Each coset of C for this action has a unique represen-
tative with non increasing parts:

`0 ≥ `1 ≥ · · · ≥ `p−1 ;

Mots clefs. Partitions of a prime; sums of resolvents; multinomials.
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such a composition is called a partition of p. We shall also call partition its
coset and we let P denote the set of all partitions of p.

Given a composition `, we are interested in the divisibility by p of the
sum S(`) of its parts multiplied by their index:

S(`) =
p−1∑
i=0

i`i .

The main result of this paper is a characterization of the cosets that contain
compositions ` for which S(`) is divisible by p and compositions for which
it is not. In other words, we are interested in determining those partitions
` ∈ P such that:

(1) ∃ σ, τ ∈ S, p | S(σ(`)) and p 6 | S(τ(`)) .

Considering the most basic partitions of p, (p, 0, . . . , 0) and (1, . . . , 1),
one sees at once that p divides S(σ(`)) for all σ ∈ S in both cases. At
the contrary, using the fact that p is prime, one checks that p never divides
S(σ(`)) when ` is chosen among the partitions of the kind (p−k, k, 0, . . . , 0),
1 ≤ k ≤ p−1

2 or ` = (2, 1, . . . , 1, 0). All these “basic” partitions are clearly
characterized by the fact that their maximal number of equal parts, denoted
m(`), is at least p− 2. Indeed the main result states that they are the only
ones that do not satisfy condition (1).

In order to get one further characterization, let ek(`) denote, for 0 ≤ k ≤
p, the number of parts of ` equal to k:

ek(`) = #{0 ≤ i ≤ p− 1 | `i = k} .

Obviously, m(`) = max{ek(`), 0 ≤ k ≤ p− 1}. Consider the p-uple:

e(`) =
(
e0(`), . . . , ep−1(`)

)
.

If ` is distinct from (p, 0, . . . , 0), all its parts are less than p; their total
number is always p in our setting, therefore e(`) is a composition of p,
namely

p−1∑
k=0

ek(`) = p .

Further we note e(`)! = e0(`)! · e1(`)! · · · ep−1(`)! ; this expression equals the
cardinal of the stabilizer of ` under the action of S. The main result is as
follows.

Theorem. Let ` be a partition of p. The following assertions are equivalent:

(i) ∃ σ, τ ∈ S such that p | S(σ(`)) and p 6 | S(τ(`)) ;
(ii) m(`) < p− 2 ;
(iii) e(`)! < (p− 2)! .
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We prove the Theorem in section 3. The heart of the proof is Lemma 3.2,
which is proven in two parts, depending on the length of `, both elementary.
One more characterization, involving a larger family of partitions, will be
given in section 4.

Such problems about “permuted partitions” do not seem to have ap-
peared in combinatorics or in number theory so far; in particular, the very
rich account on the theory of partitions by Andrews [A] does not mention
such questions. In section 2, we explain how this problem came up while
trying to compute sums of p-th powers of resolvents (in order to solve a
Galois module structure question), starting from case p = 3 where the com-
putation is a part of Lagrange’s resolvent method to solve the general cubic
equation.

Applications of this result will be given in a forthcoming paper, in terms
of arrangements of hyperplanes over the finite field with p elements Fp.

2. A motivation for the main result

Lagrange’s resolvent method for the cubic equation has the following
pattern. Let t0, t1, t2 denote the roots of a given monic cubic polynomial
P in some fixed algebraic closure of the base field, let ζ denote a primitive
cubic root of unity and define

y = t0 + ζt1 + ζ2t2 , z = t0 + ζ2t1 + ζt2 .

Then y3 and z3, the Lagrange resolvents, are the roots of a polynomial of
degree 2 which coefficients are invariant under the permutation group of
{t0, t1, t2}, hence can be expressed in terms of the coefficients of P . There-
fore y3 and z3 have an expression in terms of these coefficients, from which
one easily deduces one for t0, t1, t2 (see [DM] for technical and historical
details). The coefficients of the degree 2 polynomial are y3 + z3 and y3z3

and are both easy to compute. In particular,

y3 + z3 = 2σ3
1 − 9σ1σ2 + 27σ3 ,

where σ1, σ2, σ3 denote the elementary symmetric functions of the roots
and equal the coefficients of P modulo a sign.

Considering the analogous computation when 3 is replaced by any odd
prime p may be of some interest. Given p conjugate numbers(1) t0, t1, . . . ,
tp−1 and a primitive p-th root of unity ζ, one may define generalized resol-
vents

yk =
p−1∑
i=0

ζikti , 1 ≤ k ≤ p− 1 ,

(1)t0, t1, . . . , tp−1 may equally be considered as indeterminates in fact.
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and may be willing to compute the sum of their p-th powers

yp
1 + yp

2 + · · ·+ yp
p−1 =

p−1∑
k=1

( p−1∑
i=0

ζikti
)p

.

Of course for p greater than 3, this expression is no longer symmetric under
the permutation group of {t0, . . . , tp−1}, hence not expressible in terms of
the elementary symmetric functions. Yet a sum of such expressions appears
in [V], and it is shown that its valuation at p bears information about the
Galois module structure of the “square root of the inverse different” ideal
of a weakly ramified p-extension of the rationals. In that paper, the author
was able to achieve the computation only in the case p = 3, using the above
calculation.

Developping the p-th power with the help of Newton’s multinomial for-
mula yields

yp
1 + · · ·+ yp

p−1 =
p−1∑
k=1

∑
`∈C

p!
`!

p−1∏
i=0

(
ζikti

)`i

,

where we let `! denote the product of the factorials of the parts of `:

`! = `0! · `1! · · · `p−1! ,

so p!/`! equals the multinomial coefficient
( p
`0,...,`p−1

)
. Since this coefficient

only depends on the partition containing `, we index the second sum by
partitions instead of compositions and use the action of S on partitions to
recover all the compositions. Taking into account the fact that a composi-
tion ` is fixed by exactly e(`)! permutations (this number also only depends
on the partition containing `), we get

yp
1 + · · ·+ yp

p−1 =
p−1∑
k=1

∑
P×S

p!
`! e
(
`
)
!

( p−1∏
i=0

(
ζikti

)`σ(i)
)

,

where the second sum is on couples (`, σ) ∈ P ×S. Further

p−1∏
i=0

(
ζikti

)`σ(i)

= ζk
∑p−1

i=0
i`σ(i) ·

p−1∏
i=0

t
`σ(i)

i and
p−1∑
k=1

ζk
∑p−1

i=0
i`σ(i) = p−1 or −1,
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depending on whether p divides S(σ(`)) =
∑p−1

i=0 i`σ(i) or not, hence

yp
1 + · · ·+ yp

p−1 =
∑
P×S

p!
`! e
(
`
)
!

( p−1∏
i=0

t
`σ(i)

i

)( p−1∑
k=1

ζk
∑p−1

i=0
i`σ(i)

)

= (p− 1)
∑
P×S

p!
`! e
(
`
)
!

p−1∏
i=0

t
`σ(i)

i − p
∑

(P×S)∗

p!
`! e
(
`
)
!

p−1∏
i=0

t
`σ(i)

i

= (p− 1)(t0 + · · ·+ tp−1)p − p
∑

(P×S)∗

p!
`! e
(
`
)
!

p−1∏
i=0

t
`σ(i)

i ,

where the subscript (P ×S)∗ means that (`, σ) runs among the couples in
P ×S such that p does not divide S(σ(`)).

It now clearly appears that the non-symmetric aspect of the expression
yp
1+· · ·+yp

p−1 is linked to the existence of partitions of p satisfying condition
(1). This happens as soon as p is greater than 3, as is easily deduced from
the Theorem, for which we shall now give a proof.

3. The proof of the main result

Let ` denote a partition of p. Recall that the Theorem states the equiv-
alence of the following assertions:

(i) ∃ σ, τ ∈ S such that p | S(σ(`)) and p 6 | S(τ(`)) ;
(ii) the maximal number of equal parts of ` satisfies: m(`) < p− 2 ;
(iii) the cardinal of the stabilizer of ` under S satisfies: e(`)! < (p−2)! .

Proof. First assume assertion (ii) is not satisfied, namely m(`) ≥ p − 2,
then m(`) = e0(`) or e1(`), and ` is one of the “basic partitions” listed
above the Theorem in section 1, hence does not satisfy assertion (i). Further
m(`)! | e(`)!, hence (iii) is not satisfied either.

Let us show now that (ii) ⇒ (iii). First notice that (ii) never occurs when
p = 3. If p ∈ {5, 7}, the implication is easily verified by considering each
partition of p separately. For the general case we use the following result.

Lemma 3.1. Assume p ≥ 11. Let d = (d0, . . . , dp−1) be a partition of p of
length s, such that di ≤ p− 3 for all i, then

p!
d!

> 2s−2p(p− 1) .

Proof. We shall prove the lemma by induction on s. The case s = 1 is
irrelevant here. If s = 2, p!

d! equals the binomial coefficient
( p
d0

)
. Since 3 ≤

d0 ≤ p− 3, (
p

d0

)
≥
(

p

3

)
= p(p− 1)

p− 2
6

.
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Further p−2
6 > 1 when p > 8, hence the result.

Assume the result is true for some s ≥ 2 and let d = (d0, . . . , ds, 0, . . . , 0)
denote a partition of p with s+1 non zero parts, all at most p−3. Then we
claim that ds−1+ds ≤ p−3. Otherwise, one would have di ≥ ds−1+ds

2 > p−3
2

for all 0 ≤ i ≤ s− 1, and

p = (d0 + · · ·+ ds−2) + (ds−1 + ds) > (s− 1)
p− 3

2
+ (p− 3) ,

which implies p < 3 + 6
s−1 ≤ 9 and contradicts our hypothesis about

p. We apply the induction hypothesis to the partition in the coset of
(d0, . . . , ds−2, ds−1 + ds, 0, . . . , 0), it yields

p!
d!

=
p!

d0! . . . ds−2!(ds−1 + ds)!
(ds−1 + ds)!

ds−1!ds!
> 2s−2p(p− 1)

(ds−1 + ds)!
ds−1!ds!

.

Notice that (ds−1+ds)!
ds−1!ds!

≥ ds−1 + ds ≥ 2 to end the proof of the lemma. �

Under assertion (ii), ` is distinct from (p, 0 . . . , 0), hence we may consider
the partition d of p in the coset of e(`); since m(`) = max{ek(`), 0 ≤ k ≤
p−1}, all the parts of d are less than p−2 (and s is at least 2). The lemma
yields:

e(`)! = d! <
(p− 2)!

2s−2
,

hence assertion (iii) is verified.
We now have to prove (ii) ⇒ (i). We assume again p 6= 3 and we denote

by s the length of `; then s = p − e0(`) and one easily checks that, under
condition (ii), 3 ≤ s ≤ p− 2.

Lemma 3.2. Let ` be a partition of p with length s satisfying 3 ≤ s ≤ p−2.
Then there exist s distinct numbers a0, . . . , as−1 ∈ {0, . . . , p− 1} such that

a0`0 + · · ·+ as−1`s−1 ≡ 0 mod p .

Proof. We first prove the assertion for 3 ≤ s ≤ p+1
2 by induction on s. If

s = 3, take any a0 ∈ {0, . . . , p− 1}, then let a1, a2 ∈ {0, . . . , p− 1} be such
that a1 ≡ `2 + a0 mod p and a2 ≡ −`1 + a0 mod p to get the result.

Assume the assertion is true for the partitions of p of length s−1 (s ≥ 4).
Then there exist s− 1 distinct numbers a0, . . . , as−2 in {0, . . . , p− 1} such
that

a0`0 + · · ·+ as−2(`s−2 + `s−1) ≡ 0 mod p .

Further we may assume as−2 6= 0, since the same relation is satisfied by
the numbers a0 +1, . . . , as−2 +1. Let d denote the greatest common divisor
of `s−2 and `s−1, and let a, b ∈ Z be such that a`s−2 + b`s−1 = d (Bézout
relationship); further set α = `s−2

d , β = `s−1

d and γ = α + β. Then the
couples (x, y) ∈ Z2 satisfying x`s−2 + y`s−1 = d are exactly those for which
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there exists n ∈ Z such that x = a−nβ and y = b + nα. Since α and β are
invertible modulo p, x and y may take any value modulo p. Further

x ≡ y mod p ⇔ γn ≡ a− b mod p ,

hence x 6≡ y mod p occurs for p − 1 values of the residue of n modulo p.
Eventually, as−2(`s−2 + `s−1) = as−2γd = as−2γx`s−2 + as−2γy`s−1 and
as−2γx 6≡ as−2γy mod p simultaneously occur for p − 1 couples (x, y) ∈
{0, . . . , p − 1}2. There remain p − 1 − (s − 2) such couples if one requires
further that as−2γx 6≡ a0, . . . , as−3 mod p. Since s ≤ p+1

2 implies p − 1 −
(s − 2) > s − 2, at least one of the values of y is such that as−2γy is also
distinct from the ai mod p for 0 ≤ i ≤ s−3, hence the result when s ≤ p+1

2 .

We now consider the case p+3
2 ≤ s ≤ p−2. This assumption is equivalent

to

2 ≤ e0(`) = p− s ≤ p− 3
2

.

Further, one easily checks that e1(`) ≥ s− (p−s) = p−2e0(`) ≥ 3: starting
from the partition (1, . . . , 1), one has to move p− s parts to get a partition
of length s. Consider the sum S0 = 0× `0 + 1× `1 + · · ·+ (s− 1)`s−1. Each
of the `i equals 1 when s − e1 ≤ i ≤ s − 1, hence replacing the coefficient
i of `i in S0 by ai = i + 1 for the last t (≤ e1) values of i changes S0

to St = S0 + t. This can be done for any t ∈ {0, . . . , e1}. If t > 0, the
largest coefficient in St is as−1 = s, hence ≤ p− 2, so we may perform the
operation again without any collision among coefficients modulo p, at most
p− 1− (s− 1) = e0 times. Hence we are able to transform S0 into a sum S
taking any integer value between S0 and S0 +e0e1 (included), with distinct
coefficients mod p.

From the above, we know that e0e1 ≥ pe0− 2e2
0; when p ≥ 11, one easily

shows under our assumption that e0 lies in the interval where the trinomial
−2e2

0 + pe0 − p is positive. Hence for p ≥ 11, S can be chosen congruent to
0 mod p, with distinct coefficients ai mod p as required. The result is easily
checked for p ∈ {5, 7}. �

The proof of (ii) ⇒ (i) is almost finished. Assuming m(`) ≤ p − 3, the
Lemma shows the existence of σ ∈ S such that p | S(σ(`)) =

∑p−1
i=0 i`σ(i),

taking σ such that σ−1(i) = ai for 0 ≤ i ≤ s−1 (since `s = · · · = `p−1 = 0).
Since the parts `i are not all equal (otherwise m(`) = p), let j, k be such
that `σ(j) 6= `σ(k) and let τ ∈ S be the product of σ with the transposition
(j, k). Then

p−1∑
i=0

i`τ(i) =
p−1∑
i=0

i`σ(i) + (j − k)
(
`σ(k) − `σ(j)

)
6≡ 0 mod p ,
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since `σ(k) − `σ(j) ≡ 0 mod p can only occur when ` = (p, 0, . . . , 0), which
contradicts our hypothesis. This ends the proof of the Theorem. �

Remark. The two parts of the proof of Lemma 3.2, which is the heart of
the proof of the Theorem, correspond to two different kinds of partitions:
the first case (s ≤ p+1

2 ) deals with partitions of small length, hence there
are not too many distinct coefficients to find compared to the number of
possibilities, whereas the second case deals with partitions of large length,
in which case we use the fact that a large number of parts equal 1. Thus the
proof is entirely different in the two cases, and one may wonder whether
there exists a unifying proof.

The author is not able to give one at the moment. Instead, we shall
give in the next section one more characterization of partitions satisfying
condition (1) or, almost equivalently, satisfying the conclusion of Lemma
3.2. It involves a larger family of partitions.

4. Around the main result: “derived” partitions

As we have noticed above, given a partition L of p which is distinct
from (p, 0, . . . , 0), the associated p-uple e(L) =

(
e0(L), . . . , ep−1(L)

)
is a

composition of p. Consider the sum S(e(L)): in
∑p−1

k=0 kek(L), each integer
k appears ek(L) times as in L, hence

p−1∑
k=0

kek

(
L
)

=
p−1∑
i=0

Li = p .

Consequently, the conclusion of Lemma 3.2 becomes obvious for ` if there
exists a partition L of p distinct from (p, 0, . . . , 0) such that ` is the partition
in the coset of e(L).

Let us say that ` derives from L in this situation, that is when there
exists σ ∈ S such that σ(`) = e(L). More precisely, one has the following
equivalence.

Lemma 4.1. A partition ` of p derives from a partition of p if and only if
there exists σ ∈ S such that S(σ(`)) = p.

Proof. If ` derives from L, let σ ∈ S be such that σ(`) = e(L), then
S(σ(`)) = p. If S(σ(`)) = p for some σ ∈ S, let

L = (p− 1, . . . , p− 1, p− 2, . . . , p− 2, . . . , 1, . . . , 1, 0, . . . , 0) ,

where each 0 ≤ i ≤ p−1 appears `σ(i) times. One easily checks that L ∈ P,
and that ` derives from it. �

For instance, the partition (5, 1, 1, 0, . . . , 0) of 7 derives from (4, 3, 0, . . . ,
0), for which e0 = 5 and e3 = e4 = 1, hence we get that 0×5+3×1+4×1 = 7;
the conclusion of Lemma 3.2 is true for the partitions (p, 0, . . . , 0) and
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(1, . . . , 1) (even though the assumptions are not), and the first one is derived
from the second. But, except if p = 3, there is no partition of p from which
(1, . . . , 1) would derive. More generally we show the following criterium.

Lemma 4.2. Assume p > 3 and ` derives from a partition of p, then the
length s of ` satisfies:

s ≤ 1 +
√

8p− 7
2

.

This implies in particular s ≤ p−1
2 when p ≥ 11.

Proof. By Lemma 4.1, there exists a permutation σ ∈ S such that
S(σ(`)) = p, hence

∑p−1
i=0 σ−1(i)`i = p; in other words there exist s dis-

tinct numbers ai ∈ {0, . . . , p− 1} such that
s−1∑
i=0

ai`i = p .

The smallest sum
∑s−1

i=0 ai`i with distinct coefficients ai ∈ {0, . . . , p− 1} is
obtained when choosing ai = i for all i, namely when affecting the biggest
parts with the smallest coefficients. Further, since (1, . . . , 1) does not derive
from any partition of p (here p 6= 3), one has e1(`) ≤ s− 1 hence

s−1∑
i=0

ai`i ≥
s−1∑
i=1

i`i ≥ 2 +
s−1∑
i=2

i = 1 +
s(s− 1)

2
,

which is larger than p when s > 1+
√

8p−7
2 . �

The condition on the length given in the Lemma is not a sufficient one,
even when adding the obvious condition s 6= 2: for p = 7, it yields s ≤ 4,
but (2, 2, 2, 1, 0, 0, 0) is not derived from any partition of 7. Nevertheless, it
is optimal since (3, 2, 1, 1, 0, 0, 0) is derived from itself (analogous examples
may be found for p = 11).

Even so, the conclusion of Lemma 3.2 is true for (2, 2, 2, 1, 0, 0, 0) as well
as for (1, . . . , 1), hence there are in both cases distinct numbers ai such that
p divides

∑s−1
i=0 ai`i. Let σ ∈ S be such that σ−1(i) = ai for 0 ≤ i ≤ s− 1,

we get p | S(σ(`)), and we may build a non increasing p-uple L as in the
proof of Lemma 4.1. The difference is that the sum of the parts of L is now
divisible by p, but not necessarily equal to p.

Define a partition of a multiple of p with p parts to be a p-uple of non
negative integers (L0, . . . ,Lp−1) such that L0 ≥ L1 ≥ · · · ≥ Lp−1 and
L0 + L1 + · · · + Lp−1 = np for some positive integer n. Given such an L,
say that a partition ` of p derives from L if there exists σ ∈ S such that

σ(`) =
(
e0(L), . . . , ep−1(L)

)
.
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Notice that the parts of L have to be all less than p for this to happen. The
proof of Lemma 4.1 readily extends to show the following.

Lemma 4.3. A partition ` of p derives from a partition of a multiple of p
if and only if there exists σ ∈ S such that p | S(σ(`)).

For instance (2, 2, 2, 1, 0, 0, 0) derives from the partition of 14 with 7 parts
(5, 5, 2, 1, 1, 0, 0); (1, . . . , 1) derives from the partition of p(p−1)

2 with p parts
(p− 1, p− 2, . . . , 1, 0).

The study of the basic partitions and the help of the Theorem yield the
following new characterization.

Corollary 4.1. Let ` denote a partition of p. Then the following are equiv-
alent:

(i) m(`) 6= p− 2.
(ii) ∃ σ ∈ S such that p | S(σ(`)).
(iii) ` is derived from a partition of a multiple of p with p parts.

Remark. Notice that the partition (p − 2, 1, 1, 0 . . . , 0) derives from all
the partitions with maximal number of equal parts m(`) = p − 2, namely
(2, 1, . . . , 1, 0) and (p− k, k, 0, . . . , 0), 1 ≤ k ≤ p−1

2 . Further, replacing e(`)
by e′(`) =

(
e′0(`), . . . , e

′
p−1(`)

)
defined by

e′k(`) = #{0 ≤ i ≤ p− 1 | `i ≡ k mod p} ,

we get an analogous characterization of the partitions such that p | S(σ(`))
for all σ ∈ S, namely (1, . . . , 1) and (p, 0, . . . , 0): they both satisfy e′(`) ∈
(p, 0, . . . , 0) — here we see a partition as a coset of compositions. We obtain:

∃σ ∈ S, p | S(σ(`)) ⇐⇒ e′(`) /∈ (p− 2, 1, 1, 0 . . . , 0) ;
∃ τ ∈ S, p 6 | S(τ(`)) ⇐⇒ e′(`) /∈ (p, 0 . . . , 0) .

It follows that assertion (1) is also equivalent to:

e′(`) /∈ (p− 2, 1, 1, 0 . . . , 0) ∪ (p, 0 . . . , 0) .
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