# OURNAL de Théorie des Nombres de Bordeaux 

 anciennement Séminaire de Théorie des Nombres de BordeauxJürgen RITTER et Alfred WEISS
The integral logarithm in Iwasawa theory : an exercise
Tome 22, n ${ }^{\mathrm{o}} 1$ (2010), p. 197-207.
[http://jtnb.cedram.org/item?id=JTNB_2010__22_1_197_0](http://jtnb.cedram.org/item?id=JTNB_2010__22_1_197_0)
© Université Bordeaux 1, 2010, tous droits réservés.
L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## cedram

# The integral logarithm in Iwasawa theory : an exercise 

par Jürgen RITTER et Alfred WEISS


#### Abstract

RÉsumé. Soient $l$ un nombre premier impair et $H$ un groupe fini abélien. Nous décrivons le groupe d'unités de $\Lambda_{\wedge}[H]$ (la complétion du localisé de $\mathbb{Z}_{l}[[T]][H]$ en $l$ ) ainsi que le noyau et le conoyau du logarithme intégral $L: \Lambda_{\wedge}[H]^{\times} \rightarrow \Lambda_{\wedge}[H]$, qui apparaît dans la théorie d'Iwasawa non-commutative.

Abstract. Let $l$ be an odd prime number and $H$ a finite abelian $l$-group. We describe the unit group of $\Lambda_{\wedge}[H]$ (the completion of the localization at $l$ of $\left.\mathbb{Z}_{l}[[T]][H]\right)$ as well as the kernel and cokernel of the integral logarithm $L: \Lambda_{\wedge}[H]^{\times} \rightarrow \Lambda_{\wedge}[H]$, which appears in non-commutative Iwasawa theory.


## 1. Introduction

Let $\Lambda=\mathbb{Z}_{l}[[T]]$ denote the ring of power series in one variable over the $l$-adic integers $\mathbb{Z}_{l}$, where $l$ is an odd prime number. We localize $\Lambda$ at the prime ideal $l \cdot \Lambda$ to arrive at $\Lambda_{\bullet}$ and then form the completion

$$
\Lambda_{\wedge}=\lim _{\stackrel{ }{ }} \Lambda_{\bullet} / l^{n} \Lambda_{\bullet}
$$

The integral logarithm $\mathbb{L}: \Lambda_{\wedge}^{\times} \rightarrow \Lambda_{\wedge}$ is defined by

$$
\mathbb{L}(e)=\frac{1}{l} \log \frac{e^{l}}{\psi(e)},
$$

where $\psi: \Lambda_{\wedge} \rightarrow \Lambda_{\wedge}$ is the $\mathbb{Z}_{l}$-algebra homomorphism induced by $\psi(T)=$ $(1+T)^{l}-1$ and with ' $\log$ ' defined by the usual power series.

In this paper, the unit group $\Lambda_{\wedge}^{\times}$as well as $\operatorname{ker}(\mathbb{L})$ and $\operatorname{coker}(\mathbb{L})$ are studied - more precisely, we study the analogous objects when $\Lambda_{\wedge}$ is replaced by the group ring $\Lambda_{\wedge}[H]$ of a finite abelian l-group $H$.

The interest in doing so comes from recent work in Iwasawa theory in which refined 'main conjectures' are formulated in terms of the $K$-theory of completed group algebras $\mathbb{Z}_{l}[[G]]$ with $G$ an $l$-adic Lie group (see [5],[9]). For $l$-adic Lie groups of dimension 1 , use of the integral logarithm $\mathbb{L}$ has reduced the 'main conjecture' to questions of the existence of special elements ("pseudomeasures") in $K_{1}\left(\mathbb{Z}_{l}[[G]] \bullet\right)$, by Theorem A of [10], and,

[^0]more recently ([11],[12]), to still unproved logarithmic congruences between Iwasawa $L$-functions. Moreover, $\mathbb{L}$ has been indispensable for the proof of the 'main conjecture' in the few special cases ([6], [13]) which have been settled so far.

The integral logarithm $\mathbb{L}$ when applied to $K_{1}\left(\mathbb{Z}_{l}[[T]] \bullet\right)$ takes its values only in $\mathbb{Z}_{l}[[T]]_{\wedge}$, which is why we need to consider completions. As for finite $G$ (see [8] and [4]), $\mathbb{L}$ can be used to obtain structural information about $K_{1}$; in particular, coker $(\mathbb{L})$ can be detected on the abelianization $G^{\mathrm{ab}}$ of $G$ (by [10], Theorem 8). Then

$$
\begin{aligned}
& G^{\mathrm{ab}}=H \times \Gamma, \text { with } \Gamma \simeq \mathbb{Z}_{l} \text { and } H \text { as before, } \\
& K_{1}\left(\mathbb{Z}_{l}\left[\left[G^{\mathrm{ab}}\right]\right]_{\wedge}\right)=\mathbb{Z}_{l}\left[\left[G^{\mathrm{ab}}\right]\right]_{\wedge}^{\times} \quad(\text { see }[1], 40.31 \text { and } 40.32(\mathrm{ii})), \\
& \mathbb{Z}_{l}\left[\left[G^{\mathrm{ab}}\right]\right], \mathbb{Z}_{l}\left[\left[G^{\mathrm{ab}}\right]\right]_{\wedge} \text { are } \Lambda[H] \text { and } \Lambda_{\wedge}[H], \text { respectively, } \\
& \text { and } \psi \text { is induced by the map } g \mapsto g^{l} \text { on } G^{\mathrm{ab}} .
\end{aligned}
$$

For these reasons it seems worthwhile to present a rather complete understanding of $\mathbb{L}$ in the abelian situation, which is the purpose of our exercise.

The content of the paper is as follows. In section 2 we consider $\Lambda$ and define an integral exponential $\mathbb{E}$ on $T^{2} \Lambda$ which is inverse to $\mathbb{L}$ (on $1+T^{2} \Lambda$ ). As a consequence, we obtain the decomposition

$$
\Lambda^{\times}=\mathbb{Z}_{l}^{\times} \times(1+T)^{\mathbb{Z}_{l}} \times \mathbb{E}\left(T^{2} \Lambda\right)
$$

for the unit group $\Lambda^{\times}$of $\Lambda$ (which reminds us of [2], Theorem 1). Applying $\mathbb{L}$ to the decomposition yields a generalization of the Oliver congruences [8], Theorem 6.6.

The third section centers around $\Lambda_{\wedge}$ and two important subgroups

$$
\Xi=\left\{\sum_{k=-\infty}^{\infty} x_{k} T^{k} \in \Lambda_{\wedge}: x_{k}=0 \text { for } l \mid k\right\} \quad \text { and } \quad \Xi_{2}=\left\{\sum_{k \geq 2} x_{k} T^{k} \in \Xi\right\}
$$

In terms of these we exhibit natural decompositions of $\Lambda_{\wedge}$ and $\Lambda_{\wedge}^{\times}$, which leads immediately to $\operatorname{ker}(\mathbb{L})$ and $\operatorname{im}(\mathbb{L})$, coker $(\mathbb{L})$.

Section 4 is still concerned with $\Lambda_{\wedge}$ : we determine the kernel and cokernel of its endomorphism $1-\psi$.

This will be used in the last section, §5, where we extend most of the results to the group ring $\Lambda_{\wedge}[H]$ of a finite abelian $l$-group $H$ over $\Lambda_{\wedge}$ and determine $\operatorname{ker}(\mathbb{L})$ and coker $(\mathbb{L})$ here.

## 2. The integral exponential $\mathbb{E}$ and $\Lambda^{\times}$

Recall that $\Lambda$ is the ring $\mathbb{Z}_{l}[[T]]$ of formal power series $\sum_{k \geq 0} y_{k} T^{k}$ with coefficients $y_{k} \in \mathbb{Z}_{l}$, and that the integral logarithm is defined on the units $e \in \Lambda^{\times}$of $\Lambda$ by

$$
\mathbb{L}(e)=\frac{1}{l} \log \frac{e^{l}}{\psi(e)} \quad \text { where } \quad \psi(T)=(1+T)^{l}-1
$$

Moreover, note that $1+T^{2} \Lambda$ is a subgroup of $\Lambda^{\times}$since $T \in \operatorname{rad}(\Lambda)=\langle l, T\rangle$.
We now turn to the integral exponential $\mathbb{E}$ on $T^{2} \Lambda$ : This is the formal power series, with coefficients in $\mathbb{Q}_{l}$, defined by

$$
\mathbb{E}(y)=\exp \left(\sum_{i \geq 0} \frac{\psi^{i}(y)}{l^{i}}\right) \in \mathbb{Q}_{l}[[T]] \quad \text { for each } \quad y \in T^{2} \Lambda
$$

Observe that $\mathbb{E}$ and $\psi$ commute.
Lemma 2.1. $\mathbb{E}(y) \in 1+T^{2} \Lambda$, and $\mathbb{E}$ and $\mathbb{L}$ are inverse to each other

$$
T^{2} \Lambda \underset{\mathbb{L}}{\stackrel{\mathbb{E}}{\rightleftarrows}} 1+T^{2} \Lambda .
$$

Proof. The proof is an adaptation of that of the Dwork-Dieudonné lemma (see $[7], 14 \S 2$ ) : if $f(T) \in 1+T^{2} \mathbb{Q}_{l}[[T]]$ satisfies $\frac{f(T)^{l}}{\psi(f(T))} \in 1+l T^{2} \mathbb{Z}_{l}[[T]]$, then $f(T) \in 1+T^{2} \mathbb{Z}_{l}[[T]]$.

First, $\psi^{i}(T) \equiv l^{i} T \bmod T^{2} \mathbb{Z}_{l}[[T]]$ implies $\psi^{i}\left(T^{k}\right) \equiv l^{i k} T^{k} \bmod T^{k+i} \mathbb{Z}_{l}[[T]]$, and thus, if $y \in y_{k} T^{k}+T^{k+1} \mathbb{Z}_{l}[[T]]$ with $y_{k} \in \mathbb{Z}_{l}$, then

$$
\psi^{i}(y) / l^{i} \in y_{k} l^{(k-1) i} T^{k}+T^{k+1} \mathbb{Q}_{l}[[T]] ;
$$

whence for $k \geq 2$,

$$
\begin{aligned}
& \sum_{i \geq 0} \frac{\psi^{i}(y)}{l^{i}} \in\left(\sum_{i \geq 0} y_{k} l^{(k-1) i} T^{k}\right)+T^{k+1} \mathbb{Q}_{l}[[T]] \\
&=y_{k}\left(1-l^{k-1}\right)^{-1} T^{k}+T^{k+1} \mathbb{Q}_{l}[[T]]
\end{aligned}
$$

so $\mathbb{E}(y) \in 1+y_{k}\left(1-l^{k-1}\right)^{-1} T^{k}+T^{k+1} \mathbb{Q}_{l}[[T]]$.
Second,

$$
\begin{align*}
\mathbb{E}(y)^{l} / \mathbb{E}(\psi(y)) & =\exp \left(l \sum_{i \geq 0} \frac{\psi^{i}(y)}{l^{i}}-\sum_{i \geq 0} \frac{\psi^{i+1}(y)}{l^{i}}\right)  \tag{*}\\
& =\exp (l y) \in 1+l T^{2} \mathbb{Z}_{l}[[T]]
\end{align*}
$$

which brings us in a position to employ the Dwork-Dieudonné argument to obtain $\mathbb{E}(y) \in 1+T^{2} \mathbb{Z}_{l}[[T]]=1+T^{2} \Lambda$ and, in particular, $\mathbb{E}(y) \in 1+$ $y_{k}\left(1-l^{k-1}\right)^{-1} T^{k}+T^{k+1} \mathbb{Z}_{l}[[T]]$.

Moreover, given $b_{k} \in \mathbb{Z}_{l}$ and setting $a_{k}=\left(1-l^{k-1}\right) b_{k}$, then $\mathbb{E}\left(a_{k} T^{k}\right) \in$ $1+b_{k} T^{k}+T^{k+1} \mathbb{Z}_{l}[[T]]$ for all $k$, which implies that $\mathbb{E}\left(T^{2} \Lambda\right)=1+T^{2} \Lambda$.

We finish the proof of the lemma by showing $\mathbb{L E}(y)=y$, and $\mathbb{E L}(1+y)=$ $1+y$ whenever $y \in T^{2} \Lambda$, so $1+y=\mathbb{E}(\tilde{y})$ :

$$
\begin{aligned}
& \mathbb{L} \mathbb{E}(y)=\frac{1}{l} \log \frac{\mathbb{E}(y)^{l}}{\mathbb{E}(\psi(y))} \stackrel{(*)}{=} \frac{1}{l} \log \exp (l y)=y \\
& \mathbb{E} \mathbb{L}(1+y)=\mathbb{E} \mathbb{L}(\mathbb{E}(\tilde{y}))=\mathbb{E}(\tilde{y})=y
\end{aligned}
$$

## Corollary 2.1.

$$
\begin{aligned}
& \mathbb{L}(1+l \Lambda)=(l-\psi) \Lambda \\
& \exp (l y)=(1+T)^{l y_{1}} \mathbb{E}((l-\psi) y)
\end{aligned}
$$

if $y \equiv y_{1} T \bmod T^{2} \Lambda\left(\right.$ and $\left.y_{1} \in \mathbb{Z}_{l}\right)$.
Proof. Since $\exp (l \Lambda)=1+l \Lambda$, for the first assertion it suffices to compute

$$
\mathbb{L}(\exp (l y))=\frac{1}{l} \log \left(\exp (l y)^{l-\psi}\right)=\frac{1}{l} \log \exp (l(l-\psi) y)=(l-\psi) y .
$$

The second assertion holds for $y=T$ (so $y_{1}=1$ ):

$$
(1+T)^{-l} \exp (l T) \in 1+T^{2} \mathbb{Z}_{l}[[T]]
$$

hence $(1+T)^{-l} \exp (l T)=\mathbb{E}(z)$ for some $z \in T^{2} \mathbb{Z}_{l}[[T]]$.
Apply $\mathbb{L}$ and get $(l-\psi)(T)=z$ from the last but one displayed formula and as $\mathbb{L}(1+T)=\frac{1}{l} \log \frac{(1+T)^{l}}{1+(1+T)^{l}-1}=0$.

Next, take $y \in T^{2} \mathbb{Z}_{l}[[T]]$, so $\exp (l y) \in 1+T^{2} \mathbb{Z}_{l}[[T]]$ and again $\exp (l y)=$ $\mathbb{E}((l-\psi) y)$.

The two special cases can be combined on writing $y=y_{1} T+\left(y-y_{1} T\right)$.
Denote by $\mu_{l-1}$ the group of roots of unity in $\mathbb{Z}_{l}{ }^{\times}$.

## Corollary 2.2.

$$
\begin{aligned}
& \Lambda^{\times}=\mathbb{Z}_{l}^{\times} \times(1+T)^{\mathbb{Z}_{l}} \times \mathbb{E}\left(T^{2} \Lambda\right) \\
& \operatorname{ker}(\mathbb{L})=\mu_{l-1} \times(1+T)^{\mathbb{Z}_{l}} \\
& \operatorname{im}(\mathbb{L})=\mathbb{Z}_{l} \oplus T^{2} \Lambda
\end{aligned}
$$

Proof. The first coefficient $e_{0}$ of $e=\sum_{k \geq 0} e_{k} T^{k} \in \Lambda^{\times}$is a unit in $\mathbb{Z}_{l}$. Replacing $e$ by $e_{0}^{-1} \cdot e=1+e_{1}^{\prime} T+\cdots$ and then multiplying by $(1+T)^{-e_{1}^{\prime}}$ gives the new unit $1+\tilde{e}_{2} T^{2}+\cdots \in 1+T^{2} \Lambda$. Thus, by Lemma $2.1, \Lambda^{\times}=$ $\mathbb{Z}_{l} \times \cdot(1+T)^{\mathbb{Z}_{l}} \cdot \mathbb{E}\left(T^{2} \Lambda\right)$, and the product is obviously direct. Since, on $\mathbb{Z}_{l}{ }^{\times}$, $\mathbb{L}(\zeta)=0$ precisely for $\zeta \in \mu_{l-1}$, and since $\mathbb{L}(1+T)=0$, we also get the claimed description of the kernel and image of $\mathbb{L}$.

## 3. The integral logarithm $\mathbb{L}$ on $\Lambda_{\wedge}$

We recall that $\Lambda_{\bullet}$ denotes the localization of $\Lambda$ at the prime ideal $l \Lambda$ and that $\Lambda_{\wedge}=\underset{n}{\lim } \Lambda_{\bullet} / l^{n} \Lambda_{\bullet}$. In particular, $\Lambda_{\bullet}$ and $\Lambda_{\wedge}$ have the same residue field $\mathbb{F}_{l}((\bar{T}))$ (which carries the natural $\bar{T}$-valuation $\left.v_{\bar{T}}\right)$. It follows that

$$
\Lambda_{\wedge}=\left\{x=\sum_{k \in \mathbb{Z}} x_{k} T^{k}: x_{k} \in \mathbb{Z}_{l}, \lim _{k \rightarrow-\infty} x_{k}=0\right\}
$$

Such large rings are basic objects in the theory of higher dimensional local fields [3]; the map $\psi$ on $\Lambda_{\wedge}$ is extra structure which remembers the group $\Gamma$.

In what follows we frequently use the decomposition

$$
\Lambda_{\wedge}=\Lambda_{\wedge}{ }^{-} \oplus \mathbb{Z}_{l} \oplus \Lambda_{\wedge^{+}}, \quad \text { where } \Lambda_{\wedge}{ }^{ \pm}=\left\{\begin{array}{l}
\left\{x \in \Lambda_{\wedge}: x_{k}=0 \text { for } k \leq 0\right\} \\
\left\{x \in \Lambda_{\wedge}: x_{k}=0 \text { for } k \geq 0\right\}
\end{array}\right.
$$

Note that the three summands are subrings which are preserved by $\psi$. As a consequence, we see that $\Lambda \cap(l-\psi) \Lambda_{\wedge}=(l-\psi) \Lambda$.

## Definition.

$$
\begin{aligned}
& \Xi=\left\{x=\sum_{k \in \mathbb{Z}} x_{k} T^{k} \in \Lambda_{\wedge}: x_{k}=0 \text { when } l \text { divides } k\right\}, \\
& \Xi_{s}=\left\{x=\sum_{k \geq s} x_{k} T^{k} \in \Xi\right\}, \quad \text { where } s \in \mathbb{Z}
\end{aligned}
$$

## Lemma 3.1.

(1) $l-\psi$ is injective on $\Lambda_{\wedge}$ and has image $\mathbb{L}\left(1+l \Lambda_{\wedge}\right)$,
(2) $\Lambda_{\wedge}=\Xi \oplus(l-\psi) \Lambda_{\wedge}$

Proof. For the first assertion we make use of the commuting diagram

$$
\begin{array}{rlrll}
\Lambda_{\wedge} & \stackrel{l}{\longrightarrow} & \Lambda_{\wedge} & \rightarrow & \mathbb{F}_{l}((\bar{T}))  \tag{1}\\
l-\psi \downarrow & & l-\psi \downarrow & & -\bar{\psi} \downarrow \\
\Lambda_{\wedge} & \xrightarrow{l} & \Lambda_{\wedge} & \rightarrow & \mathbb{F}_{l}((\bar{T}))
\end{array}
$$

with exact rows and with $\bar{\psi}(\bar{T})=\bar{T}^{l}$, so $\bar{\psi}(\bar{x})=\bar{x}^{l}$ for $\bar{x} \in \mathbb{F}_{l}((\bar{T}))$. In particular, $-\bar{\psi}$ is injective and hence the snake lemma implies $\operatorname{ker}(l-\psi)=$ $l \cdot \operatorname{ker}(l-\psi)$ from which $\operatorname{ker}(l-\psi)=0$ follows by $\bigcap_{n \geq 0} l^{n} \Lambda_{\wedge}=0$.

Regarding the image, we observe that $\exp \left(l \Lambda_{\wedge}\right)=1+l \Lambda_{\wedge}$ and recall $\mathbb{L}(\exp (l y))=(l-\psi) y$ from the proof of Corollary 2.1 (but now with $\left.y \in \Lambda_{\wedge}\right)$.

For the second assertion we make use of the commuting diagram

$$
\begin{array}{ccccc}
\Xi & \stackrel{l}{\longrightarrow} & \Xi & \rightarrow & \Xi / l \Xi  \tag{2}\\
\downarrow & & \downarrow & & \downarrow \\
\Lambda_{\wedge} /(l-\psi) \Lambda_{\wedge} & \xrightarrow{l} & \Lambda_{\wedge} /(l-\psi) \Lambda_{\wedge} & \rightarrow & \mathbb{F}_{l}((\bar{T})) / \bar{\psi}\left(\mathbb{F}_{l}((T))\right)
\end{array}
$$

with natural vertical maps (which we denote by ${ }^{\sim}$ ). Its bottom row is the sequence of cokernels of diagram (1) and thus exact. Its right vertical map is an isomorphism, by the definition of $\Xi$ and by $\bar{\psi}(\bar{x})=\bar{x}^{l}$. Consequently, the other vertical map, $\Xi \rightarrow \Lambda_{\wedge} /(l-\psi) \Lambda_{\wedge}$, is injective, by the snake lemma and $\bigcap_{n \geq 0} l^{n} \Lambda_{\wedge}=0$. To finish the proof of the lemma we are left with showing the surjectivity of $\Xi \rightarrow \Lambda_{\wedge} /(l-\psi) \Lambda_{\wedge}$. Starting, in (2), with $\tilde{x} \in$ $\Lambda_{\wedge} /(l-\psi) \Lambda_{\wedge}$ (the middle term in the bottom row) we find elements $y_{0} \in \Xi$
and $\tilde{x}_{1} \in \Lambda_{\wedge} /(l-\psi) \Lambda_{\wedge}$ such that $\tilde{x}-\tilde{y}_{0}=l \tilde{x}_{1}$. Continuing, we get $\tilde{x}=$ $\tilde{y}_{0}+l \tilde{y}_{1}+l^{2} \tilde{y}_{2}+\cdots$, with $y_{0}+l y_{1}+l^{2} y_{2}+\cdots \in \Xi$.

Corollary 3.1. $T^{2} \Lambda=\Xi_{2} \oplus(l-\psi) T \Lambda$
Proof. Since $\Xi \cap \Lambda_{\wedge}{ }^{+}=\Xi_{1}$, Lemma 3.1 gives $\Lambda_{\wedge}{ }^{+}=\Xi_{1} \oplus(l-\psi) \Lambda_{\wedge}{ }^{+}$, i.e., $T \Lambda=\Xi_{1} \oplus(l-\psi) T \Lambda$. We intersect with $T^{2} \Lambda$ and obtain the corollary from $(l-\psi) T \Lambda \subset T^{2} \Lambda$ and $\Xi_{1} \cap T^{2} \Lambda=\Xi_{2}$.

Proposition 3.1. $\Lambda_{\wedge}^{\times}=T^{\mathbb{Z}} \times \mu_{l-1} \times(1+T)^{\mathbb{Z}_{l}} \times \mathbb{E}\left(\Xi_{2}\right) \times\left(1+l \Lambda_{\wedge}\right)$
Proof. Given $e=\sum_{k \in \mathbb{Z}} e_{k} T^{k} \in \Lambda_{\wedge}^{\times}$, we will modify $e$ by factors in $T^{\mathbb{Z}}, \mu_{l-1} \times$ $\left(1+l \Lambda_{\wedge}\right)$ and $(1+T)^{\mathbb{Z}_{l}}$ to arrive at a new unit $\mathbb{E}(y)$ for some $y \in \Xi_{2}$. This confirms the claimed product decomposition of $\Lambda_{\wedge}^{\times}$but not yet that it is a direct product.
(1) Going modulo $l$, let $\bar{e}=\sum_{k \geq k_{0}} \bar{e}_{k} \bar{T}^{k} \in \mathbb{F}_{l}((\bar{T}))$ have coefficient $\bar{e}_{k_{0}} \neq 0$. Multiplying $e$ by $T^{-\bar{k}_{0}} \in T^{\mathbb{Z}}$ gives a new unit with zero coefficient not divisible by $l$ but all coefficients with negative index divisible by $l$; we denote it again by $e$.
(2) Now $e_{0} \in \mathbb{Z}_{l} \times=\mu_{l-1} \times\left(1+l \mathbb{Z}_{l}\right) \subset \mu_{l-1} \times\left(1+l \Lambda_{\wedge}\right)$, and multiplying $e$ by $e_{0}^{-1}$ allows us to assume that $e=l e^{-}+1+e^{+}$, where $e^{-} \in \Lambda_{\wedge}{ }^{-}$ and $e^{+} \in \Lambda_{\wedge^{+}}$, so $1+e^{+} \in \Lambda^{\times} \leq \Lambda_{\wedge}^{\times}$and $e\left(1+e^{+}\right)^{-1}=1+$ $l\left(e^{-}\left(1+e^{+}\right)^{-1}\right) \in 1+l \Lambda_{\wedge}$, i.e., $e \equiv 1+e^{+} \bmod 1+l \Lambda_{\wedge}$.
(3) If $1+e^{+}=1+e_{1} T+e_{2} T^{2}+\cdots$, then multiplying $1+e^{+}$by $(1+T)^{-e_{1}} \in(1+T)^{\mathbb{Z}_{l}}$ produces $1+T^{2} \tilde{y}$ with $\tilde{y} \in \Lambda$ (note $(1+T)^{z} \equiv$ $\left.1+z T \bmod T^{2} \Lambda\right)$. Hence, by Lemma 2.1, modulo $T^{\mathbb{Z}} \cdot \mu_{l-1} \cdot(1+$ $T)^{\mathbb{Z}_{l}} \cdot\left(1+l \Lambda_{\wedge}\right)$, the original unit $e$ satisfies $e \equiv \mathbb{E}\left(y^{\prime}\right)$ with $y^{\prime} \in T^{2} \Lambda$.
(4) As $\mathbb{E}\left(T^{2} \Lambda\right)=\mathbb{E}\left(\Xi_{2}\right) \times \mathbb{E}((l-\psi) T \Lambda)$ by the above corollary, multiplying $\mathbb{E}\left(y^{\prime}\right)$ with $\mathbb{E}(y)$ for a suitable $y \in \Xi_{2}$ yields an element $\mathbb{E}\left((l-\psi) y^{\prime \prime}\right)$ with $y^{\prime \prime} \in y_{1}^{\prime \prime} T+T^{2} \Lambda$. It follows from Corollary 2.1 to Lemma 2.1 that $\mathbb{E}\left((l-\psi) y^{\prime \prime}\right)=(1+T)^{-l y_{1}^{\prime \prime}} \exp \left(l y^{\prime \prime}\right)$. The first factor is in $(1+T)^{\mathbb{Z}_{l}}$ and the second in $1+l \Lambda$.

We now prove that we actually have a direct product.
We have already used $(1+T)^{z} \equiv 1+z T \bmod T^{2} \Lambda$. Together with $\mathbb{E}\left(\Xi_{2}\right) \subset 1+T^{2} \Lambda_{\wedge}$ it implies that the product $T^{\mathbb{Z}} \cdot \mu_{l-1} \cdot(1+T)^{\mathbb{Z}_{l}} \cdot \mathbb{E}\left(\Xi_{2}\right)$ is direct. Moreover, an element in it which also lies in $1+l \Lambda_{\wedge}$ must equal $\mathbb{E}(y)$ with $y \in \Xi_{2}$. Indeed, $(1+T)^{z} \equiv 1 \bmod l$ gives $z \equiv 0 \bmod l$, hence $(1+T)^{\frac{z}{l}} \equiv 1 \bmod l$, since modulo $l$ we are in characteristic $l$. Thus $z=0$.

So assume $\mathbb{E}(y)=1+l z$. Applying $\mathbb{L}$ gives $y=\mathbb{L}(1+l z)=(l-\psi) z^{\prime} \in$ $(l-\psi) \Lambda_{\wedge}$, by Corollary 2.1. As $y \in \Xi_{2} \subset T^{2} \Lambda$, the zero coefficient of $z^{\prime}$ vanishes and Corollary 3.1 implies $y=0$. This completes the proof of the proposition.

Definition. $\xi: \Lambda_{\wedge}=\Xi \oplus(l-\psi) \Lambda_{\wedge} \rightarrow \Xi$ is the identity on $\Xi$ and zero on $(l-\psi) \Lambda_{\wedge}$

Corollary 3.2. We have an exact sequence

$$
\mu_{l-1} \times(1+T)^{\mathbb{Z}_{l}} \rightarrow \Lambda_{\Lambda} \times \xrightarrow{\mathbb{L}} \Lambda_{\wedge} \rightarrow \Xi /\left(\mathbb{Z} \cdot \xi\left((\mathbb{L}(T)) \oplus \Xi_{2}\right) .\right.
$$

Proof. For the proof note that $\xi(\mathbb{L}(T))$ is in $\Lambda_{\wedge}{ }^{-}$and non-zero: writing $\frac{T^{l}}{\psi(T)}=\frac{1}{1-l v}$ with $v=-\frac{1}{l} \sum_{i=1}^{l-1}\binom{l}{i} T^{-i}$ we have

$$
\mathbb{L}(T)=-\log (1-l v)=\sum_{j \geq 1} \frac{l^{j-1}}{j} v^{j} \in \Lambda_{\wedge}-
$$

with

$$
\xi(\mathbb{L}(T)) \equiv \xi(v)=v \equiv \sum_{i=1}^{l-1} \frac{(-1)^{i}}{i} T^{-i} \bmod l
$$

Recall that $\mu_{l-1} \times(1+T)^{\mathbb{Z}_{l}} \subset \operatorname{ker}(\mathbb{L})$, that $\mathbb{L} \mathbb{E}$ is the identity on $\Xi_{2}$, and that $1+l \Lambda_{\wedge}=\exp \left(l \Lambda_{\wedge}\right)$.

Suppose now that $e=T^{b} \zeta(1+T)^{z} \mathbb{E}(x) \exp (l y)$ is in $\operatorname{ker}(\mathbb{L})$ (with $b \in$ $\left.\mathbb{Z}, \zeta \in \mu_{l-1}, z \in \mathbb{Z}_{l}, x \in \Xi_{2}, y \in \Lambda_{\wedge}\right)$. Then $-b \mathbb{L}(T)=x+(l-\psi) y$ implies $-b \xi(\mathbb{L}(T))=x$ is in $\Lambda_{\wedge}{ }^{-} \cap \Xi_{2}=0$, hence $b=0=x$ and then $y=0$ by 1 . of Lemma 3.1, as required.

Concerning coker $(\mathbb{L})$, it suffices to show that $\operatorname{im}(\mathbb{L})=\mathbb{Z} \cdot \xi(\mathbb{L}(T)) \oplus \Xi_{2} \oplus$ $(l-\psi) \Lambda_{\wedge}$. By Proposition 3.1, 1. of Lemma 3.1 and $\mathbb{L}(T)-\xi(\mathbb{L}(T)) \in$ $(l-\psi) \Lambda_{\wedge}$ this again follows from $\xi(\mathbb{L}(T)) \notin \Xi_{2}$.

This finishes the proof of the corollary.
Remark. When $l=2$, more effort is needed, since $-1 \in 1+2 \Lambda_{\wedge}$ and 'log , exp' are no longer inverse to each other.

## 4. Kernel and cokernel of $1-\psi$ on $\Lambda_{\wedge}$

Lemma 4.1. There is an exact sequence

$$
0 \rightarrow \mathbb{Z}_{l} \rightarrow \Lambda_{\wedge} \xrightarrow{1-\psi} \Lambda_{\wedge} \rightarrow\left(\Xi / \Xi_{1}\right) \oplus \mathbb{Z}_{l} \rightarrow 0
$$

Proof. We start its proof from the obvious diagram below and show that $\operatorname{ker}(\overline{1}-\bar{\psi})=\mathbb{F}_{l}$, the constants in $\mathbb{F}_{l}((\bar{T}))=\Lambda_{\wedge} / l \Lambda_{\wedge}$.

$$
\begin{array}{rlrll}
\Lambda_{\wedge} & \stackrel{l}{\rightarrow} & \Lambda_{\wedge} & \rightarrow & \Lambda_{\wedge} / l \Lambda_{\wedge} \\
1-\psi \downarrow & & 1-\psi \downarrow & & \overline{1}-\bar{\psi} \downarrow \\
\Lambda_{\wedge} & \stackrel{l}{\mapsto} & \Lambda_{\wedge} & \rightarrow & \Lambda_{\wedge} / l \Lambda_{\wedge}
\end{array}
$$

Indeed,

$$
(\overline{1}-\bar{\psi})\left(\sum_{k \geq-n} \bar{z}_{k} \bar{T}^{k}\right)=0 \Longleftrightarrow \sum_{k \geq-n} \bar{z}_{k} \bar{T}^{k}=\sum_{k \geq-n} \bar{z}_{k} \bar{T}^{l k}=\left(\sum_{k \geq-n} \bar{z}_{k} \bar{T}^{k}\right)^{l}
$$

and the only $l-1^{\text {st }}$ roots of unity in the field $\mathbb{F}_{l}((\bar{T}))$ are the constants $\neq 0$. The above implies $\operatorname{ker}(1-\psi)=\mathbb{Z}_{l}+l \operatorname{ker}(1-\psi)$. By successive approximation this gives $\operatorname{ker}(1-\psi)=\mathbb{Z}_{l}$.

Turning back to the diagram, we obtain from the snake lemma the short exact sequence

$$
\operatorname{coker}(1-\psi) \stackrel{l}{\mapsto} \operatorname{coker}(1-\psi) \rightarrow \operatorname{coker}(\overline{1}-\bar{\psi})
$$

We compute its right end. Because $\mathbb{F}_{l}((\bar{T}))$ is complete in the $v_{\bar{T}}$-topology, $\sum_{n \geq 0} \bar{z}^{n}$ converges for every element $\bar{z}=\sum_{k \geq 1} \bar{z}_{k} \bar{T}^{k}$, hence

$$
(\overline{1}-\bar{\psi})\left(\sum_{n \geq 0} \bar{z}^{l^{n}}\right)=\bar{z}
$$

implies that these $\bar{z}$ all belong to im $(\overline{1}-\bar{\psi})$. Also, $\bar{T}^{i}-\bar{T}^{l i}=(\overline{1}-\bar{\psi})\left(\bar{T}^{i}\right) \in$ $\operatorname{im}(\overline{1}-\bar{\psi})$. Thus, coker $(\overline{1}-\bar{\psi})$ is spanned by the images of $\bar{T}^{j}$ with $j=0$ or $j<0 \& l \nmid j$. These elements are actually linearly independent over $\mathbb{F}_{l}$. To see this, read an equation

$$
\sum_{\substack{n \leq k<0 \\ \jmath \nmid k}} \bar{z}_{k} \bar{T}^{k}+z_{0}=(\overline{1}-\bar{\psi})(\bar{x})=\sum_{-n \leq k<0} \bar{x}_{k}\left(\bar{T}^{k}-\bar{T}^{l k}\right)
$$

coefficientwise from $k=-n$ to $k=0$.
Going back to the short exact sequence displayed above, we now realize that $\Xi / \Xi_{1} \oplus \mathbb{Z}_{l}$ maps onto coker $(1-\psi)$, since $\Lambda_{\wedge}$ is $l$-complete. And by the last paragraph, this surjection is, in fact, an isomorphism.

## 5. Kernel and cokernel of $\mathbb{L}$ on $\Lambda_{\wedge}[H]$

As in the introduction, $H$ is a finite abelian $l$-group and $\Lambda_{\wedge}[H]$ is its group ring over $\Lambda_{\wedge}$. Perhaps the description $\Lambda_{\wedge}[H]=\mathbb{Z}_{l}[[\Gamma \times H]]_{\wedge}$, with $\Gamma$ denoting the cyclic pro-l group generated by $1+T$, gives a better understanding of the ring homomorphism $\psi$ on $\Lambda_{\wedge}[H]: \psi$ is induced by $\psi(g)=g^{l}$ for $g \in \Gamma \times H$. And the integral logarithm $\mathbb{L}: \Lambda_{\wedge}[H]^{\times} \rightarrow \Lambda_{\wedge}[H]$, as before, takes a unit $e \in \Lambda_{\wedge}[H]^{\times}$to $\mathbb{L}(e)=\frac{1}{l} \log \frac{e^{l}}{\psi(e)}$.

For the discussion of its kernel and cokernel we first invoke the augmentation map $\Lambda_{\wedge}[H] \rightarrow \Lambda_{\wedge}, h \mapsto 1$ for $h \in H$, so that we can employ our earlier results. Let $\mathfrak{g}$ denote its kernel and note that $1+\mathfrak{g} \subset \Lambda_{\wedge}[H]^{\times}$, as $\mathfrak{g} \subset \mathfrak{r} \stackrel{\text { def }}{=} \operatorname{rad}\left(\Lambda_{\wedge}[H]\right)=\mathfrak{g}+l \Lambda_{\wedge}[H] ;$ moreover, for the same reason, $\Lambda_{\wedge}[H]^{\times} \rightarrow \Lambda_{\wedge}^{\times}$is surjective.

Proposition 5.1. $\mathbb{L}: \Lambda_{\wedge}[H]^{\times} \rightarrow \Lambda_{\wedge}[H]$ has

$$
\operatorname{ker}(\mathbb{L})=\mu_{l-1} \times(1+T)^{\mathbb{Z}_{l}} \times H \quad\left(=\mu_{l-1} \times(\Gamma \times H)\right),
$$

and coker $(\mathbb{L})$ is described by the split exact sequence

$$
\left(\Xi / \Xi_{1} \oplus \mathbb{Z}_{l}\right) \otimes_{\mathbb{Z}_{l}} H \mapsto \operatorname{coker}(\mathbb{L}) \rightarrow \Xi /\left(\mathbb{Z} \xi(\mathbb{L}(T)) \oplus \Xi_{2}\right)
$$

Proof. The proof begins with the commutative diagram

$$
\begin{array}{ccccc}
1+\mathfrak{g} & \rightarrow & \Lambda_{\wedge}[H]^{\times} & \rightarrow & \Lambda_{\wedge}^{\times} \\
\mathbb{L} \downarrow & & \mathbb{L} \downarrow & & \mathbb{L} \downarrow \\
\mathfrak{g} & \mapsto & \Lambda_{\wedge}[H] & \rightarrow & \Lambda_{\wedge}
\end{array}
$$

with exact rows which are split by the same inclusion $\Lambda_{\wedge} \mapsto \Lambda_{\wedge}[H]$ of rings. Here the right square commutes because $\psi$ and 'log' both commute with augmentation, and thus induces the left square since the sequences are exact.

The right vertical $\mathbb{L}$ fits into the exact sequence of Corollary 3.2. Similarly we will need

Lemma 5.1. There is an exact sequence

$$
H \mapsto 1+\mathfrak{g} \xrightarrow{\mathbb{L}} \mathfrak{g} \rightarrow\left(\Xi / \Xi_{1} \oplus \mathbb{Z}_{l}\right) \otimes_{\mathbb{Z}_{l}} H .
$$

Proposition 5.1 follows from Lemma 5.1 and the snake lemma: for $\mu_{l-1} \times$ $(1+T)^{\mathbb{Z}_{l}} \times H \subset \operatorname{ker}(\mathbb{L})$ maps onto the kernel of the right vertical $\mathbb{L}$, and the cokernel sequence splits because the natural splittings in the commutative diagram are compatible.

So it remains to prove Lemma 5.1, which we do next.
Proof.
a) $\mathfrak{g} / \mathfrak{g}^{2} \simeq \Lambda_{\wedge} \otimes_{\mathbb{Z}_{l}} H$ by $h-1 \bmod \mathfrak{g}^{2} \mapsto h$

This is a consequence of $\Lambda_{\wedge}[H]=\Lambda_{\wedge} \otimes_{\mathbb{Z}_{l}} \mathbb{Z}_{l}[H]$ and the natural isomorphism $\Delta H / \Delta^{2} H \simeq H, h-1 \mapsto h$, where $\Delta H=$ $\langle h-1: h \in H\rangle_{\mathbb{Z}_{l}}$ is the augmentation ideal of the group ring $\mathbb{Z}_{l}[H]$, so $\mathfrak{g}=\Lambda_{\wedge} \otimes_{\mathbb{Z}_{l}} \Delta H$.
b) If $e=1+\sum_{1 \neq h \in H} e_{h}(h-1) \in 1+\mathfrak{g}$ (with $e_{h} \in \Lambda_{\wedge}$ ), then

$$
\mathbb{L}(e) \equiv \sum_{h}\left(e_{h}-\psi\left(e_{h}\right)\right)(h-1) \bmod \mathfrak{g}^{2} .
$$

Indeed, modulo $l \mathfrak{g}^{2}$ we have

$$
\begin{aligned}
e^{l} & \equiv 1+l \sum_{h} e_{h}(h-1)+\sum_{h} e_{h}^{l}(h-1)^{l} \\
& \equiv 1+l \sum_{h}^{h} e_{h}(h-1)+\sum_{h} \psi\left(e_{h}\right)(h-1)^{l} \\
& \equiv 1+l \sum_{h} e_{h}(h-1)+\sum_{h} \psi\left(e_{h}\right)\left(h^{l}-1\right)-l \sum_{h} \psi\left(e_{h}\right)(h-1) \\
& \equiv \psi(e)+l \sum_{h}\left(e_{h}-\psi\left(e_{h}\right)\right)(h-1),
\end{aligned}
$$

so

$$
\begin{aligned}
\frac{e^{l}}{\psi(e)} & \equiv 1+\psi(e)^{-1} l \sum_{h}\left(e_{h}-\psi\left(e_{h}\right)\right)(h-1) \\
& \equiv 1+l \sum_{h}\left(e_{h}-\psi\left(e_{h}\right)\right)(h-1) \quad \bmod l \mathfrak{g}^{2}
\end{aligned}
$$

as $\psi(e)^{-1} \in 1+\mathfrak{g}$. Now apply ' $\frac{1}{l} \log$ '.
From a), b) we get the right square of the commutative diagram

$$
\begin{array}{ccccc}
1+\mathfrak{g}^{2} & \rightarrow & 1+\mathfrak{g} & \rightarrow & \Lambda_{\wedge} \otimes_{\mathbb{Z}_{l}} H \\
\mathbb{L} \downarrow & & \mathbb{L} \downarrow & & (1-\psi) \otimes 1 \downarrow \\
\mathfrak{g}^{2} & \rightarrow & \mathfrak{g} & \rightarrow & \Lambda_{\wedge} \otimes_{\mathbb{Z}_{l}} H
\end{array}
$$

with left square induced by the exactness of the rows. The map $(1-\psi) \otimes 1$ has kernel and cokernel given by tensoring the sequence in Lemma 4.1 with $H$ : it remains exact since it is composed of two short exact sequences of torsionfree $\mathbb{Z}_{l}$-modules. So the snake lemma reduces Lemma 5.1 to proving that $\mathbb{L}: 1+\mathfrak{g}^{2} \rightarrow \mathfrak{g}^{2}$ is an isomorphism.

We do this by induction on $|H|$ and, to that end, choose an element $h_{0} \in H$ of order $l$ and let $H \stackrel{\sim}{\rightarrow} \tilde{H}=H /\left\langle h_{0}\right\rangle$ be the natural map.

Recalling that $\mathfrak{r}=\operatorname{rad}\left(\Lambda_{\wedge}[H]\right)=\mathfrak{g}+l \Lambda_{\wedge}[H]$, we start with the right square of the diagram

$$
\begin{array}{ccccc}
1+\left(h_{0}-1\right) \mathfrak{r} & \rightarrow & 1+\mathfrak{g}^{2} & \rightarrow & 1+\tilde{\mathfrak{g}}^{2} \\
\mathbb{L} \downarrow & & \mathbb{L} \downarrow & & \tilde{\mathbb{L}} \downarrow \\
\left(h_{0}-1\right) \mathfrak{r} & \longrightarrow & \mathfrak{g}^{2} & \rightarrow & \tilde{\mathfrak{g}}^{2}
\end{array}
$$

which commutes since $\psi$, 'log' commute with ~ . Since $\tilde{\mathbb{L}}$ is an isomorphism by the induction hypothesis, it suffices to show that the kernels in the rows are as shown and that the left $\mathbb{L}$ is an isomorphism:
i. $\mathfrak{g}^{2} \rightarrow \tilde{\mathfrak{g}}^{2}$ has kernel $\left(h_{0}-1\right) \mathfrak{r}$. Since $\left(h_{0}-1\right) \mathfrak{r}$ is in the kernel of $\sim$ and $l\left(h_{0}-1\right)$ is in $\mathfrak{g}^{2}$, by $l\left(h_{0}-1\right) \equiv h_{0}^{l}-1 \bmod \mathfrak{g}^{2}$, it remains to check

$$
\left(h_{0}-1\right) \Lambda_{\wedge}[H] \cap \mathfrak{g}^{2} \subset\left(h_{0}-1\right) \mathfrak{r}
$$

If $\left(h_{0}-1\right) b=\left(h_{0}-1\right) \sum_{h \in H} b_{h} h \in \mathfrak{g}^{2}$ (with $b_{h} \in \Lambda_{\wedge}$ ), then the isomorphism $\mathfrak{g} / \mathfrak{g}^{2} \simeq \Lambda_{\wedge} \otimes_{\mathbb{Z}_{l}} H$ takes $\left(h_{0}-1\right) b$ to $0=\sum_{h \in H} b_{h} \otimes h_{0}=$ $\left(\sum_{h \in H} b_{h}\right) \otimes h_{0}$, whence $\sum_{h \in H} b_{h} \in l \Lambda_{\wedge}$, since $h_{0}$ has order $l$. Thus, $\left(h_{0}-1\right) b \in\left(h_{0}-1\right)\left(\sum_{h \in H} b_{h}(h-1)+l \Lambda_{\wedge}\right) \subset\left(h_{0}-1\right) \mathfrak{r}$.
The same argument applies to the kernel in the top row. It follows that $\mathbb{L}\left(1+\left(h_{0}-1\right) \mathfrak{r}\right) \subset\left(h_{0}-1\right) \mathfrak{r}$.
ii. $\mathbb{L}: 1+\left(h_{0}-1\right) \mathfrak{r} \rightarrow\left(h_{0}-1\right) \mathfrak{r}$ is an isomorphism. If $x \in \mathfrak{r}$, then $\psi\left(h_{0}-1\right)=0$ implies that $\mathbb{L}\left(\exp \left(\left(h_{0}-1\right) x\right)\right)=\left(h_{0}-1\right) x$, hence $\mathbb{L}$
is onto, and

$$
\begin{aligned}
\mathbb{L}\left(1-\left(h_{0}-1\right) x\right) & =\log \left(1-\left(h_{0}-1\right) x\right) \\
& =-\left(h_{0}-1\right)\left(x-x^{l}\right)+\left(h_{0}-1\right)^{2} x^{2} \lambda_{x} \\
& =-\left(h_{0}-1\right) x+\left(h_{0}-1\right) x^{2} \lambda_{x}^{\prime}
\end{aligned}
$$

with some $\lambda_{x}, \lambda_{x}^{\prime} \in \Lambda_{\wedge}[H]$ by ( $\dagger$ ) in [10], p. 40 (with $z$ replaced by $\left.h_{0}\right)$. If this is zero, then $\left(h_{0}-1\right) x\left(1-x \lambda_{x}^{\prime}\right)=0$ with $1-x \lambda_{x}^{\prime} \in$ $\Lambda_{\wedge}[H]^{\times}$. So $\mathbb{L}$ is injective.

Remark. Admittedly, Proposition 5.1 is closer to Corollary 3.1 than to Proposition 3.1 itself, as $\Lambda_{\wedge}[H]^{\times}$has not been determined.

We acknowledge financial support provided by NSERC and the University of Augsburg.

## References

[1] C.W. Curtis and I. Reiner, Methods of Representation Theory, I,II. John Wiley \& Sons, 1981, 1987.
[2] B. Coleman, Local units modulo circular units. Proc. AMS 89 (1983), 1-7.
[3] I. Fesenko and M. Kurihara, Invitation to higher local fields. Geometry \& Topology Monographs 3 (2000), ISSN 1464-8997 (online).
[4] A. Fröhlich, Galois Module Structure of Algebraic Integers. Springer-Verlag, 1983.
[5] T. Fukaya and K. Kato, A formulation of conjectures on p-adic zeta functions in noncommutative Iwasawa theory. Proc. St. Petersburg Math. Soc. 11 (2005).
[6] K. Kato, Iwasawa theory of totally real fields for Galois extensions of Heisenberg type. Preprint ('Very preliminary version', 2006)
[7] S. LaNG, Cylotomic Fields I-II. Springer GTM 121 (1990).
[8] R. Oliver, Whitehead Groups of Finite Groups. LMS Lecture Notes Series 132, Cambridge (1988).
[9] J. Ritter and A. Weiss, Toward equivariant Iwasawa theory, II. Indagationes Mathematicae 15 (2004), 549-572.
[10] J. Ritter and A. Weiss, Toward equivariant Iwasawa theory, III. Mathematische Annalen 336 (2006), 27-49.
[11] J. Ritter and A. Weiss, Non-abelian pseudomeasures and congruences between abelian Iwasawa L-functions. Pure and Applied Mathematics Quarterly 4 (2008), 1085-1106.
[12] J. Ritter and A. Weiss, Congruences between abelian pseudomeasures. Math. Res. Lett. 15 (2008), 715-725.
[13] J. Ritter and A. Weiss, Equivariant Iwasawa theory: an example. Documenta Mathematica 13 (2008), 117-129.

Jürgen Ritter<br>Schnurbeinstraße 14<br>86391 Deuringen, Germany<br>E-mail: jr@ritter-maths.de<br>URL: http://www.ritter-maths.de<br>Alfred Weiss<br>Department of Mathematics<br>University of Alberta<br>Edmonton, AB, Canada T6C 2G1<br>E-mail: weissa@ualberta.ca


[^0]:    Manuscrit reçu le 2 mars 2007, révisé le 6 novembre 2007.

