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Journal de Théorie des Nombres
de Bordeaux 22 (2010), 197-207

The integral logarithm in Iwasawa theory :
an exercise

par Jürgen RITTER et Alfred WEISS

Résumé. Soient l un nombre premier impair et H un groupe fini
abélien. Nous décrivons le groupe d’unités de Λ∧[H] (la complétion
du localisé de Zl[[T ]][H] en l) ainsi que le noyau et le conoyau du
logarithme intégral L : Λ∧[H]× → Λ∧[H], qui apparaît dans la
théorie d’Iwasawa non-commutative.

Abstract. Let l be an odd prime number and H a finite abelian
l-group. We describe the unit group of Λ∧[H] (the completion of
the localization at l of Zl[[T ]][H]) as well as the kernel and cokernel
of the integral logarithm L : Λ∧[H]× → Λ∧[H], which appears in
non-commutative Iwasawa theory.

1. Introduction
Let Λ = Zl[[T ]] denote the ring of power series in one variable over the

l-adic integers Zl, where l is an odd prime number. We localize Λ at the
prime ideal l · Λ to arrive at Λ• and then form the completion

Λ∧ = lim
←
n

Λ•/lnΛ• .

The integral logarithm L : Λ×∧ → Λ∧ is defined by

L(e) = 1
l

log el

ψ(e)
,

where ψ : Λ∧ → Λ∧ is the Zl-algebra homomorphism induced by ψ(T ) =
(1 + T )l − 1 and with ‘log’ defined by the usual power series.

In this paper, the unit group Λ×∧ as well as ker(L) and coker (L) are stud-
ied – more precisely, we study the analogous objects when Λ∧ is replaced
by the group ring Λ∧[H] of a finite abelian l-group H.

The interest in doing so comes from recent work in Iwasawa theory in
which refined ‘main conjectures’ are formulated in terms of the K-theory
of completed group algebras Zl[[G]] with G an l-adic Lie group (see [5],[9]).
For l-adic Lie groups of dimension 1, use of the integral logarithm L has
reduced the ‘main conjecture’ to questions of the existence of special el-
ements (“pseudomeasures”) in K1(Zl[[G]]•) , by Theorem A of [10], and,
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more recently ([11],[12]), to still unproved logarithmic congruences between
Iwasawa L-functions. Moreover, L has been indispensable for the proof of
the ‘main conjecture’ in the few special cases ([6] , [13]) which have been
settled so far.

The integral logarithm L when applied to K1(Zl[[T ]]•) takes its values
only in Zl[[T ]]∧, which is why we need to consider completions. As for finite
G (see [8] and [4]), L can be used to obtain structural information about
K1; in particular, coker (L) can be detected on the abelianization Gab of G
(by [10], Theorem 8). Then

Gab = H × Γ, with Γ ' Zl and H as before,
K1(Zl[[Gab]]∧) = Zl[[Gab]]×∧ (see [1], 40.31 and 40.32 (ii)) ,
Zl[[Gab]], Zl[[Gab]]∧ are Λ[H] and Λ∧[H], respectively,
and ψ is induced by the map g 7→ gl on Gab.

For these reasons it seems worthwhile to present a rather complete under-
standing of L in the abelian situation, which is the purpose of our exercise.

The content of the paper is as follows. In section 2 we consider Λ and
define an integral exponential E on T 2Λ which is inverse to L (on 1 +T 2Λ).
As a consequence, we obtain the decomposition

Λ× = Zl× × (1 + T )Zl × E(T 2Λ)

for the unit group Λ× of Λ (which reminds us of [2], Theorem 1). Applying
L to the decomposition yields a generalization of the Oliver congruences
[8], Theorem 6.6.

The third section centers around Λ∧ and two important subgroups

Ξ = {
∞∑

k=−∞
xkT

k ∈ Λ∧ : xk = 0 for l|k} and Ξ2 = {
∑
k≥2

xkT
k ∈ Ξ} .

In terms of these we exhibit natural decompositions of Λ∧ and Λ×∧ , which
leads immediately to ker(L) and im (L) , coker (L).

Section 4 is still concerned with Λ∧ : we determine the kernel and cokernel
of its endomorphism 1− ψ.

This will be used in the last section, §5, where we extend most of the
results to the group ring Λ∧[H] of a finite abelian l-group H over Λ∧ and
determine ker(L) and coker (L) here.

2. The integral exponential E and Λ×

Recall that Λ is the ring Zl[[T ]] of formal power series
∑
k≥0 ykT

k with
coefficients yk ∈ Zl , and that the integral logarithm is defined on the units
e ∈ Λ× of Λ by

L(e) = 1
l

log el

ψ(e)
where ψ(T ) = (1 + T )l − 1 .
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Moreover, note that 1+T 2Λ is a subgroup of Λ× since T ∈ rad(Λ) = 〈l, T 〉 .
We now turn to the integral exponential E on T 2Λ : This is the formal

power series, with coefficients in Ql, defined by

E(y) = exp
(∑
i≥0

ψi(y)
li

)
∈ Ql[[T ]] for each y ∈ T 2Λ .

Observe that E and ψ commute.

Lemma 2.1. E(y) ∈ 1 + T 2Λ , and E and L are inverse to each other

T 2Λ
E
�

L
1 + T 2Λ .

Proof. The proof is an adaptation of that of the Dwork-Dieudonné lemma
(see [7], 14 §2) : if f(T ) ∈ 1 + T 2Ql[[T ]] satisfies f(T )l

ψ(f(T )) ∈ 1 + lT 2Zl[[T ]] ,
then f(T ) ∈ 1 + T 2Zl[[T ]] .

First, ψi(T ) ≡ liT modT 2Zl[[T ]] implies ψi(T k) ≡ likT kmodT k+iZl[[T ]] ,
and thus, if y ∈ ykT k + T k+1Zl[[T ]] with yk ∈ Zl, then

ψi(y)/li ∈ ykl(k−1)iT k + T k+1Ql[[T ]] ;
whence for k ≥ 2,

∑
i≥0

ψi(y)
li
∈
(∑
i≥0

ykl
(k−1)iT k

)
+ T k+1Ql[[T ]]

= yk(1− lk−1)−1T k + T k+1Ql[[T ]] ,

so E(y) ∈ 1 + yk(1− lk−1)−1T k + T k+1Ql[[T ]].
Second,

E(y)l/E(ψ(y)) = exp
(
l
∑
i≥0

ψi(y)
li
−
∑
i≥0

ψi+1(y)
li

)
(∗)

= exp(ly) ∈ 1 + lT 2Zl[[T ]] ,
which brings us in a position to employ the Dwork-Dieudonné argument
to obtain E(y) ∈ 1 + T 2Zl[[T ]] = 1 + T 2Λ and, in particular, E(y) ∈ 1 +
yk(1− lk−1)−1T k + T k+1Zl[[T ]] .

Moreover, given bk ∈ Zl and setting ak = (1 − lk−1)bk, then E(akT k) ∈
1 + bkT

k + T k+1Zl[[T ]] for all k, which implies that E(T 2Λ) = 1 + T 2Λ .
We finish the proof of the lemma by showing LE(y) = y , and EL(1+y) =

1 + y whenever y ∈ T 2Λ , so 1 + y = E(ỹ) :

LE(y) = 1
l

log E(y)l

E(ψ(y))
(∗)= 1

l
log exp(ly) = y ,

EL(1 + y) = EL(E(ỹ)) = E(ỹ) = y .

�
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Corollary 2.1.
L(1 + lΛ) = (l − ψ)Λ ,

exp(ly) = (1 + T )ly1E((l − ψ)y)

if y ≡ y1T mod T 2Λ (and y1 ∈ Zl).

Proof. Since exp(lΛ) = 1 + lΛ, for the first assertion it suffices to compute

L(exp(ly)) = 1
l

log(exp(ly)l−ψ) = 1
l

log exp(l(l − ψ)y) = (l − ψ)y .

The second assertion holds for y = T (so y1 = 1) :

(1 + T )−l exp(lT ) ∈ 1 + T 2Zl[[T ]] ,

hence (1 + T )−l exp(lT ) = E(z) for some z ∈ T 2Zl[[T ]].
Apply L and get (l−ψ)(T ) = z from the last but one displayed formula

and as L(1 + T ) = 1
l log (1+T )l

1+(1+T )l−1 = 0 .

Next, take y ∈ T 2Zl[[T ]], so exp(ly) ∈ 1 + T 2Zl[[T ]] and again exp(ly) =
E((l − ψ)y).

The two special cases can be combined on writing y = y1T+(y−y1T ). �

Denote by µl−1 the group of roots of unity in Zl×.

Corollary 2.2.
Λ× = Zl× × (1 + T )Zl × E(T 2Λ) ,
ker(L) = µl−1 × (1 + T )Zl ,

im (L) = Zl ⊕ T 2Λ

Proof. The first coefficient e0 of e =
∑
k≥0 ekT

k ∈ Λ× is a unit in Zl.
Replacing e by e−1

0 · e = 1 + e′1T + · · · and then multiplying by (1 + T )−e′1
gives the new unit 1 + ẽ2T

2 + · · · ∈ 1 + T 2Λ . Thus, by Lemma 2.1, Λ× =
Zl× · (1 +T )Zl ·E(T 2Λ) , and the product is obviously direct. Since, on Zl×,
L(ζ) = 0 precisely for ζ ∈ µl−1, and since L(1 + T ) = 0 , we also get the
claimed description of the kernel and image of L. �

3. The integral logarithm L on Λ∧
We recall that Λ• denotes the localization of Λ at the prime ideal lΛ and

that Λ∧ = lim
←
n

Λ•/lnΛ• . In particular, Λ• and Λ∧ have the same residue

field Fl((T )) (which carries the natural T -valuation vT ). It follows that

Λ∧ = {x =
∑
k∈Z

xkT
k : xk ∈ Zl , lim

k→−∞
xk = 0} .
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Such large rings are basic objects in the theory of higher dimensional
local fields [3]; the map ψ on Λ∧ is extra structure which remembers the
group Γ.

In what follows we frequently use the decomposition

Λ∧ = Λ∧− ⊕ Zl ⊕ Λ∧+ , where Λ∧± =
{
{x ∈ Λ∧ : xk = 0 for k ≤ 0}
{x ∈ Λ∧ : xk = 0 for k ≥ 0} .

Note that the three summands are subrings which are preserved by ψ. As
a consequence, we see that Λ ∩ (l − ψ)Λ∧ = (l − ψ)Λ .

Definition.

Ξ = {x =
∑
k∈Z

xkT
k ∈ Λ∧ : xk = 0 when l divides k} ,

Ξs = {x =
∑
k≥s

xkT
k ∈ Ξ} , where s ∈ Z .

Lemma 3.1.
(1) l − ψ is injective on Λ∧ and has image L(1 + lΛ∧) ,
(2) Λ∧ = Ξ⊕ (l − ψ)Λ∧

Proof. For the first assertion we make use of the commuting diagram

(1)
Λ∧

l
� Λ∧ � Fl((T ))

l − ψ ↓ l − ψ ↓ −ψ ↓
Λ∧

l
� Λ∧ � Fl((T ))

with exact rows and with ψ(T ) = T
l , so ψ(x) = xl for x ∈ Fl((T )) . In

particular, −ψ is injective and hence the snake lemma implies ker(l−ψ) =
l · ker(l − ψ) from which ker(l − ψ) = 0 follows by

⋂
n≥0 l

nΛ∧ = 0 .
Regarding the image, we observe that exp(lΛ∧) = 1 + lΛ∧ and recall

L(exp(ly)) = (l−ψ)y from the proof of Corollary 2.1 (but now with y ∈ Λ∧).
For the second assertion we make use of the commuting diagram

(2)
Ξ l

� Ξ � Ξ/lΞ
↓ ↓ ↓

Λ∧/(l − ψ)Λ∧
l

� Λ∧/(l − ψ)Λ∧ � Fl((T ))/ψ(Fl((T )))
with natural vertical maps (which we denote by ˜). Its bottom row is the
sequence of cokernels of diagram (1) and thus exact. Its right vertical map
is an isomorphism, by the definition of Ξ and by ψ(x) = xl . Consequently,
the other vertical map, Ξ→ Λ∧/(l−ψ)Λ∧, is injective, by the snake lemma
and

⋂
n≥0 l

nΛ∧ = 0 . To finish the proof of the lemma we are left with
showing the surjectivity of Ξ → Λ∧/(l − ψ)Λ∧ . Starting, in (2), with x̃ ∈
Λ∧/(l−ψ)Λ∧ (the middle term in the bottom row) we find elements y0 ∈ Ξ
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and x̃1 ∈ Λ∧/(l − ψ)Λ∧ such that x̃ − ỹ0 = lx̃1 . Continuing, we get x̃ =
ỹ0 + lỹ1 + l2ỹ2 + · · · , with y0 + ly1 + l2y2 + · · · ∈ Ξ . �

Corollary 3.1. T 2Λ = Ξ2 ⊕ (l − ψ)TΛ

Proof. Since Ξ∩Λ∧+ = Ξ1, Lemma 3.1 gives Λ∧+ = Ξ1 ⊕ (l− ψ)Λ∧+, i.e.,
TΛ = Ξ1⊕(l−ψ)TΛ . We intersect with T 2Λ and obtain the corollary from
(l − ψ)TΛ ⊂ T 2Λ and Ξ1 ∩ T 2Λ = Ξ2 . �

Proposition 3.1. Λ×∧ = T Z × µl−1 × (1 + T )Zl × E(Ξ2)× (1 + lΛ∧)

Proof. Given e =
∑
k∈Z ekT

k ∈ Λ×∧ , we will modify e by factors in T Z, µl−1×
(1 + lΛ∧) and (1 + T )Zl to arrive at a new unit E(y) for some y ∈ Ξ2. This
confirms the claimed product decomposition of Λ×∧ but not yet that it is a
direct product.

(1) Going modulo l, let e =
∑
k≥k0 ekT

k ∈ Fl((T )) have coefficient
ek0 6= 0. Multiplying e by T−k0 ∈ T Z gives a new unit with zero
coefficient not divisible by l but all coefficients with negative index
divisible by l; we denote it again by e.

(2) Now e0 ∈ Zl× = µl−1×(1+lZl) ⊂ µl−1×(1+lΛ∧), and multiplying e
by e−1

0 allows us to assume that e = le−+ 1 + e+ , where e− ∈ Λ∧−
and e+ ∈ Λ∧+ , so 1 + e+ ∈ Λ× ≤ Λ×∧ and e(1 + e+)−1 = 1 +
l(e−(1 + e+)−1) ∈ 1 + lΛ∧ , i.e., e ≡ 1 + e+ mod 1 + lΛ∧.

(3) If 1 + e+ = 1 + e1T + e2T
2 + · · · , then multiplying 1 + e+ by

(1+T )−e1 ∈ (1+T )Zl produces 1+T 2ỹ with ỹ ∈ Λ (note (1+T )z ≡
1 + zT mod T 2Λ). Hence, by Lemma 2.1, modulo T Z · µl−1 · (1 +
T )Zl · (1+ lΛ∧), the original unit e satisfies e ≡ E(y′) with y′ ∈ T 2Λ.

(4) As E(T 2Λ) = E(Ξ2) × E((l − ψ)TΛ) by the above corollary, mul-
tiplying E(y′) with E(y) for a suitable y ∈ Ξ2 yields an element
E((l − ψ)y′′) with y′′ ∈ y′′1T + T 2Λ. It follows from Corollary 2.1
to Lemma 2.1 that E((l − ψ)y′′) = (1 + T )−ly′′1 exp(ly′′). The first
factor is in (1 + T )Zl and the second in 1 + lΛ.

We now prove that we actually have a direct product.
We have already used (1 + T )z ≡ 1 + zT mod T 2Λ. Together with

E(Ξ2) ⊂ 1 + T 2Λ∧ it implies that the product T Z · µl−1 · (1 + T )Zl · E(Ξ2)
is direct. Moreover, an element in it which also lies in 1 + lΛ∧ must equal
E(y) with y ∈ Ξ2. Indeed, (1 + T )z ≡ 1 mod l gives z ≡ 0 mod l, hence
(1 +T )

z
l ≡ 1 mod l, since modulo l we are in characteristic l. Thus z = 0.

So assume E(y) = 1 + lz. Applying L gives y = L(1 + lz) = (l − ψ)z′ ∈
(l − ψ)Λ∧, by Corollary 2.1. As y ∈ Ξ2 ⊂ T 2Λ, the zero coefficient of z′
vanishes and Corollary 3.1 implies y = 0. This completes the proof of the
proposition. �
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Definition. ξ : Λ∧ = Ξ⊕ (l − ψ)Λ∧ → Ξ is the identity on Ξ and zero on
(l − ψ)Λ∧
Corollary 3.2. We have an exact sequence

µl−1 × (1 + T )Zl � Λ∧×
L→ Λ∧ � Ξ / (Z · ξ((L(T ))⊕ Ξ2) .

Proof. For the proof note that ξ(L(T )) is in Λ∧− and non-zero : writing
T l

ψ(T ) = 1
1−lv with v = − 1

l

∑l−1
i=1
(l
i

)
T−i we have

L(T ) = − log(1− lv) =
∑
j≥1

lj−1

j
vj ∈ Λ∧−

with

ξ(L(T )) ≡ ξ(v) = v ≡
l−1∑
i=1

(−1)i

i
T−i mod l .

Recall that µl−1 × (1 + T )Zl ⊂ ker(L), that LE is the identity on Ξ2, and
that 1 + lΛ∧ = exp(lΛ∧).

Suppose now that e = T bζ(1 + T )zE(x) exp(ly) is in ker(L) (with b ∈
Z, ζ ∈ µl−1, z ∈ Zl, x ∈ Ξ2, y ∈ Λ∧). Then −bL(T ) = x+ (l − ψ)y implies
−bξ(L(T )) = x is in Λ∧−∩Ξ2 = 0, hence b = 0 = x and then y = 0 by 1. of
Lemma 3.1, as required.

Concerning coker (L), it suffices to show that im (L) = Z · ξ(L(T ))⊕Ξ2⊕
(l − ψ)Λ∧. By Proposition 3.1, 1. of Lemma 3.1 and L(T ) − ξ(L(T )) ∈
(l − ψ)Λ∧ this again follows from ξ(L(T )) /∈ Ξ2.

This finishes the proof of the corollary. �

Remark. When l = 2, more effort is needed, since −1 ∈ 1 + 2Λ∧ and
‘log , exp’ are no longer inverse to each other.

4. Kernel and cokernel of 1− ψ on Λ∧
Lemma 4.1. There is an exact sequence

0→ Zl → Λ∧
1−ψ−→Λ∧ → (Ξ/Ξ1)⊕ Zl → 0 .

Proof. We start its proof from the obvious diagram below and show that
ker(1− ψ) = Fl, the constants in Fl((T )) = Λ∧/lΛ∧.

Λ∧
l

� Λ∧ � Λ∧/lΛ∧
1− ψ ↓ 1− ψ ↓ 1− ψ ↓

Λ∧
l

� Λ∧ � Λ∧/lΛ∧
Indeed,

(1− ψ)(
∑
k≥−n

zkT
k) = 0 ⇐⇒

∑
k≥−n

zkT
k =

∑
k≥−n

zkT
lk = (

∑
k≥−n

zkT
k)l ,
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and the only l−1st roots of unity in the field Fl((T )) are the constants 6= 0.
The above implies ker(1−ψ) = Zl+l ker(1−ψ). By successive approximation
this gives ker(1− ψ) = Zl .

Turning back to the diagram, we obtain from the snake lemma the short
exact sequence

coker (1− ψ) l
� coker (1− ψ) � coker (1− ψ) .

We compute its right end. Because Fl((T )) is complete in the vT -topology,∑
n≥0 z

ln converges for every element z =
∑
k≥1 zkT

k, hence

(1− ψ)(
∑
n≥0

zl
n) = z

implies that these z all belong to im (1− ψ). Also, T i−T li = (1− ψ)(T i) ∈
im (1− ψ). Thus, coker (1− ψ) is spanned by the images of T j with j = 0
or j < 0 & l - j. These elements are actually linearly independent over Fl.
To see this, read an equation∑

−n≤k<0
l-k

zkT
k + z0 = (1− ψ)(x) =

∑
−n≤k<0

xk(T
k − T lk)

coefficientwise from k = −n to k = 0.
Going back to the short exact sequence displayed above, we now realize

that Ξ/Ξ1 ⊕Zl maps onto coker (1−ψ), since Λ∧ is l-complete. And by the
last paragraph, this surjection is, in fact, an isomorphism. �

5. Kernel and cokernel of L on Λ∧[H]

As in the introduction, H is a finite abelian l-group and Λ∧[H] is its
group ring over Λ∧. Perhaps the description Λ∧[H] = Zl[[Γ ×H]]∧ , with
Γ denoting the cyclic pro-l group generated by 1 +T , gives a better under-
standing of the ring homomorphism ψ on Λ∧[H] : ψ is induced by ψ(g) = gl

for g ∈ Γ×H . And the integral logarithm L : Λ∧[H]× → Λ∧[H] , as before,
takes a unit e ∈ Λ∧[H]× to L(e) = 1

l log el

ψ(e) .
For the discussion of its kernel and cokernel we first invoke the aug-

mentation map Λ∧[H] → Λ∧ , h 7→ 1 for h ∈ H , so that we can employ
our earlier results. Let g denote its kernel and note that 1 + g ⊂ Λ∧[H]×,
as g ⊂ r

def= rad(Λ∧[H]) = g + lΛ∧[H] ; moreover, for the same reason,
Λ∧[H]× → Λ×∧ is surjective.

Proposition 5.1. L : Λ∧[H]× → Λ∧[H] has
ker(L) = µl−1 × (1 + T )Zl ×H ( = µl−1 × (Γ×H) ) ,
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and coker (L) is described by the split exact sequence

(Ξ/Ξ1 ⊕ Zl)⊗Zl H � coker (L) � Ξ / (Zξ(L(T ))⊕ Ξ2) .

Proof. The proof begins with the commutative diagram

1 + g � Λ∧[H]× � Λ×∧
L ↓ L ↓ L ↓

g � Λ∧[H] � Λ∧
with exact rows which are split by the same inclusion Λ∧ � Λ∧[H] of
rings. Here the right square commutes because ψ and ‘log’ both commute
with augmentation, and thus induces the left square since the sequences
are exact.

The right vertical L fits into the exact sequence of Corollary 3.2. Similarly
we will need

Lemma 5.1. There is an exact sequence

H � 1 + g
L−→ g � (Ξ/Ξ1 ⊕ Zl)⊗Zl H .

Proposition 5.1 follows from Lemma 5.1 and the snake lemma : for µl−1×
(1+T )Zl×H ⊂ ker(L) maps onto the kernel of the right vertical L , and the
cokernel sequence splits because the natural splittings in the commutative
diagram are compatible. �

So it remains to prove Lemma 5.1, which we do next.

Proof. a) g/g2 ' Λ∧ ⊗Zl H by h− 1 mod g2 7→ h

This is a consequence of Λ∧[H] = Λ∧ ⊗Zl Zl[H] and the natural
isomorphism ∆H/∆2H ' H , h − 1 7→ h, where ∆H =
〈h− 1 : h ∈ H〉Zl is the augmentation ideal of the group ring Zl[H],
so g = Λ∧ ⊗Zl ∆H.

b) If e = 1 +
∑

1 6=h∈H eh(h− 1) ∈ 1 + g (with eh ∈ Λ∧), then
L(e) ≡

∑
h(eh − ψ(eh))(h− 1) mod g2 .

Indeed, modulo lg2 we have

el ≡ 1 + l
∑
h

eh(h− 1) +
∑
h

elh(h− 1)l

≡ 1 + l
∑
h

eh(h− 1) +
∑
h

ψ(eh)(h− 1)l

≡ 1 + l
∑
h

eh(h− 1) +
∑
h

ψ(eh)(hl − 1)− l
∑
h

ψ(eh)(h− 1)

≡ ψ(e)+l
∑
h

(eh − ψ(eh))(h− 1) ,
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so
el

ψ(e)
≡ 1 + ψ(e)−1l

∑
h

(eh − ψ(eh))(h− 1)

≡ 1 + l
∑
h

(eh − ψ(eh))(h− 1) mod lg2

as ψ(e)−1 ∈ 1 + g. Now apply ‘1
l log ’.

From a), b) we get the right square of the commutative diagram

1 + g2 � 1 + g � Λ∧ ⊗Zl H
L ↓ L ↓ (1− ψ)⊗ 1 ↓

g2 � g � Λ∧ ⊗Zl H

with left square induced by the exactness of the rows. The map (1−ψ)⊗ 1
has kernel and cokernel given by tensoring the sequence in Lemma 4.1 with
H : it remains exact since it is composed of two short exact sequences of
torsionfree Zl-modules. So the snake lemma reduces Lemma 5.1 to proving
that L : 1 + g2 → g2 is an isomorphism.

We do this by induction on |H| and, to that end, choose an element
h0 ∈ H of order l and let H →̃ H̃ = H/〈h0〉 be the natural map.

Recalling that r = rad(Λ∧[H]) = g + lΛ∧[H] , we start with the right
square of the diagram

1 + (h0 − 1)r � 1 + g2 � 1 + g̃2

L ↓ L ↓ L̃ ↓
(h0 − 1)r � g2 � g̃2 ,

which commutes since ψ , ‘log’ commute with ˜ . Since L̃ is an isomorphism
by the induction hypothesis, it suffices to show that the kernels in the rows
are as shown and that the left L is an isomorphism :

i. g2 → g̃2 has kernel (h0 − 1)r . Since (h0 − 1)r is in the kernel of ˜
and l(h0 − 1) is in g2, by l(h0 − 1) ≡ hl0 − 1 mod g2, it remains to
check

(h0 − 1)Λ∧[H] ∩ g2 ⊂ (h0 − 1)r .
If (h0 − 1)b = (h0 − 1)

∑
h∈H bhh ∈ g2 (with bh ∈ Λ∧), then the

isomorphism g/g2 ' Λ∧⊗ZlH takes (h0−1)b to 0 =
∑
h∈H bh⊗h0 =

(
∑
h∈H bh)⊗h0 , whence

∑
h∈H bh ∈ lΛ∧, since h0 has order l. Thus,

(h0 − 1)b ∈ (h0 − 1)(
∑
h∈H bh(h− 1) + lΛ∧) ⊂ (h0 − 1)r .

The same argument applies to the kernel in the top row. It follows that
L(1 + (h0 − 1)r) ⊂ (h0 − 1)r .

ii. L : 1 + (h0 − 1)r → (h0 − 1)r is an isomorphism . If x ∈ r, then
ψ(h0 − 1) = 0 implies that L(exp((h0 − 1)x)) = (h0 − 1)x , hence L
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is onto, and
L(1− (h0 − 1)x) = log(1− (h0 − 1)x)

= −(h0 − 1)(x− xl) + (h0 − 1)2x2λx

= −(h0 − 1)x+ (h0 − 1)x2λ′x

with some λx, λ′x ∈ Λ∧[H] by (†) in [10], p.40 (with z replaced by
h0). If this is zero, then (h0 − 1)x(1 − xλ′x) = 0 with 1 − xλ′x ∈
Λ∧[H]×. So L is injective.

�

Remark. Admittedly, Proposition 5.1 is closer to Corollary 3.1 than to
Proposition 3.1 itself, as Λ∧[H]× has not been determined.
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