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Explicit construction of integral bases of radical
function fields

par Qingquan WU

Résumé. Nous donnons une construction explicite d’une base en-
tière pour le corps de fonction K = k(t, ρ), où ρn = D ∈ k[t], sous
l’hypothèse [K : k(t)] = n et char(k) - n. Le discriminant du corps
K est également calculé. Nous expliquons pourquoi ces questions
sont considérablement plus faciles que dans le cas des corps de
nombres. Quelques formules pour les P -signatures des corps de
fonction radiciels sont également présentées dans ce papier.

Abstract. We give an explicit construction of an integral basis
for a radical function fieldK = k(t, ρ), where ρn = D ∈ k[t], under
the assumptions [K : k(t)] = n and char(k) - n. The field discrim-
inant of K is also computed. We explain why these questions are
substantially easier than the corresponding ones in number fields.
Some formulae for the P -signatures of a radical function field are
also discussed in this paper.

1. Introduction
An important problem in computational number theory is the question

of computing an integral basis of a number field or a function field. It is
needed for almost every problem involving ideals, for example, computing
the ideal class group, the ideal class number, a system of fundamental units,
the regulator, etc. Methods for computing an integral basis of an arbitrary
field extension, such as the Round 2 algorithm and its variants, are given
in [2] and [18], and have been implemented in Magma [1] and KANT [9].
However, it is essential to find a “good” method. Here “good” refers to both
efficiency of the method and simplicity of the form of the basis. The general
methods in [2] [18] are not efficient even if the extension degree is of modest
size.

Nevertheless, efforts in finding integral bases in certain types of number
fields have been quite fruitful. For example, there are explicit classifications
of integral bases for quadratic, purely cubic, biquadratic and cyclotomic
number fields [14]. Integral bases for certain types of quartic number fields
were given in [6] and [5]. But when the extension degree is larger than 4,
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there are only a few results, and usually they come with strong assumptions,
for example, see pp. 270–276, of [19].

In this paper, we construct the integral basis explicitly for any (tame)
radical function field; that is, we construct the integral basis for k(t, ρ),
where ρ is a fixed root of Y n −D, D ∈ k[t], and we assume that Y n −D
is irreducible in over k(t) and char(k) - n. It must be emphasized that
our result gives explicit formula, hence it should not be compared with
other algorithmic approaches of this problem, such as [23] or [25]. Also, our
result is on absolute extensions. On the existence (and the computation) of
integral bases on relative extensions, see, for example, [12] [15] [10] [11].

Unlike many other results in function field theory, our method is totally
original in the sense that it does not come from an adaptation of a tech-
nique used in number fields. To our knowledge, Okutsu [17] was the first to
establish an algorithm to compute integral bases for radical number fields.
His technique, using Newton’s diagram, is entirely different from ours. Al-
though it is possible to adapt his method to the function field case, our
approach is better in several ways. One is that our method gives a formula
instead of an algorithm. By using the formula, we can compute integral
bases of radical function fields even if they are given by abstract parame-
ters, hence our method is more basic and more convenient. Another is that
our computational complexity is bounded by the squarefree factorization of
a polynomial, which is computationally easy to find. Also, the basis we con-
struct is a “diagonal basis with denominators”, which is of the simplest form
that one can expect. The “diagonal basis with denominators” here means if
the integral basis is written in terms of the generators {1, ρ, ρ2, · · · , ρn−1},
then the transformation matrix is diagonal with non-zero entries in k(t).
This result is important both theoretically and computationally in the sense
that it is independent of the size of the field extension degree and the size of
the constant field. Some formulae for the P -signatures of a radical function
field are also discussed in this paper.

We give a short introduction for radical function fields and present the
main result of this paper in Section 2. Section 3 contains a proof of the main
result. In Section 4, for all places P in the rational function field k(t) and all
places P ′ | P in the radical function field K, a formula is given in Theorem
4.2 on the least common multiple of f(P ′|P ) deg(P ) and an integer m that
is independent of K. The formula characterizes the P -signature completely
whenK/k(t) is cyclic Galois, which is true if and only ifm = 1. An example
is also presented there to show that the relative degrees f(P ′|P ) are not
independent of the places P ′ lying above P . As a result, a unified formula
for the relative degrees f(P ′|P ) does not exist.
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2. Radical function fields
A general introduction to function fields can be found in [22] or [20]. In

particular, results about radical function fields can be found in pp. 109-118,
of [22].

Let k be a perfect field, k∗=k\{0}, and the characteristic of k is denoted
by char(k). For some fixed element t that is transcendental over k, denote
by k[t] and k(t) the ring of polynomials and the field of rational functions,
respectively, over k in the variable t. A function field (of one variable) K is
an extension of degree n over k(t); here, we require char(k) to be either 0
or not a divisor of n, hence K/k(t) is separable. The constant field of K is
the set {a ∈ K | a is algebraic over k}. The set of places of K is denoted by
PK . For P ∈ PK , denote the corresponding (surjective) discrete valuation
for P by vP : K → Z ∪ {∞} and the valuation ring by OP . The degree
of P , denoted by deg(P ), is the field extension degree [OP /P : k1], where
k1 is the constant field of K. In k(t), every place except for one can be
uniquely identified with an irreducible polynomial in k[t]; we call these the
finite places (of k(t)), and call the exceptional place the infinite place (of
k(t)) and denote it by P∞.

The integral closure OK of k[t] in K is a ring and a free k[t]-module of
rank n whose discriminant is referred to as the discriminant of K/k(t) and
is denoted by disc(K). Note that disc(K) is only defined up to squares in
k∗, hence any results below concerning disc(K) only hold up to squares in
k∗. A k[t]-basis of OK is called an integral basis of K. For a fixed alge-
braic closure K of K, there exist exactly n k(t)-embeddings from K into
K; call them σi, 1 ≤ i ≤ n. For α1, . . . αn ∈ K, we define the discrimi-
nant of {α1, . . . αn}, denoted by disc(α1, . . . αn), to be the square of the
determinant of the n × n matrix (σi(αj))i,j . When αi = αi−1 for some
α ∈ K, we simply call disc(α1, . . . αn) to be disc(α). Note that disc(K) =
disc(α1, . . . αn) when {α1, . . . αn} is an integral basis of K, up to squares
in k∗. If K = k(t, α), then disc(α) = Ind(α)2disc(K), where Ind(α) ∈ k(t)
is the index of α, up to squares in k∗.

Let L be a function field containing K with constant field l and char(K) -
[L : K], P ∈ PK , P ′ ∈ PL and P ′ | P . From the identity [OP ′/P ′ : l][l : k] =
[OP ′/P ′ : OP /P ][OP /P : k], we have

(2.1) deg(P ′)[l : k] = f(P ′|P ) deg(P ).

The tuple of pairs (e(P ′|P ), f(P ′|P )) with P ′ lying over P , usually sorted
in lexicographical order, is the P -signature of L/K; here, e(P ′|P ), f(P ′|P )
denote the ramification index and relative degree of P ′ | P , respectively.
K/k(t) is called a tame extension if char(k) = 0 or char(k) - e(P ′|P ) for
any P ∈ Pk(t) and any P ′ | P .
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A radical function field (of degree n) is a function field K = k(t, ρ) where
ρ is a fixed root of Y n = D, D ∈ k[t] and Y n −D is irreducible over k(t).
Without loss of generality, we can assume that D is n-th power free; that is,
no Q ∈ k[t]\k exists such that Qn|D. This can be done via the squarefree
factorization of polynomials over k, which is computationally easy when
char(k) = 0 or k is finite. See Algorithm 3.4.2, p. 125, of [3]. Write

(2.2) D = sgn(D)
n−1∏
i=1
Gii ,

where sgn(D) ∈ k∗, Gi ∈ k[t] are monic, squarefree and pairwise coprime,
for 1 ≤ i ≤ n − 1. The crucial fact we shall need on radical extensions is
the following

(2.3) e(P ′|P ) = n

gcd(n, vP (D))
Note that (2.3) is independent of P ′, henceforth e(P ′|P ) will be denoted by
e(P ). It is clear by (2.3) that K/k(t) is tame, under the assumption that
char(k) - n.

The curve Y n−D = 0 defining K/k(t) is nonsingular if and only if D is
squarefree. In this case, an integral basis of K is just {1, ρ, ρ2, . . . , ρn−1}
and disc(K) = (−1)(n−1)(n+2)/2nnDn−1. So we need to work out the case
of non-squarefree D.

Although Theorem 2.1 below seems complicated at first glance, it is ex-
ceptionally suitable for computation. In fact, if the squarefree factorization
of D is known, the remaining job to complete the integral basis compu-
tation can be done by hand. Also note that our result is independent of
n = [K : k(t)] and the size of the constant field of K. Recall that brc and
dre denote the floor and ceiling, respectively, of r ∈ R, i.e. brc is the max-
imal integer not exceeding r, and dre is the minimal integer no less than
r.

Now we give our main result:

Theorem 2.1. Let k be a perfect field, K = k(t, ρ) a radical function field,
where ρn = D ∈ k[t], char(k) - n, and Gi given by (2.2). Then an integral

basis of K is given by {1, ρ
D1
,
ρ2

D2
,
ρ3

D3
, . . . ,

ρn−1

Dn−1
}, where

(2.4) Dm = Gd n
m
eGd n

m
e+1 · · ·Gd 2n

m
e−1G

2
d 2n
m
e · · ·

· · ·G2
d 3n
m
e−1G

3
d 3n
m
e · · ·G

m−1
d (m−1)n

m
e
· · ·Gm−1

n−1 ,

for 1 ≤ m ≤ n − 1. In particular, we have D1 = 1, D1 | D2 | . . . | Dn−1,
and
∏n−1
i=1 Di = Ind(ρ), the index of ρ.

We give an example to illustrate how to compute Dm from n,m.
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Example. Assume that n = 12,m = 5, then d nme = 3, d2n
m e = 5, d3n

m e =
8, d4n
m e = 10. These numbers determine the subscript i where the exponent

of Gi increases by one. The first increment in the exponent (from 0 to 1)
occurs at d nme = 3, the second increment (from 1 to 2) occurs at d2n

m e = 5,
the third one at d3n

m e = 8, and the fourth and last one at d4n
m e = 10. Hence

D5 = G3G4G
2
5G

2
6G

2
7G

3
8G

3
9G

4
10G

4
11.

3. A proof of Theorem 2.1
We follow the notation of Theorem 2.1. For non-zero F ∈ k[t] and G ∈
k[t] \ k, vG(F ) is the exact power of G that divides F . This coincides with
the discrete valuation vP (D) when G = P is irreducible and corresponds
to a place in k(t).

We claim that Theorem 2.1 follows from the following two lemmas:

Lemma 3.1. Let k be a perfect field, K = k(t, ρ) a radical function field,
where ρn = D ∈ k[t], char(k) - n, and Gi, Di given by (2.2) and (2.4). Then
ρj

Dj
∈ OK for any j ∈ [1, n− 1],

Proof. For any fixed j ∈ [1, n− 1], let us simply verify (ρj/Dj)n ∈ k[t]. We
have (ρj/Dj)n = Dj/Dnj = sgn(D)j

∏n−1
i=1 G

ij
i /D

n
j , and we know that Dj is

a product of certain Gi, hence it suffices to show
(3.1) vGi(Dnj ) = n vGi(Dj) ≤ ij, for all i ∈ [1, n− 1] such that Gi 6= 1.

For fixed i such that Gi 6= 1, there exists a unique integer l ∈ [0, j − 1],
such that dln/je ≤ i < d(l + 1)n/je. Then vGi(Dj) = l by (2.4). Hence
vGi(Dnj ) = ln and ln/j ≤ dln/je ≤ i, so (3.1) is proved. �

Lemma 3.2. Let k be a perfect field, K = k(t, ρ) a radical function field,
where ρn = D ∈ k[t], char(k) - n, and Gi, Di given by (2.2) and (2.4). Then

disc(K) = disc(1, ρ
D1
,
ρ2

D2
, . . . ,

ρn−1

Dn−1
), up to squares in k∗.

Note that Lemma 3.1 implies ρj/Dj is integral over k[t] for j ∈ [1, n− 1]
and Lemma 3.2 implies that disc(1, ρ/D1, ρ

2/D2, . . . , ρ
n−1/Dn−1) is exactly

disc(K), up to a constant square. By a simple linear algebra argument, we
know {1, ρ/D1, ρ

2/D2, . . . , ρ
n−1/Dn−1} is an integral basis of K. Hence it

suffices to prove Lemma 3.2.
Recall that for all tamely ramified finite places P , we have vP (disc(K)) =∑
P ′|P (e(P )−1)f(P ′|P ), where the sum is over all P ′ | P . First, we compute

disc(K):

Theorem 3.1. Let k be a perfect field, K = k(t, ρ) a radical function field,
where ρn = D ∈ k[t], char(k) - n, and Gi, Di given by (2.2) and (2.4). Then
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disc(K) = (−1)(n−1)(n+2)/2nn(sgn(D))n−1
n−1∏
i=1
G
n−gcd(n,i)
i , up to squares in

k∗.

Proof. Let P ∈ Pk(t) be any finite place and P ′ ∈ PK lying above P . Since
char(k) - n, K/k(t) is tame so vP (disc(K)) =

∑
P ′|P (e(P ) − 1)f(P ′|P ),

where the sum is over all P ′ | P . Hence by (2.3), we have

vP (disc(K)) =
∑

(e(P )− 1)f(P ′|P )

=
∑
e(P )f(P ′|P )− (

∑
e(P )f(P ′|P ))/e(P )

= n− n/e(P ) = n− gcd(n, vP (D)),

where all summations are taken over all places P ′ ∈ PK lying above P .
By (2.2), if P | Gi for some i, then vP (D) = i. So

(3.2) vP (disc(K)) = n− gcd(n, i), for P | Gi.

If P1, P2 are two irreducible divisors of Gi, we have vP1(disc(K)) =
vP2(disc(K)) by (3.2). Hence for any Gi 6= 1, we have vGi(disc(K)) =
n− gcd(n, i). Theorem 3.1 follows, since disc(ρ) = (−1)(n−1)(n+2)/2nnDn−1

and sgn(disc(ρ)) = sgn(disc(K)), up to squares in k∗. �

To prove Lemma 3.2, it suffices to show that for any i ∈ [1, n − 1] such
that Gi 6= 1, we have

(3.3) vGi(disc(1, ρ
D1
,
ρ2

D2
, . . . ,

ρn−1

Dn−1
)) = n− gcd(n, i).

Indeed, up to squares in k∗, we have

Ind(ρ)2disc(K) = disc(ρ) = disc(1, ρ
D1
,
ρ2

D2
, . . . ,

ρn−1

Dn−1
)
n−1∏
i=1
D2
i .

If (3.3) is true, then disc(1, ρ/D1, ρ
2/D2, . . . , ρ

n−1/Dn−1) and disc(K) differ
by a square in k∗. This also proves Ind(ρ) =

∏n−1
i=1 Di, up to squares in k∗.

Hence it suffices to show (3.3) to prove Lemma 3.2 and hence Theorem 2.1.
We have

Lemma 3.3. Let k be a perfect field, K = k(t, ρ) a radical function field,
where ρn = D ∈ k[t], char(k) - n, and Gi, Di given by (2.2) and (2.4). Then
for any 1 ≤ i ≤ n− 1 such that Gi 6= 1, we have

vGi(disc(1, ρ
D1
,
ρ2

D2
, . . . ,

ρn−1

Dn−1
)) = i(n− 1)− 2

n−1∑
j=1
b ij
n
c .
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Proof. Fix any 1 ≤ i ≤ n− 1 such that Gi 6= 1. By direct computation, we
have

vGi(disc(1, ρ
D1
,
ρ2

D2
, . . . ,

ρn−1

Dn−1
)) = vGi(disc(ρ))− 2 vGi(

n−1∏
j=1
Dj)

= i(n− 1)− 2
n−1∑
j=1
vGi(Dj) .

Now let us compute
∑n−1
j=1 vGi(Dj). For any fixed j ∈ [1, n − 1], there

exists a unique integer l ∈ [0, i − 1] such that dln/ie ≤ j < d(l + 1)n/ie.
Then ln/i ≤ j < (l + 1)n/i since j is an integer. So ln/j ≤ i < (l + 1)n/j,
hence dln/je ≤ i < d(l + 1)n/je since i is an integer. Thus vGi(Dj) = l by
(2.4). But ij/n− 1 < l ≤ ij/n implies bij/nc = l = vGi(Dj). �

We give the following mathematical identity to conclude (3.3), Lemma
3.2 and hence Theorem 2.1:

Proposition 3.1. For any positive integers i and n,

2
n−1∑
j=1
b ij
n
c = in− i− n+ gcd(n, i).

Proof. For any r ∈ R, we have

b−rc =
{
−brc if r is an integer,
−brc − 1 if r is not an integer.

It follows that

(3.4)
n−1∑
j=1

⌊−ij
n

⌋
= −

n−1∑
j=1

⌊
ij

n

⌋
− n+ gcd(i, n),

where the equality is obtained by checking how many times ij
n

is an integer
for 1 ≤ j ≤ n− 1.

By (3.4), it is easy to see

2
n−1∑
j=1

⌊
ij

n

⌋
=
n−1∑
j=1

⌊
ij

n

⌋
+
n−1∑
j=1

⌊
i(n− j)
n

⌋

=
n−1∑
j=1

⌊
ij

n

⌋
+ i(n− 1) +

n−1∑
j=1

⌊−ij
n

⌋
= in− i− n+ gcd(i, n),

where we use the fact that bc+ rc = c+ brc if c ∈ Z in the second equality.
�
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Remark. The proof is essentially due to the same idea−used by Gauss as
a little boy−to sum up the numbers from 1 through 100. Also, there exists
a geometric proof of Proposition 3.1. Let T be the triangle with vertices
(0, 0), (n, 0) and (n, i). Then it is not hard to see that the summation of the
number of integer points in and on T is given by

∑n
j=0(bij/nc + 1). Then

one can apply Pick’s Theorem and our result follows.

Finally, we want to reemphasize that our method does not come from an
adaptation of a technique used in number fields, neither can it be directly
adapted to number fields. Note that there is no analogue of the formal
derivative in Z, hence Algorithm 3.4.2, p. 125, of [3], is not applicable to
compute the squarefree factorizations of integers. In fact, the squarefree
factorization of (large) integers is computationally hard to find. Even if we
had a squarefree integer a ∈ Z, the method we present in Theorem 2.1 is
still not adaptable to the number field Q( n

√
a). The easiest example to see

that the analogous result to Theorem 2.1 does not hold in the number field
case is Q(

√
a) with a squarefree integer a ≡ 1 (mod 4). This is because we

can ignore the nn part in the expression of disc(ρ) in function fields since
it is a unit; whereas in the number field case, this large factor cannot be
disregarded for the discriminant computation.

4. Signature of a radical function field
Throughout this section, we assume that k = Fq is a finite field, and
K = Fq(t, ρ) is a radical function field of (full) constant field Fq, where
ρ is a fixed root of f(Y ) = Y n − D = 0 and gcd(n, q) = 1. Note that if
D = sgn(D)

∏n−1
i=1 G

i
i is the squarefree factorization of D, then Fq is the

(full) constant field of K if Gi 6= 1 for any i such that gcd(i, n) = 1, by
Eisenstein’s Criterion.

We will study how the infinite place P∞ splits in K/Fq(t), i.e. we want
to find the ramification index e(P ′|P∞) and relative degree f(P ′|P∞) for
every P ′ ∈ PK lying above P∞. The work goes back to Hecke [4]. Other
literature on this topic include [13], [24], and [16] .

The ramification index is easy by (2.3), hence it remains to find f(P ′|P∞).
To that end, we apply Kummer theory. Note that Kummer theory requires
an assumption on primitive l-th root of unity, which we shall discuss briefly
next.

Recall that a primitive l-th root of unity in a field F is an element ζl ∈ F
such that ζ ll = 1 and ζil 6= 1 for any i < l. For a finite field Fq, we know
ζl ∈ Fq if and only if gcd(l, q) = 1 and ζl ∈ Fq if and only if l | (q − 1). It
follows that the minimal extension field of Fq containing ζl is Fqm , where
gcd(l, q) = 1 and m = ordl(q) is the order of q modulo l, i.e. m = min{j ≥
1 | qj ≡ 1 (mod l)}. Next, we present a useful result:
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Lemma 4.1. Let F be a field containing a primitive l-th root of unity for
some l ∈ N, and u ∈ F an element satisfying

u 6= wd for all w ∈ F and d | l, d > 1.
Then the polynomial Y l − u is irreducible over F .

Proof. When F is a function field, Lemma 4.1 is presented as Proposition
III.7.3, part(a), pp. 110f, of [22]. A complete proof of Lemma 4.1 can be
found in the proof of Theorem 7.11, pp. 295f, of [7]. �

Now we proceed to compute f(P ′|P∞).

Theorem 4.1. Let Fq be a finite field, K = Fq(t, ρ) a radical function
field of full constant field Fq, where ρ is a fixed root of Y n − D = 0 such
that gcd(n, q) = 1. If P ′ ∈ PK lies over P∞ ∈ Pk(t), then e(P ′|P∞) =
n

d
, lcm(f(P ′|P∞),m) = md

r
, where d = gcd(n,deg(D)), m = ordn(q), r =

max{j ∈ N | j|d, sgn(D) = aj for some a ∈ F∗q}. In particular, when
K/Fq(t) is (cyclic) Galois, we have f(P ′|P∞) = d/r.

Proof. The result for e(P ′|P∞) is simply a restatement of (2.3). We first
establish that r is well-defined. In fact, let S = {j ∈ N | j|d, sgn(D) =
aj for some a ∈ F∗q}. Then 1 ∈ S and every element of S is a divisor of d.
Hence the maximum of S exists.

For our radical function field K, we have that ζn ∈ Fq if and only if
K/Fq(t) is (cyclic) Galois. This is easy to see since all roots of f(Y ) are of
the form ρζin for 0 ≤ i ≤ n−1. We know m = ordn(q) = [Fq(ζn) : Fq], hence
Fq(ζn) = Fqm . Consider the four field extensions K(ζn)/K, Fq(ζn, t)/Fq(t),
K(ζn)/Fq(ζn, t) and K/Fq(t). The first two are constant field extensions,
K(ζn)/Fq(ζn, t) is cyclic of degree n, and the extension K/Fq(t) is the one
we are interested in. Let P̂ ∈ PFq(ζn,t) lie over P∞ and P ′′ ∈ PK(ζn) lie over
P ′. For the places P∞, P ′, P̂ , P ′′, let their valuation rings be OP∞ ,OP ′ ,OP̂ ,
OP ′′ , respectively. Our goal is to find f(P ′|P∞). Note that f(P ′|P∞)
f(P ′′|P ′) = f(P ′′|P∞) = f(P ′′|P̂ )f(P̂ |P∞). So we compute the relative
degrees f(P̂ |P∞), f(P ′′|P ′), and f(P ′′|P̂ ), thus obtaining our desired de-
gree f(P ′|P∞).

We first determine f(P̂ |P∞) by studying the extension Fq(ζn, t)/Fq(t),
which is a constant field extension of extension degreem. Thus the constant
field of Fq(ζn, t) is Fqm . By Theorem III.6.3, p. 103, of [22], applying to
P̂ | P∞, we know OP̂ /P̂ = (OP∞/P∞) Fq(ζn) = FqFqm = Fqm , hence

(4.1) deg(P̂ ) = [OP̂ /P̂ : Fqm ] = 1.

Applying (2.1) to P̂ | P∞, we have

deg(P̂ ) [Fq(ζn) : Fq] = f(P̂ |P∞) deg(P∞),
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hence (4.1) yields

(4.2) f(P̂ |P∞) = [Fq(ζn) : Fq] = m.

Similarly, by applying (2.1) to P ′ | P∞, we have

(4.3) deg(P ′) = f(P ′|P∞) deg(P∞) = f(P ′|P∞).

Next, consider the constant field extension K(ζn)/K of extension degree
m. Similarly, by Theorem III.6.3, p. 103, of [22], applying to P ′′/P ′, we
have OP ′′/P ′′ = (OP ′/P ′) Fq(ζn) = Fqdeg(P ′)Fqm , hence

(4.4) deg(P ′′) = [OP ′′/P ′′ : Fqm ] = lcm(deg(P ′), m)
m

.

Consider the function field extension K(ζn)/Fq(t) now. Applying (2.1)
to P ′′ | P∞ yields that deg(P ′′)m = f(P ′′|P∞) deg(P∞), hence

(4.5) f(P ′′|P∞) = deg(P ′′)m.

Now (4.3), (4.4) and (4.5) imply

(4.6) f(P ′′|P∞) = lcm(f(P ′|P∞), m).

Note that f(P ′′|P∞) = f(P ′′|P̂ )f(P̂ |P∞), hence (4.2) and (4.6) imply

(4.7) lcm(f(P ′|P∞), m) = f(P ′′|P̂ )m.

It remains to show f(P ′′|P̂ ) = d/r. Consider the cyclic Galois extension
K(ζn)/Fq(ζn, t). We know e(P ′′|P̂ ) = n/d by (2.3). Let θ = ρn/d and F =
Fq(ζn, t)(θ), then F is an intermediate field extension of K(ζn)/Fq(ζn, t).
Let PF ∈ PF lie over P̂ , then PF is totally ramified in K(ζn)/F by applying
Proposition III.7.3, p. 110, of [22], to the minimal polynomial Y n/d − θ of
ρ over F . Note that Zd − D, the minimal polynomial of θ over Fq(ζn, t),
is not integral over P̂ . Let E = D t− deg(D) and η = θ t− deg(D)/d, then the
minimal polynomial of η over Fq(ζn, t) is g(Z) = Zd −E, which is integral
over P̂ .

Now we apply Kummer theory to the field extension F/Fq(ζn, t) and the
place PF | P̂ . Let a ∈ F∗q be an r-th root of sgn(D), i.e. ar = sgn(D),
and ζr = ζn/rn a primitive r-th root of unity. It is easy to see that g(Z) ≡∏r
i=1(Zd/r − ζira) (mod P̂ ). Since Fq(ζn, t)/Fq(t) is unramified, a prime el-

ement of P∞ is also a prime element of P̂ . It follows that g(Z) (mod P̂ ) is
the same as g(Z) (mod P∞). By the definition of r, we know that Zd/r−ζira
is irreducible modulo P∞ for all i, by Lemma 4.1. By Kummer’s Theorem
(Theorem III.3.7, p. 76, of [22]), we know f(P ′′|P̂ ) = d/r. Our result follows
from (4.7). �
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When D is monic, then r = d is maximal and Theorem 4.1 implies that
lcm(f(P ′|P∞), m) = m, hence f(P ′|P∞) | m in particular. When K/Fq(t)
is (cyclic) Galois, which is equivalent to m = 1, we have complete results
on the signature. This decides the decomposition field (group, resp.) and
inertia field (group, resp.) of P∞ over K/k(t) uniquely, since K/Fq(t) is
cyclic.

We point out that there exists no unified formula for f(P ′|P∞) in general.
In fact, f(P ′|P∞) is not independent of P ′. The easiest example to see
this fact is a purely cubic function field. Set n = 3, sgn(D) = 1, q ≡ −1
(mod 3), then f(P ′1|P∞) = 1, f(P ′2|P∞) = 2, where P ′1, P ′2 ∈ PK are the
two infinite places lying above P∞. For more detail, see Theorem 2.1, of
[21].

Theorem 4.1 can be easily generalized to all finite places P . We have the
following

Theorem 4.2. Let Fq be a finite field, K = Fq(t, ρ) a radical function
field of full constant field Fq, where ρ is a fixed root of Y n − D = 0 such
that gcd(n, q) = 1. If P ′ ∈ PK lies over P ∈ Pk(t) \ P∞, then e(P ′|P ) =
n

d
, lcm(f(P ′|P ) deg(P ), l) = lcm(deg(P ), l)d

r
, where d = gcd(n, vP (D)),

l = ordn(q), r = max{m ∈ N | m|d, D

P vP (D) = am for some a ∈ F∗
qdeg(P )}.

In particular, when K/Fq(t) is cyclic Galois, we have f(P ′|P ) = d/r.

Finally, to find r, it suffices to analyze whether an element a ∈ F∗q is an
m-th power. This is well-known, see Proposition 4.2.1, p. 45, of [8].
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