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A family of varieties with exactly one pointless
rational fiber

par Bianca VIRAY

Résumé. On construit un exemple concret d’une famille à un pa-
ramètre de variétés lisses, projectives, et géométriquement intègres
sur un sous-schéma ouvert de P1

Q, de sorte qu’il y ait précisément
une fibre rationnelle sans point rationnel. Ceci rend explicite une
construction de Poonen.

Abstract. We construct a concrete example of a 1-parameter
family of smooth projective geometrically integral varieties over
an open subscheme of P1

Q such that there is exactly one rational
fiber with no rational points. This makes explicit a construction
of Poonen.

1. Introduction
We construct a family of smooth projective geometrically integral sur-

faces over an open subscheme of P1
Q with the following curious arithmetic

property: there is exactly one Q-fiber with no rational points. Our proof
makes explicit a non-effective construction of Poonen [6, Prop. 7.2], thus
giving “an extreme example of geometry not controlling arithmetic” [6,
p.2]. We believe that this is the first example of its kind.

Theorem 1.1. Define P0(x) := (x2−2)(3−x2) and P∞(x) := 2x4+3x2−1.
Let π : X → P1

Q be the Châtelet surface bundle over P1
Q given by

y2 + z2 =
(
6u2 − v2

)2
P0(x) +

(
12v2
)2
P∞(x),

where π is projection onto (u : v). Then π(X(Q)) = A1
Q(Q).

Note that the degenerate fibers of π do not lie over P1(Q) so the family of
smooth projective geometrically integral surfaces mentioned above contains
all Q-fibers.

The non-effectivity in [6, Prop. 7.2] stems from the use of higher genus
curves and Faltings’ theorem. (This is described in more detail in [6, §9]).
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We circumvent the use of higher genus curves by an appropriate choice of
P∞(x).

2. Background
This information can be found in [6, §3,5, and 6]. We review it here for

the reader’s convenience.
Let E be a rank 3 vector sheaf on a k-variety B. A conic bundle C over B is

the zero locus in PE of a nowhere vanishing zero section s ∈ Γ(PE ,Sym2(E)).
A diagonal conic bundle is a conic bundle where E = L1 ⊕ L2 ⊕ L3 and
s = s1 + s2 + s3, si ∈ Γ(PE ,L⊗2

i ).
Now let α ∈ k×, and let P (x) ∈ k[x] be a separable polynomial of degree

3 or 4. Consider the diagonal conic bundle X given by B = P1,L1 =
O,L2 = O,L3 = O(2), s1 = 1, s2 = −α, s3 = −w4P (x/w). This smooth
conic bundle contains the affine hypersurface y2 − αz2 = P (x) ⊂ A3 as an
open subscheme. We say that X is the Châtelet surface given by

y2 − αz2 = P (x).

Note that since P (x) is not identically zero, X is an integral surface.
A Châtelet surface bundle over P1 is a flat proper morphism V → P1

such that the generic fiber is a Châtelet surface. We can construct them in
the following way. Let P,Q ∈ k[x,w] be linearly independent homogeneous
polynomials of degree 4 and let α ∈ k×. Let V be the diagonal conic bundle
over P1

(a:b) × P1
(w:x) given by L1 = O,L2 = O,L3 = O(1, 2), s1 = 1, s2 =

−α, s3 = −(a2P + b2Q). By composing V → P1 × P1 with the projection
onto the first factor, we realize V as a Châtelet surface bundle. We say that
V is the Châtelet surface bundle given by

y2 − αz2 = a2P (x) + b2Q(x),

where P (x) = P (x, 1) and Q(x) = Q(x, 1). We can also view a, b as rela-
tively prime, homogeneous, degree d polynomials in u, v by pulling back by
a suitable degree d map φ : P1

(u:v) → P1
(a:b).

3. Proof of Theorem 1.1
By [5], we know that the Châtelet surface

y2 + z2 = (x2 − 2)(3− x2)

violates the Hasse principle, i.e. it has Qv-rational points for all completions
v, but no Q-rational points. Thus, π(X(Q)) ⊆ A1

Q(Q). Therefore, it remains
to show that X(u:1), the Châtelet surface defined by

y2 + z2 = (6u2 − 1)2P0(x) + 122P∞(x),

has a rational point for all u ∈ Q.
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If P(u:1) := (6u2− 1)2P0(x) + 122P∞(x) is irreducible, then by [3], [4] we
know that X(u:1) satisfies the Hasse principle. Thus it suffices to show that
P(u:1) is irreducible and X(u:1)(Qv) 6= ∅ for all u ∈ Q and all places v of Q.

3.1. Irreducibility. We prove that for any u ∈ Q, the polynomial
P(u:1) (x) is irreducible in Q[x] by proving the slightly more general state-
ment, that for all t ∈ Q

Pt(x) := (2x4 + 3x2 − 1) + t2(x2 − 2)(3− x2)
= x4(2− t2) + x2(3 + 5t2) + (−6t2 − 1)

is irreducible in Q[x]. We will use the fact that if a, b, c ∈ Q are such that
b2−4ac and ac are not squares in Q then p(x) := ax4 +bx2 +c is irreducible
in Q[x].

Let us first check that for all t ∈ Q,
(
3 + 5t2

)2 − 4
(
2− t2

) (
−6t2 − 1

)
is not a square in Q. This is equivalent to proving that the affine curve
C : w2 = t4 + 74t2 + 17 has no rational points. The smooth projective
model, C : w2 = t4 + 74t2s2 + 17s4 in weighted projective space P(1, 1, 2),
has 2 rational points at infinity. Therefore C is isomorphic to its Jacobian.
A computation in Magma shows that Jac(C)(Q) ∼= Z/2Z [1]. Therefore, the
points at infinity are the only 2 rational points of C and thus C has no
rational points.

Now we will show that
(
−6t2 − 1

) (
2− t2

)
is not a square in Q for any

t ∈ Q. As above, this is equivalent to determining whether C ′ : w2 = (−6t2−
1)(2−t2) has a rational point. Since 6 is not a square in Q, this is equivalent
to determining whether the smooth projective model, C ′, has a rational
point. The curve C ′ is a genus 1 curve so it is either isomorphic to its
Jacobian or has no rational points. A computation in Magma shows that
Jac (C ′) (Q) ∼= Z/2Z [1]. Thus #C ′ (Q) = 0 or 2. If (t, w) is a rational point
of C ′, then (±t,±w) is also a rational point. Therefore, #C (Q) = 2 if and
only if there is a point with t = 0 or w = 0 and one can easily check that
this is not the case.

3.2. Local solvability.

Lemma 3.1. For any point (u : v) ∈ P1
Q, the Châtelet surface X(u:v) has

R-points and Qp-points for every prime p.

Proof. Let a = 6u2−v2 and let b = 12v2. We will refer to a2P0(x)+b2P∞(x)
both as P(a:b) and P(u:v).

R-points: It suffices to show that given (u : v) there exists an x such that

P(a:b) = x4(2b2 − a2) + x2(3b2 + 5a2) + (−6a2 − b2)

is positive. If 2b2 − a2 is positive, then any x sufficiently large will work.
So assume 2b2 − a2 is negative. Then α = −(3b2+5a2)

2(2b2−a2) is positive. We claim
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P(a:b)(
√
α) is positive.

P(a:b)(
√
α) = α2(2b2 − a2) + α(3b2 + 5a2) + (−6a2 − b2)

= (3b2 + 5a2)2

4(2b2 − a2)
+ −(3b2 + 5a2)2

2(2b2 − a2)
+ (−6a2 − b2)

= 1
4(2b2 − a2)

(
4(2b2 − a2)(−6a2 − b2)− (3b2 + 5a2)2

)
= 1

4(2b2 − a2)

(
−17b4 − 74a2b2 − a4

)

Since 2b2−a2 is negative by assumption and −17b4− 74a2b2−a4 is always
negative, we have our result.

Qp-points:

p ≥ 5: Without loss of generality, let a and b be relatively prime inte-
gers. Let X(a:b) denote the reduction of X(a:b) modulo p. We claim
that there exists a smooth Fp-point of X(a:b) that, by Hensel’s
lemma, we can lift to a Qp-point of X(a:b).

Since P(a:b) has degree at most 4 and is not identically zero mod-
ulo p, there is some x ∈ Fp such that P(a:b) (x) is nonzero. Now let
y, z run over all values in Fp. Then the polynomials y2, P(a:b) (x)−z2
each take (p+ 1)/2 distinct values. By the pigeonhole principle, y2
and P(a:b) (x) − z2 must agree for at least one pair (y, z) ∈ F2

p and
one can check that this pair is not (0, 0). Thus, this tuple (x, y, z)
gives a smooth Fp-point of X(a:b). (The proof above that the qua-
dratic form y2 + z2 represents any element in Fp is not new. For
example, it can be found in [2, Prop 5.2.1].)
p = 3: From the equations for a and b, one can check that for any (u :
v) ∈ P1

Q, v3(b/a) is positive. Since Q3(
√
−1)/Q3 is an unramified

extension, it suffices to show that given a, b as above, there exists an
x such that P(a:b)(x) has even valuation. Since v3(b/a) is positive,
v3(2b2−a2) = 2v3(a). Therefore, if x = 3−n, for n sufficiently large,
the valuation of P(a:b)(x) is −4n+ 2v3(a) which is even.
p = 2: From the equations for a and b, one can check that for any

(u : v) ∈ P1
Q, v2(b/a) is at least 2. Let x = 0 and y = a. Then we

need to find a solution to z2 = a2(−7 + (b/a)2). Since v2(b/a) > 1,
−7 + (b/a)2 ≡ 12 mod 8. By Hensel’s lemma, we can lift this to a
solution in Q2.

�
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