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A valuation criterion for normal basis generators
of Hopf-Galois extensions in characteristic p

par Nigel P. BYOTT

Résumé. Soit S/R une extension finie d’anneaux de valuation
discrète de caractéristique p > 0, et supposons que l’extension
correspondante L/K des corps de fractions soit séparable et H-
Galoisienne pour uneK-algèbre de HopfH. Soit DS/R la différente
de S/R. Nous montrons que si S/R est totalement ramifiée et que
son degré n est une puissance de p alors tout élément ρ de L avec
vL(ρ) ≡ −vL(DS/R) − 1 (mod n) engendre L comme H-module.
Ce critère est le meilleur possible. Ces résultats généralisent à la
situation Hopf-Galoisienne un travail récent de G. G. Elder pour
les extensions Galoisiennes.

Abstract. Let S/R be a finite extension of discrete valuation
rings of characteristic p > 0, and suppose that the corresponding
extension L/K of fields of fractions is separable and is H-Galois
for some K-Hopf algebra H. Let DS/R be the different of S/R.
We show that if S/R is totally ramified and its degree n is a
power of p, then any element ρ of L with vL(ρ) ≡ −vL(DS/R)− 1
(mod n) generates L as an H-module. This criterion is best pos-
sible. These results generalise to the Hopf-Galois situation recent
work of G. G. Elder for Galois extensions.

1. Introduction
Let L/K be a finite Galois extension of fields with Galois group G =

Gal(L/K). The Normal Basis Theorem asserts that there is an element
ρ of L whose Galois conjugates {σ(ρ) | σ ∈ G} form a basis for the K-
vector space L. Equivalently, L is a free module of rank 1 over the group
algebra K[G] with generator ρ. Such an element ρ is called a normal basis
generator for L/K. The question then arises whether there is a simple
condition on elements ρ of L which guarantees that ρ is a normal basis
generator. Specifically, suppose that L is equipped with a discrete valuation
vL. (Throughout, whenever we consider a discrete valuation vF on a field
F , we assume it is normalised so that vF (F ) = Z ∪ {∞}.) We may then
ask whether there exists an integer b such that any ρ ∈ L with vL(ρ) = b

Mots clefs. Normal basis, Hopf-Galois extensions, local fields.
Classification math.. 11S15.
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is automatically a normal basis generator for L/K. We shall refer to any
such b as an integer certificate for normal basis generators of L/K. In the
case that K has characteristic p > 0, and is complete with perfect residue
field, this question was recently settled by G. Elder [4]. His result can be
stated as follows:

Theorem 1 (Elder). Let K be a field of characteristic p > 0, complete with
respect to the discrete valuation vK , and with perfect residue field. Let L be
a finite Galois extension of K of degree n with Galois group G = Gal(L/K),
let w = vL(DL/K), where DL/K denotes the different of L/K and vL is the
valuation on L, and let b ∈ Z.

(a) If L/K is totally ramified, n is a power of p, and b ≡ −w − 1
(mod n), then every ρ ∈ L with vL(ρ) = b is a normal basis gener-
ator for L/K.

(b) The result of (a) is best possible in the sense that, if
(i) n is not a power of p, or
(ii) L/K is not totally ramified, or
(iii) b 6≡ −w − 1 (mod n),
then there is some ρ ∈ L with vL(ρ) = b such that ρ is not a normal
basis generator for L/K

The purpose of this paper is to show that Theorem 1, suitably inter-
preted, applies not just in the setting of classical Galois theory, but also in
the setting of Hopf-Galois theory for separable field extensions, as developed
by C. Greither and B. Pareigis [5]. A finite separable field extension L/K is
said to be H-Galois, where H is a Hopf algebra over K, if L is an H-module
algebra and the map H −→ EndK(L) defining the action of H on L extends
to an L-linear isomorphism L⊗KH −→ EndK(L). A Hopf-Galois structure
on L/K consists of a K-Hopf algebra H and an action of H on L so that
L is H-Galois. This generalises the classical notion of Galois extension: if
L/K is a finite Galois extension of fields with Galois group G, we can take
H to be the group algebra K[G] with its standard Hopf algebra structure
and its natural action on L, and then L/K is H-Galois. A Galois extension
may, however, admit many other Hopf-Galois structures in addition to this
classical one, and many (but not all) separable extensions which are not
Galois nevertheless admit one or more Hopf-Galois structures. Moreover,
if L is H-Galois, then L is a free H-module of rank 1 (see the proof of [3,
(2.16)]), and, by analogy with the classical case, we will shall refer to any
free generator of the H-module L as a normal basis generator for L/K with
respect to H. Our main result is that Theorem 1 holds in this more general
setting:
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Theorem 2. Let S/R be a finite extension of discrete valuation rings of
characteristic p > 0, and let L/K be the corresponding extension of fields
of fractions. Let n = [L : K], let vL be the valuation on L associated to S,
and let w = vL(DS/R) where DS/R denotes the different of S/R. Suppose
that L/K is separable, and is H-Galois for some K-Hopf algebra H. Let
b ∈ Z.

(a) If L/K is totally ramified, n is a power of p, and b ≡ −w − 1
(mod n), then every ρ ∈ L with vL(ρ) = b is a normal basis gener-
ator for L/K with respect to H.

(b) The result of (a) is best possible in the sense that, if
(i) n is not a power of p, or
(ii) L/K is not totally ramified, or
(iii) b 6≡ −w − 1 (mod n),
then there is some ρ ∈ L with vL(ρ) = b such that ρ is not a normal
basis generator for L/K with respect to H.

In Theorem 2, we do not require K to be complete with respect to the
valuation vK on K associated to R, and we do not require the residue
field of R to be perfect. Thus, even in the case of Galois extensions (in the
classical sense), Theorem 2 is slightly stronger than Theorem 1.

We recall that the different DS/R is defined as the fractional S-ideal such
that

D−1
S/R = {x ∈ S | TrL/K(xS) ⊆ R},

where TrL/K is the trace from L to K. In the case that S/R is totally
ramified and L/K is separable, let p(X) ∈ R[X] be the minimal polynomial
over R of a uniformiser Π of S. Then DS/R is generated by p′(Π), where
p′(T ) denotes the derivative of p(T ) [6, III, Cor. 2 to Lemma 2]. (This does
not require L/K to be Galois, or the residue field of K to be perfect.) The
formulation of Theorem 1(a) in [4] is in terms of p′(Π).

If S (and hence L) is complete with respect to vL, then DS/R is the same
as the different DL/K of the extension L/K of valued fields occurring in
Theorem 1. Theorem 2 also applies, however, if K is a global function field
of dimension 1 over an arbitrary field k of characteristic p. In particular, if
L is an H-Galois extension of K of p-power degree, and some place p of K
is totally ramified in L/K, then Theorem 2(a) gives an integer certificate
for normal basis generators of L/K with respect to H, in terms of the
valuation vL on L corresponding to the unique place P of L above p and
the P-part of DL/K . If, on the other hand, there is more than one place
P of L above p, then the integral closure of R in L is the intersection S0
of the corresponding valuation rings S of L [8, III.3.5]. Any one such S
strictly contains S0 and is therefore not integral over R. In particular, S is
not finite over R and Theorem 2 does not apply in this case.
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We briefly recall the background to the above results. In the (character-
istic 0) situation where K is a finite extension of the field Qp of p-adic
numbers, the author and Elder [2] showed the existence of integer certifi-
cates for normal basis generators in totally ramified elementary abelian
extensions L/K, under the assumption that L/K contains no maximally
ramified subfield. This assumption is necessary, since there can be no in-
teger certificate in the case L = K( p

√
π) with vK(π) = 1: indeed, for any

b ∈ Z, the element πb/p has valuation b but is not a normal basis generator.
(Here K must contain a primitive pth root of unity for L/K to be Ga-
lois.) We also raised the question of whether the corresponding result held
in characteristic p > 0, where the exceptional situation of maximal ram-
ification cannot arise. Our question was answered by L. Thomas [9], who
observed that general properties of group algebras of p-groups in character-
istic p allow an elegant derivation of integer certificates for arbitrary finite
abelian p-groups G. Her result was expressed in terms of the last break in
the sequence of ramification groups of L/K, but is equivalent to Theorem
1 for totally ramified abelian p-extensions G. Finally, Elder [4] removed
the hypothesis that G is abelian by expressing the result in terms of the
valuation of the different, and also gave the converse result that no integer
certificate exists if L/K is not totally ramified or is not a p-extension.

We end this introduction by outlining the structure of the paper. In §2,
we review the facts we shall need from Hopf-Galois theory, and prove several
preliminary results in the case of p-extensions. These show, in effect, that
the relevant Hopf algebras behave similarly to the group algebras considered
in [9]. In §3 we develop some machinery to handle extensions whose degrees
are not powers of p. In [4], such extensions were treated by reducing to a
totally and tamely ramified extension. For Hopf-Galois extensions, it is
not clear whether such a reduction is always possible. (Indeed, while a
totally ramified Galois extension of local fields is always soluble, the author
does not know of any reason why such an extension could not admit a
Hopf-Galois structure in which the associated group N , as in §2 below, is
insoluble.) We therefore adopt a different approach, using a small part of the
theory of modular representations. We complete the proof of Theorem 2 in
§4. The ramification groups, which play an essential role in the arguments
of [4] and [9], are not available in the Hopf-Galois setting, but their use
can be avoided by working directly with the inverse different. Finally, in
§5, we give an example of a family of extensions which are not Galois, but
to which Theorem 2 applies.

2. Hopf-Galois theory for p-extensions in characteristic p
In this section, we briefly recall the description of Hopf-Galois structures

on a finite separable field extension L/K, and note some properties of the
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Hopf algebras H which arise when [L : K] is a power of p = char(K). We
do not make any use of valuations on K and L in this section.

Let E be a (finite or infinite) Galois extension of K containing L. Set
G = Gal(E/K) and G′ = Gal(E/L), and let X = G/G′ be the set of left
cosets gG′ of G′ in G. Then G acts by left multiplication on X, giving a
homomorphism G −→ Perm(X) into the group of permutations of X. The
main result of [5] can be stated as follows: the Hopf-Galois structures on
L/K (up to the appropriate notion of isomorphism) correspond bĳectively
to the regular subgroups N of Perm(X) which are normalised by G. In the
Hopf-Galois structure corresponding to N , the Hopf algebra acting on L
is H = E[N ]G, the fixed point algebra of the group algebra E[N ] under
the action of G simultaneously on E (as field automorphisms) and on N
(by conjugation inside Perm(X)). The Hopf algebra operations on H are
the restrictions of the standard operations on E[N ]. We write 1X for the
trivial coset G′ in X. Then there is a bĳection between elements η of N
and K-embeddings σ : L −→ E, given by η 7→ ση where ση(ρ) = g(ρ) with
η−1(1X) = gG′. The action of H on L can be described explicitly as follows
(see e.g. [1, p. 338]):

(2.1)

∑
η∈N
ληη

 (ρ) =
∑
η∈N
ληση(ρ) for

∑
η∈N
ληη ∈ H and ρ ∈ L.

Remark. In [5], E is taken to be the the Galois closure E0 of L over K. In
this case, the action of G on X is faithful. However, it is clear that one may
take a larger field E as above: all that changes is that G need no longer act
faithfully on X. (Indeed, the action of G on both X and L factors through
Gal(E/E0).) In the proof of Lemma 3.1 below, it will be convenient to take
E to be a finite extension of E0.

Let L/K be H-Galois, where the Hopf algebra H corresponds to N as
above. We define

tH =
∑
η∈N
η ∈ E[N ].

We now show that tH behaves like the trace element in a group algebra:

Proposition 2.1. We have tH ∈ H and, for any h ∈ H,

htH = tHh = ε(h)tH ,

where ε : H → K is the augmentation. In particular, writing IH for the
augmentation ideal ker ε of H, we have

IHtH = tHIH = 0.

Also, tH(ρ) = TrL/K(ρ) for any ρ ∈ L.
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Proof. Since N is normalised by G, each g ∈ G permutes the elements of
N . Hence tH ∈ E[N ]G = H. For any h =

∑
ν∈N λνν ∈ H, we have

htH =
∑
ν,η

λννη =
(∑
ν

λν

)(∑
η

η

)
= ε(h)tH .

In particular, if h ∈ IH then htH = ε(h)tH = 0, so IHtH = 0. Similarly
tHh = ε(h)tH and tHIH = 0. Finally, for ρ ∈ L we have

tH(ρ) =
∑
η∈N
ση(ρ) = TrL/K(ρ).

�

Remark. Proposition 2.1 shows that K · tH is the ideal of (left or right)
integrals of H.

Corollary 2.2. If TrL/K(ρ) = 0 then ρ cannot be a normal basis generator
for L/K with respect to H.

Proof. If ρ is a free generator for L over H, then the annihilator of ρ in H
must be trivial. But if TrL/K(ρ) = 0 then ρ is annihilated by tH 6= 0. �

We next show that [9, Proposition 7] still holds in our setting:

Lemma 2.3. If [L : K] = pm for some integer m, then any ρ ∈ L with
TrL/K(ρ) 6= 0 is a normal basis generator for L/K with respect to H.

Proof. We first observe that the augmentation ideal IH is a nilpotent ideal
of H, since IH = IE[N ] ∩H and the augmentation ideal IE[N ] of E[N ] is a
nilpotent ideal of E[N ] because |N | = [L : K] = pm. Thus IH is contained
in (and in fact equals) the Jacobson radical JH of H.

Now consider the H-submodule M = H · ρ + IH · L of L. Since L is
a free H-module of rank 1, and H/IH ∼= K, the K-subspace IHL of L
has codimension 1. But ρ 6∈ IHL since TrL/K(IHL) = (tHIH)L = 0 by
Proposition 2.1, so M = L. Since IH ⊆ JH , Nakayama’s Lemma shows
that H · ρ = L, and, comparing dimensions over K, we see that ρ is a free
generator for the H-module L. �

The next result is immediate from Corollary 2.2 and Lemma 2.3

Corollary 2.4. If [L : K] = pm then ρ ∈ L is a normal basis generator
for L/K with respect to H if and only if TrL/K(ρ) 6= 0. In particular, the
set of normal basis generators is the same for all Hopf-Galois structures on
L/K.
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3. The non-p-power case
As in Theorem 2, let S/R be a finite extension of discrete valuation rings,

such that the corresponding extension L/K of their fields of fractions is H-
Galois for some Hopf algebra H. We do not require S and R to be complete.
Let vL, vK be the corresponding valuations on L, K.

Lemma 3.1. Suppose that [L : K] is not a power of p. Then H contains
nonzero orthogonal idempotents e1, e2 with e1 + e2 = 1, such that

vL(ejρ) ≥ vL(ρ) for all ρ ∈ L and j = 1, 2.

Proof. Let [L : K] = pmr where m ≥ 0 and where r ≥ 2 is prime to p.
We have H = E[N ]G where G = Gal(E/K) and, in view of the remark
before Proposition 2.1, we may take E to be a finite Galois extension of K,
containing L and also containing a primitive rth root of unity ζr. Let k′ be
the algebraic closure in E of the prime subfield Fp. Thus ζr ∈ k′.

Now let t be the number of conjugacy classes in N consisting of elements
whose order is prime to p. As |N | = [L : K] is not a power of p, we have
t ≥ 2. For any field F of characteristic p containing ζr, the group algebra
A = F [N ] has exactly t nonisomorphic simple modules [7, §18.2, Corollary
3]. Let JA denote the Jacobson radical of A. Then the semisimple algebra
A/JA has exactly t Wedderburn components, and therefore has exactly t
primitive central idempotents. Since A is a finite-dimensional F -algebra, we
may lift these idempotents from A/JA to A. Thus A has exactly t primitive
central idempotents, φ1, . . . , φt say, and hence has t maximal 2-sided ideals.
One of these, say the ideal (1−φ1)A associated to φ1, is the augmentation
ideal IA.

Taking F = k′ in the previous paragraph, we obtain orthogonal idem-
potents φ1, . . . , φt ∈ k′[N ]. But k′ ⊂ E, and taking F = E, we find that
φ1, . . . , φt are again the primitive central idempotents in E[N ]. The action
of G on E[N ] permutes these idempotents, and fixes φ1 since it fixes the
augmentation ideal of E[N ]. Hence φ1 ∈ H. Let e1 = φ1 and e2 = 1 − φ1.
Then e1, e2 are orthogonal idempotents in H ∩ k′[N ] with e1 + e2 = 1.
Moreover e1 6= 0 by definition and e2 6= 0 since t ≥ 2.

We now show that vL(ejρ) ≥ vL(ρ) for j = 1, 2 and for any ρ ∈ L. Since
S/R is finite, S is the unique valuation ring of L containing R. Thus each
valuation ring T of E containing R must also contain S. (There may be
several such T if R is not complete.) Fix one of these valuation rings T of
E, and let vE be the corresponding valuation on E. Then any valuation v′
on E with v′(µ) = vE(µ) for all µ ∈ K necessarily satisfies v′(ρ) = vE(ρ)
for all ρ ∈ L. In particular, for each g ∈ G, the valuation vE ◦ g on E
must have the same restriction to L as vE . Thus, for each η ∈ N , we have
vE(ση(ρ)) = vE(ρ) for all ρ ∈ L.
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For j = 1 or 2, let

ej =
∑
η∈N
ληη with λη ∈ k′.

Then, as ej ∈ H, we have

ej(ρ) =
∑
η∈N
ληση(ρ)

by (2.1). But λη is algebraic over Fp, so either λη = 0 or vE(λη) = 0. We
then have

vE(ejρ) ≥ min
η∈N

(vE(λη) + vE(ση(ρ))) ≥ 0 + vE(ρ).

As ρ, ejρ ∈ L, it follows that vL(ejρ) ≥ vL(ρ) as required. �

We can now prove case (i) of Theorem 2(b).

Corollary 3.2. Let S/R be as in Theorem 2, and suppose that [L : K]
is not a power of p. Then, for any b ∈ Z, there exists some ρ ∈ L with
vL(ρ) = b such that ρ is not a normal basis generator for L/K with respect
to H.

Proof. Take any ρ′ ∈ L with vL(ρ′) = b. With e1, e2 ∈ H as in Lemma 3.1,
we have

ρ′ = e1ρ′ + e2ρ′, vL(e1ρ′) ≥ b, vL(e2ρ′) ≥ b.
Both inequalities cannot be strict since vL(ρ′) = b, so without loss of gen-
erality we have vL(e1ρ′) = b. Set ρ = e1ρ′. Then vL(ρ) = b but ρ cannot be
a normal basis generator with respect to H, since e2ρ = (e2e1)ρ′ = 0. �

4. Proof of Theorem 2
For this section, the hypotheses of Theorem 2 are in force. In particular,
S/R is a finite extension of discrete valuation rings of characteristic p > 0,
and the corresponding extension of fields of fractions L/K is separable of
degree n. Also, L/K is H-Galois for some K-Hopf algebra H.

By Corollary 3.2, we may assume that n = [L : K] is a power of p. Let
e be the ramification index of S/R, let w = vL(DS/R), and let π and Π
be uniformisers for R and S respectively. By definition of the different, we
have

TrL/K(Π−wS) ⊆ R, TrL/K(Π−w−1S) 6⊆ R,
and therefore

TrL/K(Πe−wS) ⊆ πR, TrL/K(Πe−w−1S) = R.
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Hence there is some x1 ∈ L with vL(x1) = e−w−1 and TrL/K(x1) = 1. For
2 ≤ i ≤ e, pick x′i ∈ L with vL(x′i) = e−w−i, and set xi = x′i−TrL/K(x′i)x1.
Since TrL/K(x′i) ∈ R and vL(x′i) < vL(x1), we have

(4.1) vL(xi) = e− w − i for 1 ≤ i ≤ e,

and clearly

(4.2) TrL/K(xi) =
{

1 if i = 1;
0 otherwise.

We first consider the totally ramified case e = n. Then x1, . . . , xn is a
K-basis for L, since the vL(xi) represent all residue classes modulo n.

Let ρ ∈ L with vL(ρ) ≡ −w − 1 (mod n). We may write

ρ =
n∑
i=1
aixi

with the ai ∈ K. Then vL(ρ) = mini{nvK(ai)+(n−w−i)}. The hypothesis
on ρ means that the minimum must occur at i = 1. In particular, a1 6= 0.
Then, by (4.2), we have

TrL/K(ρ) =
n∑
i=1
aiTrL/K(xi) = a1 6= 0,

and by Lemma 2.3, ρ is a normal basis generator for L/K with respect to
H. This completes the proof of Theorem 2(a).

Next let b ∈ Z with b 6≡ −1−w (mod n). Then b = n(s+ 1)−w− i with
2 ≤ i ≤ n and s ∈ Z. Set ρ = πsxi, so vL(ρ) = b by (4.1). But TrL/K(ρ) = 0
by (4.2), so that ρ cannot be a normal basis generator by Corollary 2.2.
This completes the proof of Theorem 2 for totally ramified extensions.

Finally, suppose that S/R is not totally ramified. Given b ∈ Z, write
b = e(s + 1) − w − i with 1 ≤ i ≤ e and s ∈ Z. If i 6= 1 then ρ = πsxi
satisfies vL(ρ) = b and TrL/K(ρ) = 0, so as before ρ cannot be a normal
basis generator. It remains to consider the case i = 1. Let l, k be the residue
fields of S, R respectively. Then l/k has degree f > 1 with ef = n. (Note,
however, that l/k need not be separable.) Pick ω ∈ l with ω 6∈ k, let Ω ∈ S
be any element whose image in l is ω, and set

ρ = πs(Ω− TrL/K(x1Ω))x1.

Then TrL/K(x1Ω) ∈ TrL/K(D−1
S/R) ⊆ R. Since ω and 1 are elements of l

which are linearly independent over k, it follows that vL(Ω−TrL/K(x1Ω)) =
vL(Ω) = 0, and hence vL(ρ) = es + vL(x1) = b. But once more we have
TrL/K(ρ) = 0, so that ρ cannot be a normal basis generator for L/K with
respect to H. This concludes the proof of Theorem 2.
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5. An example
We end with an example of a family of extensions L/K which are H-

Galois for a suitable Hopf algebra H, but which are not Galois. Theorem 2
will give an integer certificate for normal basis generators in L/K, although
Theorem 1 is not applicable.

Fix a prime number p, and letK = Fp((T )) be the field of formal Laurent
series over the finite field Fp of p elements. Then K is complete with respect
to the discrete valuation vK such that vK(T ) = 1, and the valuation ring
is R = Fp[[T ]]. Take any integer f ≥ 2, and set q = pf . Let b > 0 be an
integer which is not divisible by p, and let α ∈ K be any element with
vK(α) = −b. The field we consider is L = K(θ), where θ is a root of the
polynomial g(X) = Xq −X − α ∈ K[X].

To see that L is not Galois over K, consider the unramified extension
F = FqK ofK (where Fq is the field of q elements), and let E = LF . Then E
is the splitting field of g overK, and the roots of g in E are {θ+ω | ω ∈ Fq}.
Thus E is the Galois closure of L/K, and it follows in particular that L/K
is not Galois. We are therefore in the situation of §2, with G = Gal(E/K)
of order fq, and with G′ = Gal(E/L) ∼= Gal(F/K) ∼= Gal(Fq/Fp) cyclic
of order f . Moreover, G′ has a normal complement N = Gal(E/F ) ∼=
Fq in G. Thus G ∼= N o G′ (and, since Fq/Fp has a normal basis, it is
easy to see that any generator of G′ acts on N with minimal polynomial
Xf − 1). In the terminology of [5, §4], L/K is an almost classically Galois
extension. It therefore admits at least one Hopf-Galois structure, namely
that corresponding to the group N .

Now E/F is totally ramified of degree q, and the ramification filtration of
Gal(E/F ) has only one break, occurring at b. Hence, by Hilbert’s formula
[6, IV, Prop. 4], vE(DE/F ) = (b+1)(q−1). As E/L and F/K are unramified,
it follows that L/K is totally ramified, and, using the transitivity of the
different [6, III, Prop. 8], that vL(DL/K) = (b+1)(q−1). Thus Theorem 2(a)
applies with w ≡ −1−b (mod q). Hence any ρ ∈ L with vL(ρ) ≡ b (mod q)
is a normal basis generator with respect to any Hopf-Galois structure on
L/K.

Following a suggestion of the referee, we specialise this example further.
Let us take b = q − 1 and α = T 1−q. Then vL(θ) = 1 − q. We obtain a
uniformising parameter for S by seting η = Tθ. Then η is a root of the
Eisenstein polynomial Xq − T q−1X − T , so DL/K is generated by T q−1

and w ≡ 0 (mod q). Hence any element ρ of L with vL(ρ) ≡ −1 (mod q)
is a normal basis generator with respect to any Hopf-Galois structure on
L/K. This can easily be verified directly for ρ = ηq−1 and the Hopf-Galois
structure corresponding to N as above. Indeed, let σω be the element of
N = Gal(E/F ) corresponding to ω ∈ Fq, so σω(η) = η + ωT . We first
claim that ηq−1 is a normal basis generator for the Galois extension E/F ,
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or equivalently, that F [N ] · ηq−1 = E. We have

σω(ηq−1) = (η + ωT )q−1 =
q−1∑
i=0
ηq−1−i(−ωT )i,

so the claim follows from the non-vanishing of the Vandermonde matrix(
(−ω)i

)
ω∈Fq ,0≤i<q. Since the F [N ]-module E is free on the generator ηq−1,

and H = F [N ]G is a K-subalgebra of F [N ], it follows that H · ηq−1 has
dimension dimK(H) = q = [L : K] over K. But η ∈ L and H · L = L, so
we must have H · ηq−1 = L. Thus ηq−1 is a normal basis generator for L/K
over H, as required.

Remark (Galois extensions). If we apply the preceding construction start-
ing with Fq((T )) rather than Fp((T )) (that is, we just consider the extension
E/F above) then we obtain a Galois (indeed, abelian) extension of degree
q for which we have given a direct verification that ηq−1 is a normal ba-
sis generator. This provides an explict example of the situation considered
in [9]

Remark (Global examples). We can easily adapt the above arguments to
the case where K is not complete. Let K be a function field of dimension
1 with field of constants Fp, and choose any valuation vK on K which
corresponds to a place of K with residue field Fp. With q, b and α as above,
let L = K(θ) where θq − θ = α. Then the extension L/K has degree q and
is a totally ramified at vK . As before, L/K is not Galois but does admit at
least one Hopf-Galois structure, and Theorem 2(a) shows that any ρ ∈ L
with vL(ρ) ≡ b (mod q) is a normal basis generator for L/K with respect
to any Hopf-Galois structure on L/K.
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