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Generators for the elliptic curve y2 = x3 − nx

par Yasutsugu FUJITA et Nobuhiro TERAI

Résumé. Soit E la courbe elliptique définie par y2 = x3 − nx où
n est un entier strictement positif. En 2007, Duquesne a démontré
que, pour k entier, si n = (2k2 − 2k + 1)(18k2 + 30k + 17) est
sans facteur carré, alors deux points rationnels spécifiques peuvent
toujours se compléter en un système de générateurs du groupe de
Mordell-Weil associé à E. Dans ce papier, nous généralisons ce
résultat en le montrant pour des entiers n = n(k, l) pour une
infinité de formes binaires n(k, l) ∈ Z[k, l].

Abstract. Let E be an elliptic curve given by y2 = x3 − nx
with a positive integer n. Duquesne in 2007 showed that if n =
(2k2 − 2k + 1)(18k2 + 30k + 17) is square-free with an integer k,
then certain two rational points of infinite order can always be in
a system of generators for the Mordell-Weil group of E. In this
paper, we generalize this result and show that the same is true for
infinitely many binary forms n = n(k, l) in Z[k, l].

1. Introduction
Let E be an elliptic curve over the rationals Q defined by

E : y2 = x3 − nx
with a positive integer n. Mordell’s theorem asserts that the group E(Q)
of rational points on E is finitely generated. It is easy to check that the
torsion subgroup E(Q)tors of E(Q) is isomorphic to either Z/2Z⊕Z/2Z or
Z/2Z depending on whether n is square or not, respectively (cf. [9]). On
the contrary, it is not so easy to determine the structure of the free part of
E(Q).

In [6] we investigated ranks of E(Q) and integer points on E for n =
pk with p prime and k ∈ {1, 2, 3}. While in some cases of rank one we
determined the generators for E(Q) (e.g., in case k = 1 and p = (2t)2 + 1
with odd t, E(Q) = 〈(0, 0), (−1, 2t)〉), we were not able to do that in rank
two cases (e.g., in case k = 1 and p = a4 + b4 > 17, the independence of the
points (−b2, a2b) and (−a2, ab2) was only found). Duquesne ([5, Theorem
12.3]) remarkably showed that if n = (2k2−2k+1)(18k2+30k+17) is square-
free with an integer k, then the points G1 = (−(2k2−2k+1), 4(k+1)(2k2−
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2k + 1)) and G2 = (9(2k2 − 2k + 1), 12(3k − 2)(2k2 − 2k + 1)) can always
be in a system of generators for E(Q) (where G1 and G2 above correspond
to G2 and G1 + G2 in [5], respectively. Note that he also determined the
integer points on a quartic form of E assuming rankE(Q) = 2). His main
strategy is to bound the canonical height ĥ on E(Q) in two ways. More
precisely, he gave a uniform lower bound for the Archimedean part λ̂∞ of
ĥ using Cohen’s algorithm ([4, Algorithm 7.5.7]), and gave upper bounds
for λ̂∞(G1) and λ̂∞(G2) using Tate’s series (cf. [13]). By combining them
with bounds for the non-Archimedean part ĥfin of ĥ, he checked that in case
rankE(Q) = 2 Siksek’s theorem ([11, Theorem 3.1]) implies ν < 3, where ν
denotes the lattice index of the span of G1 and G2 in E(Q)/E(Q)tors. Since
one easily see that ν 6= 2, this shows the result.

The major reasons Duquesne’s family worked well are that the x-coordi-
nate x(Gi) of Gi (i ∈ {1, 2}) more or less divides n, which makes ĥfin(Gi)
less than about −(log |x(Gi)|)/2, and that x(Gi) is similar in size to

√
n,

which keeps λ̂∞(Gi) no larger than about (logn)/2, and hence, ĥ(Gi) =
ĥfin(Gi) + λ̂∞(Gi) is less than about (logn)/4 (see Lemma 3.2, Proposition
3.4 and its proof in Section 3). Moreover, putting s = 2k2 − 2k + 1 and
t = 18k2+30k+17 (then n = st), we found that G1 comes from the relation
t−s = � and G2 comes from the relation 81s−t = �. These considerations
lead us to the following.

Theorem 1.1. Let n be a positive, non-square, fourth-power-free integer
such that n = st with positive, non-square integers s and t. Suppose that
there exist positive integers α, β and m such that

t− s = α2 and m4s− t = β2.(1.1)

Let E be the elliptic curve defined by

E : y2 = x3 − nx.

Then, the points G1 = (−s, sα) and G2 = (m2s,msβ) can always be in a
system of generators for E(Q) if m = 2 or 3. In case m ≥ 4, the same is
true for n ≥ m26.

This paper is organized as follows. In Section 2, using the 2-descent
lemma we show that the points G1 and G2 are independent. In Section 3,
following Duquesne’s strategy we estimate the canonical heights on E. In
Section 4, applying Siksek’s theorem to the height estimates we complete
the proof of Theorem 1.1. Finally in Section 5, we show that for each integer
m ≥ 2 there exist infinitely many binary forms n = n(k, l) in Z[k, l] each
of which represents infinitely many integers satisfying the assumptions in
Theorem 1.1 (cf. Proposition 5.1 and the subsequent Remarks (1)), and
give several examples (cf. Example just after the proof of Proposition 5.1)
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of infinite families n = n(k, l), one of which contains Duquesne’s family (cf.
Remark at the end of Section 5).

We now fix the notation. Let E be an elliptic curve defined by y2 =
x3 − nx with a positive integer n. For this model of E, x(P ) denotes the
x-coordinate of a point P on E. For P = (x, y) in E(Q) with x = b/a
and gcd(a, b) = 1, the naïve height h : E(Q) → R is defined by h(P ) =
log max{|a|, |b|}. The canonical height ĥ : E(Q)→ R is defined by

ĥ(P ) = lim
n→∞

1
4nh(2nP )

(note that this value is double the definitions in [12, 13, 4]). The canonical
height has a decomposition into local heights:

ĥ(P ) =
∑

p:prime or ∞
λ̂p(P ) for P ∈ E(Q) \ {O}.

We normalize the symbols λ̂p following Duquesne’s paper (which are double
the definitions in [4], and satisfy λ̂p = 2(λ̂′p + log |∆|p/12), where λ̂′p denote
the local heights defined in [13, 14]). Finally, for a prime number p denote
by vp the valuation on Q normalized by vp(p) = 1.

2. Independence of the points G1 and G2

Let n, s, t,m, α, β be integers as in Theorem 1.1. Then, E(Q)tors = 〈T 〉 '
Z/2Z, where T = (0, 0) (cf. [9]). In addition, E has the following Q-rational
points

G1 = (−s, sα), G2 = (m2s,msβ).

Lemma 2.1. Let denote by n′ the square-free part of n. On the assumptions
in Theorem 1.1, any prime divisor p of n′ does not divide m2s− t.

Proof. Suppose that a prime divisor p of n′ divides m2s − t. Since p is
a divisor of n = st, it divides both ms and t. Then, m4s − t = β2 ≡ 0
(mod p2). Since n is fourth-power-free, we have either

vp(m4s) = vp(t) = 1

or
vp(m4s) ≥ 2 and vp(t) = 2.

Since p divides n′, the latter holds and vp(s) = 1, vp(t) = 2. This implies
that vp(α2) = vp(t− s) = 1, which is a contradiction. �

Proposition 2.2. On the assumptions in Theorem 1.1, G1, G2, G1 + T,
G2 + T,G1 +G2, G1 +G2 + T 6∈ 2E(Q). Thus, G1 and G2 are independent
modulo E(Q)tors.
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Proof. By the 2-descent lemma (cf. [9, Theorem 4.2]), if a point P = (x, y)
on E is in 2E(Q), then x, x +

√
n, x −

√
n must be squares in Q(

√
n). We

now have

G1 + T = (t, tα), G2 + T =
(
− t

m2 ,
tβ

m3

)
,

x(G1 +G2) = −
(
mα+ β

m2 + 1

)2
, x(G1 +G2 + T ) = n

(
mα− β
m2s− t

)2

(note that s(m4 − 1) = α2 + β2 and (m2s + t)(m2 − 1) = m2α2 + β2 by
assumption (1.1)). Hence, it is clear that G1, G2 + T,G1 + G2 6∈ 2E(Q).
Moreover, since s, t and n = st are non-square, the square-free part of n
equals that of neither s nor t. Thus, s, t 6∈ Q(

√
n)2, that is, G2, G1 + T 6∈

2E(Q).
Suppose that G1 + G2 + T ∈ 2E(Q). Let n = n2

0n
′ with square-free

integers n0, n
′. Then, x(G1 +G2 + T ) +

√
n ∈ Q(

√
n′)2 implies that

(mα− β)2n+ (m2s− t)2√n = (A+B
√
n′)2

for some A,B with A,B ∈ Z or A,B ∈ 1
2Z \ Z. This means that

(mα− β)2n = A2 +B2n′,(2.1)
(m2s− t)2n0 = 2AB.(2.2)

Clearly A,B ∈ Z. By (2.1) n′ divides A, and by (2.2) and Lemma 2.1 n′
divides n0. Hence by (2.1) n′ divides B, which contradicts (2.2) and Lemma
2.1. Therefore, G1 +G2 + T 6∈ 2E(Q). �

Remarks. (1) Modifying the second equation of (1.1) a little, one can
obtain an analogous result to the above proposition. More precisely, let
n = st and E be as in the proposition. Suppose that there exist positive
integers α, β and m with m even such that

t− s = α2 and t−m4s = β2.

Let G1 = (−s, sα) and G2 = (−m2s,msβ). Then, G1 and G2 are inde-
pendent modulo E(Q)tors. The reason this family did not work well is that
x(G1), x(G2) are not necessarily similar in size to

√
n. One can easily see

that the same is true for the family of a negative n = −st satisfying
t+ s = α2 and t+m4s = β2

by replacing s with −s in the above argument.
(2) In the case where n is square, G1 and G2 are not necessarily indepen-

dent modulo E(Q)tors. Indeed, let s = m2 − 1 and t = m2(m2 − 1) with a
positive integerm. Then, t−s = (m2−1)2,m4s−t = m2(m2−1)2, and both
s and t are non-square. On the other hand, since G1 = (1−m2, (m2 − 1)2)
and G2 = (m2(m2 − 1),m2(m2 − 1)2), we obtain G1 + T = G2. Note that
E(Q)tors ' Z/2Z× Z/2Z for a square n.
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3. Computation of the canonical heights on E

We begin by a brief summary of arithmetical properties of E. The dis-
criminant of E is 64n3. Let p be a prime dividing n. By Tate’s algorithm
([15]), the reduction of E at p is of Kodaira type III, I∗M or III∗ if re-
spectively vp(n) = 1, 2 or 3, where M = 0 for odd p. The exponent of the
conductor of E at p is 2 or 8 −M if respectively p is odd or p = 2, where
if vp(n) = 2, then M corresponds to the subscript of I∗M ; otherwise M = 0.
If n is fourth-power-free and n 6≡ 0 (mod 4), then the sign ω(E) of the
functional equation of the Hasse-Weil L-function L(E, s) is given by

ω(E) = −ε(n) ·
∏
p2||n

(−1
p

)
,(3.1)

where the product runs over odd primes, and

ε(n) =
{
−1 if n ≡ 1, 3, 11, 13 (mod 16),
1 otherwise

(see [1]). Periods of E can be expressed as follows.

Lemma 3.1. Let ω1, ω2 be periods of E such that ω1 > 0 and iω2 < 0.
Then, ω2 = iω1 and ω1 ≥ π/(

√
2n

1
4 ).

Proof. This lemma can be shown in the same way as Lemma 8.2 in [5]. �

Hereinafter, we give an uniform lower bound for the canonical height on
E and lower bounds for the canonical heights of the points G1 and G2.
The computation method follows Duquesne’s paper. The non-Archimedean
part ĥfin(P ) of ĥ(P ) can be computed by using Silverman’s algorithm ([13,
Theorem 5.2]). The computation of the Archimedean part λ̂∞(P ) is crucial.
We compute λ̂∞(P ) for any point P ∈ E(Q) \E(Q)tors using the following
formula due to Cohen ([4, Algorithm 7.5.7]):

λ̂∞(P ) = 1
16 log

∣∣∣∣∣64n3

q

∣∣∣∣∣+ 1
4 log

(
ω1
2πy(P )2

)
− 1

2 log |θ|,(3.2)

where
q = e

2πiω2
ω1 , ω1 > 0, Im(ω2) > 0, Re(ω2) = 0,

either Im(z) = 0, 0 ≤ z < ω1 or Im(z) = Im(ω2/2), 0 ≤ z − ω2/2 < ω1,
and

θ =
∞∑
k=0

(−1)kqk(k+1)/2 sin
(

(2k + 1)2π
ω1

Re(z)
)

with the elliptic logarithm z = z(P ) of P . Note that θ has a trivial bound
|θ| < 1/(1− |q|).
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On the other hand, we compute λ̂∞(G1) and λ̂∞(G2) using Tate’s series
(cf. [13]):

λ̂∞(P ) = log |x(P )|+ 1
4

N−1∑
k=0

ck
4k +R(N),(3.3)

where

ck = log |Z(2kP )|, Z(Q) =
(

1 + n

x(Q)2

)2
for Q ∈ E(Q) \ {(0, 0)},

1
3 · 4N log

(
(64n3)2

260H8

)
≤ R(N) ≤ 1

3 · 4N log
(
211H

)
,(3.4)

with H = max{4n, n2}.
We first compute the finite part ĥfin(P ).

Lemma 3.2. For any point P = (a/d2, b/d3) in E(Q) with a, b, d ∈ Z,
gcd(a, d) = gcd(b, d) = 1 and d > 0, we have

ĥfin(P ) = 2 log d− 1
2 log

 ∏
pi|gcd(a,b,n), pi 6=2

pei
i

+ ĥ2(P ),(3.5)

where pei
i ‖n with ei ∈ {1, 2, 3}, and ĥ2(P ) is given by the following:
• If d is even, then ĥ2(P ) = 0.
• If d is odd, then the following holds.

n a b ĥ2(P )
even odd odd 0
odd even even 0
odd odd even −1

2 log 2
v2(n) = 1 even even −1

2 log 2
v2(n) = 2 and n/4 ≡ 1 (mod 4) v2(a) = 1 v2(b) ≥ 3 −3

2 log 2
v2(n) = 2 and n/4 ≡ 3 (mod 4) v2(a) = 1 v2(b) = 2 −7

4 log 2
v2(n) = 2 v2(a) ≥ 2 v2(b) ≥ 2 − log 2
v2(n) = 3 v2(a) ≥ 3 v2(b) ≥ 3 −3

2 log 2

Proof. Since n is fourth-power-free, the equation y2 = x3 − nx is global
minimal for E, and we may use Silverman’s algorithm in [13]. As mentioned
at the beginning of this section, the reduction type of E at an odd prime p
is III, I∗0 or III∗ if respectively vp(n) = 1, 2 or 3. Hence

λ̂p(P ) = −1
4vp(ψ3) log p,
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where ψ3 = 3a2(a2−2nd4)−n2d8. Noting that b2 = a(a2−nd4), one can see
that if p divides a, then vp(ψ3)/4 = vp(n)/2, and λ̂p(P ) = −(vp(P ) log p)/2.
The case p = 2 follows also from the algorithm through a case-by-case
argument. �

We now bound ĥ(P ) below for any point P .

Proposition 3.3. Let n be a positive, fourth-power-free integer and E the
elliptic curve given by y2 = x3 − nx. If n 6≡ 12 (mod 16), then

ĥ(P ) > 0.125 logn+ 0.3917

for any non-torsion point P in E(Q).

Proof. Let P = (a/d2, b/d3) with a, b, d ∈ Z, gcd(a, d) = gcd(b, d) = 1 and
d > 0. By formula (3.2) and Lemma 3.1,

λ̂∞(P ) ≥ 1
16 log

(
64n3

e−2π

)
+ 1

4 log
(
ω1b

2

2πd6

)
− 1

2 log 1
1− e−2π

≥ π

8 −
1
2 log 1

1− e−2π + 1
8 logn+ 1

2 log
∣∣∣∣ bd3

∣∣∣∣
> 0.3917 + 1

8 logn+ 1
2 log

∣∣∣∣ bd3

∣∣∣∣ .
Combining this inequality with Lemma 3.2, we have

ĥ(P ) > 2 log d− 1
2 log

 ∏
pi|gcd(a,b,n), pi 6=2

pei
i

+ ĥ2(P )

+ 0.3917 + 1
8 logn+ 1

2 log
∣∣∣∣ bd3

∣∣∣∣
= 0.125 logn+ 0.3917 + 1

2 log |bd|∏
pi|gcd(a,b,n), pi 6=2

pei
i

+ ĥ2(P ).

Here, b2 = a(a2 − nd4) ensures that if pi | a and pei
i | n, then p

ei
i | b, and

the table in Lemma 3.2 implies that if n 6≡ 12 (mod 16), then v2(b) log 2 +
2ĥ2(P ) ≥ 0. Therefore we have

1
2 log |bd|∏

pi|gcd(a,b,n), pi 6=2
pei
i

+ ĥ2(P ) > 0,

and obtain the desired inequality. �

Remarks. (1) Assumption (1.1) immediately implies that n = st 6≡ 12
(mod 16). Thus, we can use Proposition 3.3 in the proof of Theorem 1.1.
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(2) Finding lower bounds for the canonical height of elliptic curves has
been an active area of research. As for our curve E (with n not neces-
sarily positive), Krir showed for any non-torsion point P in E(Q) that
ĥ(P ) > (log |n|)/64 if n is fourth-power-free ([10, Proposition 4.1]), and
that ĥ(P ) > (log |n|)/16 if n is square-free ([10, Remarque 4.2]). Although
we are assuming n > 0 and n 6≡ 12 (mod 16), Proposition 3.3 gives a better
bound than Krir’s ones.

We use Tate’s series to bound λ̂∞(G1) and λ̂∞(G2) above.

Proposition 3.4. On the assumptions in Theorem 1.1,

ĥ(G1) < 24577
98304 logn+ logm+ 131081

196608 log 2,

ĥ(G2) < 24577
98304 logn+ 1

2 log
(
m2

(
m4 + 1

))
+ 32777

196608 log 2.

Proof. Since the discriminant 64n3 is positive, we have x(Q) ≥
√
n for

Q ∈ E0(R), the identity component of E(R). Hence, 1 ≤ Z(2kP ) ≤ 4 for
P ∈ E(Q) and a positive integer k. It follows from (3.3) and (3.4) that for
n ≥ 4,

λ̂∞(P ) = log |x(P )|+ 1
4

7∑
k=0

ck
4k +R(8),

where c0 = 2 log(x(P )2 + n) − 4 log |x(P )|, 0 ≤ ci ≤ log 4 (1 ≤ i ≤ 7) and
R(8) ≤ (11 log 2 + 2 logn)/(3 · 48). Since G1 = (−s, sα), G2 = (m2s,msβ)
and s2 + n < 2n, m4s2 + n < (m4 + 1)n, we have

λ̂∞(G1) < 49153
98304 logn+ 131081

196608 log 2,

λ̂∞(G2) < 49153
98304 logn+ 1

2 log
(
m4 + 1

)
+ 32777

196608 log 2.

On the other hand, Lemma 3.2 together with
√
n < m2s implies that

ĥfin(Gi) ≤ −
1
2 log s < −1

4 logn+ logm

for i ∈ {1, 2}. Therefore, we obtain the desired inequalities. �

4. Proof of Theorem 1.1
In order to prove Theorem 1.1, we need the following theorem of Siksek,

based on the theory of quadratic forms (cf. [3]).

Theorem 4.1 (cf. [11, Theorem 3.1]). Let E be an elliptic curve over
Q of rank r ≥ 2. Let G1 and G2 be independent points in E(Q) modulo
E(Q)tors. Choose a basis {P1, P2, . . . , Pr} for E(Q) modulo E(Q)tors such
that G1, G2 ∈ 〈P1〉+〈P2〉. Suppose that E(Q) contains no point Q of infinite
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order with ĥ(Q) ≤ λ, where λ is some positive real number. Then, the index
ν of the span of G1 and G2 in 〈P1〉+ 〈P2〉 satisfies

ν ≤ 2√
3
·
√
R(G1, G2)

λ
,

where

R(G1, G2) = ĥ(G1)ĥ(G2)− 1
4
(
ĥ(G1 +G2)− ĥ(G1)− ĥ(G2)

)2
.

Proof of Theorem 1.1. In view of Proposition 2.2, in order to prove that G1
andG2 can be in a system of the generators for E(Q), it suffices to show that
the lattice index ν is less than 3. By Proposition 3.3 and the subsequent
Remarks (1), we may take λ = 0.125 logn + 0.3917. Since R(G1, G2) <
ĥ(G1)ĥ(G2), Proposition 3.4 and Theorem 4.1 together imply that ν <
f(m,n), where

f(m,n) = 2√
3
·

√
h1h2

0.125 logn+ 0.3917
with

h1 = 24577
98304 logn+ logm+ 131081

196608 log 2,

h2 = 24577
98304 logn+ 1

2 log(m6 +m2) + 32777
196608 log 2.

One can see that for a fixed m the function f(m,n) is decreasing. In the
case of m = 2, if n ≥ 4885, then ν < f(2, n) < 3. The pairs (s, t) satisfying
n ≤ 4884 and the conditions in Theorem 1.1 are

(s, t) = (3, 39), (6, 15), (6, 87), (15, 159), (30, 39), (51, 87).

In each case, it is easy to check (e.g., by Magma ([2])) that G1 and G2 can be
in a system of generators for E(Q). In fact, in the case of (s, t) = (15, 159),
E(Q) = 〈(0, 0), G1, G2, (−36, 198)〉, and in all other cases, E(Q) = 〈(0, 0),
G1, G2〉.

In the case of m = 3, if n ≥ 1.587 · 108, then ν < f(3, n) < 3. The
number of those pairs (s, t) satisfying n < 1.587 · 108 and the assumptions
in Theorem 1.1 is 2493. It is hard to check that G1 and G2 can be in a
system of generators for E(Q) directly. However, since f(3, 10) < 5, we
have f(3, n) < 5 for all n ≥ 10. Since n ≤ 9 is not the case, it follows that
ν < 5. On the other hand, Proposition 2.2 implies that ν 6= 2, 4. Hence,
it suffices to show that ν 6= 3 for the 2493 pairs (s, t). We confirmed it by
checking that none of G1, G2, G1 + G2 and G1 − G2 has a three division
point in E(Q) for each (s, t) using the function “DivisionPoints(∗, 3)” in
Magma ([2]).
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In the case of m ≥ 4, consider the function g(m) = f(m,m26). Since
g(m) is increasing and

lim
m→∞

g(m) = 2√
3
·

√(
24577
98304 · 26 + 1

) (
24577
98304 · 26 + 3

)
0.125 · 26 < 2.9992 < 3,

we have ν < 3 for n ≥ m26. This completes the proof of Theorem 1.1. �

Remark. There is no reason why the assertion in Theorem 1.1 does not
hold for m ≥ 4 and n < m26. For example, one can easily see that G1 and
G2 can always be in a system of generators for 4 ≤ m ≤ 10 and s ≤ 30.
Indeed, since f(10, n) < 7 for n ≥ 66 and there is no n with n ≤ 65
satisfying the assumptions in Theorem 1.1, it suffices to check that

G1, G2, G1 +G2, G1 −G2 6∈ 3E(Q),
G1, G2, G1 +G2, G1−G2, G1 +2G2, G1−2G2, 2G1 +G2, 2G1−G2 6∈ 5E(Q),
which can be done by Magma ([2]).

5. Construction of infinite families
By eliminating t from assumption (1.1), we have (m4 − 1)s = α2 + β2.

Putting α = uk + vl and β = ul − vk yields

s = α2 + β2

m4 − 1 = u2 + v2

m4 − 1 (k2 + l2) and t = s+ (uk + vl)2.

Hence, u and v satisfying u2 + v2 ≡ 0 (mod (m4 − 1)) give a binary form
n = st in Z[k, l]. This argument leads us to the following.

Proposition 5.1. Fix an integer m greater than one and write m4 − 1 =
m0m1m

2
2, where m0,m1,m2 are positive integers such that m0m1 is square-

free and any prime divisor of m0 (resp. m1) is congruent to 3 (resp. 1 or
2) modulo 4. Let p1, . . . , pr be distinct primes congruent to 1 or 2 modulo
4 such that none of the odd pi’s divides m4 − 1 (possibly r = 0. If m1 = 1,
assume r ≥ 1; if m1 = p1 = 2, assume r ≥ 2). Let u′ and v′ be positive
integers satisfying

(u′)2 + (v′)2 = m1p1 · · · pr(5.1)

and put u = m0m2u
′ and v = m0m2v

′. Then, the binary form n = st with

s = u2 + v2

m4 − 1 (k2 + l2) and t = s+ (uk + vl)2

represents infinitely many integers satisfying the assumptions in Theorem
1.1.

Remarks. (1) Since there exist infinitely many primes congruent to 1 mod-
ulo 4, Proposition 5.1 shows that for each integerm ≥ 2 there exist infinitely
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many binary forms n = n(k, l) in Z[k, l] each of which represents infinitely
many integers satisfying the assumptions in Theorem 1.1.

(2) A theorem of Granville ([8, Theorem 1]) implies that if ABC conjec-
ture is valid, then each expression of n = st for each m ≥ 2 in Proposition
5.1 satisfies the assumptions in Theorem 1.1 for infinitely many integers k
and infinitely many integers l.

Proof. We prove this proposition by applying to n/m2
0 or n/(2m2

0) a theo-
rem of Gouvêa and Mazur ([7, Theorem 3]), which implies that if f(k, l) ∈
Z[k, l] is a binary form with nonzero discriminant, having no irreducible
factor of degree exceeding three, and if the greatest common divisor of all
values f(k, l) is square-free, then f(k, l) represents infinitely many square-
free integers.

The direct computation shows that the discriminant of n is 16m4(u2 +
v2)12/(m4 − 1)8, which is nonzero. Moreover, since

s = m0p1 · · · pr(k2 + l2), t = s+ (uk + vl)2(5.2)

and u ≡ v ≡ 0 (mod m0), we always have s/m0, t/m0 ∈ Z[k, l], and if
m is odd and pi = 2 for some i, then both u and v must be even and
t/(2m0) ∈ Z[k, l]. Thus, it suffices to show that if m is odd and pi = 2 for
some i, then gcd(n; k, l ∈ Z) divides 2m2

0p1 · · · pr; otherwise gcd(n; k, l ∈ Z)
divides m2

0p1 · · · pr.
Expressing n and t as n(k, l) and t(k, l), respectively, we see that gcd(n;

k, l ∈ Z) divides

gcd(n(1, 0), n(0, 1), n(1, 1), n(1,−1)) = m0p1 · · · prt′,

where t′ = gcd(t(1, 0), t(0, 1), 2t(1, 1), 2t(1,−1)). Ifm is even, then u2+v2 =
m0(m4 − 1)p1 · · · pr implies that either u or v must be odd. Since

t = m4u2 + v2

m4 − 1 k2 + 2uvkl + u2 +m4v2

m4 − 1 l2,

either t(1, 0) or t(0, 1) must be odd. Hence, the 2-primary part t′(2) of t′
equals 1. If m is odd, then both u and v must be even, and (5.2) implies
that if pi = 2 for some i, then t′(2) = 2; otherwise t′(2) = 1.

It remains to examine the odd part t′odd of t′. By (5.2) t′odd divides

gcd(m0p1 · · · pr + u2,m0p1 · · · pr + v2,

2m0p1 · · · pr + (u+ v)2, 2m0p1 · · · pr + (u− v)2)odd,

which divides

gcd(2m0p1 · · · pr + u2 + v2, u2 − v2, uv)odd(5.3)
= gcd(m0p1 · · · pr(m0m1m

2
2 + 2),m2

0m
2
2((u′)2 − (v′)2),m2

0m
2
2u
′v′)odd,
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where gcd(∗)odd denotes the odd part of gcd(∗). By gcd(m1, p1 · · · pr)odd = 1
and (5.1) we have gcd(u′v′,m1p1 · · · pr)odd = 1, and by(

(u′)2 − (v′)2
)2

=
(
(u′)2 + (v′)2

)2
− 4(u′)2(v′)2 = m2

1p
2
1 · · · p2

r − 4(u′)2(v′)2

we have gcd
(
(u′)2 − (v′)2, u′v′

)
odd = 1. Since gcd(m0m2, p1 · · · pr)odd = 1,

(5.3) divides
m0 gcd(m0m1m

2
2 + 2,m0m

2
2)odd = m0,

from which it follows that t′odd divides m0. Since we have already seen that
gcd(n; k, l ∈ Z) dividesm0p1 · · · prt′, this completes the proof of Proposition
5.1. �

From Proposition 5.1 one can easily obtain several parameterizations of
E in Theorem 1.1.

Example. Let k, l be nonzero integers. For each of the integers s, t ex-
pressed in terms of k, l as listed below, the points G1 = (−s, sα) and
G2 = (m2s,msβ) with α =

√
t− s, β =

√
m4s− t and m = 2 or 3 can

always be in a system of generators for E(Q) if s, t, n = st are non-square
and n is fourth-power-free.

(1) The m = 2 cases:
(a) s = 3(k2 + l2), t = 3(4k2 + 12kl + 13l2);
(b) s = 6(k2 + l2), t = 3(5k2 + 18kl + 29l2);
(c) s = 15(k2 + l2), t = 3(32k2 + 72kl + 53l2).

(2) The m = 3 cases:
(a) s = k2 + l2, t = 17k2 + 64kl + 65l2;
(b) s = 2(k2 + l2), t = 2(9k2 + 48kl + 73l2);
(c) s = 5(k2 + l2), t = 149k2 + 384kl + 261l2.

Here, we took (u, v) in Proposition 5.1 as follows:

(1) (a) (u, v) = (3, 6); (b) (u, v) = (3, 9); (c) (u, v) = (9, 12).
(2) (a) (u, v) = (4, 8); (b) (u, v) = (4, 12); (c) (u, v) = (12, 16).

Remark. Duquesne’s family with s = 2k2− 2k+ 1, t = 18k2 + 30k+ 17 is
contained in the family with (2) (a) in Example above, since s = (1−k)2 +
k2, t = 17(1− k)2 + 64(1− k)k + 65k2.

We conclude this paper with a consideration about the rank. Let r be
the rank of E(Q), and assume the parity conjecture. Then (−1)r = ω(E)
holds, where ω(E) is the sign of the functional equation of L(E, s). If n is
fourth-power-free and n 6≡ 0 (mod 4), then formula (3.1) implies that

(−1)r = −ε(n)
∏
p2||n

(−1
p

)
,
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where if n ≡ 1, 3, 11, 13 (mod 16), ε(n) = −1; otherwise, ε(n) = 1. Consider
the case (1) (a) in Example above. Noting n ≡ 0 (mod 9) and

(
−1
3

)
= −1,

one can see that if k ≡ 2 (mod 4) and n/9 is square-free, then r is odd with
r ≥ 3. Similarly, in the case (2) (a), if kl ≡ 2 (mod 4) and n is square-free,
then r is odd with r ≥ 3. We checked for 1 ≤ k, l ≤ 30 by Magma ([2]) that
(1) (a) with k ≡ 2 (mod 4) and n/9 square-free has 70 cases, out of which
65 cases satisfy r ≥ 3, and (2) (a) with kl ≡ 2 (mod 4) and n square-free
has 107 cases, out of which 81 cases satisfy r ≥ 3. In either case, it seems
difficult to find a third generic point without further parameterizing k, l by
quadratic or quartic binary forms.

Acknowledgment. The authors express their sincere thanks to the ref-
eree for many valuable suggestions, which, in particular, made the lower
bound for n in the case of m ≥ 4 in Theorem 1.1 better.
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