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Universal covering spaces and fundamental
groups in algebraic geometry as schemes

par Ravi VAKIL et Kirsten WICKELGREN

Résumé. En topologie, les notions de groupe fondamental et de
revêtement universel sont lieés l’une à l’autre. En suivant l’exemple
topologique, on construit un schéma en groupes fondamentaux
d’un revêtement universel, qui sont tous les deux des schémas.
Une fibre géométrique du schéma en groupes fondamentaux est ho-
méomorphe au groupe fondamental étale. Ces constructions s’ap-
pliquent à tout schéma quasi-compact et quasi-séparé. Avec des
méthodes et des hypothèses différentes, ce schéma en groupes fon-
damentaux a déjà été construit par Deligne.

Abstract. In topology, the notions of the fundamental group
and the universal cover are closely intertwined. By importing usual
notions from topology into the algebraic and arithmetic setting,
we construct a fundamental group family from a universal cover,
both of which are schemes. A geometric fiber of the fundamental
group family (as a topological group) is canonically the étale fun-
damental group. The constructions apply to all connected quasi-
compact quasiseparated schemes. With different methods and hy-
potheses, this fundamental group family was already constructed
by Deligne.

1. Introduction
This paper takes certain natural topological constructions into the alge-

braic and arithmetic setting. Primarily, we refer to the following: for a suf-
ficiently nice topological space X, the fundamental group πtop1 (X, x) varies
continuously as x varies. Thus, there is a family of pointed fundamental
groups, which we denote π1

top(X) // X , whose fibers are canonically
π
top
1 (X, x). The space π1top(X) is a group object among covering spaces.

We call it the fundamental group family. (It is also the isotropy group of
the fundamental groupoid, as well as the adjoint bundle of the universal
cover X̃ → X viewed as a principal Aut(X̃/X)-bundle, but both of these
are awkwardly long to be used as names.) This paper repeats this process
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in the setting of algebraic geometry: for any connected quasicompact qua-
siseparated scheme X, we construct a group scheme π1(X)→ X whose fibers
over geometric points are Grothendieck’s étale fundamental group π1(X, x).
This group scheme has already been constructed by Deligne in [D] for Noe-
therian schemes. The method and goals of the present paper are different
from Deligne’s, however, and we hope of interest. (See §1.1 for a further
discussion of the fundamental group family in [D].)

The motivation for gluing together the π1(X, x) (which are individu-
ally topological groups) into a group scheme requires some explanation.
We wish to study the question: what is a “loop up to homotopy” on a
scheme? Grothendieck’s construction of the étale fundamental group gives
the beautiful perspective that loops up to homotopy are what classify cov-
ering spaces. Although a map from the circle to a scheme and the equiva-
lence class of such a map up to homotopy are problematic to define, [SGA1]
defines the fundamental group by first defining a covering space to be a fi-
nite étale map, and then defining π1 as the group classifying such covering
spaces. As finite étale maps of complex varieties are equivalent to finite
topological covering spaces, this definition raises the question: why have
we restricted to finite covering spaces? There are at least two answers to
this question, neither of which is new: the first is that the covering spaces
of infinite degree may not be algebraic; it is the finite topological covering
spaces of a complex analytic space corresponding to a variety that them-
selves correspond to varieties. The second is that Grothendieck’s étale π1
classifies more than finite covers. It classifies inverse limits of finite étale
covering spaces [SGA1, Exp. V.5, e.g., Prop. 5.2]. These inverse limits are
the profinite-étale covering spaces we discuss in this paper (see Definition
2). Grothendieck’s enlarged fundamental group [SGA 3, Exp. X.6] even
classifies some infinite covering spaces that are not profinite-étale.

In topology, a covering space is defined to be a map which is locally
trivial in the sense that it is locally of the form

∐
U → U. We have the

heuristic picture that to form a locally trivial space, you take a trivial space∐
U → U and every time you go around a loop, you decide how to glue

the trivial space to itself. (This heuristic picture is formalized by the theory
of descent.) This leads to the notion that what the group of loops up to
homotopy should classify are the locally trivial spaces. It becomes natural to
ask: to what extent are finite étale or profinite-étale covering spaces locally
trivial?1 This is a substitute for the question: to what extent is étale π1 the
group of “loops up to homotopy” of a scheme?

The answer for finite étale maps is well-known. (Finite étale maps are
finite étale locally

∐
SU → U for S a finite set. See [Sz2, Prop. 5.2.9] for

1The same question should be asked for the covering spaces implicit in Grothendieck’s enlarged
fundamental group; we do not do this in this paper.
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a particularly enlightening exposition.) For profinite-étale maps, we intro-
duce the notion of Yoneda triviality and compare it to the notion that a
trivial map is a map of the form

∐
U→ U (see Definition 1 and Proposition

2.1). Although a profinite-étale morphism is locally Yoneda trivial (Corol-
lary 3.1), locally Yoneda trivial morphisms need not be profinite-étale. In-
deed, the property of being profinite-étale is not Zariski-local on the base
(see Warning 2.1(b)). Since the étale fundamental group, which classifies
profinite-étale spaces, is obviously useful, but there are other locally trivial
spaces, this suggests that there are different sorts of fundamental groups,
each approximating “loops up to homotopy,” by classifying some notion
of a covering space, where a covering space is some restricted class of lo-
cally trivial spaces.2 (Also see §4.8.) See [Mor] for the construction of the
A1-fundamental group.

Returning to the motivation for constructing the fundamental group fam-
ily, it is not guaranteed that the object which classifies some particular
notion of covering space is a group; the étale fundamental group is a topo-
logical group; and work of Nori [N2] shows that scheme structure can be
necessary. (Nori’s fundamental group scheme is discussed in more detail in
§1.1.) However, a fiber of the fundamental group family of §4 should clas-
sify covering spaces, and indeed does in the case we deal with in this paper,
where “covering space” means profinite-étale morphism (see Theorem 4.1).

More concretely, consider the following procedure: (1) define trivial cov-
ering space. (2) Define covering space. (3) Find a large class of schemes
which admit a simply connected covering space, where a simply connected
scheme is a scheme whose covering spaces are all trivial. (4) Use (3) and
the adjoint bundle construction described in §4 to produce a fundamental
group family. This fundamental group family should be a group scheme
over the base classifying the covering spaces of (2).

We carry out this procedure with “trivial covering space” defined to
mean a Yoneda trivial profinite-étale morphism, and “covering space” de-
fined to mean a profinite-étale morphism. Then, for any connected, qua-
sicompact and quasiseparated scheme, there is a universal covering space
(see Proposition 3.4), and the topological group underlying the geometric
fibers of the corresponding fundamental group family are the pointed étale
fundamental groups (see Theorem 4.1). In particular, the topology on the
étale fundamental group is the Zariski topology on the geometric fibers
of the fundamental group family. Motivation for this is the exercise that
SpecQ ⊗Q Q (with the Zariski topology) is homeomorphic to Gal(Q/Q)

2Note that the notion of a “locally trivial space” is composed of the notion of “locally” and the
notion of a “trivial space.” The idea of changing the notion of “locally” is thoroughly developed
in the theory of Grothendieck topologies. Here, we are also interested in different notions of
“trivial.”
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(with the profinite topology). We work through these ideas in a number of
explicit examples.

1.1. Relation to earlier work. The fundamental group family of §4 can
be recovered from Deligne’s profinite fundamental group [D, §10]. For X
Noetherian, Deligne constructs a profinite lisse sheaf P on X×X, called the
profinite fundamental group [D, §10.17]. P pulled back under the diagonal
map X→ X×X, as in [D, §10.5], gives the fundamental group family, via the
equivalence between profinite lisse sheaves and pro-objects of the category
of finite étale X schemes. Deligne’s constructions and goals are different
from ours. For instance, he is not concerned with the fact that a sheaf can
be locally profinite lisse without being so globally. His assumption that X
is Noetherian, however, is not necessary for [D, §10.17]; his construction
should work for all quasicompact quasiseparated X, and in particular, our
construction does not work in greater generality.

Over a field k and subject to additional hypotheses, other fundamen-
tal group schemes have previously been constructed as well. Work of Nori
[N1, N2] develops a pointed fundamental group scheme which classifies
principal G-bundles for G a finite group scheme over k, under additional
hypotheses, including that the base scheme is connected, reduced, and
equipped with a rational point. The scheme structure is necessary for this
classification. Furthermore, Nori’s fundamental group scheme has an as-
sociated universal cover [N2, p. 84-85, Def1 Prop2]. We expect that Nori’s
universal cover admits a fundamental group family as in §4 whose fiber over
the given k-rational point is Nori’s fundamental group scheme. In particu-
lar, Nori’s universal cover should not be the universal cover of Proposition
3.4. We suspect that it is the inverse limit of pointed principal G-bundles,
where G is a finite group scheme over k, and that after base change to k
and passage to the maximal pro-étale quotient, Nori’s universal cover be-
comes the universal cover of Proposition 3.4. We have not verified these
statements.

Esnault and Hai [EH] define a variant of Nori’s fundamental group scheme
for a smooth scheme X over a characteristic 0 field k, where k is the field of
constants of X. The goals of Nori and Esnault-Hai are quite different from
those of this paper. For example, Esnault and Hai define a linear structure
on Grothendieck’s étale fundamental group of a scheme defined over a char-
acteristic 0 field. They apply their results to study Grothendieck’s section
conjecture.

The idea of changing the notion of “covering space” to recover the clas-
sification of covering spaces by a fundamental group has appeared earlier
in topology. For example, Biss uses a fundamental group equipped with
a topology to classify “rigid covering bundles” over some non semi-locally
simply connected spaces (such as the Hawaiian earring) [Bi1, Bi2], where
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the usual topological theory of covering spaces is not valid. Moreover, “rigid
covering bundles,” which are defined as Serre fibrations whose fibers have
no non-constant paths, are analogous to fiber bundles with totally dis-
connected fiber. In the context of this paper, such a fiber bundle should
be viewed as a locally trivial space, where “trivial” is defined to mean
U × F → U, where F is a totally disconnected topological space. In earlier
work, Morgan and Morrison also considered the question of the “right” fun-
damental group of the Hawaiian earring and similar spaces in response to
a question of Eilenberg’s, and with similar conclusions [MM].

Although we circumvent Noetherian hypotheses here, this is not new.
Lenstra develops the theory of the étale fundamental group for any con-
nected base scheme in his course on the Galois theory of schemes [Le].
The étale fundamental group is only shown to classify finite (as opposed to
profinite) étale covering spaces in this generality. He also stressed the im-
portance of the local triviality of finite étale covering spaces, and drew close
analogies to the topological theory. See [Sz2] for another nice exposition.

The existence of the universal cover of Proposition 3.4 is also well-known
to experts, but we include a proof in the required generality for complete-
ness.

The universal cover of a variety (in the sense of §3) is not in general a
variety. It is the algebraic analogue of a solenoid (see for example Dennis
Sullivan’s [Su]), and perhaps profinite-étale covering spaces of varieties de-
serve this name as well. The notion of solenoid in an algebraic context arose
earlier, see [AT, p. 89]. Solenoids are examples of finite-dimensional proalge-
braic varieties in the sense of Piatetski-Shapiro and Shafarevich, see [PSS,
§4]. (Caution: Prop. 2 of [PSS, §4] appears to be contradicted by Warning
2.1(b).) The notion essentially appears much earlier in Serre’s [Se2].

1.2. Conventions. As usual, fpqc means faithfully flat and quasicompact,
qcqs means quasicompact and quasiseparated, and Ks is the separable clo-
sure of K. The phrase “profinite-étale” appears in the literature, but it is
not clear to us that there is a consistent definition, so to prevent confu-
sion, we define it in Definition 2. Warning: other definitions (such as the
one implicit in [PSS]) are different from ours, and would lead to a different
universal cover and fundamental group scheme.

1.3. Acknowledgments. We thank A. Blumberg, G. Carlsson, R. Cohen,
B. Conrad, T. Ekedahl, H. Esnault, J. Ellenberg, K. Gruher, F. Grunewald,
J. Hall, D. Harbater, S. Kerckhoff, A. Langer, M. Lieblich, R. Lipshitz, C.
McMullen, M. Nori, A. Ogus, M. Olsson, B. Osserman, J. Rabinoff, D.
Rydh, S. Schröer, T. Szamuely and C. Xu for many helpful comments. We
thank R. Treger for pointing out [PSS] to us.
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2. From topology to algebraic geometry, via a “right” notion of
covering space

We now try to import the topological perspective into algebraic geometry
in order to choose as parsimonious as possible a list of definitions, from
which constructions and arguments are natural and straightforward. Our
endpoint is essentially the usual one; but we hope the reader may find the
derivation direct.
Definition 1. A map of schemes f : Y → X is Yoneda trivial if f admits a
set of sections S such that for each connected scheme Z, the natural map

Maps(Z,X)× S→ Maps(Z, Y)
is a bijection. Here, Maps(−,−) denotes the set of scheme morphisms. S is
called the distinguished set of sections of f.

The name “Yoneda trivial” comes from Yoneda’s lemma, which controls
Y by the morphisms to Y; Y is trivial over X in the sense that maps to Y
from connected schemes are controlled by maps to X.

Note that if X is connected, the distinguished sections must be the entire
set of sections.

A trivial topological covering space is a map of topological spaces of the
form

∐
U → U. We compare Yoneda trivial morphisms to morphisms of

the form
∐
X→ X.

Proposition 2.1. Let X be a connected scheme. Then
∐
X→ X is Yoneda

trivial, where the coproduct is over any set. If f : Y → X is Yoneda trivial
and the underlying topological space of Y is a disjoint union of connected
components (or if Y is locally Noetherian), then f is of the form

∐
S X→ X

for some set S.
Proof. The first statement is obvious. For the second statement, we have
Y =

∐
c∈C Yc with Yc connected. Since f is Yoneda trivial, the inclusion

Yc ↪→ Y factors through a distinguished section. It follows that f : Yc → X
is an isomorphism. �

The distinguished sections S of a Yoneda trivial morphism f : Y → X
can be given the structure of a topological space: let T denote the forgetful
functor from schemes to topological spaces. It follows easily from the defi-
nition that Yoneda trivial morphisms induce isomorphisms on the residue
fields of points, and therefore that the distinguished set of sections is in
bijection with any fiber of T(f) : T(Y) → T(X). In particular, S is a sub-
set of Mapscts(T(X),T(Y)), the continuous maps from T(X) to T(Y). Give
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Mapscts(T(X),T(Y)) the topology of pointwise convergence and give S the
subspace topology.

Definition 2. A morphism of schemes f : Y → X is profinite-étale if
Y = SpecA, where A is a colimit of quasi-coherent algebras, each corre-
sponding to a finite étale morphism. Thus f is an inverse limit of finite
étale morphisms.

Definition 3. A covering space is a profinite-étale morphism.

We sometimes say (redundantly) profinite-étale covering space. (This re-
dundancy comes from the point of view that there are other interesting
notions of covering space.)

Profinite-étale covering spaces are clearly stable under pull-back. Note
that a profinite-étale covering space of a qcqs scheme is qcqs. By [EGA IV-3,
§8 Th. 8.8.2], [EGA IV-3, §8 Th. 8.10.5], and [EGA IV-4, §17 Cor. 17.7.3]
profinite-étale covering spaces of qcqs are closed under composition.

2.1. Warnings. (a) Although a profinite-étale morphism is integral, flat,
and formally unramified, the converse need not hold. For example, let p be
a prime, X = SpecFp(t), and

Y = SpecFp(t1/p
∞
) = SpecFp(t)[x1, x2, . . .]/〈xp1 − t, x

p
i − xi−1 : i = 2, 3, . . .〉.

Since ΩY/X is generated as a Fp(t1/p
∞
)-vector space by {dxi : i = 1, 2, . . .}

and since the relation xpi+1 − xi implies that dxi is zero, it follows that
ΩY/X = 0. Also, Y → X is clearly profinite and flat. Since the field extension
Fp(t1/p

∞
)/Fp(t) is purely inseparable, and since any finite étale X-scheme

is a finite disjoint union of spectra of finite separable extensions of Fp(t), Y
is not an inverse limit of finite étale X-schemes.

(b) Unlike covering spaces in topology, the property of being profinite-
étale is not Zariski-local on the target. Here is an example. Consider the
arithmetic genus 1 complex curve C obtained by gluing two P1’s together
along two points, and name the nodes p and q (Figure 2.1). Consider the
profinite-étale covering space Y → C− p given by

SpecOC−p[. . . , x−1, x0, x1, . . . ]/(x2i − 1)
and the profinite-étale covering space Z→ C− q given by

SpecOC−q[. . . , y−1, y0, y1, . . . ]/(y2i − 1).
Glue Y to Z (over C) by identifying xi with yi on the “upper component”,
and xi with yi+1 on the “lower component”. Then Y∪Z→ C is not profinite-
étale, as it does not factor non-trivially through any finite étale morphism.
To see this, suppose that we had a C map Y ∪ Z → W with W → C
finite étale. We have a functor taking a C scheme to the topological fiber
over some point of the associated complex analytic space. Call this the
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fiber functor. Note that the fiber of Y ∪ Z is homeomorphic to FZ
2 with the

product topology. Let s be the “shift indexing by 1” operator on the fiber,
so s(g(i)) = g(i+ 1) for g : Z→ F2. Since finite étale covers are topological
covering spaces, the fiber of W has an action of Z, and therefore must be
of the form

∐
I Z/mi for some finite set I, positive integers mi, and with Z

acting by +1 on each Z/mi. Applying the fiber functor to Y∪Z→W gives
a Z equivariant continuous map h : FZ

2 → ∐I Z/mi, where Z acts on FZ
2

via s. We may assume that h is surjective and show that
∑
mi = 1, which

is equivalent to showing Y ∪ Z→W is a trivial factorization: if
∑
mi > 1,

then FZ
2 admits two disjoint, non-empty, open, mZ-equivariant sets U1 and

U2 for m =
∏
mi. For any l, u in Z, we have the map

r(l,u) : FZ
2 → F{l,l+1,...,u−1,u}

2

given by restriction of functions. By definition of the product topology, Ui
contains a subset Vi of the form Vi = r

−1
(li,ui)

(Si) for some integers li, ui and
a non-empty subset Si of F{li,li+1,...,ui−1,ui}2 . It follows that there is N such
that smNV1 ∩ V2 6= ∅, giving a contradiction.

qp

Figure 2.1. An example showing that the notion of
profinite-étale is not Zariski-local

A map from a connected X-scheme to a profinite-étale covering space of
X is determined by the image of a geometric point:

Proposition 2.2. Let (X, x) be a connected, geometrically-pointed scheme,
and let ℘ : (Y, y)→ (X, x) be a profinite-étale covering space. If f : (Z, z)→
(X, x) is a morphism from a connected scheme Z and f̃1 and f̃2 are two lifts
of f taking the geometric point z to y, then f̃1 = f̃2. (A lift of f means a
map f̃ : Z→ Y such that ℘ ◦ f̃ = f.)

Proof. By the universal property of the inverse limit, we reduce to the case
where ℘ is finite étale. Since the diagonal of a finite étale morphism is an
open and closed immersion, the proposition follows. �

Geometric points of a connected scheme lift to a profinite-étale covering
space:

Proposition 2.3. Let X be a connected scheme, x a geometric point of X,
and f : Y → X a profinite-étale covering space. Then there is a geometric
point of Y mapping to x.



Universal covering spaces and fundamental groups in algebraic geometry 497

Proof. Since Y → X is profinite-étale, Y = lim←−I Yi, where Yi → X is finite
étale and I is a directed set. Let Fx(Yi) denote the geometric points of
Yi mapping to x. Since X is connected, Fx(Yi) is non-empty (because finite
étale maps are open and closed [EGA IV-2, §2 Th. 2.4.6] [EGA II, §6 Prop.
6.1.10] and induce finite separable extensions of residue fields of points
[EGA IV-4, §17 Th. 17.4.1]). Since Yi → X is finite, Fx(Yi) is finite. The
set of geometric points of Y mapping to x is lim←−IFx(Yi). lim←−IFx(Yi) is non-
empty because an inverse limit over a directed set of non-empty finite sets
is non-empty [RZ, Prop. I.I.4]. �

2.2. Example: profinite sets give Yoneda trivial profinite-étale
covering spaces. If S is a profinite set, define the trivial S-bundle over
X by

SX := Spec (Mapscts(S,OX))
whereOX(U) is given the discrete topology for all open U ⊂ X. It is straight-
forward to verify that SX → X is a Yoneda trivial covering space with dis-
tinguished sections canonically homeomorphic to S, and that if S = lim←−I Si,
then S = lim←−I Si. We will see that this example describes all Yoneda trivial
profinite-étale covering spaces (Proposition 2.5).

The topology on the distinguished sections of a Yoneda trivial profinite-
étale covering space is profinite:

Proposition 2.4. Let f : Y → X be a Yoneda trivial profinite-étale covering
space with distinguished set of sections S. Let p be any point of T(X). Let
Fp(T(f)) be the fiber of T(f) : T(Y) → T(X) above p. The continuous map
S→ Fp(T(f)) given by evaluation at p is a homeomorphism. In particular,
S is profinite.

Proof. Since f is profinite-étale, we may write f as lim←− fi where fi : Yi → X

is a finite étale covering space indexed by a set I. By [EGA IV-3, §8 Prop.
8.2.9], the natural map T(Y) → lim←−T(Yi) is a homeomorphism. Since fi is
finite, Fp(T(fi)) is finite. Thus, Fp(T(f)) is profinite.

For any p ′ ∈ Fp(T(f)), the extension of residue fields k(p) ⊂ k(p ′) is
trivial since the map Speck(p ′) → Y must factor through X by Yoneda
triviality. It follows that we have a unique lift of Speck(p) → X through
f with image p ′. By definition of Yoneda triviality, we have that p ′ is in
the image of a unique element of S. Thus S → Fp(T(f)) is bijective. S →
Fp(T(f)) is continuous, because S is topologized by pointwise convergence.

Since S is given the topology of pointwise convergence, to show that the
inverse Fp(T(f))→ S is continuous is equivalent to showing that for any q
in T(X), the map

Fp(T(f))→ S→ Fq(T(f))
is continuous.
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The set of sections S produces a set sections Si of fi. Since Y → Yi is
profinite-étale, Y → Yi is integral. Thus, Fp(T(f)) → Fp(T(fi)) is surjec-
tive. It follows that for any p ′i ∈ Fp(T(fi)), p ′i is in the image of one of the
sections in Si and that k(p ′i) = k(p). Since Yi → X is finite-étale and X is
connected, it follows that Yi ∼=

∐
Si
X. The isomorphisms Yi ∼=

∐
Si
X iden-

tify Fp(T(f)), S, and Fq(T(f)) with lim←−Si compatibly with the evaluation
maps. �

Yoneda trivial profinite-étale covering spaces are trivial S-bundles, where
S is the distinguished set of sections as a topological space. In fact, tak-
ing such a covering space to its distinguished sections is an equivalence of
categories:

Proposition 2.5. Let X be a connected scheme and let f : Y → X be a
Yoneda trivial profinite-étale covering space. Let S denote the distinguished
set of sections of f. Then there is a canonical isomorphism of X-schemes
Y ∼= SX. Furthermore, if f1 : Y1 → X and f2 : Y2 → X are two Yoneda trivial
profinite-étale covering spaces with distinguished sets of sections S1 and S2
respectively, then the map

Mapscts(S1, S2)→ MapsX(Y1, Y2)
induced by Mapscts(S2,OX) → Mapscts(S1,OX) is a bijection.
(MapsX(Y1, Y2) denotes the set of scheme morphisms Y1 → Y2 over X.)

Proof. Since every element of S is a map X→ Y, we have a canonical map
S×OY → OX. (By S×OY , we mean a product of copies of OY indexed by
S.) By adjointess, we have OY → Maps(S,OX).

Since f is profinite-étale, there is an inverse system of finite étale X-
schemes {Yi → X}i∈I such that Y ∼= lim←−I Yi. As in the proof of Proposition
2.4, for each i ∈ I, S induces a (finite) set of sections Si of Yi → X and,
furthermore, Yi ∼=

∐
Si
X and S ∼= lim←−I Si.

Since Y ∼= lim←−I Yi, the map OY → lim−→I
Maps(Si,OX) is an isomorphism.

Note that lim−→I
Maps(Si,OX) = Mapscts(lim←−I Si,OX). Thus we have a canon-

ical isomorphism of X-schemes Y = SX.
Now consider f1 and f2. Given g ∈ Maps(Y1, Y2) and s1 ∈ S1, we have a

section g ◦ s1 of f2, and therefore an element s2 ∈ S2. Thus g determines a
map S1 → S2. Since the evaluation maps Sj → Fp(T(fj)) j = 1, 2 and the
map T(g) : Fp(T(f1))→ Fp(T(f2)) fit into the commutative diagram

S1 //

��

S2

��
Fp(T(f1)) // Fp(T(f2)),
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the map S1 → S2 is continuous by Proposition 2.4. We therefore have
Maps(Y1, Y2)→ Mapscts(S1, S2).

For s in S, the map s : X→ Y2 is identified with the map X→ SX induced
by the ‘evaluation at s’ map Mapscts(S,OX)→ OX, under the isomorphism
Y = SX. It follows that

Mapscts(S1, S2)→ Maps(Y1, Y2)→ Mapscts(S1, S2)

is the identity. Likewise, for s1 in S1, the composition

Maps(Y1, Y2) // Mapscts(S1, S2) // Maps(Y1, Y2)
s∗
1 // Maps(X, Y2)

is given by
g 7→ g ◦ s1.

Because
∐
s1∈S1 s1 :

∐
S1
X→ Y1 is an fpqc cover,∏

s1∈S1

s∗1 : Maps(Y1, Y2)→∏
S1

Maps(X, Y2)

is injective, and it follows that

Maps(Y1, Y2)→ Mapscts(S1, S2)→ Maps(Y1, Y2)

is the identity. �

Heuristically, an object is Galois if it has maximal symmetry. Since auto-
morphisms Aut(Y/X) of a covering space Y → X are sections of the pullback
Y ×X Y → Y, it is reasonable to define a covering space to be Galois if the
pullback is Yoneda trivial:

Definition 4. A profinite-étale covering space Y → X is defined to be
Galois if the left (or equivalently, right) projection Y ×X Y → Y is Yoneda
trivial.

For a Galois covering space Y → X with Y connected, Aut(Y/X) is a profi-
nite group; the topology on Aut(Y/X) comes from identifying Aut(Y/X) with
the space of distinguished sections of Y×X Y → Y and applying Proposition
2.4.

2.3. Example: Trivial profinite group schemes over X. If G is a
profinite group with inverse i and multiplication m, define the trivial G-
bundle as the X-scheme GX of Example 2.2 with the following group scheme
structure. We describe a Hopf algebra structure over an open set U; this
construction will clearly glue to yield a sheaf of Hopf algebras. The coinverse
map sends

(2.1) G
f

cts
// OX(U)
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to the composition

G
i // G

f

cts
// OX(U).

The coinverse f ◦ i is indeed continuous, as it is the composition of two
continuous maps. The comultiplication map sends (2.1) to the composition

(2.2) G×G
--

m
// G

f cts
// OX(U)

using the isomorphism

Mapscts(G×G,OX(U)) ∼= Mapscts(G,OX(U))⊗OX(U) Mapscts(G,OX(U))

where G × G has the product topology. The map (2.2) is continuous, as
it is the composition of two continuous maps. The coidentity map is the
canonical map Mapscts(G,OX)→ OX given by evaluation at e. The fact that
these maps satisfy the axioms of a Hopf algebra is the fact that (G, e, i,m)
satisfies the axioms of a group.

The trivial G-bundle on any X is clearly pulled back from the trivial
G-bundle on SpecZ.

2.4. Example: Ẑ, roots of unity, and Cartier duality. The following
example is well-known. It is included because it is an explicit example of
the construction of §2.3.

The roots of unity form a Hopf algebra: let A be a ring and define

A[µ∞] := A[t1!, t2!, t3!, . . . ]/(t1! − 1, t
2
2! − t1, . . . , t

n
n! − t(n−1)!, . . . ).

Give A[µ∞] a Hopf algebra structure by coinverse ι : A[µ∞]→ A[µ∞] given
by ι : tn 7→ t−1n and comultiplication µ : A[µ∞] → A[µ∞] ⊗A A[µ∞] given
by µ : tn 7→ t ′nt

′′
n. (The new variables t ′n and t ′′n are introduced to try to

avoid notational confusion: they are new names for the tn-coordinates on
the left and right factors respectively of A[µ∞]⊗A A[µ∞].)

Let A be a ring containing a primitive nth root of unity for any positive
integer n. (In particular charA = 0.) The tj! correspond to continuous
characters Ẑ → A∗. For example, t2 corresponds to the continuous map
sending even elements to 1 and odd elements to −1 (i.e. n 7→ (−1)n).
(Choosing such a correspondence is equivalent to choosing an isomorphism
between Ẑ and µ∞(A).) The hypothesis charA = 0 implies that A[µ∞]
is isomorphic to the subalgebra of continuous functions Ẑ → A generated
by the continuous characters. Because the characters span the functions
Z/n→ A, it follows that

ẐSpecA
∼= SpecA[µ∞].

Such an isomorphism should be interpreted as an isomorphism between Ẑ
and its Cartier dual.
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Combining Proposition 2.5 and Example 2.3 shows that a connected
Galois covering space pulled back by itself is the trivial group scheme on
the automorphisms:
Proposition 2.6. Let f : Y → X be a Galois profinite-étale covering space
with Y connected. Then

(2.3) Aut(Y/X)
X
×X Y

µ //

��

Y

��
Y // X

is a fiber square such that the map µ is an action.

3. Algebraic universal covers
Definition 5. A connected scheme X is simply connected if all covering
spaces are Yoneda trivial. With covering space defined as in Definition 3,
this is equivalent to the usual definition that X is simply connected if a
connected finite étale X-scheme is isomorphic to X (via the structure map).
3.1. Remark. Of course, many other similarly parsimonious definitions
are possible, so we give some indication of the advantages of this one. As
with many other “functor of points” style definitions in algebraic geome-
try, this particular definition makes constructions and proofs simpler. One
could define X to be simply connected if any connected cover of X is an
isomorphism. But any definition of X being simply connected which only
places restrictions on connected covers of X will run into the difficulty that
when X is not locally Noetherian, one can not always express a cover as a
disjoint union of connected components.
Definition 6. A covering space p : X̃ → X of a connected scheme X is a
universal cover if X̃ is connected and simply connected.
Proposition 3.1. Suppose p : X̃ → X is a universal cover of a connected
scheme X, x̃ is a geometric point of X̃, and x = p(x̃) is the corresponding
geometric point of X. Then (X̃, x̃) → (X, x) is initial in the category of
geometrically pointed covering spaces of (X, x).
Proof. Suppose (Y, y)→ (X, x) is a geometrically pointed covering space of
(X, x). Since covering spaces are stable under pullback, X̃ ×X Y → X̃ is a
profinite-étale covering space. Since X̃ is simply connected, X̃×X Y → X̃ is
Yoneda trivial. In particular, X̃ ×X Y → X̃ admits a section sending x̃ to
x̃× y, from which we have a map of covering spaces (X̃, x̃)→ (Y, y), which
is unique by the connectedness of X̃. �

Proposition 3.2. Let X be a connected scheme. Then a universal cover of
X is unique up to (not necessarily unique) isomorphism.
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Proof. Let X̃1, X̃2 be two universal covers of X. Since covering spaces are
stable under pull-back, X̃1 ×X X̃2 → X̃1 is a profinite-étale covering space.
Since X̃1 is simply connected, X̃1 ×X X̃2 → X̃1 is Yoneda trivial and thus
admits a section, whence we have a map of X-schemes f : X̃1 → X̃2. We
see that f is an isomorphism as follows: since X̃1 ×X X̃2 → X̃2 is Yoneda
trivial, the map id × f : X̃1 → X̃1 ×X X̃2 factors through f : X̃1 → X̃2 by a
distinguished section g × id of X̃1 ×X X̃2 → X̃2. In particular gf : X̃1 → X̃1
is the identity. Switching the roles of X̃1 and X̃2 we can find f ′ : X̃1 → X̃2
such that f ′g : X̃2 → X̃2 is the identity. Thus f = f ′gf = f ′, and we have
that f is an isomorphism with inverse g. �

Proposition 3.3. Let X be a connected qcqs scheme equipped with a geo-
metric point x. Suppose p : (X̃, x̃) → (X, x) is an initial object among
geometrically-pointed covering spaces of X such that X̃ is connected. Then X̃
is a simply connected Galois covering space, and in particular is a universal
cover. Thus universal covers are Galois.

Somewhat conversely, a connected, simply connected, Galois covering
space is an initial object among connected geometrically-pointed covering
spaces of X, by Proposition 3.1.

Proof. We first show that X̃ is simply connected. Let q : Ỹ → X̃ be a
covering space of X̃ and let S be the set of sections of q. We will show that
q is Yoneda trivial with distinguished set of sections S. Let Z be a connected
X̃-scheme. We need to show that S → MapsX̃(Z, Ỹ) is bijective. Injectivity
follows from Proposition 2.2. From Proposition 2.2 it also follows that we
may assume that Z → X̃ is a geometric point of X̃. Let z be a geometric
point of X̃. By Proposition 2.3, we may lift z to a geometric point z̃ of Ỹ.
Applying Proposition 2.2 again, we see that it suffices to construct a map of
X-schemes (X̃, z) → (Ỹ, z̃). Since X is qcqs, profinite-étale maps are closed
under composition. Thus Ỹ is an inverse limit of finite étale X-schemes.
Thus by Proposition 2.2, it suffices to show that for any pointed finite étale
(Y, y)→ (X, pz), we have an X map (X̃, z)→ (Y, y). Take Y → X finite étale,
and let d be the degree of Y. Since p is initial, we have d maps X̃→ Y over
X. By Proposition 2.2, we therefore have an X map (X̃, z)→ (Y, y). Thus X̃
is simply connected.

Since X̃ is simply connected, X̃×X X̃→ X̃ is Yoneda trivial, and therefore
X̃ is a Galois covering space. �

Proposition 3.4. If X is a connected qcqs scheme, then a universal cover
p : X̃→ X exists.

3.2. Remark on Noetherian conditions. If X is Noetherian, in general
X̃ will not be Noetherian. We will see (Theorem 4.1) that the geometric
fibers of p are in natural bijection with the étale fundamental group. Thus
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if X has infinite étale fundamental group, and a closed point q with alge-
braically closed residue field, then p−1(q) is dimension 0 (as p is integral)
with an infinite number of points, so X̃ has a closed subscheme which is
not Noetherian and is thus not Noetherian itself. However, such a solenoid
is not so pathological. For example, the étale topological type as in [AM]
presumably extends to universal covers of locally Noetherian schemes, al-
though we have not worked this out carefully. Also, by [EGA III-1, Pt. 0,
Lem 10.3.1.3], the local rings of X̃ are Noetherian.

Proof of Proposition 3.4. Choose a geometric point x : SpecΩ → X. By
Proposition 3.3, it suffices to show that the category of pointed covering
spaces of (X, x) has a connected initial object.

If (Yν, yν) are two geometrically-pointed connected finite étale (X, x)-
schemes, we will say that (Y2, y2) ≥ (Y1, y1) if there is a morphism of pointed
(X, x)-schemes (Y2, y2)→ (Y1, y1). The diagonal of a finite étale map is an
open and closed immersion, so an X-map from a connected scheme to a finite
étale X-scheme is determined by the image of a single geometric point. Thus
the symbol ≥ is a partial order on isomorphism classes of connected pointed
finite étale X-schemes.

It is straightforward to see that the isomorphism classes of connected
finite etale X-schemes form a set, for any scheme X. Indeed, the isomorphism
classes of affine finite type X-schemes (i.e. schemes with an affine finite type
morphism to X) form a set. First show this for each affine scheme. (Each
affine finite type X-scheme can be described in terms of a fixed countable
list of variables. The possible relations form a set, and the actual relations
lie in the power set of this set.) For each pair of affine opens Ui and Uj,
cover Ui ∩ Uj with a set of affine opens Uijk simultaneously distinguished
in Ui and Uj. For each ijk, and each affine finite type cover of Ui and Uj,
there is a set of morphisms from the restriction of the cover of Ui to the
restriction of the cover of Uj (look at the corresponding rings, and choose
images of generators). Within this set of data, we take the subset where
these morphisms (for each ijk) are isomorphisms; then take the subset
where these morphisms glue together (yielding a affine finite type cover of
X). Then quotient by isomorphism.

The set I of isomorphism classes of connected finite étale X-schemes
equipped with ≥ is directed: suppose (Y1, y1) and (Y2, y2) are two geometri-
cally-pointed connected (X, x)-schemes. Then (Y1 ×X Y2, w := y1 × y2) is
a geometrically-pointed finite étale (X, x)-scheme. Even though we have
made no Noetherian assumptions, we can make sense of “the connected
component Y ′ of Y1 × Y2 containing w”. If Z → X is a finite étale cover,
then it has a well-defined degree, as X is connected. If Z is not connected,
say Z = Z1

∐
Z2, then as Zi → X is also finite étale (Zi is open in Z

hence étale over X, and closed in Z, hence finite), and has strictly smaller
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degree. Thus there is a smallest degree d such that there exists an open
and closed W ↪→ Y1 ×X Y2 containing y1 × y2 of degree d over X, and W is
connected. (Note that W is unique: the set of such W is closed under finite
intersections, and the intersection of two such, say W1 and W2, has degree
strictly less than that of W1 and W2.) Then (W,w) ≥ (Yi, yi).

By [EGA IV-3, §8 Prop. 8.2.3], inverse limits with affine transition maps
exist in the category of schemes, and the inverse limit is the affine map
associated to the direct limit of the sheaves of algebras. Define X̃ := lim←−I Yi,
where we have chosen a representative pointed connected finite étale X-
scheme (Yi, yi) for each i ∈ I. The geometric points {yi}i∈I give a canonical
geometric point x̃ of X̃.

By [EGA IV-3, §8 Prop. 8.4.1(ii)], since X is quasicompact, X̃ is con-
nected. (This is the only place in the proof that the category of pointed
covering spaces of (X, x) has a connected initial object where the quasicom-
pactness hypotheses is used.)

(X̃, x̃) admits a map to any pointed finite étale (X, x)-scheme by con-
struction. This map is unique because X̃ is connected. Passing to the in-
verse limit, we see that (X̃, x̃) is an initial object in pointed profinite-étale
X-schemes. �

Corollary 3.1. Profinite-étale covering spaces of connected qcqs schemes
are profinite-étale locally (i.e. after pullback to a profinite-étale cover)
Yoneda trivial.

The remainder of this section is devoted to examples and properties of
universal covers. It is not necessary for the construction of the fundamental
group family of §4.

3.3. Universal covers of group schemes. The following result and
proof are the same as for Lie groups.

Theorem 3.1. Let X be a connected group scheme finite type over an
algebraically closed field k. Suppose char k = 0 or X is proper. Choose any
preimage ẽ ∈ X̃ above e ∈ X. Then there exists a unique group scheme
structure on X̃ such that ẽ is the identity and p is a morphism of group
schemes over k.

The choice of ẽ is not important: if ẽ ′ is another choice, then (X̃, ẽ) ∼=
(X̃, ẽ ′). If k is not algebraically closed and char k = 0, then X̃ is the universal
cover of Xk, and we can apply Theorem 3.1 to Xk, obtaining a similar
statement, with a more awkward wording. For example, the residue field
of ẽ is the algebraic closure of that of e. To prove Theorem 3.1, we use a
well-known lemma whose proof we include due to lack of a reference.
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Lemma 3.1. Suppose X and Y are connected finite type schemes over an
algebraically closed field k. Suppose char k = 0 or X is proper. Then X̃× Ỹ
is simply connected. Equivalently, a product of universal covers is naturally
a universal cover of the product.

Proof. This is equivalent to the following statement about the étale funda-
mental group. Suppose X and Y are finite type over an algebraically closed
field k, with k-valued points x and y respectively. Suppose X is proper or
char k = 0. Then the natural group homomorphism

πet1 (X× Y, x× y)→ πet1 (X, x)× πet1 (Y, y)
is an isomorphism. The characteristic 0 case follows by reducing to k = C
using the Lefschetz principle, and comparing πet1 to the topological funda-
mental group. The X proper case is [SGA1, Exp. X Cor. 1.7]. �

Proof of Theorem 3.1. We first note the following: suppose (W,w)→ (Y, y)
is a geometrically pointed covering space. If we have a map of geometrically
pointed schemes f : (Z, z)→ (Y, y) from a simply connected scheme Z, then
there is a unique lift of f to a pointed morphism f̃ : (Z, z)→ (W,w), because
W ×Y Z→ Z is a Yoneda trivial covering space.

Thus, there is a unique lift ĩ : X̃ → X̃ lifting the inverse map i : X → X
with ĩ(ẽ) = ẽ. By Lemma 3.1, X̃ × X̃ is simply connected. Thus, there is
a unique lift m̃ : X̃ × X̃ → X̃ of the multiplication map m : X × X → X
with m̃(ẽ, ẽ) = ẽ. It is straightforward to check that (X̃, ẽ, ĩ, m̃) satisfy the
axioms of a group scheme. For instance, associativity can be verified as
follows: we must show that X̃ × X̃ × X̃ → X̃ given by ((ab)c)(a(bc))−1 is
the same as the identity ẽ. Since associativity holds for (X, e, i,m), both of
these maps lie above e : X × X × X → X. Since both send ẽ × ẽ × ẽ to ẽ,
they are equal. �

The assumption that chark = 0 or X is proper is necessary for Theorem
3.1, as shown by the following example of David Harbater (for which we
thank him).
(Note added in proof : Adrian Langer kindly told us about an earlier,
simple, beautiful description of the nonexistence of a group structure on
etale covers of group schemes, by Maruyama, [Miy, Remark 4]; [Ma] for
more.)

Proposition 3.5. Let k be a field with char k = p > 0, and assume that
p is odd. The group law on Ga over k does not lift to a group law on the
universal cover.

Proof. Since the universal covers of Ga over k and ks are isomorphic, we
may assume that k is separably closed. Let p : G̃a → Ga denote the uni-
versal cover. Let ẽ be a k point of G̃a lifting 0. Let a : Ga × Ga → Ga
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denote the addition map. Since G̃a is simply connected, the existence of a
commutative diagram

G̃a ×k G̃a
p×p

��

// G̃a
p

��
Ga ×k Ga

a // Ga
would imply that the composite homomorphism a∗(p × p)∗ : πet1 (G̃a ×k
G̃a) → πet1 (Ga ×k Ga) → πet1 (Ga) is constant. (Say the basepoints of
πet1 (G̃a ×k G̃a), πet1 (Ga ×k Ga), and πet1 (Ga) are ẽ × ẽ, e × e, and e re-
spectively, although this won’t be important.) Thus, it suffices to find an
element of πet1 (G̃a ×k G̃a) with non-trivial image under a∗(p× p)∗.

Adopt the notation Ga ×k Ga = Speck[x] ×k Speck[y]. Consider the
finite étale cover W of Ga ×k Ga = Speck[x, y] given by the ring extension
k[x, y] → k[x, y,w]/〈wp − w − xy〉. W is not pulled back from a finite
étale cover of Ga under either projection map, as one sees with the Artin-
Schreier exact sequence. It then follows from degree considerations that W
and G̃a ×k G̃a are linearly disjoint over Ga ×k Ga. (By this we mean that
the fields of rational functions ofW and G̃a×k G̃a are linearly disjoint over
the field of rational functions of Ga ×k Ga.) Thus

Aut((G̃a ×k G̃a ×kW)/(Ga ×k Ga))
∼= Aut((G̃a × G̃a)/(Ga ×Ga))×Aut(W/Ga).

It follows that there exists an element γ of πet1 (G̃a ×k G̃a) which acts
non-trivially on the fiber of W pulled back to G̃a ×k G̃a.

Choosing a lift of ẽ × ẽ to the universal cover of Ga × Ga allows us to
view γ as acting on any finite étale ring extension of k[x, y] (by pushing γ
forward to Ga ×k Ga and using the isomorphism between elements of πet1
and automorphisms of the universal cover corresponding to a lift of base
point). γ therefore determines an automorphism of k[x, y,w]/〈wp−w−xy〉,
and by construction, γ acts non-trivially on w. Similarly, γ determines
automorphisms of k[x, y,w1]/〈wp1−w1−x2〉 and k[x, y,w2]/〈w

p
2−w2−y

2〉,
and in this case, γ acts trivially on w1 and w2.

Lifting w, w1, and w2 to functions on the universal cover, we have the
function z = 2w+w1 +w2. Since p 6= 2, γ acts non-trivially on z. Because
z satisfies the equation

zp − z = (x+ y)2,

γ must act non-trivially on the fiber of the cover corresponding to k[x, y]→
k[x, y, z]/〈zp − z− (x+ y)2〉. Let Z denote this cover.

Since Z can be expressed as a pull-back under a, we have that a∗(p×p)∗γ
is non-trivial. �
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3.4. Examples. The universal cover can be described explicitly in a num-
ber of cases. Of course, if k is a field, then Specks → Speck is a universal
cover.

3.5. Gm over a characteristic 0 field k. This construction is also well
known. The Riemann-Hurwitz formula implies that the finite étale covers
of Speck[t, t−1] are obtained by adjoining roots of t and by extending the
base field k. Thus a universal cover is

p : Speck[tQ]→ Speck[tZ].

The group scheme structure on the universal cover (Theorem 3.1) is de-
scribed in terms of the Hopf algebra structure on k[tQ] given by coinverse
ι : tq 7→ t−q and comultiplication µ : tq 7→ (t ′)q(t ′′)q (q ∈ Q), which clearly
lifts the group scheme structure on Gm. (Cf. Example 2.4; analogously to
there, the new variables (t ′)q and (t ′′)q, are introduced to try to avoid no-
tational confusion: they are new names for the coordinates on the left and
right factors respectively of k[tQ]⊗k[tZ] k[tQ]. Thus for example t ′ = t ′′, but
(t ′)1/2 6= (t ′′)1/2.) Note that the universal cover is not Noetherian.

3.6. Abelian varieties. We now explicitly describe the universal cover
of an abelian variety over a field k. We begin with separably closed k for
simplicity.

If X is proper over a separably closed k, by the main theorem of [Pa], the
connected (finite) Galois covers with abelian Galois group G correspond to
inclusions χ : G∨ ↪→ PicX, where G∨ is the dual group (noncanonically
isomorphic to G). The cover corresponding to χ is Spec⊕g∈G∨ L−1χ(g) where
Lχ is the invertible sheaf corresponding to χ ∈ PicX.

If A is an abelian variety over k, then all Galois covers are abelian. Thus

Ã = Spec⊕χ torsion L−1χ
where the sum is over over the torsion elements of PicX.

By Theorem 3.1, Ã has a unique group scheme structure lifting that on
A once a lift of the identity is chosen, when k is algebraically closed. In
fact, Ã has this group scheme structure with k separably closed, and we
now describe this explicitly. Let i : A → A and m : A × A → A be the
inverse and multiplication maps for A. Then the inverse map ĩ : Ã→ Ã is
given by

ĩ : Spec⊕χ torsion L−1χ // Spec⊕χ torsion i
∗L−1χ

using the isomorphism i∗L ∼= L−1 (for torsion sheaves, by the Theorem of
the Square). The multiplication map m̃ : Ã × Ã → Ã is via m∗L ∼= L � L
(from the Seesaw theorem).
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If k is not separably closed, then we may apply the above construction
to A ×k ks, so Ã → A ×k ks → A gives a convenient factorization of the
universal cover. In the spirit of Pardini, we have the following “complemen-
tary” factorization: informally, although L−1χ may not be defined over k,
⊕χ n-torsionL−1χ is defined over k for each n. We make this precise by noting
that any isogeny is dominated by [n] (multiplication by n) for some n, and
that [n] is defined over k. Let Nn := pr∗2(ker[n])red ⊂ A × Â, where pr2
is the projection to Â (see Figure 3.1). Note that if n1|n2 then we have a
canonical open and closed immersion Nn1 ↪→ Nn2 . Let P → A× Â be the
Poincaré bundle. Then Ã = (Spec lim−→P |Nn)⊗k ks. In particular,

(3.1) Ã

yysssssssssss

""FF
FF

FF
FF

FF

Spec lim−→P |Nn
&&LLLLLLLLLLL

A×k ks

{{wwwwwwwww

A

is Cartesian.

Nn

A

Â

A× Â

Figure 3.1. Factoring the universal cover of an abelian va-
riety over k
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This construction applies without change to proper k-schemes with
abelian fundamental group. More generally, for any proper geometrically
connected X/k, this construction yields the maximal abelian cover.

3.7. Curves. Now consider universal covers of curves of genus > 0 over a
field. (Curves are assumed to be finite type.)

3.7.1. Failure of uniformization. Motivated by uniformization of Rie-
mann surfaces, one might hope that all complex (projective irreducible
nonsingular) curves of genus greater than 1 have isomorphic (algebraic)
universal covers. However, a short argument shows that two curves have
the same universal cover if and only if they have an isomorphic finite étale
cover, and another short argument shows that a curve can share such a cover
with only a countable number of other curves. Less naively, one might ask
the same question over a countable field such as Q. One motivation is the
conjecture of Bogomolov and Tschinkel [BT], which states (in our language)
that given two curves C, C ′ of genus greater than 1 defined over Q, there
is a nonconstant map C̃ → C̃ ′. However, Mochizuki [Moc] (based on work
of Margulis and Takeuchi) has shown that a curve of genus g > 1 over Q
shares a universal cover with only finitely many other such curves (of genus
g).

3.7.2. Cohomological dimension. One expects the universal cover to
be simpler than the curve itself. As a well-known example, the cohomolog-
ical dimension of the universal cover is less than 2, at least away from the
characteristic of the base field (whereas for a proper curve, the cohomolog-
ical dimension is at least 2). (Of course the case of a locally constant sheaf
is simpler still.)

Proposition 3.6. Let X be a smooth curve of genus > 0 over a field k, and
let X̃ → X be the universal cover. For any integer l such that char(k) - l,
the l-cohomological dimension of X̃ is less than or equal to 1, i.e. for any
l-torsion sheaf F on the étale site of X̃, Hi(X̃,F) = 0 for i > 1.

(One should not expect X̃ to have cohomological dimension 0 as the
cohomology of sheaves supported on subschemes can register punctures in
the subscheme. For instance, it is a straight forward exercise to show that
for a genus 1 curve X over C, the cohomological dimension of X̃ is 1.)

For completeness, we include a sketch of a proof due to Brian Conrad,
who makes no claim to originality: since X̃ is isomorphic to the univer-
sal cover of Xks , we can assume that k is separably closed. One shows
that l-torsion sheaves on X̃ are a direct limit of sheaves pulled back from
constructible l-torsion sheaves on a finite étale cover of X. One then re-
duces to showing that for j : U ↪→ X an open immersion and G a locally
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constant constructible l-torsion sheaf on U, Hi(X̃, ℘∗j!G) = 0, where ℘ de-
notes the map X̃ → X. Since X̃ is dimension 1, only the case i = 2 and
X proper needs to be considered. Recall that H2(X̃, ℘∗j!G) = lim−→H2(Y, j!G)where Y ranges over the finite étale covers of X, and j!G also denotes the
restriction of j!G to Y (see for instance [Mi, III §1 Lemma 1.16] whose
proof references [Ar, III.3]). Applying Poincaré duality allows us to view
the maps in the direct limit as the duals of transfer maps in group coho-
mology H0(H,G∗u0) → H0(πét1 (U,u0),G∗u0), where H ranges over subgroups
of πét1 (U,u0) containing the kernel of πét1 (U,u0) → πét1 (X,u0). One shows
these transfer maps are eventually 0 as follows: let K denote the kernel of
πét1 (U,u0)→ πét1 (X,u0). For H small enough, (G∗u0)

H = (G∗u0)
K. Restricting

H still further to a subgroup H ′ produces a transfer map (G∗u0)
H ′ → (G∗u0)

H

which equals multiplication by the index of H ′ in H. Since G∗u0 is l-torsion, it
therefore suffices to see that we can choose H ′ (containing K) in πét1 (U,u0)
of arbitrary l-power index. This follows because there are étale covers of X
of any l-power degree (as such a cover can be formed by pulling back the
multiplication by ln map from the Jacobian).

As a well-known corollary (which is simpler to prove directly), the coho-
mology of a locally constant l-torsion sheaf F on X can be computed with
profinite group cohomology: Hi(X,F) = Hi(πét1 (X, x0),Fx0) for all i. (To see
this, one notes that H1 of a constant sheaf on X̃ vanishes. By Proposition
3.6, it follows that the pullback of F to X̃ has vanishing Hi for all i > 0.
One then applies the Hochschild-Serre spectral sequence [Mi, III §2 Thm
2.20]. Note that this corollary only requires knowing Proposition 3.6 for F
a constant sheaf.)

Proposition 3.6, for F a finite constant sheaf of any order (so no as-
sumption that the torsion order is prime to char(k)) and for X an affine
curve, is in [Se1, Prop. 1] for instance. The above corollary for affine curves
is in [Se1, Prop. 1] as well. For X a proper curve or affine scheme (of any
dimension) and F = Z/p for p = char(k), Proposition 3.6 and the Corol-
lary are in [Gi, Prop. 1.6]. Both these references also give related results
on the cohomological dimension (including p cohomological dimension!) of
the fundamental group of X, for X a curve or for X affine of any dimension.
Also see [Mi, VI §1] for related dimensional vanishing results.

3.7.3. Picard groups. The universal covers of elliptic curves and hyper-
bolic projective curves over C have very large Picard groups, isomorphic to
(R/Q)⊕2 and countably many copies of R/Q respectively.

3.8. Algebraic Teichmüller space. If g ≥ 2, then Mg[n], the moduli
of curves with level n structure, is a scheme for n ≥ 3, andMg[n]→Mg

is finite étale (whereMg is the moduli stack of curves). Hence T := M̃g is
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a scheme, which could be called algebraic Teichmüller space. The algebraic
mapping class group scheme π1(Mg) acts on it.

One might hope to apply some of the methods of Teichmüller theory to
algebraic Teichmüller space. Many ideas relating to “profinite Teichmüller
theory” appear in [Bo]. On a more analytic note, many features of tradi-
tional Teichmüller theory carry over, and have been used by dynamicists
and analysts, see for example [Mc]. The “analytification” of algebraic Te-
ichmüller space is a solenoid, and was studied for example by Markovic and
Šarić in [MS]. McMullen pointed out to us that it also yields an interpre-
tation of Ehrenpreis and Mazur’s conjecture, that given any two compact
hyperbolic Riemann surfaces, there are finite covers of the two surfaces that
are arbitrarily close, where the meaning of “arbitrarily close” is not clear
[E, p. 390]. (Kahn and Markovic have recently proved this conjecture using
the Weil-Petersson metric, suitably normalized, [KM].) More precisely: a
Galois type of covering of a genus h curve, where the cover has genus g,
gives a natural correspondence

X //

��

Mg

Mh

where the vertical map is finite étale. One might hope that the metric
can be chosen on Mg for all g so that the pullbacks of the metrics from
Mg andMh are the same; this would induce a pseudometric on algebraic
Teichmüller space. In practice, one just needs the metric to be chosen on
Mg so that the correspondence induces a system of metrics on M̃h that
converges; hence the normalization chosen in [KM]. The Ehrenpreis-Mazur
conjecture asserts that given any two points onMh, there exist lifts of both
to algebraic Teichmuller space whose distance is zero.

4. The algebraic fundamental group family
We now construct the fundamental group family π1(X) and describe its

properties. More generally, suppose f : Y → X is a Galois profinite-étale
covering space with Y connected. We will define the adjoint bundle Ad f :
Ad Y → X to f, which is a group scheme over X classifying profinite-étale
covering spaces of X whose pullback to Y is Yoneda trivial. We define π1(X)
as Ad(X̃→ X).

Ad Y is the quotient scheme (Y ×X Y)/Aut(Y/X), where Aut(Y/X) acts
diagonally. The quotient is constructed by descending Y ×X Y → Y to an
X-scheme, using the fact that profinite-étale covering spaces are fpqc. This
construction is as follows:
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By Proposition 2.6, we have the fiber square (2.3). A descent datum on
a Y-scheme Z is equivalent to an action of Aut(Y/X)

X
on Z compatible with

µ in the sense that the diagram

(4.1) Aut(Y/X)
X
×X Z //

��

Z

��
Aut(Y/X)

X
×X Y

µ // Y

commutes. (This is the analogue of the equivalence between descent data
for finite étale G Galois covering spaces and actions of the trivial group
scheme associated to G. The proof is identical; one notes that the diagram
(4.1) is a fiber square and then proceeds in a straightforward manner. See
[BLR, p. 140].) We emphasize that for Z affine over Y, a descent datum is
easily seen to be automatically effective — this has been a source of some
confusion — (see for instance [BLR, p. 134, Thm. 4], as well as the following
discussion [BLR, p. 135]). It follows that Ad Y exits.

Definition 7. Let f : Y → X be a Galois profinite-étale covering space
with Y connected. The adjoint bundle to f is the X-scheme Ad f : Ad Y → X
determined by the affine Y scheme Y ×X Y → Y and the action µ× µ.

Definition 8. Let X be a scheme admitting a universal cover X̃. (For in-
stance X could be any connected qcqs scheme.) The fundamental group
family of X is defined to be Ad(X̃→ X), and is denoted π1(X)→ X.

Ad Y is a group scheme over X. The multiplication map is defined as
follows: let ∆ : Y → Y×X Y be the diagonal map. By the same method used
to construct Ad Y, we can construct the X-scheme (Y × Y × Y)/Aut(Y/X),
where Aut(Y/X) acts diagonally. The map id×∆×id : Y×Y×Y → Y×Y×Y×Y
descends to an isomorphism of X-schemes
(4.2) (Y × Y × Y)/Aut(Y/X)→ Ad(Y)×X Ad(Y).
The projection of Y × Y × Y onto its first and third factors descends to a
map
(4.3) (Y × Y × Y)/Aut(Y/X)→ Ad(Y).
The multiplication map is then the inverse of isomorphism (4.2) composed
with map (4.3).

Heuristically, this composition law has the following description: the geo-
metric points of Ad Y are equivalence classes of ordered pairs of geometric
points of Y in the same fiber. Since Aut(Y/X) acts simply transitively on
the points of any fiber, such an ordered pair is equivalent to an Aut(Y/X)-
invariant permutation of the corresponding fiber of Y over X. The group
law on Ad Y comes from composition of permutations.
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The identity map X → Ad(Y) is the X-map descended from the Y-map
∆. The inverse map is induced by the map Y×X Y → Y×X Y which switches
the two factors of Y. It is straightforward to see that these maps give AdY
the structure of a group scheme.

The construction of Ad(Y) implies the following:

Proposition 4.1. Let Y be a connected profinite-étale Galois covering space
of X. We have a canonical isomorphism of Y-schemes Ad(Y)×X Y ∼= Y×X Y.
Projection Y ×X Y → Y onto the second factor of Y gives an action
(4.4) Ad(Y)×X Y → Y.

Proposition 4.2. Suppose Y1, Y2 are connected profinite-étale Galois cov-
ering spaces of X. An X-map Y1 → Y2 gives rise to a morphism of group
schemes Ad(Y1) → Ad(Y2). Furthermore, the map Ad(Y1) → Ad(Y2) is
independent of the choice of Y1 → Y2.

Proof. Choose a map g : Y1 → Y2 over X. By Proposition 2.6, we have an
isomorphism Y2 ×X Y2 → Aut(Y2/X)Y2 defined over Y2. Pulling this isomor-
phism back by g gives an isomorphism Y2 ×X Y1 → Aut(Y2/X)Y1 defined
over Y1. The map g× id : Y1 ×X Y1 → Y2 ×X Y1 therefore gives rise to a Y1
map Aut(Y1/X)Y1 → Aut(Y2/X)Y1 . This map corresponds to a continuous
map of topological spaces Aut(g) : Aut(Y1/X)→ Aut(Y2/X) by Proposition
2.5.

It follows from the construction of the isomorphism of Proposition 2.6
(which is really given in Proposition 2.5) that for any a ∈ Aut(Y1/X) the
diagram:

(4.5) Y1
a //

g

��

Y1

g

��
Y2

Aut(g)(a) // Y2

commutes.
Since g : Y1 → Y2 is a profinite-étale covering space and in particular an

fpqc cover, g∗ : Maps(Y2,−) → Maps(Y1,−) is an injection. By (4.5), the
maps Aut(g)(a2) ◦ Aut(g)(a1) and Aut(g)(a2 ◦ a1) have the same image
under g∗. Thus, Aut(g) is a continuous group homomorphism.

It follows that the map g × g : Y1 × Y1 → Y2 × Y2 determines a map
(Y1 × Y1)/Aut(Y1/X) → (Y2 × Y2)/Aut(Y2/X). It is straightforward to see
this is a map of group schemes Ad(Y1)→ Ad(Y2).

Given two maps of X-schemes g1, g2 : Y1 → Y2, we have a map (g1, g2) :
Y1 → Y2 ×X Y2. Since Y2 ×X Y2 → Y2 is Yoneda trivial with distinguished
sections Aut(Y2/X), we have a ∈ Aut(Y2/X) such that a◦g1 = g2. It follows
that g1 and g2 determine the same map Ad(Y1)→ Ad(Y2). �
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Corollary 4.1. If a universal cover of X exists (e.g. if X is connected and
qcqs, Proposition 3.3), π1(X) is unique up to distinguished isomorphism,
and in particular is independent of choice of universal cover.
Theorem 4.1. There is a canonical homeomorphism between the under-
lying topological group of the fiber of π1(X) → X over a geometric point
x0 : SpecΩ→ X and the étale (pointed) fundamental group π1(X, x0).
Proof. Let Y → X be a finite étale Galois covering space with Y connected.
We have a canonical action of X-schemes π1(X)×X Y → Y as follows: choose
a universal cover p : X̃→ X and a map X̃→ Y over X. By Proposition 4.2,
we have a canonical map π1(X) → Ad(Y). Composing with the canonical
action Ad(Y)×X Y → Y given by (4.4) gives the action π1(X)×X Y → Y.

Let Tπ1(X, x0) be the topological group underlying the fiber of π1(X)→ X
above x0. Let Fx0 be the fiber functor over x0. The action π1(X) ×X Y →
Y shows that Fx0 induces a functor from finite, étale, connected, Galois
covering spaces to continuous, finite, transitive, symmetric Tπ1(X, x0)-sets.
(A symmetric transitive G-set for a group G is defined to mean a G-set
isomorphic to the set of cosets of a normal subgroup. Equivalently, a sym-
metric transitive G-set is a set with a transitive action of G such that for
any two elements of the set, there is a morphism of G-sets taking the first
to the second.)

Since π1(X, x0) is characterized by the fact that Fx0 induces an equiva-
lence of categories from finite, étale, connected, Galois covering spaces to
continuous, finite, transitive, symmetric π1(X, x0)-sets, it suffices to show
that Fx0 viewed as a functor to Tπ1(X, x0)-sets as in the previous paragraph
is an equivalence of categories. By fpqc descent, pull-back by p, denoted p∗,
is an equivalence of categories from affine X-schemes to affine X̃-schemes
with descent data. Because X̃ trivializes any finite, étale X-scheme, it is
straightforward to see that p∗ gives an equivalence of categories from fi-
nite, étale, covering spaces of X to trivial, finite, étale covering spaces of X̃
equipped with an action of Aut(X̃/X). It follows from Proposition 2.5 that
taking the topological space underlying the fiber over a geometric point of
X̃ is an equivalence of categories from trivial, finite, étale covering spaces
of X̃ equipped with an action of Aut(X̃/X) to continuous, finite, transitive,
symmetric Aut(X̃/X)-sets. Forgetting the choice of geometric point of X̃
shows that Fx0 is an equivalence from the category of finite, étale, con-
nected, Galois covering spaces of X to continuous, finite, transitive, sym-
metric Tπ1(X, x0)-sets. �

The remainder of this section is devoted to examples and properties of
the fundamental group family.

4.1. Group schemes. We continue the discussion of §3.3 to obtain the
algebraic version of the fact that if X is a topological group with identity e,
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there is a canonical exact sequence

0 // π1(X, e) // X̃ // X // 0.

Theorem 4.2. If X is a connected group scheme finite type over an alge-
braically closed field k such that X̃ is a group scheme (e.g. if char k = 0 or
X is proper, Thm. 3.1), then the kernel of the morphism X̃→ X is naturally
isomorphic to π1(X, e) (as group schemes).

Proof. Let G be the (scheme-theoretic) kernel of p : X̃→ X. Restricting the
X-action

π1(X)×X X̃→ X̃

to e yields a k-action

(4.6) π1(X, e)×G→ G.

Evaluating (4.6) on ẽ ↪→ G yields an isomorphism γ : π1(X, e) → G (us-
ing Theorem 4.1). We check that γ respects the group scheme structures
on both sides. It suffices to check that the multiplication maps are the
same. Let mπ1(X,e) and mG be the multiplication maps for π1(X, e) and G
respectively. The diagram

π1(X, e)× π1(X, e)
mπ1(X,e) //

id×γ
��

π1(X, e)

γ

��
π1(X, e)×G

(4.6) //

γ×id
��

G

��
G×G

mG // G

commutes. (The upper square commutes because (4.6) is a group action.
The lower square commutes because monodromy commutes with mor-
phisms of profinite-étale covering spaces. In particular, right multiplication
in X̃ by any geometric point of G commutes with the monodromy action
π1(X)×X X̃→ X̃.) This gives the result. �

4.2. Examples. We now describe the fundamental group family in a num-
ber of cases.

4.3. The absolute Galois group scheme. We give four descriptions of
the absolute Galois group scheme Gal(Q) := π1(SpecQ), or equivalently, we
describe the corresponding Hopf algebra. As Gal(Q) does not depend on the
choice of the algebraic closure Q (Prop. 4.1), we do not call it Gal(Q/Q).
Notational Caution: Gal(Q) is not the trivial group scheme corresponding
to Gal(Q/Q), which would be denoted Gal(Q/Q) (Example 2.3).
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1) By definition. The Hopf algebra consists of those elements of Q⊗Q Q
that are invariant under the diagonal action of the Galois group Gal(Q/Q).
The coidentity map sends a⊗ b to ab. The coinverse map is given by the
involution a ⊗ b 7→ b ⊗ a. The comultiplication map has the following
description: id ⊗ ∆ ⊗ id gives a map ⊗4Q → ⊗3Q which descends to an
isomorphism ⊗2((Q ⊗ Q)Gal(Q/Q)) → (⊗3Q)Gal(Q/Q), where all actions of
Gal(Q/Q) are diagonal. The comultiplication map can therefore be viewed
as a map (⊗2Q)Gal(Q/Q) → (⊗3Q)Gal(Q/Q) and this map is the inclusion onto
the first and third factors.

2) As an algebra of continuous maps. The Hopf algebra consists of con-
tinuous maps f : Gal(Q/Q)→ Q such that

(4.7) Gal(Q/Q)

σ

��

f // Q

σ

��
Gal(Q/Q)

f // Q

commutes for all σ ∈ Gal(Q/Q), where the left vertical arrow is conjuga-
tion, and the right vertical arrow is the Galois action. Note that these
maps form an algebra. The coinverse of f is given by the composition
Gal(Q/Q)

i // Gal(Q/Q)
f // Q , where i is the inverse in Gal(Q/Q).

Comultiplication applied to f is given by the composition

Gal(Q/Q)×Gal(Q/Q)
m // Gal(Q/Q)

f // Q ,

using the isomorphism

Mapscts(Gal(Q/Q)×Gal(Q/Q),Q)

∼= Mapscts(Gal(Q/Q),Q)⊗Mapscts(Gal(Q/Q),Q).

(A similar argument was used to construct the trivial profinite group scheme
in Example 2.3. The similarity comes from the isomorphism of π1×X X̃ with
Aut(X̃/X)

X̃
.)

3) Via finite-dimensional representations. By interpreting (4.7) as “twis-
ted class functions,” we can describe the absolute Galois Hopf algebra in
terms of the irreducible continuous representations of Gal(Q/Q) over Q.
More precisely, we give a basis of the Hopf algebra where comultiplication
and coinversion are block-diagonal, and this basis is described in terms of
Q-representations of Gal(Q/Q).

Given a finite group G and a representation V of G over a field k, the
natural map G→ V ⊗ V∗ induces a map

(V ⊗ V∗)∗ → Maps(G, k),
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where V∗ denotes the dual vector space. For simplicity, assume that k is
a subfield of C. When k is algebraically closed, Schur orthogonality gives
that

Maps(G, k) ∼= ⊕V∈I(V ⊗ V∗)∗,
where I is the set of isomorphism classes of irreducible representations of
G. It follows that

Mapscts(Gal(Q/Q),Q) ∼= ⊕G∈Q ⊕V∈IG (V ⊗ V∗)∗

where Q is the set of finite quotients of Gal(Q/Q), and for any G in Q, IG
is the set of isomorphism classes of irreducible, faithful representations of
G over Q.

Gal(Q/Q) acts on Mapscts(Gal(Q/Q),Q) via (σf)(σ ′) = σ(f(σ−1σ ′σ)),
where f : Gal(Q/Q)→ Q is a continuous function and σ, σ ′ are in Gal(Q/Q).
The set of fixed points is the Hopf algebra we wish to describe. The elements
of this Hopf algebra could reasonably be called “twisted class functions”.
Note that we have a Q-linear projection from Mapscts(Gal(Q/Q),Q) to our
Hopf algebra given by averaging the finite orbit of a function.

Let G be a finite quotient of Gal(Q/Q). Gal(Q/Q) acts on the irreducible,
faithful Q-representations of G by tensor product, namely, σ(V) = Q⊗Q V,

where the map Q → Q in the tensor product is σ. The orbits of IG under
this action are in bijection with the irreducible, faithful Q-representations
of G. This bijection sends an irreducible, faithful Q-representation V to the
isomorphism class of Q-representation WV such that

⊕W∈OVW ∼=WV ⊗Q

where OV is the (finite) orbit of V under the action of Gal(Q/Q).
For any irreducible, faithfulQ-representation V ofG,⊕W∈OV (W⊗W∗)∗ is

an invariant subspace of Mapscts(Gal(Q/Q),Q) under the action of
Gal(Q/Q). It follows that our Hopf algebra is isomorphic to

⊕G∈Q ⊕V∈IG (⊕W∈OV (W ⊗W
∗)∗)Gal(Q/Q)

where IG is the set of orbits of IG under Gal(Q/Q).
The natural map ⊕W∈OV (W ⊗W∗)∗ → Mapscts(Gal(Q/Q),Q) factors

through the natural map (WV ⊗W∗V ⊗Q)∗ → Mapscts(Gal(Q/Q),Q). Note
that there is a compatible Gal(Q/Q)-action on (WV ⊗W∗V ⊗Q)∗. Note that
the map (WV ⊗W∗V ⊗ Q)∗ → Mapscts(Gal(Q/Q),Q) is not injective. Let
the image of (WV ⊗W∗V ⊗Q)∗ in Mapscts(Q/Q),Q) be F(WV).

Let IGal(Q/Q) be the set of isomorphism classes of continuous irreducible
Q-representations of Gal(Q/Q). Our Hopf algebra is isomorphic to

⊕IGal(Q/Q)
F(WV)

Gal(Q/Q).
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The subspaces F(WV)
Gal(Q/Q) are invariant under comultiplication and

coinversion because comultiplication and coinversion are induced from co-
multiplication and coinversion on GL(WV ⊗ Q). The multiplication is not
diagonal; it comes from tensor products of representations and therefore
involves the decomposition into irreducible representations of the tensor
product of two irreducible representations.

4) Points of the absolute Galois group scheme. Let K → L be a finite
Galois extension of fields with Galois group G. The points and group scheme
structure of the adjoint bundle Ad(L/K) := Ad(SpecL → SpecK) can be
identified as follows: as in part 2) of this example, the ring of functions
of Ad(L/K) is the ring of functions f : G → L such that for all g, h in
G, f(hgh−1) = hf(g). Thus, the points of Ad(L/K) are in bijection with
conjugacy classes of G. Specifically, let S be a set of representatives of the
conjugacy classes of G. For any element g of G, let Cg be the centralizer of
g. Then Ad(L/K) =

∐
c∈S SpecLCc .

The group law on Ad(L/K) therefore corresponds to a map∐
a,b∈S Spec(LCa ⊗ LCb) → ∐c∈S SpecLCc . Note that Spec(LCa ⊗ LCb) =∐
g∈Sa,b Spec(L

Ca(gLCb)), where Sa,b is a set of double coset representa-
tives for (Ca, Cb) in G, i.e. G =

∐
g∈Sa,b CagCb, and LCa(gLCb) is the

subfield of L generated by LCa and gLCb . (In particular, the points of
Spec(LCa ⊗ LCb) are in bijective correspondence with Sa,b.) Noting that
LCa(gLCb) = LCa∩gCbg

−1 , we have that the comultiplication on Ad is a map

(4.8)
∏
c∈S

LCc → ∏
a,b∈S

∏
g∈Sa,b

L
Ca∩Cgbg−1

Comultiplication is described as follows: LCc → L
Ca∩Cgbg−1 is the 0 map

if c is not contained in the set Ra,b = {g1ag
−1
1 g2bg

−1
2 |g1, g2 ∈ G}.

Otherwise, there exists g ′ in G such that g ′cg ′−1 = agbg−1. The map
LCc → L

Ca∩Cgbg−1 is then the composite

LCc
g ′→ L

C
g ′cg ′−1 = LCagbg−1 ↪→ L

Ca∩Cgbg−1 .

Note that Ra,b is a union of conjugacy classes, and these conjugacy classes
are in bijection with Sa,b, just like the points of Spec(LCa ⊗ LCb).

This description is explicit; the reader could easily write down the co-
multiplication map for the S3 Galois extension Q → Q(21/3,ω), where ω
is a primitive third root of unity.

We obtain the following description of Gal(Q) = π1(SpecQ): replace the
products in (4.8) by the subset of the products consisting of continuous
functions. The map (4.8) restricts to the comultiplication map between
these function spaces.
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4.3.1. Residue fields of Gal(Q). Note that the points of π1(SpecQ)

correspond to conjugacy classes in Gal(Q/Q), and their residue fields are
the fixed fields of the centralizers. Although any two commuting elements
of Gal(Q/Q) are contained in a copy of Ẑ or Z/2 ([Ge]), centralizers are not
necessarily even abelian. Indeed a “folklore" theorem told to us by Florian
Pop says that every countably generated group of cohomological dimension
1 is a subgroup of Gal(Q/Q). In particular, for two distinct primes l1 and
l2 and any action of Ẑl1 on Ẑl2 , Ẑl2 o Ẑl1 is a subgroup of Gal(Q/Q). If
we choose l1 and l2 such that the l1 Sylow subgroup of Ẑ∗l2 is non-trivial,
we may choose a non-trivial action of Ẑl1 on Ẑl2 , yielding a non-abelian
group Ẑl2 o Ẑl1 . The center of Ẑl2 o Ẑl1 is non-trivial. It follows that the
non-abelian group Ẑl2 o Ẑl1 is contained in a centralizer of Gal(Q/Q).

4.4. Finite fields Fq. Parts 1), 2) and 4) of Example 4.3 apply to any field
k, where Q is replaced by ks. In the case of a finite field, the Galois group is
abelian, so the compatibility condition (4.7) translates to the requirement
that a continuous map Gal(Fq/Fq) → Fq have image contained in Fq.
Hence, π1(SpecFq) is the trivial profinite group scheme Ẑ over Fq (see
Example 2.3).

4.5. Gm over an algebraically closed field k of characteristic 0.
Note that Γ(G̃m ×Gm G̃m) can be interpreted as the ring k[uQ1 , u

Q
2 ] subject

to un1 = un2 for n in Z (but not for general n ∈ Q). Thus π1(Gm) =

(k[uQ1 ]⊗k[tZ] k[u
Q
2 ])

Aut(k[tQ]/k[tZ]). The automorphisms of k[tQ]/k[tZ] involve
sending t1/n to ζnt1/n, where ζn is an nth root of unity, and all the ζn are
chosen compatibly. Hence the invariants may be identified with k[tZ][µ∞]

where tn! = (u1/u2)
1/n!. Thus we recognize the fundamental group scheme

as Ẑ (Example 2.4). The action of π1(Gm) on G̃m is given by

k[tQ] // k[tQ]⊗k[t,t−1] k[tZ, t1, . . . ]/(t1 − 1, tnn! − t(n−1)!)

with t1/n! 7→ tn!t
1/n!. Notice that we get a natural exact sequence of group

schemes over k

0 // Ẑ // G̃m // Gm // 0,

which is Theorem 4.2 in this setting.
In analogy with Galois theory, we have:

Proposition 4.3. Suppose f : X → Y, g : Y → Z, and h = g ◦ f are
profinite-étale covering spaces with X, Y, and Z connected.

(a) If h is Galois, then f is Galois. There is a natural closed immersion
of group schemes on Y Ad(X/Y) ↪→ g∗Ad(X/Z).
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(b) If furthermore g is Galois, then we have a natural surjection
Ad(X/Z) → Ad(Y/Z) of group schemes over Z. The kernel, which
we denote AdZ(X/Y), is a group scheme over Z

1→ AdZ(X/Y)→ Ad(X/Z)→ Ad(Y/Z)→ 1

and upon pulling this sequence back by g, we obtain an isomorphism
g∗AdZ(X/Y) ∼= Ad(X/Y) commuting with the inclusion of (a):

g∗AdZ(X/Y)OO

∼

��

� � // g∗Ad(X/Z)

Ad(X/Y)
) 	

66nnnnnnnnnnnn

(c) If furthermore Aut(X/Y) is abelian, then we have an action of
Ad(Y/Z) on AdZ(X/Y), which when pulled back to X is the action

Aut(Y/Z)
X
×X Aut(X/Y)X → Aut(X/Y)

X

arising from the short exact sequence with abelian kernel
1→ Aut(X/Y)→ Aut(X/Z)→ Aut(Y/Z)→ 1.

(Recall that to any short exact sequence of groups 1 → A → B →
C → 1 with A abelian, C acts on A by c(a) := bab−1 where b is
any element of B mapping to c.)

We omit the proof, which is a straightforward verification.

4.6. Gm over a field k of characteristic 0. We now extend the previous
example to an arbitrary field of characteristic 0. The universal cover of
Speck[tZ] is Spec k[tQ].

Consider the diagram

Speck[tQ]
j∗d∗Gal(k)

ixxqqqqqqqqqqq
f

&&MMMMMMMMMM

Speck[tQ]
j

not Galois &&MMMMMMMMMMM
� Speck[tZ]

d∗Gal(k)
gxxqqqqqqqqqq not profinite-étale

%%KKKKKKKKKK

Speck[tZ]
d

not profinite-étale &&NNNNNNNNNNN
� Speck

Gal(k)yyrrrrrrrrrr

Speck

in which both squares are Cartesian. All but the two indicated morphisms
are profinite-étale. By base change from Spec k→ Speck, we see that each
of the top-right-to-bottom-left morphisms is Galois with adjoint bundle
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given by the pullback of Gal(k). (Note: Speck[tQ]→ Speck[tZ] is not Galois
in general.) By Proposition 4.3(b), with f and g used in the same sense, we
have an exact sequence of group schemes on Gm = Speck[tZ]:

(4.9) 1 // T // π1(Gm) // d∗Gal(k) // 1.

Since T is abelian, we have an action of d∗Gal(k) on T by Proposi-
tion 4.3(c).

By Proposition 4.3(a) applied to Speck[tQ] → Speck[tQ] → Speck[tZ],
the exact sequence (4.9) is split when pulled back to Spec k[tQ].

(4.9) is independent of the choice of algebraic closure by Corollary 4.1.
If we examine this exact sequence over the geometric point ẽ = Speck
mapping to the identity in Gm, we obtain

(4.10) 1 // Ẑ // π1(Gm, ẽ) // Gal(k/k) // 1

inducing a group scheme action
(4.11) Gal(k/k)× Ẑ→ Ẑ.

If k = Q, the underlying topological space of (4.10) (forgetting the scheme
structure) is the classical exact sequence (e.g. [Oo, p. 77])

0 // Ẑ // πet1 (P1Q − {0,∞}, 1) // Gal(Q/Q) // 0

and the representation (4.11) is a schematic version of the cyclotomic rep-
resentation ρ : Gal(Q/Q)→ Aut(Ẑ).

4.7. Abelian varieties. The analogous argument holds for an abelian
variety A over any field k. Using the diagram

Ã
j∗d∗Gal(k)

yysssssssssss

""FF
FF

FF
FF

FF

Spec lim−→P |Nn
j

not Galois
%%LLLLLLLLLLL
� A×k ks
d∗Gal(k)

||xx
xx

xx
xx

xx not profinite-étale

%%KKKKKKKKKK

A
d

not profinite-étale ##GGGGGGGGG � Specks

Gal(k)yyrrrrrrrrrr

Speck

we obtain an exact sequence of group schemes over A
1→ T → π1(A)→ d∗(Gal(k))→ 1

inducing a canonical group scheme action
(4.12) d∗Gal(k)× T → T.
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Upon base change to the geometric point ẽ = Specks, we obtain

1→ T ′ → π1(A, ẽ)→ Gal(ks/k)→ 0

(where T ′ ∼= Ẑ2g if char k = 0, and the obvious variation in positive char-
acteristic), and the group action (4.12) becomes the classical Galois action
on the Tate module.

More generally, for any geometrically connected k-variety with a k-point
p, the same argument gives a schematic version of [SGA1, Exp. X.2,
Cor. 2.2].

4.8. Algebraic K(π, 1)’s and elliptic curves. (In this discussion, note
that the phrase K(π, 1) has a well-established meaning in arithmetic ge-
ometry. We are discussing different possible analogies of this topological
notion, and hope no confusion will result.) We suggest (naively) a direc-
tion in which to search for alternate definitions of “trivial covering space”
and “covering space” to use in the procedure to produce a fundamental
group family described in the introduction. For simplicity, we restrict our
attention to schemes over a given number field k. Homomorphisms between
étale fundamental groups are also assumed to respect the structure map to
Gal(k/k) up to inner automorphism. (The condition “up to inner auto-
morphism” comes from ambiguity of the choice of base point, which is not
important for this example, but see [Sz1] for a careful treatment.)

The question “what is a loop up to homotopy?” naturally leads to the
question “which spaces are determined by their loops up to homotopy?”
When a “loop up to homotopy” is considered to be an element of the étale
fundamental group, a well-known answer to the latter question was conjec-
tured by Grothendieck: in [Gr1], Grothendieck conjectures the existence of
a subcategory of “anabelian” schemes, including hyperbolic curves over k,
Speck, moduli spaces of curves, and total spaces of fibrations with base and
fiber anabelian, which are determined by their étale fundamental groups.
These conjectures can be viewed as follows: algebraic maps are so rigid
that homotopies do not deform one into another. From this point of view,
a K(π, 1) in algebraic geometry could be defined as a variety X such that
Mor(Y, X) = Hom(π1(Y), π1(X)), for all reasonable connected schemes Y.
(Again, more care should be taken with base points, but this is not impor-
tant here.) For this example, define a scheme to be a K(π, 1) with respect
to the étale fundamental group in this manner, where π1 is taken to be the
étale fundamental group . In other words, “anabelian schemes” are algebraic
geometry’s K(π, 1)’s with respect to the étale fundamental group. (Some
references on the anabelian conjectures are [Gr1, Gr2, NSW, Po, Sz1]. For
context, note that one could define a scheme X to be a K(π, 1) if X has
the étale homotopy type of Bπét1 (X) as in [AM], but that this is not the
definition we are using.)
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From the above list, we see that Grothendieck conjectures that many
familiar K(π, 1)’s from topology are also K(π, 1)’s with respect to the étale
fundamental group in algebraic geometry, but that elliptic curves and abel-
ian varieties are notably omitted from this list. There are many straightfor-
ward reasons for the necessity of these omissions, but since we are interested
in what a loop up to homotopy should be, we consider the following two,
both pointed out to us by Jordan Ellenberg.

By a theorem of Faltings, Mor(Y, X)⊗ Ẑ→ Hom(πét1 (Y), π
ét
1 (X)) is an iso-

morphism for two elliptic curves X and Y. In particular, although
Mor(Y, X)→ Hom(πét1 (Y), π

ét
1 (X)) is not itself an isomorphism, it is injective

with dense image, if we give these two sets appropriate topologies. Take the
point of view that the difference between Mor(Y, X) → Hom(π1(Y), π1(X))
being an isomorphism and being injective with dense image is “not very im-
portant,” i.e. not suggestive of the presence of another sort of fundamental
group.

On the other hand, the local conditions inherent in the definition of
the Selmer group are perhaps the result of some other sort of fundamental
group. More explicitly, note that the rational points on an anabelian scheme
are conjectured to be in bijection with Hom(Gal(k/k), πét1 ) (Grothendieck’s
Section Conjecture). However, for an elliptic curve, conditions must be
imposed on an element of Hom(Gal(k/k), πét1 ) for the element to come
from a rational point. Explicitly, let E be an elliptic curve over k, and let
Sn(E/k) and X(E/k) be the n-Selmer group and Shafarevich-Tate group
of E/k respectively. The exact sequence

0→ E(k)/nE(k)→ Sn(E/k)→X(E/k)[n]→ 0

gives the exact sequence
0→ lim←−

n

E(k)/nE(k)→ lim←−
n

Sn(E/k)→ lim←−
n

X(E/k)[n]→ 0.

Thus if X(E/K) has no non-zero divisible elements,

(4.13) lim←−
n

E(k)/nE(k) ∼= lim←−
n

Sn(E/k).

It is not hard to see that Hom(Gal(k/k), πét1 ) ∼= H1(Gal(k/k), lim←−n E[n])
and that lim←−n Sn(E/k) is naturally a subset of H1(Gal(k/k), lim←−n E[n]).
Think of lim←−n Sn(E/k) as a subset of Hom(Gal(k/k), πét1 ) cut out by lo-
cal conditions, as in the definition of the Selmer group. Any rational point
of E must be in this subset.

Furthermore, if X(E/K) has no non-zero divisible elements, equation
(4.13) can be interpreted as saying that the (profinite completion of the)
rational points of E are the elements of Hom(Gal(k/k), πét1 ) satisfying these
local conditions.
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We ask if it is really necessary to exclude elliptic curves from the algebraic
K(π, 1)’s, or if there is another sort of covering space, another sort of “loop
up to homotopy,” producing a fundamental group which does characterize
elliptic curves. For instance, if X(E/K) has no non-zero divisible elements,
this example suggests that this new sort of fundamental group only needs to
produce local conditions, perhaps by considering some sort of localization
of the elliptic curve.
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