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Higher Newton polygons in the computation of
discriminants and prime ideal decomposition

in number fields

par Jordi GUÀRDIA, Jesús MONTES et Enric NART

Résumé. Nous présentons un algorithme pour calculer le discri-
minant et la décomposition des idéaux d’un corps de nombres en
produit d’idéaux premiers. L’algorithme est un raffinement d’une
méthode de factorisation p-adique qui utilise polygones de Newton
d’ordre supérieur. L’exigence de mémoire et les temps d’exécution
sont très bons.

Abstract. We present an algorithm for computing discriminants
and prime ideal decomposition in number fields. The algorithm is
a refinement of a p-adic factorization method based on Newton
polygons of higher order. The running-time and memory require-
ments of the algorithm appear to be very good.

1. Introduction

The factorization of prime numbers in number fields is a classical prob-
lem, whose resolution lays at the foundation of algebraic number theory.
Although it is completely understood from the theoretical point of view, the
rising of computational number theory in the last decades has renewed the
interest on the problem from a practical perspective. In his comprehensive
book [2], H. Cohen refers to this problem as one of the main computational
tasks in algebraic number theory.

The most common insight in the known solutions of the problem is based
on the solution of a more general problem: the determination of a (local)
integral basis. There are several efficient methods for this problem, most of
them based on variants of the Round 2 and Round 4 routines [15], [16], [3],
[4], [1], [5].

The theory of higher order Newton polygons developed in [12], and re-
vised in [7], has revealed itself as a powerful tool for the analysis of the
decomposition of a prime p in a number field. Newton polygons of higher
order are a p-adic tool, and their computation involves no extension of the
ground field but only extensions of the residue field; thus, they constitute
an excellent device for a computational treatment of the problem. In this
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paper we explain how the theoretical results of [7] apply to yield an algo-
rithm, due to the second author [12, Ch.3], to factor a prime number p in a
number field K, in terms of a generating polynomial f(x). The algorithm
computes the p-valuation of the index of f(x) as well; in particular, it de-
termines the discriminant of the number field, if one is able to factorize the
discriminant disc(f) of the defining equation.

In many applications, the computation of an integral basis is very useful
because it helps to carry out other tasks in the number field. However,
if one is interested only in the discriminant or in the factorization of a
prime, our direct method has the advantage of being more efficient and it
is able to carry out these tasks in number fields of much higher degree.
The complexity of our algorithm has been analyzed by Ford-Veres [6] and
Pauli [14]. Assuming fast multiplication, these results lead to an estimation
of O(n2+εvp(disc(f))2+ε) multiplications of integers less than p. Also, the
algorithm has an excellent practical performance; the running-times and
memory requirements of its implementation appear to be very good.

The outline of the paper is as follows. In section 2 we present the main
technical ingredients of the paper: types and their representatives, and we
review the basic algorithm that is obtained by a direct application of the
ideas of [7]. In section 3 we characterize the optimal choices of represen-
tatives (Theorem 3.1). This result leads to an optimization of the basic
algorithm, based on lowering the “order" at which the computations take
place. In section 4 we show how to compute generators of the prime ideals
lying above p in terms of the output of the algorithm. In section 5 we de-
scribe an implementation and in section 6 we present the results of some
numerical tests. We construct some worst possible polynomials, that should
be especially difficult with respect to the structure of the algorithm; this
means that they have a huge index, and this index is sufficiently hidden to
force the algorithm to work at a high order. The record is a polynomial of
degree 1152 and 2-index 2153184, for which the factorization of 2 requires
computations at order seven and it is obtained in less than two seconds.
The algorithm, moreover, is highly parallelizable, so that it can raise the
bounds of computations on number fields to huge degrees.

Last but not least, one can go the other way round and apply this al-
gorithm to compute an integral basis [8]. This new approach provides a
significant improvement in the solution of this problem as well.

Notation. Throughout the paper, K is a number field generated by a
monic irreducible polynomial f(x) ∈ Z[x], θ ∈ K is a root of f(x), and ZK
is the ring of integers of K.

Let p ∈ Z be a prime number and let F = GF (p) be the finite field with p
elements. We fix an algebraic closure Qp of the field Qp of p-adic numbers.
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We denote simply by v : Qp → Q ∪ {∞} the canonical p-adic valuation
normalized by v(p) = 1.

If k is a field and ϕ(y), ψ(y) ∈ k[y], we write ϕ ∼ ψ to indicate that the
two polynomials coincide up to multiplication by a nonzero constant in k.

2. Computation of discriminants and prime ideal decomposition

In this section we present a basic algorithm that computes the p-value
of the discriminant of K and the prime ideal decomposition of pZK . This
algorithm is obtained by a direct application of the ideas of [7].

2.1. Types and their representatives. The basic tool for the algorithm
is the concept of type and its representative, which we recall here with some
detail. All results of this section are taken from [7, Sec. 2].

Definition. A type of order zero is a monic irreducible polynomial in F[y].
Let r ≥ 1 be a natural number. A type of order r is a sequence of data:

t = (ψ0(y); (φ1(x), λ1, ψ1(y)); . . . ; (φr(x), λr, ψr(y))),
where φ1(x), . . . , φr(x) ∈ Z[x], ψ0(y), . . . , ψr(y) ∈ F[y] are monic polyno-
mials and λ1, . . . , λr ∈ Q− are negative rational numbers, that satisfy the
following properties:

(1) The polynomial ψ0(y) ∈ F[y] is irreducible and it coincides with the
reduction of φ1(y) modulo p. We define F1 := F[y]/(ψ0(y)).

(2) For all 1 ≤ i < r, the Newton polygon of i-th order, Ni(φi+1), is
one-sided, with positive length and slope λi.

(3) For all 1 ≤ i < r, the polynomial ψi(y) ∈ Fi[y] is irreducible and
the residual polynomial of i-th order of φi+1 satisfies Ri(φi+1)(y) ∼
ψi(y) in Fi[y]. We define Fi+1 := Fi[y]/(ψi(y)).

(4) For all 1 ≤ i < r, the polynomial φi+1(x) has minimal degree among
all monic polynomials in Z[x] satisfying (2) and (3).

(5) The polynomial ψr(y) ∈ Fr[y] is irreducible and ψr(y) 6= y. We
define Fr+1 := Fr[y]/(ψr(y)).

Every type carries implicitly a certain amount of extra data, whose no-
tation we fix now. We denote e0 := 1, f0 := degψ0 = deg φ1(x), and for all
1 ≤ i ≤ r:

• hi, ei are positive coprime integers such that λi = −hi/ei,
• `i, `′i ∈ Z are fixed integers such that `ihi − `′iei = 1,
• fi = degψi(y),
• mi = deg φi(x) = ei−1fi−1mi−1,
• zi = y (mod ψi(y)) ∈ F∗i+1, z0 = y (mod ψ0(y)) ∈ F∗1.

Also, we denote mr+1 = mrerfr. The type determines a chain of finite
extensions of F:

F =: F0 ⊂ F1 ⊂ · · · ⊂ Fr+1,
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such that Fi+1 = Fi[zi] = F[z0, . . . , zi], for all 0 ≤ i ≤ r. Also, for all 1 ≤
i ≤ r+1, the type carries certain p-adic discrete valuations vi : Qp(x)∗ → Z
[7, Def. 2.5], and semigroup homomorphisms,

ωi : Zp[x] \ {0} → Z≥0, P (x) 7→ ordψi−1(Ri−1(P )),

where R0(P )(y) ∈ F[y] is the reduction modulo p of P (y)/pv1(P ). The inte-
ger ωi(P ) measures the length of the principal part, N−i (P ), of the Newton
polygon of i-th order of P (x) [7, Lem. 2.17]. The principal part is the poly-
gon determined by the sides of negative slope of Ni(P ).

For every negative rational number λ = −h/e, with h, e positive coprime
integers, the type t determines a residual polynomial operator of order i:

Rλ,i : Zp[x] −→ Fi[y], P (x) 7→ Rλ,i(P )(y),
for 1 ≤ i ≤ r. By definition, Ri = Rλi,i. These operators depend on the
choice of the coefficients of the Bézout identity `ihi−`′iei = 1. However, if we
replace `i by `i +mei, then Rλ,i+1(P )(y) changes into τuRλ,i+1(P )(τ−hy),
where τ = (zi)m ∈ F∗i+1 is an absolute constant and the integer u depends
on P (x). We convene to choose `i = 0 when ei = 1.

To avoid confusion when we work simultaneously with different types,
we write the type as a superscript in every datum: φt

i (x), λt
i , et

i , etc.
Definition. We say that φi(x), λi, ψi(y) (and their implicit data) are the
i-th level of t.

Let t0(f) be the set of all types of order zero that divide f(x) modulo
p. By Hensel’s lemma, each t ∈ t0(f) determines a monic p-adic factor
ft(x) ∈ Zp[x] of f(x), and

f(x) =
∏

t∈t0(f)
ft(x).

Types of order r play an analogous role and provide similar factorizations
at higher order. Let us recall some concepts and results in this regard.
Definition. Let t be a type of order r, and let P (x) ∈ Zp[x] be a monic
polynomial.

• We say that P (x) is of type t if degP = mr+1ωr+1(P ) > 0. This is
equivalent to:
(1) P (x) ≡ φ1(x)a0 (mod p), for some positive integer a0, and
(2) For all 1 ≤ i ≤ r, the Newton polygon Ni(P ) is one-sided of

slope λi, and Ri(P )(y) ∼ ψi(y)ai in Fi[y], for some positive
integer ai.

Also, P (x) is of type t if and only if all its irreducible factors in
Zp[x] are of type t.
• We say that P (x) is divisible by t, or that t divides P (x),
if ωt

r+1(P ) > 0. Formally, we can think of ωt
r+1(P ) as the expo-

nent with which t divides P (x).
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• If t divides P (x), we denote by Pt(x) the product of all monic
irreducible factors of P (x) in Zp[x], which are of type t. We have
ωt
r+1(Pt) = ωt

r+1(P ).
• We say that a set T of types faithfully represents P (x), if P (x) is
divisible by all types in T, and P (x) =

∏
t∈T Pt(x).

In [7, Sec. 3] we describe a constructive method to enlarge a type of order
r into different types of order r+ 1. The crucial step is the construction of
a polynomial of type t and minimal degree. Any such polynomial is called
a representative of the type t, and it plays the analogous role in order r+ 1
to that played by an irreducible polynomial modulo p in order one.

Theorem 2.1. Let t be a type of order r. We can construct a monic polyno-
mial φr+1(x) ∈ Z[x] such that deg φr+1 = mr+1 and ωr+1(φr+1) = 1. This
polynomial is irreducible in Zp[x] and vr+1(φr+1) = erfr(ervr(φr) + hr).

A representative of t facilitates its enlargement to types of higher order.
We denote by (t; (φr+1(x), λr+1, ψr+1(y))) the type of order r+ 1 obtained
by adding at the (r + 1)-th level any negative rational number λr+1 and
any irreducible monic polynomial ψr+1(y) ∈ Fr+1[y], ψr+1(y) 6= y.

2.2. Types versus prime ideals. The basic algorithm. Recall that
we fixed a monic irreducible polynomial f(x) ∈ Z[x].

Definition. A type t of order r is said to be f -complete if ωt
r+1(f) = 1.

Theorem 2.2 ([7, Cor. 3.8]). Let t be an f -complete type of order r. Then
the p-adic factor ft(x) is irreducible in Zp[x]. Moreover, if L/Qp is the
extension generated by ft(x), we have

e(L/Qp) = e1 · · · er, f(L/Qp) = f0f1 · · · fr.

Thus, an f -complete type singles out a prime ideal p dividing pZK , whose
ramification index and residual degree can be read in the data of t:

e(p/p) = e1 · · · er, f(p/p) = f0f1 · · · fr.

The p-adic factorization process of [7] consists essentially in the cons-
truction of a set T of f -complete types, that faithfully represents f(x).
Thus, it can be interpreted as a basic algorithm, to determine the prime
ideal decomposition of pZK . The types are built iteratively by means of
Theorem 2.1, and the theory of Newton polygons of higher order. We start
with the set T0(f) := t0(f), that faithfully represents f(x). We extend the
non-f -complete types of this set to types of order one, in order to construct
a set T1(f) that, again, faithfully represents f(x), etc. At each order r, the
extension process is carried out by a main loop that performs the following
operations.
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Main loop of the basic algorithm. At the input of a non-f -complete
type t of order r − 1, for which ωr(f) > 0, and a representative φr(x):

1) Compute the Newton polygon of r-th order, Nr(f) = S1 + · · ·+St,
with respect to t and φr(x).

2) For every side Sj of negative slope λr,j < 0, compute the residual
polynomial of r-th order, Rλr,j ,r(f)(y) ∈ Fr[y], with respect to t,
φr(x) and λr,j .

3) Factorize this polynomial in Fr[y] as a product of powers of pairwise
different monic irreducible polynomials:

Rλr,j ,r(f)(y) ∼ ψr,1(y)a1 · · ·ψr,s(y)as .

4) For every factor ψr,k(y), compute a representative of the following
type of order r:

tj,k := (t; (φr(x), λr,j , ψr,k(y))).
For those factors ψr,k(y) with exponent ak = 1, the type tj,k is complete.
For the remaining types we continue the iterative process.

Thus, each non-complete type t of order r − 1 sprouts several types of
order r, which are called branches of t. We have a factorization in Zp[x]:

ft(x) =
∏

j,k
ftj,k(x),

with deg ftj,k = er,jfr,kmr. Also, (ωr+1)tj,k(f) = ak > 0, for all j, k, and

(2.1) ωt
r(f) =

∑
j,k

er,jfr,k(ωr+1)tj,k(f).

Hence, the invariant ωt
r(f) is an upper bound for the number of irreducible

factors of ft(x), and it is a kind of measure of the distance that is left to
complete the analysis of the type t and its branches (or equivalently, to
decompose each ftj,k(x) into a product of irreducible factors). Also, (2.1)
shows that, except for the case in which there is only one branch with
er = fr = 1, the branches are always closer to be f -complete than t.

We denote by tr(f) the set of types of order r obtained by aplying the
main loop to all non-f -complete types of tr−1(f). We denote by ti(f)compl

the subset of the f -complete types of ti(f), and we define

Tr(f) := tr(f) ∪
(⋃

0≤i<r
ti(f)compl

)
.

Proposition 2.3 ([7, Sec. 3]). Tr(f) faithfully represents f(x).

To show that the basic algorithm deserves this name, we have to prove
that, after a finite number of enlargements, all types of tr(f) will be com-
plete. To this purpose we introduce another variable to measure how far a
type is from being complete, that works even in the unibranch case with
er = fr = 1. This control variable is defined in terms of higher indices.
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2.3. Indices of higher order. The results of this section are taken from
[7, Sec. 4]. Denote

ind(f) := v ((ZK : Z[θ])) ,
and recall the well-known relationship, v(disc(f)) = 2 ind(f) + v(disc(K)),
between ind(f), the discriminant of f(x) and the discriminant of K.

Definition. Let N = S1+· · ·+St be a principal polygon with sides ordered
by increasing slopes λ1 < · · · < λt < 0. Denote by Ei = `(Si), Hi = H(Si),
di = d(Si) the respective length, height and degree of each side [7, Sec. 1.1].
We define the index of the polygon N to be the nonnegative integer

ind(N) :=
t∑
i=1

1
2(EiHi − Ei −Hi + di) +

∑
1≤i<j≤t

EiHj .

This number is equal to the number of points with integral coordinates
that lie below or on the polygon, strictly above the horizontal line that
passes through the last point of N and strictly beyond the vertical axis.
Hence, ind(N) = 0 if and only if N has a unique side with height H = 1,
or length E = 1.

Definition. Let t be a type of order r−1, and let φr(x) be a representative
of t. We define its f -index to be the nonnegative integer

indt(f) := indt,φr (f) := f0 · · · fr−1 ind(N−r (f)),

the Newton polygon of r-th order taken with respect to t and φr(x).
We say that t is f -maximal if t divides f(x) and indt(f) = 0.
For any natural number r ≥ 1, we define indr(f) :=

∑
t∈tr−1(f) indt(f).

Since the Newton polygon N−r (f) depends on the choice of φr(x), the
value indt(f), and the fact of being f -maximal, depends on this choice too.

Proposition 2.4 ([7, Lem. 4.16]).
a) If t is f -complete, then it is f -maximal.
b) If t is f -maximal, then either t is f -complete, or the output of the

main loop applied to t is a unique branch of order r + 1 which is
f -complete.

Thus, the fact that all types of tr(f) are complete is essentially equivalent
to the fact that they are all maximal. The proof that this will occur after
a finite number of iterations is provided by the theorem of the index.

Theorem 2.5 (Theorem of the index [7, Thm. 4.18]). For all r ≥ 1,

(2.2) ind(f) ≥ ind1(f) + · · ·+ indr(f),

and equality holds if and only if indr+1 = 0.
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This theorem shows that after a finite number of iterations all types of
tr(f) will be f -maximal, because the sum of the right-hand side is bounded
by the absolute constant ind(f). By (b) of Proposition 2.4, either Tr(f) or
Tr+1(f) will contain only f -complete types. By Theorem 2.2 and Proposi-
tion 2.3, these complete types determine the complete factorization of pZK
into a product of prime ideals. At this final stage we have necessarily an
equality in (2.2), so that we get a computation of ind(f) as a by-product.

Remark 2.6. If at the end of step 1 of the main loop of the basic algorithm,
we accumulate to a global variable the value indt(f), the final output of
this global variable is ind(f). In particular, indt(f) is an absolute measure
of the distance covered by each iteration of the main loop, towards the end
of the algorithm.

Theorem 2.7. Given a number field K, a generating polynomial f(x) ∈
Z[x], and a prime number p, we can construct a set T of f -complete types,
that faithfully represents f(x). The types of T are in 1-1 correspondence
with the prime ideals of K lying above p, and the ramification index and
residual degree of each ideal can be read from data of the corresponding type.
Along the construction of T, the algorithm computes the p-valuation of the
index of f(x) as well.

The theorem of the index and Proposition 2.4 show that the number of
iterations of the main loop is bounded by ind(f). In practice, the number
of iterations is much lower.

Remark 2.8. In each iteration of the main loop, indt(f) is usually much
bigger than one, due to the abundance of the number of points of integer
coordinates below an average Newton polygon with a fixed length ωt

r(f),
and the fact that these points are counted with weight f0 · · · fr−1.

In the next section we introduce a crucial optimization. A refinement
process will control at each iteration wether it is strictly necessary to build
a type of higher order, or it is possible to keep working at the same order,
to avoid an increase of the recursivity in the computations. For instance,
the polynomial f(x) = (x − 2)2 + 22k would require the construction of
types of order ≈ k in a strict application of the basic algorithm, while it
can be completely analyzed with a refined type of order 1.

3. Optimal representatives of types

3.1. Detection of optimal representatives. The construction of types
dividing a given polynomial is not canonical: in the construction of the rep-
resentatives φr(x) one makes some choices, mainly related to lifting certain
polynomials over finite fields to polynomials over Z. A natural question
arises: are there optimal choices?
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Consider the following trivial example: let p = 2, f(x) = x2−4x+12, and
K = Q(θ) = Q(

√
−2). The polynomial factorizes modulo 2 as f(y) = y2;

thus, the type of order zero t = ψ0(y) = y is not f -complete. The more
natural lifting of ψ0 to Z[x] is φ1(x) = x, and the corresponding Newton
polygon and residual polynomial determine a unique extension of t to a
type of order one, (y; (x,−1, y+ 1)), which is still not complete, so that we
must construct a type of (at least) order 2 to determine the factorization
of 2ZK . If we choose instead, φ1(x) = x− 2, we have f(x) = (x− 2)2 + 23,
and the type of order one (y; (φ1(x),−3/2, y+ 1)) is f -complete. Thus, this
second choice of φ1(x) is better.

While it seems very difficult to predict a priori whether a choice of φr(x)
is better than another, it is possible a posteriori to know if our choice was
optimal and, if this is not the case, to improve its quality.

Theorem 3.1. Let t0 be a type of order r − 1 which divides f(x) but
it is not f -complete, and let φr(x) be a representative of t0. Let t =
(t0; (φr(x), λr, ψr(y))) be an extension of t0 to a type of order r still di-
viding f(x), and let ft(x) ∈ Zp[x] be the factor of f(x) determined by t.
Let φ′r(x) ∈ Z[X] be another representative of t0. If erfr > 1, then,

a) The Newton polygon N ′r(ft), with respect to t0 and φ′r(x), is one-
sided with slope |λ′r| ≤ |λr|, and it has the same right end point as
Nr(ft).

b) The residual polynomial R′r(ft)(y), with respect to t0, φ′r(x) and
λ′r, has only one irreducible factor in Fr[y]; that is, R′r(ft)(y) ∼
ψ′r(y)a′r , for some monic irreducible polynomial ψ′r(y) ∈ Fr[y] and
some positive exponent a′r.

c) Let t′ = (t0; (φ′r(x), λ′r, ψ′r(y))). If |λ′r| < |λr|, then e′r = f ′r = 1.
If λ′r = λr, then ft(x) = ft′(x), e′r = er, f ′r = fr, and ωt′

r+1(f) =
ωt
r+1(f).

According to this theorem, if erfr > 1, the representative φr(x) is optimal
for the branch t of order r of t0. Items a), b) show that for any other
choice φ′r(x) the branch t is replaced by a single branch t′, and ft(x) is
always of type t′. Hence, ft(x) divides ft′(x), so that there is no choice of
a representative of t0 leading to a proper factorization of ft(x).

Also, if λ′r = λr, the types t, t′ face the same obstruction for the future
development of the factorization algorithm, because ft(x) = ft′(x) and
ωt
r+1(f) = ωt′

r+1(f). However, if |λ′r| < |λr|, the type t′ is worse than t in
this regard. In fact, we shall see in section 3.2 that the condition erfr > 1
is also necessary for the optimality of φr(x) with respect to the branch t.

Let us remark that a choice of the representative φr(x) of t0 can be
optimal for some branches t of t0 and non-optimal for other branches.
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For the proof of Theorem 3.1, we need an auxiliary result. Fix a type
t0 of order r − 1 dividing f(x). For any n = (n0, . . . , nr−1) ∈ Nr, denote
Φ(n)(x) = pn0φ1(x)n1 . . . φr−1(x)nr−1 . Let θ ∈ Qp be a root of ft0(x), L =
Qp(θ), OL the ring of integers of L, mL the maximal ideal and FL = OL/mL

the residue field. We denote simply by α 7→ α, the reduction map,OL → FL.
In [7, (27)], an embedding Fr ↪→ FL, is defined by

(3.1) ιθ : Fr ↪→ FL, z0 7→ θ̄, z1 7→ γ1(θ), . . . , zr−1 7→ γr−1(θ),
for certain rational functions γi(x) ∈ Q(x) such that v(γi(θ)) = 0 [7, Def.
2.13, Cor. 3.2].

Lemma 3.2. Let t0, θ, L be as above. Let M(x) ∈ Z[x] be a polyno-
mial of degree less than mr. Suppose that n ∈ Nr satisfies v(M(θ)) =
v(Φ(n)(θ)). Then, M(θ)/Φ(n)(θ) ∈ F∗L belongs to ιθ(Fr), and the element
ι−1
θ (M(θ)/Φ(n)(θ)) ∈ F∗r is independent of the choice of θ.

Proof. Let J := {j = (j0, . . . , jr−1) ∈ Nr | 0 ≤ ji < eifi, for 0 ≤ i < r}.
Since degM < mr, this polynomial can be written in a unique way as

M(x) =
∑

j=(j0,...,jr−1)∈J
ajx

j0Φ(0, j1, . . . , jr−1)(x),

for certain integers aj. We have v(θj0) = 0, and [7, Lem. 4.21] shows that
v(aj) ≥ δj := v(M(θ))− v(Φ(0, j1, . . . , jr−1)(θ)),

for all j ∈ J . Let J0 = {j ∈ J | v(aj) = δj}. Denote bj = aj/p
δj , and

j′ = (δj, j1, . . . , jr−1). We can write M(x) as

M(x) =
∑
j∈J0

bjx
j0Φ(j′)(x) +N(x),

where N(x) ∈ Z[x] satisfies v(N(θ)) > v(M(θ)). Now,
M(x)

Φ(n)(x) =
∑
j∈J0

bjx
j0Φ(j′ − n)(x) + N(x)

Φ(n)(x) .

By hypothesis, v(Φ(j′ − n)(θ)) = 0. Since ωr+1(Φ(j′ − n)) = 0 [7, Prop.
2.15], we have vr(Φ(j′ − n)(x)) = 0, by [7, Prop. 2.9]. By [7, Lem. 2.16],
there exists a sequence i1, . . . , ir−1 of integers, that depend only on j′ and
n, such that

Φ(j′ − n)(x) = γ1(x)i1 · · · γr−1(x)ir−1 .

Hence, the element of F∗L,

M(θ)/Φ(n)(θ) =
∑

j∈J0
b̄jθ̄

j0Φ(j′ − n)(θ),

belongs to ιθ(Fr). Since all the ingredients aj, δj, i1, . . . , ir−1 etc. depend
only on t0, the element ι−1

θ (M(θ)/Π(θ)) ∈ F∗r is independent of θ. �
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Proof of Theorem 3.1. Let θ ∈ Qp be now a root of ft(x), and L = Qp(θ).
Let us write φ′r(x) = φr(x) +M(x), for certain M(x) ∈ Z[x] of degree less
than mr. Since degM < mr, we have ωr+1(M) = 0 [7, Lem. 2.2]. The
theorem of the polygon [7, Thm. 3.1] and [7, Prop. 2.9] show that
(3.2)
v(φr(θ)) = (vr(φr) + |λr|)/e1 · · · er−1, v(M(θ)) = vr(M)/e1 · · · er−1,

where vr = vt0
r . In particular, v(φr(θ)) and v(M(θ)) are independent of the

choice of θ as a root of ft(x).
Let us prove first that v(φr(θ)) ≥ v(φ′r(θ)), by showing that the oppo-

site inequality implies er = fr = 1. In fact, if v(φr(θ)) < v(φ′r(θ)), then
v(M(θ)) = v(φr(θ)), and (3.2) shows that vr(M) = vr(φr) + |λr|. Hence λr
is an integer, and er = 1.

We now use some other rational functions introduced in [7, Def. 2.13]:

γr(x) = Φr(x)
πr(x)hr

= φr(x)
πr(x)hrπr−1(x)fr−1vr(φr−1) .

Denote Π(x) = πr(x)hrπr−1(x)fr−1vr(φr−1). Since v(γr(θ)) = 0, we have
v(Π(θ)) = v(φr(θ)) = v(M(θ)). By [7, (17)], we can write Π(x) = Φ(n)(x),
for some n ∈ Nr that depends only on t0. Hence, if we reduce modulo mL

the identity
φ′r(θ)
Π(θ)) = γr(θ) + M(θ)

Π(θ)) ,

Lemma 3.2 shows that γr(θ) = −M(θ)/Π(θ)) belongs to ιθ(Fr). Since γr(θ)
is a root of ιθ(ψr(y)) [7, Prop. 3.5], we get fr = 1. This ends the proof of
the inequality v(φr(θ)) ≥ v(φ′r(θ)), which is valid for all roots θ of ft(x).

We now prove item a) of the theorem. Since φr, φ′r are representatives
of the same type t0, Theorem 2.1 shows that deg φr = deg φ′r = mr and
vr(φr) = vr(φ′r). Therefore, the Newton polygons Nr(ft) and N ′r(ft) have
the same right end point (deg ft/mr, vr(φr) deg ft/mr).

If we show that v(φ′r(θ)) takes the same value for all the roots θ of ft(x),
then, by [7, Thm. 3.1], N ′r(ft) will be one-sided with slope

λ′r = vr(φ′r)− e1 · · · er−1v(φ′r(θ)) ≥ vr(φr)− e1 · · · er−1v(φr(θ)) = λr,

and item a) will be proven. Now, if v(φ′r(θ)) = v(φr(θ)) for all θ, then
the value v(φ′r(θ)) is constant, because the value v(φr(θ)) is constant. If
there is one θ0 with v(φ′r(θ0)) < v(φr(θ0)), then v(M(θ0)) = v(φ′r(θ0)) <
v(φr(θ0)). Hence, v(M(θ)) < v(φr(θ)) for all θ, because both expressions
are independent of θ. Thus, v(φ′r(θ)) = v(M(θ)) is constant too.

We prove items b), c) simultaneously. Suppose first that |λ′r| < |λr|;
then, the theorem of the polygon shows that v(φ′r(θ)) < v(φr(θ)). Arguing
as above, this implies e′r = 1 and γ′r(θ) ∈ ιθ(Fr), with η := ι−1

θ (γ′r(θ)) ∈ F∗r
independent of θ. By [7, Thm. 3.7+Prop. 3.5], if θ runs on all the roots of
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ft(x), then γ′r(θ) runs on all the roots of the irreducible factors of R′r(ft)(y).
Hence, R′r(ft)(y) ∼ (y − η)a′r , and f ′r = 1.

Suppose now λ′r = λr, so that v(φr(θ)) = v(φ′r(θ)), by the theorem of
the polygon. We distinguish two cases. If v(M(θ)) = v(φr(θ)), arguing as
above we get er = 1 and γr(θ) = γ′r(θ) + ιθ(η), for some η ∈ F∗r which is
independent of θ. In this case,

R′r(ft)(y) ∼ Rr(ft)(y + η) ∼ ψr(y + η)ar , ar = ωt
r+1(f) > 0.

Hence, R′r(ft)(y) ∼ ψ′r(y)ar , where ψ′r(y) = ψr(y + η) is an irreducible
polynomial of degree f ′r = fr. Therefore, ft(x) is of type t′, so that ft(x) |
ft′(x). Since e′rf ′r = erfr > 1, symmetric arguments show that ft′(x) is
of type t, and we get ft(x) = ft′(x). Finally, since m′r+1 = e′rf

′
rmr =

erfrmr = mr+1, we have

ωt
r+1(f) = ωt

r+1(ft) = deg ft/mr+1 = deg ft′/m
′
r+1 = ωt′

r+1(ft′) = ωt′
r+1(f).

If v(M(θ)) > v(φr(θ)), then φr(θ)er = φ′r(θ)er +N(x), where v(N(θ)) >
v(φr(θ)er ). Arguing as above, we get γr(θ) = γ′r(θ), and this implies
R′r(ft)(y) ∼ Rr(ft)(y). The proof proceeds then as in the previous case.
We now have ψ′r(y) = ψr(y). �

3.2. The process of refinement. What can be said when er = fr = 1?
Suppose we enlarge t0 to an order r type t = (t0; (φr(x),−hr, y − η)), still
dividing f(x). Here hr is a positive integer and η ∈ F∗r . Let φr+1(x) be a
representative of t, of degree mr+1 = erfrmr = mr. Let us emphasize a
relevant observation.

Remark 3.3. The polynomial φ′r(x) := φr+1(x) can be taken too as a
representative of t0.

In fact, deg φ′r = mr+1 = mr, and ωr(φ′r) = deg φ′r/mr = 1, because φ′r
is of type t0. We shall show that φ′r(x) is always a better representative of
t0 than φr(x); thus, in this case φr(x) is never optimal.

The comparison betwen these representatives uses the following plane
affine transformation:

H : R2 −→ R2, H(x, y) = (x, y − hrx).

The vertical lines of the plane are invariant under this transformation, and
H acts as a translation on them. The vertical axis is pointwise invariant.
Also, H preserves points of integer coordinates. If S is a side of negative
slope λ, length `, and degree d, then H(S) is a side of slope λ− hr, length
`, and degree d.

Definition. Let h be a positive integer, t0 a type of order r − 1, φr(x) a
representative of t0, and P (x) ∈ Z[x] a polynomial not divisible by φr(x).
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We define

(3.3) indht0(P ) := indht0,φr
(P ) := f0 · · · fr−1

(
ind(Nh

r (P ))− 1
2h`(`− 1)

)
,

where Nh
r (P ) is the part of Nr(P ) formed by the sides of slope less than

−h, and ` is the abscissa of the right end point of Nh
r (P ).

This number indht0(P ) is equal to f0 · · · fr−1 times the number of points of
integer coordinates in the region of the plane determined by the points that
lie below (or on) Nh

r (P ), strictly above the line L−h of slope −h that passes
through the last point of the polygon, and strictly beyond the vertical axis.
The term h`(`− 1)/2 takes care of the points of integer coordinates in the
triangle determined by L−h, the vertical axis and the horizontal line that
passes through the last point of Nh

r (P ).
Let λ be a negative rational number. The λ-component of a Newton

polygon N is the set of points (x, y) of the plane that lie on N and y+x|λ|
has a minimal value [7, Def. 1.5]. If λ is one of the slopes of N , then
the λ-component coincides with the side of N of slope λ; otherwise the
λ-component is a vertex of N .

Proposition 3.4. Let t0 be a type of order r − 1, and let φr(x) be a rep-
resentative of t0. Let t = (t0; (φr(x),−hr, y − η)) be a type of order r with
er = fr = 1, and let φr+1(x) be a representative of t. Let φ′r(x) = φr+1(x) be
the same polynomial considered as a representative of t0. Let P (x) ∈ Zp[x].
Denote by Nr+1(P ) the Newton polygon with respect to t, φr+1(x), and de-
note by N ′r(P ) the Newton polygon with respect to t0, φ′r(x). Let λ = −h/e,
with h, e positive coprime integers. Denote by Rλ,r+1(P )(y) ∈ Fr[y] the
residual polynomial of order r+ 1 with respect to t, φr+1(x), λ, and denote
by R′λ,r(P )(y) ∈ Fr[y] the residual polynomial of order r with respect to t0,
φ′r(x), λ. Then,

a) (N ′r)hr (P ) = H(N−r+1(P )),
b) indt,φr+1(P ) = indhr

t0,φ′r
(P ),

c) Let s be the abscissa of the left end point of the λ-component of
N−r+1(P ). There exists ε ∈ F∗r depending only on t0, such that

Rλ,r+1(P )(y) = εsR′λ−hr,r(P )(εey).

Proof. Let vr, vr+1 be the p-adic valuations attached to t. Note that vr
depends only on t0. Consider the φr+1-adic development of P (x), which is
simultaneously its φ′r-adic development:

P (x) =
∑
0≤i

ai(x)φr+1(x)i =
∑
0≤i

ai(x)φ′r(x)i.

For any 0 ≤ i, let ui = vr+1(aiφir+1), u′i = vr(ai(φ′r)i), so that the points
(i, ui) determine the Newton polygon Nr+1(P ), and the points (i, u′i)
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determine the Newton polygon N ′r(P ). Since deg ai < mr = mr+1,
[7, Lem. 2.2+Prop. 2.7] show that vr+1(ai) = ervr(ai) = vr(ai). By Theo-
rem 2.1,

vr+1(φr+1) = erfr(ervr(φr) + hr) = vr(φr) + hr = vr(φ′r) + hr.

This proves a), because ui = vr+1(aiφir+1) = vr(ai(φ′r)i) + ihr = u′i + ihr.
Item b) is an immediate consequence of a), because H transforms the

horizontal line that passes through the last point of N−r+1(P ) into the line
L−hr of slope −hr that passes through the last point of Nh

r (P ) (cf. Figure
3.1).

Let us prove c). The definition of the residual coefficients and the residual
polynomials is given in [7, Defs. 2.20-2.21]. Denote N ′ = (N ′r)hr (P ). To
every integer abscissa, 0 ≤ i ≤ `(N ′), one attaches a residual coefficient ci
of N−r+1(P ), and a residual coefficient c′i of N ′, given by

ci =
{
z
tr(i)
r Rr(ai)(zr), if (i, ui) lies on N−r+1(P ),

0, otherwise.

c′i =
{
z
t′r−1(i)
r−1 Rr−1(ai)(zr−1), if (i, u′i) lies on N ′,

0, otherwise.
By a), the points (i, ui), (i, u′i), lying on the respective polygons have the
same abscissas. Suppose that i is such an abscissa. For j = r, r− 1, denote
by sj(ai) the abscissa of the left end point of the λj-component of Nj(ai) [7,
Sec. 1.1]. By convention, `r = 0, if er = 1. Since deg(ai) < mr, the polygon
Nr(ai) is the single point (0, vr(ai)). Hence, tr(i) := (sr(ai)− `rui)/er = 0.
Also, Rr(ai)(y) = z

tr−1(0)
r−1 Rr−1(ai)(zr−1) ∈ F∗r is a constant polynomial. By

definition, the exponents t′r−1(i), and tr−1(0) are given by

t′r−1(i) = sr−1(ai)− `r−1vr(ai(φ′r)i)
er−1

, tr−1(0) = sr−1(ai)− `r−1vr(ai)
er−1

.

Hence, ci = εic′i, where ε = (zr−1)`r−1vr(φr)/er−1 . Since Rλ,r+1(P )(y) =
cs + cs+ey + · · ·+ cs+dey

d, and R′λ−hr,r
(P )(y) = c′s + c′s+ey + · · ·+ c′s+dey

d,
we get Rλ,r+1(P )(y) = εsR′λ−hr,r

(P )(εey). �

Suppose that t0 divides our polynomial f(x) but it is not f -complete,
and the main loop of the basic algorithm applied to t0 computes t =
(t0; (φr(x),−hr, y−η)) as one of its branches. Then, Proposition 3.4 applied
to P (x) = f(x) shows that φ′r(x) is a better representative of t0 than φr(x),
in what the analysis of the branch t concerns. Theorem 3.1 and Proposition
3.4 inspire the following definition.
Definition. A type t of order r is called optimal if m1 < · · · < mr, or
equivalently, eifi > 1, for all 1 ≤ i < r.



Higher Newton polygons and prime ideal decomposition 681

•

•
•

@
@

@
@

@
@

PPPPP@
@

@
@

@
@

PPPPP

•

•

J
J

J
J

J
J

J
J
J

l
l

l
ll

J
J

J
J

J
J

J
J
J

l
l

l
ll

...................................

L−hr

0

vr+1(P )

ωr+1(P )

N−r+1(P )

N ′

Figure 3.1

Actually, Proposition 3.4 proves something stronger: all information ob-
tained by applying to t the basic algorithm in order r + 1, can be already
obtained at order r if φ′r(x) is chosen as a representative of t0, as long as
we analyze (N ′r)hr (f) instead of the whole (N ′r)−(f).

This observation leads to an essential optimization of the basic algorithm.
Whenever we apply the main loop to a type t0 and one of the outputs is a
non-complete branch t = (t0; (φr(x),−hr, y − η)), with er = fr = 1, then:

(1) we compute a representative φr+1(x) of t,
(2) we replace the pair (t, φr+1(x)) by the pair (t0, φ

′
r(x)), with φ′r(x) =

φr+1(x),
(3) we store the cutting slope −hr as new data of level r of t0.
(4) when we apply the main loop to the new pair (t0, φ

′
r(x)), only the

sides of slope less than −hr of (N ′r)−(f) will be taken into account.
We call this a refinement step. The algorithm that is obtained from the

basic algorithm by applying a refinement step to every non-complete branch
with erfr = 1 is called Montes’ algorithm.

In order to see that the two algorithms are equivalent we need to show
that a non-refined type is equivalent to its refined replacement, as far as the
future development of the algorithm is concerned. More precisely, suppose
that
(3.4) s = (t0; (φr(x),−hr, y − η); (φr+1(x), λr+1, ψr+1(y)))
is one of the branches of t obtained by the basic algorithm. In the Montes
algorithm, this type is replaced by:
(3.5) s′ = (t0; (φ′r(x), λ′r, ψ′r(y)))
where φ′r(x) = φr+1(x), λ′r = λr+1 − hr, and ψ′r(y) = cfr+1ψr+1(c−1y), for
the constant c = εer+1 ∈ F∗r given in Proposition 3.4.
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We denote Fr := Fs
r = Fs′

r = Fs
r+1, er+1 := e s

r+1 = e s′
r , hr+1 := h s

r+1. For
the type s′ we have ` s′

r h
s′
r − (`′r)s′e s′

r = 1. Since hs′
r = hr+1 − er+1hr, that

Bézout identity can be rewritten as

` s′
r hr+1 −

(
(`′r)s′ + ` s′

r hr
)
er+1 = 1.

Therefore, we can choose ` s
r+1 = ` s′

r , (`′r+1)s = (`′r)s′ + ` s′
r hr, as coefficients

of the Bézout identity ` s
r+1hr+1 − (`′r+1)ser+1 = 1.

The next proposition shows that the types s, s′ are equivalent, in the
sense that the basic algorithm applied to them yields completely equivalent
data.

Proposition 3.5. Let s, s′ be types as in (3.4), (3.5). Then,
a) v s

r+2 = v s′
r+1.

b) The types s, s′ have the same representatives.
Let φ(x) ∈ Z[x] be a representative of s (and s′). For any polynomial P (x) ∈
Zp[x], let Nr+2(P ) be the Newton polygon of order r + 2 with respect to s
and φ(x). Let N ′r+1(P ) be the Newton polygon of order r + 1 with respect
to s′ and φ(x).

c) Nr+2(P ) = N ′r+1(P ) and inds,φ(P ) = inds′,φ(P ).
d) Ps(x) = Ps′(x).

Let λ = −h/e, with h, e coprime positive integers. Let Rλ,r+2(P )(y) ∈
F s
r+2[y] be the residual polynomial of order r+ 2 with respect to s, φ(x), λ.

Let R′λ,r+1(P )(y) ∈ F s′
r+1[y] be the residual polynomial of order r + 1, with

respect to s′, φ(x), λ. Consider the Fr-isomorphism

ι : F s
r+2 = Fr[y]/ψr+1(y) −→ Fr[y]/ψ′r(y) = F s′

r+1, z s
r+1 7→ c−1z s′

r ,

and extend it in a natural way to the polynomial ring, ι : F s
r+2[y]→ F s′

r+1[y].
e) Suppose we choose ` s

r+1 = ` s′
r , and let u be the ordinate of the

left end point of the λ-component of Nr+2(P ). Then, there exists a
constant τ ∈ F∗r, depending only on s′, such that

ι(Rλ,r+2(P )(y)) = τuR′λ,r+1(P )(τ−hy).

Proof. We use the operatorsNr+1,N ′r,Rλ,r+1,R′λ,r as defined is Proposition
3.4, and we denote Rr+1 := Rλr+1,r+1, R′r := R′λ′r,r.

Let L be the line of slope λr+1 that first touches N−r+1(P ) from below.
Let Q = (0, y) be the point of intersection of L with the vertical axis.
By definition, v s

r+2(P ) = es
r+1y [7, Def. 2.5]. Similarly, v s′

r+1(P ) = es′
r y
′ =

es
r+1y

′, where Q′ = (0, y′) is the point of intersection of the vertical axis
with the line L′ of slope λ′r = λr+1 − hr that first touches N ′r(P ) from
below. By Proposition 3.4, H(N−r+1(P )) = (N ′r)hr (P ); hence, L′ = H(L).
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Since the vertical axis is pointwise invariant under the action of H, we get
Q = H(Q) = Q′, so that y = y′. This proves item a).

Let φ(x) ∈ Z[x] be a representative of s; that is, deg φ = ms
r+2 and

Rr+1(φ) ∼ ψr+1 in Fs
r+1[y] = Fr[y] (Theorem 2.1). Then,

deg φ = ms
r+2 = es

r+1f
s
r+1m

s
r+1 = es′

r f
s′
r m

s′
r = ms′

r+1.

Also, Proposition 3.4 shows that R′r(φ) ∼ ψ′r in Fs′
r [y] = Fr[y]. Thus, φ(x)

is a representative of s′ too. The reciprocal statement follows by symmetric
arguments. This proves item b).

Item c) is an immediate consequence of a). In order to prove d) we may
assume that P (x) is irreducible. Now, an irreducible polynomial P (x) is
of type s if and only if it is divisible by s [7, Lem. 2.4], or equivalently
N−r+2(P ) has positive length. Analogously, P (x) is of type s′ if and only if
(N ′r+1)−(P ) has positive length. Thus, d) is a consequence of c).

Consider the φ-adic development P (x) =
∑

0≤i ai(x)φ(x)i, and denote
ui = v s′

r+1(aiφi) = v s
r+2(aiφi), for all i ≥ 0. Let {ci}i≥0 be the residual

coefficients of Nr+2(P ), and {c′i}i≥0 the residual coefficients of N ′r+1(P ). Let
i be an integer abscissa. If the point (i, ui) lies above Nr+2(P ) = N ′r+1(P ),
we have ci = c′i = 0. Suppose that (i, ui) lies on Nr+2(P ) = N ′r+1(P ), so
that cic′i 6= 0. In this case, we have by definition,

ci = (z s
r+1)tr+1(i)Rr+1(ai)(z s

r+1) ∈ Fs
r+2, c′i = (z s′

r )t′r(i)R′r(ai)(z s′
r ) ∈ Fs′

r+1.

By a) of Proposition 3.4 applied to P (x) = ai(x), we have s s
r+1(ai) =

s s′
r (ai). By hypothesis, ` s

r+1 = ` s′
r , and es

r+1 = es′
r ; hence, t(i) := tr+1(i) =

(s s
r+1(ai) − ` s

r+1ui)/es
r+1 = t′r(i). Recall that ι(z s

r+1) = c−1z s′
r = ε−e

s
r+1z s′

r .
Therefore, by c) of Proposition 3.4,

ι(ci) = ε−e
s
r+1t(i)(z s′

r )t(i)εs s
r+1(ai)R′r(ai)(z s′

r ) = ε`
s
r+1uic′i = ε`

s′
r uic′i.

If (s, u) is the left end point of the λ-component of Nr+2(P ) = N ′r+1(P ),
and s+ de is the abscissa of the right end point, we have

Rλ,r+2(P )(y) = cs + cs+ey + · · ·+ cs+dey
d,

R′λ,r+1(P )(y) = c′s + c′s+ey + · · ·+ c′s+dey
d.

Since us+je = u − jh, we get ι(Rλ,r+2(P )(y)) = τuR′λ,r+1(P )(τ−hy), for
τ = ε`

s′
r . �

The refinement steps cause a strong diminution of the complexity. If we
work at a higher order, we introduce new levels of recursivity in all basic
tasks of the main loop; thus, if we avoid raising the order, we avoid an
increase of the recursivity of the computations. For instance, suppose that
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along the basic algorithm we find a branch of order r+n, with n successive
levels with er+ifr+i = 1, for 0 ≤ i < n,

s = (t0; (φr(x), λr, ψr(y)); · · · ; (φr+n(x), λr+n, ψr+n(y))).
Starting with t0, we reach s by applying the main loop n times at orders
r, r + 1, . . . , r + n. If we refine, s collapses to s′ = (t0; (φ′r(x), λ′r, ψ′r(x))),
with φ′r(x) = φr+n(x), and s′ is computed after applying the main loop n
times too but working always at order r.

The refinement steps can also be interpreted as a search for the optimal
representatives. The search is carried out by successive applications of the
main loop, and the types are not enlarged till an optimal branch is found.

Summing up, Montes’ algorithm has the same number of iterations as
the basic algorithm but a much lower complexity. It works always at the
minimum order possible till an optimal representative of each type is found,
and only then it passes to work at a higher order. The output is a set T of
f -complete and optimal types, that faithfully represents f(x).

Rather surprisingly, this optimization motivated by purely computa-
tional reasons, yields an output with unexpected canonical properties. In
the paper [9] we prove that the f -complete and optimal types computed by
the Montes algorithm determine certain canonical invariants of each of the
irreducible p-adic factors of the input polynomial f(x). Also, in the paper
[11] we find upper bounds for the total number of refinement steps, based
on these invariants. Some of these canonical invariants had been introduced
by K. Okutsu in [13].

3.3. Computation of the index with Montes’ algorithm. By The-
orem 2.5, ind(f) is obtained as the sum of all indt(f) for t running on all
types considered along the flow of the basic algorithm (cf. Remark 2.6).

By b) of Proposition 3.4 and c) of Proposition 3.5, ind(f) is obtained as
well as the sum of all indHr

t (f) for t running on all types considered along
the flow of Montes’ algorithm. Here Hr is the cutting slope of t at its higher
level (see section 5.1).

4. Generators of the prime ideals

In this section we compute generators of the prime ideals lying above p
in terms of the output of Montes’ algorithm: a list T = {tp1 , . . . , tpg}, of
f -complete optimal types, which are in 1-1 correspondence with the prime
ideals p1, . . . , pg of K dividing pZK . We choose a root θ ∈ K of f(x), and
denote by θp ∈ Qp the root of ftp(x), image of θ under a fixed topological
embedding K ↪→ Qp.

If t ∈ T has order zero, and φ(x) is a representative of t, then the
corresponding prime ideal is generated by (p, φ(x)) by Kummer’s criterion.
If t ∈ T has order one and its truncation of order zero, t0 = ψ0(y), has
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indt0(f) = 0, then the program computes generators of the corresponding
prime ideal by using Dedekind’s criterion.

From now on, we fix a type tp, corresponding to a prime ideal p not
falling in those special cases. We omit the superscript ( )tp for the data of
tp. Let r be the order of tp, and recall that e(p/p) = e1 · · · er. We want to
compute an integral element αp ∈ ZK satisfying

vp(αp) = 1; vq(αp) = 0, ∀q | p, q 6= p,

so that the ideal p is generated by p and αp.
Let us first construct an element βp ∈ K such that vp(βp) = 1. To this

end we compute first a representative φr+1(x) of tp. Since tp is f -complete,
the Newton polygon Nr+1(f), with respect to tp and φr+1(x), has length
equal to ωr+1(f) = 1; hence, it is one-sided with integer slope −hr+1. By
the theorem of the polygon and Theorem 2.1,
vp(φr+1(θ)) = e(p/p)v(φr+1(θp)) = vr+1(φr+1) + hr+1

= erfr(ervr(φr) + hr) + hr+1,

vp(φr(θ)) = e(p/p)v(φr(θp)) = er(vr(φr) + (hr/er)) = ervr(φr) + hr.

Therefore, the element βp := φr+1(θ)/φr(θ)erfr ∈ K has vp(βp) = hr+1.
Our aim is to find a kind of worst possible representative φr+1(x) of tp,
satisfying hr+1 = 1. To this end, we compute a blind φr+1(x). If hr+1 = 1
we are done; if hr+1 > 1 we use a subroutine based on [7, Prop. 2.10], to
construct a polynomial P (x) ∈ Z[x] with the following properties:

degP < mr+1, vr+1(P ) = vr+1(φr+1) + 1, Rr(P )(y) = 1.
Now, φ′r+1(x) := φr+1(x) + P (x) is another representative of tp and it has
h′r+1 = 1, or equivalently, vp(φ′r+1(θ)) = vr+1(φr+1)+1. In fact, deg φ′r+1 =
deg φr+1 and [7, Prop. 2.8] shows that ωr+1(φ′r+1) = ωr+1(φr+1) = 1; hence,
φ′r+1 is a representative of tp. Finally, since degP < mr+1, we have

e(p/p)v(P (θp)) = vr+1(P ) = vr+1(φr+1) + 1
< vr+1(φr+1) + hr+1 = e(p/p)v(φr+1(θp)).

Thus, vp(φ′r+1(θ)) = vp(P (θ)) = vr+1(φr+1) + 1.
Therefore, we may assume that βp = φr+1(θ)/φr(θ)erfr has vp(βp) = 1.

Our next step is to compute the values vq(βp), for all other prime ideals
q 6= p lying above p.

Definition. We say that tq dominates tp, and we write tq > tp, if tq is a
branch of a type originated from a side of Ntp,φr (f) of slope λ < λr. In this
case we denote λpq = λ and we call it the dominating slope of tq over tp.

The next proposition is a consequence of an explicit formula for vq(φi(θ))
for all q and all 1 ≤ i ≤ r + 1, that can be found in [10, Prop. 3.8].
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Proposition 4.1. Let q be a prime ideal of K lying above p, q 6= p. Let s
be the order of tq. Then,

vq(βp) =
{
erfr(e

tq
r · · · etq

s )(λpq − λr) < 0, if tq > tp,
0, otherwise .

Now, for the maximal types with respect to the ordering “>", we take
αp := βp. For the rest of the types we compute recurrently:

αp := βp
∏

tq>tp
α
−vq(βp)
q .

These elements are not far from generating the pi, since:

vq(αp) =
{

1 if q = p,
0 otherwise.

Unfortunately, they could be non-integral at primes of ZK not dividing
pZK . This can be easily arranged; we write each αp in the form αp = g(θ)/b,
with g(x) ∈ Z[x] and b ∈ Z coprime with the content of g(x). Then, we
modify αp by taking αp := g(θ)/pv(b).

The complexity of the computation of αp is dominated by the inversion
of φr(θ) in K, which may be a hard task if the degree of φr(x) is large ot it
has large coefficients. In the forthcoming paper [10] we present an algorithm
to compute generators of the prime ideals which requires no inversions in
K.

5. Computational issues

We recall that Montes’ algorithm is the optimization of the basic algo-
rithm of section 2.2 as a result of the application of the refinement process
of section 3.2, with the intention of dealing only with optimal types. In this
section we give a more detailed description of this algorithm and we discuss
some computational aspects.

5.1. Outline of the algorithm. The goal of Montes’ algorithm is the
computation of ind(f) and the construction of a set T of f -complete optimal
types, that faithfully represents f(x).

By the recursive nature of its construction, many of the types generated
by the algorithm will share many of their levels, so that most of the compu-
tations necessary to enlarge them will be the same. Hence it is convenient
to organize their computation in such a way that we can take profit of as
much previous computations as possible. The simplest way to organize the
computation of types is to store all non-complete types being built by the
algorithm in a list, which we call STACK. Complete types are stored in a
second list called COMPLETETYPES.

The variable STACK, as its name suggests, is a LIFO stack, which in prac-
tice determines the flow of the algorithm: the main loop of the algorithm



Higher Newton polygons and prime ideal decomposition 687

extracts the last type from the STACK and works it out to produce a number
of enlarged types. The complete ones are added to COMPLETETYPES and the
non-complete ones are added to the top of the STACK. The program finishes
when the STACK is empty.

The types are built along the algorithm as the branches of a tree. The
root of the tree is a node corresponding to a type of order 0; that is, an
irreducible factor modulo p of the input polynomial f(x). Every division
of the branch into new subbranches is generated by multiple sides of a
Newton polygon of f(x) and by multiple irreducible factors of the residual
polynomial attached to each side.

In order to homogenize the flow of Montes’ algorithm, we introduce data
φr, Hr, ωr at the r-th level of each type t0 of order r − 1. The variable
φr stores a representative of t0. The variable Hr stores the absolute value
of the cutting slope; it tells us that we must compute only the Newton
polygon NHr

r (f) gathering the sides of slope less than −Hr of Nr(f). Fi-
nally, ωr stores the length of NHr

r (f). By [7, Lem. 2.17] this length can
be precomputed as ωr = ordψr−1 Rr−1(f) if t0 is non-refined (Hr = 0 and
NHr
r (f) = N−r (f)), or as ωr = ωt

r+1 if t0 is the refinement of an order r
type t (by Proposition 3.4).

In this way, the main loop does not need to distinguish between refined
and non-refined types. At the input of a non-complete type t0 of order r−1,
having all these data at level r, we compute only the first ωr+1 coefficients
a0(x), . . . , aωr (x) of the φr-development of f(x); then, the Newton polygon
of the cloud of points (i, vr(ai)), 0 ≤ i ≤ ωr, is already NHr

r (f).
In the main loop, when we deal with a non-complete order r branch t of

t0, we compute first a representative φ(x) of t. Then, if erfr > 1, we assign

φt
r+1 ← φ(x), Ht

r+1 ← 0, ωt
r+1 ← ordψr Rr(f),

and the order r type t is added to the STACK. On the other hand, if erfr = 1,
we take a copy t′ of t0 of order r − 1, we assign

φt′
r ← φ(x), Ht′

r ← |λt
r|, ωt′

r ← ωt
r+1,

and we add t′ to the STACK.
Every time we compute a Newton polygon with respect to a type t of

order r − 1, we add the number indHr
t (f), given by the formula (3.3), to

the variable TOTALINDEX. The output value of this variable is ind(f), as
explained in section 3.3.

We now give a detailed outline of Montes’ algorithm, using standard
pseudo-code.

MONTES’ ALGORITHM
INPUT:
− A monic irreducible polynomial f(x) ∈ Z[x].
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− A prime number p.

INITIALIZATION STEPS
1 Factor f(y) (mod p) =

∏
ϕ ϕ(y)aϕ , into a product of powers of pairwise

different monic irreducible polynomials ϕ(y) ∈ F[y].
2 Initialize empty lists STACK and COMPLETETYPES. Set TOTALINDEX← 0.
3 FOR every polynomial ϕ(y) do

4 Create a type t of order zero with ψ0(y)t ← ϕ(y). Set ωt
1 ← aϕ.

5 Take a monic g(x) ∈ Z[x] such that g(y) (mod p) = ϕ(y).
Set φ1(x)t ← g(x).

6 If aϕ = 1 add t to COMPLETETYPES.
Otherwise, set Ht

1 ← 0 and add t to STACK.

MAIN LOOP
WHILE the STACK is non-empty do:
1 Extract the last type t0 from STACK. Let r − 1 ≥ 0 be its order.
2 Compute the first ωr + 1 coefficients a0(x), . . . , aωr (x) of the φr-adic
expansion of f(x), and compute the Newton polygon N of the cloud of
points (i, vr(ai(φr)i)), for 0 ≤ i ≤ ωr.
3 Compute indHr

t0 (f) by using (3.3), and add this number to TOTALINDEX.
4 FOR every side S of N do

5 Set λt0
r ← slope of S. Compute and factorize the r-th order residual

polynomial Rr(f)(y) ∈ Fr[y].
6 FOR every monic irreducible factor ψ(y) of Rr(f)(y) do

7 Make a copy t of the type t0, and extend it to order r by setting
ψt
r(y)← ψ(y), ωt

r+1 ← ordψ Rr(f).
8 Compute a representative φ(x) ∈ Z[x] of t. Set φt

r+1(x)← φ(x).
9 If ωt

r+1 = 1 (the type is complete), add t to COMPLETETYPES and
continue to the next factor ψ(y).

10 If degψ = 1 and λt
r ∈ Z (the type must be refined), make a copy

t′ of the type t0, set
φt′
r (x)← φ(x), Ht′

r ← |λt
r|, ωt′

r ← ωt
r+1,

add t′ to the STACK and continue to the next factor ψ(y).
11 (Store a higher order type) Set Ht

r+1 ← 0, add t to the STACK
and continue to the next factor ψ(y).

OUTPUT:
− The p-valuation of the index of f(x) in ZK is the value of TOTALINDEX.
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− The list {t1, . . . , tg} of COMPLETETYPES is in 1-1 correspondence with
the prime ideals of K dividing p.

For every output type t, the ramification index and residual degree of
the corresponding ideal p are given by:

e(p/p) = et
1 · · · et

r, f(p/p) = mt
1f

t
1 · · · f t

r ,

where r is the order of t. Also, the finite field Ft
r+1 is a computational repre-

sentation of the residue field ZK/p. Moreover, the polynomial φt
r+1(x) is an

Okutsu approximation to the p-adic irreducible factor of f(x) canonically
attached to p [9].

5.2. Some examples.
Example 1. Let us consider the irreducible polynomial
f(x) := x12 − 588x10 + 476x9 + 130095x8 − 172872x7 − 12522636x6

+ 24745392x5 + 486721116x4 − 1583408736x3 − 641009376x2

+ 10978063488x+ 59914669248,
whose discriminant is

disc(f) = 284 · 364 · 752 · 794 · 141592 · 6441732 · 33520732 .

We apply the algorithm to find the decomposition of the prime p = 2 in the
ring of integers ZK of the number field K = Q(θ) generated by any root of
the polynomial f(x). Since

f(y) ≡ y8 (y + 1)4 (mod 2),
we find two types of order zero dividing f(x): t0 = y, t1 = y + 1, with
representatives φt0

1 (x) = x, φt1
1 (x) = x + 1, respectively. The Newton

polygon N t1
1 (f) has two sides, with slopes −3/2 and −1/2 respectively,

which single out two prime ideals p1, p2, with e(p1/2) = e(p2/2) = 2 and
f(p1/2) = f(p2/2) = 1. We can take φtp1

2 = (x+1)2+8, φtp2
2 = (x+1)2+2 as

representatives of these complete types. These polynomials are Okutsu ap-
proximations to the p-adic irreducible factors of f(x) canonically attached
to p1, p2, respectively.

The Newton polygon N t0
1 (f) has again two sides with slopes −1, −1/2,

and residual polynomials R−1,1(f) = (y + 1)4, R−1/2,1(f) = (y + 1)2, re-
spectively. Hence, the type t0 extends to two non-complete types of order
one: t′ = (y; (x,−1/2, y + 1)), t′′ = (y; (x,−1, y + 1)). The type t′ admits
x2 +2 as a representative, and it is ready to be enlarged to an order 2 type.
The type t′′ admits x + 2 as a representative, and it must be refined; to
this end, we take x + 2 as a new representative of t0 and a cutting slope
H1 = 1. The Newton polygon of f(x) with respect to x+2 has only one side
with slope smaller than −1; the slope is −3/2 and the residual polynomial
(y + 1)2; hence, this type admits (x + 2)2 + 8 as a representative, and it
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may be enlarged too to an order 2 type. Now, we have two types of order
one, ready to be enlarged to order 2:

t = (y; (x+ 2,−3/2, y + 1)), φt
2(x) = (x+ 2)2 + 8,

t′ = (y; (x,−1/2, y + 1)), φt′
2 (x) = x2 + 2.

The Newton polygon (N t
2)−(f) has a unique side with slope −4 and residual

polynomial (y+1)2, so that this type must be refined. We take, for instance,
φt

2(x) = (x+2)2 +40 and cutting slope Ht
2 = 4. The new polygon (N t

2)4(f)
has two sides of length one, with slopes −9 and −5; thus, it determines
two new prime ideals p3, p4 dividing 2ZK , with e(p3/2) = e(p4/2) = 2,
f(p3/2) = e(p4/2) = 1. Their associate complete types are:

tp3 = (y; (x+ 2,−3/2, y + 1); ((x+ 2)2 + 40,−9, y + 1)),
tp4 = (y; (x+ 2,−3/2, y + 1); ((x+ 2)2 + 40,−5, y + 1)).

with representatives φ
tp3
3 (x) = (x + 2)2 + 64(x + 2) + 40, φtp4

3 (x) =
(x+ 2)2 + 16(x+ 2) + 40, respectively.

The Newton polygon (N t′
2 )−(f) has a unique side with slope −4 and

residual polynomial (y + 1)2; thus, we must refine. Take φt′
2 (x) = x2 + 10,

H2 = 4. The next Newton polygon has again a unique side with slope
−5 and residual polynomial (y + 1)2. We refine again, taking φt′

2 (x) =
x2 +10+8x. This representative leads to a new (N t′

2 )−(f) having two sides
of length one with slopes −8 and −7; thus it singles out two prime ideals
p5, p6, with e(p5/2) = e(p6/2) = 2, f(p5/2) = e(p6/2) = 1. Their associate
complete types are:

tp5 = (y; (x,−1/2, y + 1); (x2 + 8x+ 10,−8, y + 1)),
tp6 = (y; (x,−1/2, y + 1); (x2 + 8x+ 10,−7, y + 1)).

with representatives φtp5
3 (x) = x2 + 8x + 42, φtp6

3 (x) = x2 + 24x + 10,
respectively.

Summing up, 2ZK = (p1 · · · p6)2. The 2-index of f(x) is ind2(f) = 33,
and v(disc(K)) = 18.

Example 2. Take p = 2 and consider the irreducible polynomial

f(x) := (x3 + x+ 5)50 + 289(x3 + x+ 5)25 + 2178 .

The algorithm takes initially φ1(x) = x3 + x + 1, and finds a unique side
with slope −2 and residual polynomial (y + 1)50. A refinement leads to
φ1(x) = x3 +x+5, and a Newton polygon with one side, with slope −89/25
and irreducible residual polynomial y2 + y + 1. Hence, in the number field
K defined by any root of f(x), we have 2ZK = p25, with f(p/2) = 6.
The 2-index of the polynomial is 13011. While this computation is almost
instantaneous, the determination with Pari of a 2-integral basis of K takes
about 190 seconds, and needs an amount of 244 Mb of memory.
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5.3. Some remarks on the complexity. The complexity of the Montes
algorithm has been analyzed by Ford-Veres [6] and Pauli [14]. These results
lead to an estimation of O(n2+εvp(disc(f))2+ε) multiplications of integers
less than p, if we assume fast multiplication.

In practice the algorithm has an excellent performance. We provide some
arguments to explain its good practical behaviour.

We saw in section 2.3 that the number of iteration of the main loop is
bounded by ind(f) and that each iteration covers indt(f) steps from the
total value of ind(f). Now, in practice indt(f) is usually much bigger than
one in each iteration, as mentioned in Remark 2.8. On the other hand, the
iterations of the main loop are more expensive for high order types than for
low order types. However, this is balanced by the following fact: the higher
is the order, the smaller is ωr+1(f), and this invariant tells the number of
coefficients of the φr-adic development of f(x) that must be computed, and
it is an upper bound for the degrees of the residual polynomials.

Finally, the degree of the polynomials φt
k(x) appearing in an f -complete

type t is a divisor of the product e(pt/p)f(pt/p). Every time the type is
enlarged, the degree of the new φt

k+1(x) is multiplied by et
kf

t
k > 1. Hence,

if a polynomial f(x) is divisible by a type of high order, its degree must be
really huge. This explains why the algorithm works well for polynomials of
high degree: the maximum of the orders of the types of a polynomial grows
slowly in comparison with the degree.

The low memory requirement of the algorithm is another of its strong
advantages: it is only necessary to store the levels (φk(x), λk, ψk(x)) of the
different types. This makes possible the treatment of polynomials of very
high degree with scarce computational resources.

5.4. Implementation of the algorithm. The first implementation of
Montes’ algorithm was programmed by the first author in 1997 as a part
of his Ph.D. It was written for Mathematica 3.0, and it included a specific
package to work with finite fields. It is still available on request to the au-
thor. Ten years later, we started a collaboration to make a full upgrade
of the algorithm, with many optimizations both theoretical and computa-
tional, including a completely new implementation in Magma.

The main data type used by the program is a specifically designed record
which contain all the relevant data of a type at a given order. To avoid
massive replication of the types being computed, most of the routines access
them by memory address.

The program is included in a package that contains routines to construct
types, and polynomials with prescribed attached types. The package and
its documentation can be downloaded from the site

http://themontesproject.blogspot.com
which also contains updated information and further applications.
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6. Running times

We devote this section to illustrate the performance of (our implemen-
tation of) Montes’ algorithm with several polynomials chosen to force its
capabilities at maximum in three directions: polynomials with a unique as-
sociate type of large order, polynomials which require a lot of refinements,
and polynomials with many different types. We have also included some
test polynomials found in the literature.

The computations in these examples have been done with Magma v2.15-
11 in a Linux server, with two Intel Quad Core processors, running at 3.0
Ghz, with 32Gb of RAM memory.

All running times are expressed in seconds.

Example 1. Take p = 2. Consider the irreducible polynomials

φ1 = x2 + 22x+ 24,
φ2 = φ2

1 + 24xφ1 + 212,
φ3 = φ4

2 + 223(x+ 22)φ2
2 + 242xφ1,

φ4 = φ2
3 + 212xφ3

2φ3 + 272φ1φ
2
2 + 2101x,

φ5 = φ3
4 + 234φ1φ2φ3φ

2
4

+2215((x(φ1 + 26)(φ3
2 + 225φ2) + 227φ2

2)φ3 + 264(xφ1φ
2
2 + 233)),

φ6 = φ6
5 + 2883xφ3φ

3
5 + 21736((x+ 4)φ1 + 28)φ2

2φ4,
φ7 = φ2

6 + 22810φ3
5.

For each j, the polynomial φj has a unique associate complete type of
order j, so that in the corresponding number field Kj the ideal 2ZKj is the
power of a unique prime ideal pj . The following table contains the degree
and 2-index of φj , the ramification index ej and residual degree fj of pj ,
and the time t used by the program to compute them.

φj deg φj ind(φj) ej fj t
φ1 2 2 1 2 0.00
φ2 4 16 1 4 0.00
φ3 16 360 2 8 0.00
φ4 32 1544 2 16 0.01
φ5 96 14616 2 48 0.03
φ6 576 537120 6 96 0.31
φ7 1152 2153184 12 96 1.47

Example 2. Let fk(x) = (x2 + x + 1)2 − p2k+1, with p ≡ 1 (mod 3)
a prime number. Montes’ algorithm finds two types of order zero dividing
fk(x), with liftings φ1(x) ∈ Z[x] of degree one. For both of them the Newton
polygon of the first order is one-sided of slope −1, it has end points (2, 0)
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and (0, 2), and the residual polynomial is the square of a linear factor. After
approximately 2k refinements, both types become fk-complete. The ideal
pZK splits as the product of two prime ideals with ramification index 2
and residual degree 1, and the p-index of fk(x) is 2k.

This is almost the illest-conditioned quartic polynomial for the algorithm.
The index of every type is increased a unit per refinement in general, and
the total p-index of fk(x) is 2k. Thus, about 2k iterations of the main
loop are required. In the following table we show the running time of the
programm for different values of k and p.

p ind(fk) t p ind(fk) t
7 1000 0.29 43 10000 35.06
7 2000 0.68 103 10000 48.06
7 4000 1.94 1009 1000 0.52
7 8000 7.59 1009 2000 1.88
7 16000 37.46 1009 4000 9.00
7 20000 65.51 109 + 9 1000 1.51

13 1000 0.32 109 + 9 2000 7.97
13 2000 0.81 109 + 9 4000 46.18
13 10000 19.23 1069 + 9 100 0.80
19 10000 23.65 1069 + 9 200 1.74
31 10000 30.84 1069 + 9 400 5.30
37 10000 33.02 1069 + 9 1000 37.34

Example 3. Take p = 13. We now consider a polynomial with several
different types. Let

φ1(x) = x2 + 132x+ 134 · 3;
φ2(x) = φ1(x)3 + 1318 · 2;
φ3(x) = φ2(x)10 + 1389(x+ 132)φ2(x)5 + 13176φ1(x);
φ4(x) = φ3(x)2 − 13248((x+ 132)φ1(x) + 138)φ2(x)6 − 13335φ1(x)2φ2(x);
fj(x) =

∏j

k=0
φ4(x+ k) + 135000, j = 0, . . . , 12.

In the number field Kj defined by fj(x), we have the factorization

13ZL = p5
1 · · · p5

j , f(p1/13) = · · · = f(pj/13) = 24.

Each prime ideal corresponds to an order 4 type. The 13-index of fj(x)
is 21576j. In this example, the addition of more factors to the product
defining the fj(x) implies a significant growing in the size of the coefficients
of the polynomial, which has a certain impact in the running times of the
algorithm, shown in the table below.
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j deg fj ind(fj) t
0 120 21576 0.06
1 240 43152 0.13
2 360 64728 0.33
3 480 86304 0.70
4 600 107880 1.29
5 720 129456 2.16
6 840 151032 3.50
7 960 172608 5.19
8 1080 194184 7.38
9 1200 215760 10.43

10 1320 237336 14.00
11 1440 258912 18.52
12 1560 280488 23.97

Example 4. We applied the algorithm to the 32 polynomials f1, . . . , f32
appearing in [5, appendix D]. The total running time for altogether was less
than 0.2 seconds. We then applied the algorithm to the polynomials Fi =
f2
i + p1000

i , where pi is the prime specified in loc.cit. for every polynomial.
In the table below we display the pi-index of these polynomials and the
running times of the algorithm.

f p ind(f) t f p ind(f) t
F1 2 4510 1.09 F17 2 7016 1.00
F2 2 4507 0.84 F18 7 7002 14.39
F3 3 4502 2.05 F19 71 7502 172.85
F4 3 5006 1.19 F20 3 7510 3.95
F5 2 5005 0.43 F21 5 7502 29.81
F6 2 5009 0.66 F22 3 7500 4.25
F7 2 5510 1.28 F23 3 7510 4.09
F8 5 5502 83.99 F24 2 8072 1.62
F9 2 5514 0.70 F25 47 10520 41.33
F10 1289 6002 173.79 F26 61 6090 73.85
F11 2 6014 1.03 F27 2 8084 2.44
F12 3 6000 5.12 F28 3 8152 1.75
F13 11 6502 82.86 F29 3 12040 5.10
F14 17 6502 58.45 F30 2 16156 6.83
F15 2 6527 2.27 F31 2 16476 15.60
F16 2 7009 1.59 F32 2 20204 18.22
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