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Action of the Grothendieck-Teichmüller group on
torsion elements of full Teichmüller modular

groups in genus zero

par Benjamin COLLAS

Résumé. Cet article présente l’action du groupe de Grothendieck-
Teichmüller ĜT sur les éléments de torsion d’ordre premier du
groupe fondamental profini πgeom

1 (M0,[n]). Nous établissons par
ailleurs que les classes de conjugaison d’éléments de torsion d’ordre
premier de π̂1(M0,[n]) correspondent aux classes de conjugaison
discrètes de π1(M0,[n]).

Abstract. In this paper we establish the action of the Gro-
thendieck-Teichmüller group ĜT on the prime order torsion ele-
ments of the profinite fundamental group πgeom

1 (M0,[n]). As an
intermediate result, we prove that the conjugacy classes of prime
order torsion of π̂1(M0,[n]) are exactly the discrete prime order
ones of the π1(M0,[n]).

1. Introduction

In this paper we establish an essential property of the action of the Gro-
thendieck-Teichmüller group ĜT on the prime order torsion elements of
the profinite fundamental group πgeom1 (M0,[n]). This property shows that
the ĜT action on these torsion elements is of Galois type, as the absolute
Galois action on geometric (discrete) inertia of πgeom1 (M0,[n]) is given by
an analogous expression.

The main difficulty in our study lies in characterising the profinite tor-
sion conjugacy classes, which is an extremely difficult problem for profinite
completions in general. In the groups πgeom1 (M0,[n]), we solve this problem
for prime order torsion by showing that conjugacy classes are the same as
the discrete ones.

In what follows, we identify πgeom1 (M0,[n]) with the full mapping class
group Γ̂0,[n], the group of oriented diffeomorphisms of the genus zero surface
with n punctures modulo those isotopic to the identity.

Manuscrit reçu le 28 avril 2011, révisé le 26 septembre 2011.
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Inertia at infinity, stack inertia and Galois action. The idea of con-
sidering torsion elements in Γ̂0,[n] comes from the general idea of A. Gro-
thendieck’s Esquisse d’un programme [Gro97] to study the absolute Ga-
lois group GQ through geometric representations in algebraic fundamental
groups.

More precisely, he suggests considering representations related to moduli
spaces of curves with marked pointsM0,[n]

GQ ↪→ Out(πgeom1 (M0,[n])),

– which exist following [Oda97] because the moduli spacesM0,[n] are alge-
braic stacks of type Deligne-Mumford defined over Q – and in particular
the role of the automorphism groups of such curves.

In the Deligne-Mumford compactification Mg,[n] of Mg,[n], the divisor
at infinity D∞ decomposes into its irreducible components:

D∞ =Mg,[n]\Mg,[n] = ∪D,

where the D are normal crossing divisors of codimension one in Mg,[n].
When g = 0, each of the associated inertia subgroups ID of π1(M0,[n]) is
conjugate to one of the cyclic groups <σ1σ2 · · ·σk> for 1 6 k 6 n − 3,
where the σi are braid generators – see below.

For pure moduli spacesMg,n, H. Nakamura proved by using generalized
Grothendieck-Murre theory that the action of the absolute Galois group
GQ on inertia at infinity of Mg,n is given by χ(σ)-conjugacy action, i.e.
conjugating an inertia generator and raising it to the power χ(σ) – cf.
[Nak97] and [Nak99].

Because of the residual finiteness of the mapping class group, torsion
elements of Γg,[n] give torsion elements of the same order in the profi-
nite geometric fundamental group. These geometric torsion elements of
the profinite group correspond to stack inertia in the following sense.

As algebraic stacks, moduli spacesMg,[n] admit local stack inertia groups
Ix = Aut(x) composed of the finite automorphisms of the isomorphism
class of an object x ∈ Mg,[n]. Following B. Noohi [Noo04] these geometric
automorphisms groups inject into the fundamental group

ωx : Ix → πgeom1 (Mg,[n]).

Identifying πgeom1 (Mg,[n]) with the mapping class group Γ̂g,[n], such inertia
groups in fact correspond exactly to finite subgroups of Γg,[n] by a result of
S. Kerckhoff [Ker83].

It is natural to ask whether all torsion elements of πgeom1 (Mg,[n]) are
conjugate to the geometric ones and whether GQ acts on torsion elements
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by χ(σ)-conjugacy. The first main result in this paper answers the first
question in the case of genus zero and prime order torsion.
Theorem A. All prime order torsion elements of Γ̂0,[n] are conjugate to
geometric torsion elements.

The approach taken is cohomological and based on an idea of J. P. Serre
[Ser97] : conjugacy classes of finite subgroups of profinite completions of
good groups can be determined by the discrete group (proposition 3.4).
The main obstacle in applying Serre’s theory to the non-prime power torsion
elements in Γ0,[n] is the fact that distinct conjugacy classes of same order can
intersect – see remark 3.4. Characterising order of torsion by cohomology
properties is also a well-known difficult problem – see remark 2.9.

For the second question, one can show that the Galois action is as ex-
pected on all geometric torsion elements of Γ̂0,[n] by using the geometry of
the genus zero moduli spaces – see [Col11b]. The general case for positive
genus is not known.

Grothendieck-Teichmüller action on inertia of πgeom1 (M0,[n]). The
Grothendieck-Teichmüller group ĜT was first defined by V.G. Drinfel’d
in the framework of quasi-Hopf quasitriangular algebras [Dri90]. Y. Ihara
[Iha94] proved the existence of an injection GQ ↪→ ĜT . One of the main
motivations of Grothendieck-Teichmüller theory is to compare these two
groups and in particular their action on fundamental groups. In this paper
we compare their actions on torsion elements πgeom1 (M0,[n]).

Definition. The group ĜT is the group of the invertible elements (λ, f) ∈
Ẑ∗ × F̂′2 satisfying the equations

f(x, y)f(y, x) = 1(I)
f(x, y)xmf(z, x)zmf(y, z)ym = 1(II)
f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1(III)

where xyz = 1, m = (λ− 1)/2 and xij are generators of Γ0,5.

V. G. Drinfel’d showed that ĜT acts on the profinite completion of the
Artin braid groups B̂n through the formula on braid group generators σi

σi 7→ f(yi, σ2
i )σλi f(σ2

i , yi) (λ, f) ∈ ĜT

where yi = σi−1σi−2 · · ·σ2
1 · · ·σi−2σi−1 – cf. [Dri90]. It is easily shown that

this action passes to the quotient Γ̂0,[n] of B̂n. Y. Ihara and M. Matsumoto
[IM95] proved the compatibility between ĜT and GQ actions on Γ̂0,[n]

Using this as well as morphisms between "flat ribbons" – cf. [LS97b],
one can prove that the action of the Grothendieck-Teichmüller group ĜT
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on inertia generators ID at infinity ofM0,[n] is given by λ-conjugacy. This
result means that the action of ĜT on inertia at infinity is of Galois type.

This similarity with the GQ action leads naturally to the question of
whether the ĜT -action on profinite torsion elements has the same form.
The second main result of this paper is the following.
Theorem B. The group ĜT acts on prime order torsion elements of Γ̂0,[n]
by λ-conjugacy.

In particular, since GQ ↪→ ĜT , this recovers the analogous result for GQ
mentioned above, at least for prime order elements.

The first three cases of theorem B were already known since the torsion
of order 2, 3 and 5 can be derived from cycles in the groups Γ0,[4] and
Γ0,[5] in [LS97a]. Also by studying Galois action on specific coverings of the
projective line, H. Tsunogai and H. Nakamura obtain explicit expressions
on geometric torsion elements of Γ0,[4] by precising the conjugating elements
– see [Tsu06], [NTY10] and [NT03]. In addition to these results, [LSN04]
introduced new geometric special loci which are more closely related to the
torsion elements, and give a fully explicit expression for the Galois action
on the last case in Γ0,[5].

2. Group cohomology, torsion properties

We follow an idea introduced by J. P. Serre in [Ser97] which serves in cer-
tain cases to relate conjugacy classes of elements of finite order of profinite
completions to discrete ones. In the case of the full mapping class groups
Γ0,[n] this approach can not be applied directly because these groups do
not satisfy the (?) property defined below – see Example 3.5. However the
methode can be adapted to work in the prime order torsion elements of
Γ0,[n].

Let us consider the two following properties (?) and (H) below.

Let G be a discrete or profinite group and {Gi}I be a finite family of
finite subgroups of G.

(1) Every finite subgroup of G is conjugate to a subgroup of
one of Gi;

(2) For i 6= j or g /∈ Gi then Gj ∩ gGig−1 = {1}. (?)

Remark that such a family {Gi} must consist of exactly one representative
for each conjugacy classe of the finite maximal subgroups of G. We say in
what follows that a group G satisfies the (?) property for short, if it satisfies
the (?) property for such a family.
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The property (H) is defined by:

Let G be a discrete group with finite virtual cohomological dimension.
Let us consider a finite family of subgroups {Gi}I of G. For every discrete
G-module M , the morphism

(H) Hn(G,M)→
∏

Hn(Gi,M)

is an isomorphism in sufficiently high degree.

In the case of a profinite groupG, we adapt this (H) property by replacing
discrete G-modules by torsion G-modules with continuous action.

2.1. Good groups, properties. We recall the notion of a good group
and two well-known properties – established in a more general context by
H. Nakamura in [Nak94], that are extensively used to obtain results in the
next section. Recall that a group G is said to be residually finite if it injects
into its profinite completion Ĝ.

Definition ([Ser94]). Let G be a residually finite group and Mod(G) the
category of finite G-modules. The group G is said to satisfy the (An) prop-
erty if the morphism between groups cohomology

Hk(Ĝ,M)→ Hk(G,M) for any M ∈Mod(G)

is an isomorphism for k 6 n and is into for k = n + 1. If G satisfy the
(An) property for all n > 1, the group G is said to be good.

A group is said to be FP if the G-module Z admits a resolution of finite
length by projective modules of finite type. A cohomological condition is
said to be virtual if it is satisfied for a finite index subgroup. In particular,
a FP group has finite virtual cohomological dimension.

Whereas not true in general, the profinite completion functor is left exact
for good groups. The following results are well-known.

Lemma 2.1 ([Ser94, Nak94]). Let a discrete group G be an extension of
discrete groups K by H

1→ H → G→ K → 1

where H is good virtually FP and K is good. Then the following sequence
is exact

1→ Ĥ → Ĝ→ K̂ → 1

This lemma is based on the weaker condition for G to satisfy the (A2)
property and implies the stability of the goodness property under group
extension.



610 Benjamin Collas

Proposition 2.2 ([Ser94, Nak94]). Let a discrete group G be an extension
of discrete groups K by H

1→ H → G→ K → 1.
If H is virtually FP , of finite type and good, and K is good, then G is good.

In our situation, we obtain the following results as a corollary.

Proposition 2.3. The mapping class groups Γ0,n and Γ0,[n] are good for
n > 3.

Proof. Recall that for n > 1 the fundamental group π1(Sg,n) of a Riemann
surface is isomorphic to a free group, hence has cohomological dimension
equal to one. Free groups are then good groups since it is sufficient to check
the (A1) property which is straightforward.

Both results are established by induction on the number of marked
points. Let us consider the case of the pure mapping class group Γ0,n and
remark that Γ0,4 ' F2. Considering the Birman exact sequence coming
from erasing points on surface

1→ π1(S0,n−1)→ Γ0,n → Γ0,n−1 → 1
where π1(S0,n−1) = Fn−2 is free hence good, the result is established fol-
lowing proposition 2.2.

The case of the full mapping class group Γ0,[n] is quite similar using the
following exact sequence

1→ Γ0,n → Γ0,[n] → Sn → 1
where Sn is good as a finite group.

�

Remark 2.4. These results can be generalized to genus 1 and 2 with similar
methods: for genus 1 let us remark that Γ1,1 = SL2(Z) contains a con-
gruence subgroup Γ2(3) which is a finite index free group; for genus 2 we
use the morphism M2,0 → M2,0/<ι >'M0,6 where ι is the hyperelliptic
involution. Thus the groups Γ1,[n] and Γ2,[n] are good groups. This is an
important open question when g > 3.

The result below is based on a series of results of Serre-Huebschmann in
[Hue79], K. S. Brown in [Bro94, chap. X] for discrete groups and C. Schei-
derer in [Sch97] for profinite groups.

Proposition 2.5. Let G be a discrete residually finite good group virtu-
ally FP , and {Gi}I be a finite family of finite subgroups of G. If G has
finite virtual cohomological dimension and satisfies the (?) property, then
the profinite completion Ĝ satisfies the (?) property for the same discrete
family.
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We give here a brief outline of the proof in order to explain the role of
the different properties.

Sketch of proof. In the discrete case, cohomology groups H?(G, ·) are iso-
morphic to the Farrell G-equivariant cohomology groups Ĥ?

G(AG, ·) [Bro94,
chap. X] with Ĥn

G(AG,M) =
∏
I Ĥ

n
G(AiG,M) where Ĥn

G(AiG,M) are co-
homology groups associated to the subsimplex AiG composed of subgroups
conjugate to Gi. Consider the restriction morphism

Ĥn
G(AiG,M) −→ Ĥn

Gi
(AiG,M)

where Ĥ?
Gi

(AiG, ·) are isomorphic to the Gi-equivariant cohomology groups
Ĥ?
Gi

(AiGi, ·), hence to the H?(Gi, ·) groups.
If G satisfies the (?) property for the Gi, then the previous morphism is

an isomorphism via an isomorphism of spectral sequences in E1. This gives
the (H) property in the case of discrete groups.

By the goodness property of G, the (H) property is transferred from G

to its profinite completion Ĝ for the same family of Gi. It is then a result
of [Sch97] – based on a discrete result of [Hue79] – that profinite groups
which satisfies the property (H) for some Gi satisfies the property (?) for
the same Gi family. �

As a special case of the previous proposition, let us notice the following
corollary for the torsion-free case, in which the family of the (?) property
is reduced to {1}.

Corollary 2.6. Let G be a discrete residually finite and good group virtually
FP . If G is torsion free then its profinite completion Ĝ is torsion free.

2.2. Group extension, prime order cyclic case. We introduce in this
section the theoretical framework that will be used in the mapping class
group context.

Let G be a discrete group, H a torsion free subgroup of G and ρ a
finite order automorphism of H induced by conjugation by a finite order
element of G. Consider the discrete group G′ = H o 〈ρ〉 ⊂ G and the set
of G′-conjugacy classes of sections of

(2.1) 1→ H → G′ → 〈ρ〉 → 1,

which correspond bijectively to the non-abelian cohomology setH1(〈ρ〉, H).

Proposition 2.7. Let H be a discrete torsion free group and ρ be a prime
order p automorphism of H. Let us assume that the number of finite or-
der p-cyclic conjugacy classes of H o 〈ρ〉 is finite. Then H o 〈ρ〉 satisfies
property (?).
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Proof. Let us consider a family {Gi}I as in the remark following the prop-
erty (?) in the beginning, consisting of one representative of each conjugacy
classe of maximal finite subgroups of G. As H is torsion free every finite
subgroup of H o 〈ρ〉 has order p, and by hypothesis there is only a finite
number of Gi.

If two representatives of distinct conjugacy classes are non-trivially in-
tersecting

Gi ∩ gGjg−1 = G0

where G0 6= {1}, then G0 has prime order as a subgroup of Gi. Thus
Gi = G0 which implies gGjg−1 = Gi contradicting the assumption that Gi
and Gj are in two distinct conjugacy classes. �

Corollary 2.8. Let us consider G = H o 〈ρ〉 a discrete subgroup where ρ
is a prime order p automorphism of H. If G is good with a finite number
of conjugacy classes of cyclic order p then Ĝ satisfies property (?) for the
same discrete family {Gi}I of G.

Proof. The proof is straightforward as according to the previous propo-
sition the group G′ = H o 〈ρ〉 satisfies the property (?) for the discrete
family {Gi}I . Following proposition 2.5 we deduce the same property for
its profinite completion. �

From a non-abelian cohomological point of view, this means that there
is a bijection between the following non-abelian sets

H1(〈ρ〉, Ĥ) ' H1(〈ρ〉, H)

which are in bijection with any chosen family of discrete Gi.

Remark 2.9. Let us notice that characterising the order of the torsion of
a group by cohomological properties is a well-known difficult problem. For
example in the case of a discrete group G, order of torsion elements are
amongst the divisors of the denominator of the Euler characteristic χ(G),
but the existence of only p-torsion of G can be determined – see [Bro74].

3. The ĜT action on algebraic p-torsion

This section presents the two main results of this article. Identifying
the orbifold πorb1 (M0,[n]) and geometric πgeom1 (M0,[n]) fundamental groups
with the mapping class group Γ0,[n] and its profinite completion Γ̂0,[n] re-
spectively, we apply the cohomological results of the previous section to
prove theorems 3.3 and 3.10.
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3.1. Geometric torsion of πgeom1 (M0,[n]). We recall in this section
some well-known results about geometric torsion of πgeom1 (M0,[n]), or equiv-
alently about torsion element of the discrete group Γ0,[n]. The following
result was proved by C. MacLachlan and W. J. Harvey (cf. [MH75]).

Theorem 3.1. Any torsion element of Γ0,[n] has order dividing n, n − 1
or n − 2. There exists exactly one conjugacy class in Γ0,[n] for each given
order, except for order 2 and n even.

Recall that the conjugacy class of an order k torsion elementγ of Γ0,[n] is
characterised by the signature of the quotient morphism Γ0,[n] → Γ0,[n]/〈γ〉,
which is

(0; ∅; (n− 2)/k + 2) (0; k; (n− 1)/k + 1) or (0; k, k;n/k).

For a given order k 6= 2, only one of these signature can be realized. For
k = 2 and if n is even, then there exist indeed two conjugacy classes of
order two: one for εn/2

n and one for ε(n−2)/2
n−2 . These two conjugacy classes

induce two distinct types of permutation on marked points.
Using the presentation of Γ0,[n] as a quotient of a braid group,

Γ0,[n] ' Bn/〈zn = 1, yn = 1〉

where

zn = (σ1σ2 · · ·σn−1)n yn = σn−1σn−2 · · ·σ2
1 · · ·σn−2σn−1

are respectively generators of the center of Bn, and the Hurwitz relation of
the sphere, we obtain:

Corollary 3.2. Every finite order element of Γ0,[n] is conjugate to a power
of one of the following order k elements εk below

εn = σ1σ2 · · ·σn−1 εn−1 = σ1σ2 · · ·σn−2 εn−2 = σ2
1σ2 · · ·σn−2.

3.2. Algebraic prime torsion of πgeom1 (M0,[n]). We establish the first
of our main results: the prime order torsion of πgeom1 (M0,[n]) is geomet-
ric, i.e. the conjugacy classes of such elements come from discrete ones in
πorb1 (M0,[n]).

Remark that as mapping class groups are residually finite groups, i.e.
Γg,[n] ↪→ Γ̂g,[n] then the order of the discrete torsion is preserved in the
profinite completion. We note again εk ∈ Γ̂g,[n] for the images of the previ-
ous discrete torsion elements.

Let us now prove the first main result of this article.

Theorem 3.3. Let γ ∈ Γ̂0,[n] be an order prime torsion element. Then γ
is conjugate to a power of one of the elements εn, εn−1 or εn−2.
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Remark 3.4. As Γ0,4 is isomorphic to a free group, it follows from a result
on free products that Γ0,4 satisfies the (?) property (see [Ser03]).

Results of the first sections can not be directly applied1 on G = Γ0,[n]
since the mapping class groups do not satisfy property (?) in all general as
noticed in the following example.
Example 3.5. Consider the mapping class group Γ0,[30]. This group contains
the isometry groups A5 and A4 of the dodecahedron and the tetrahedron
respectively, as maximal finite subgroups. We notice that both groups con-
tains an order three element – for the dodecahedron as rotation of a cube,
with no marked fixed points and 10 orbits of 3 points. Therefore Γ0,[30]
contains two finite maximal subgroups whose intersection is non-empty up
to conjugacy.

Recall that the pure mapping class groups Γ0,n are torsion free. We need
the following lemma.
Lemma 3.6. Let γ be a finite order element of Γ0,[n]. Then the group
Γ0,n o 〈γ〉 admits a finite number of conjugacy classes of group of order p.
Proof. Let us consider H = Γ0,n o 〈γ〉 and the following exact sequence
(3.1) 1→ Γ0,n → H → 〈[γ]〉 → 1,
where 〈[γ]〉 is the subgroup of Sn generated by the induced permutation
by γ on marked points.

Then H has finite index in Γ0,[n], which implies that H has a finite
number of conjugacy classes in Γ0,[n]. �

We now establish that the permutation induced by any torsion element
comes from a geometric one.
Lemma 3.7. Let γ ∈ Γ̂0,[n] be a torsion element of prime order p and let us
denote by [γ] the permutation induced on marked points via the morphism
Γ̂0,[n] → Sn. Then there exists an element γ0 of the discrete group Γ0,[n]
such that [γ0] = [γ].

Proof. Let γ ∈ Γ̂0,[n] be a torsion element of prime order p, and let us
consider the two following exact sequences

1 // Γ̂0,n // Γ̂0,[n] // Sn
// 1

1 // Γ0,n
?�

OO

// Γ0,[n]
?�

OO

// Sn
// 1

Suppose that [γ] is not geometric. Let us consider the discrete group
H = 〈Γ0,n, σ〉 ⊂ Γ0,[n]

1We thank B. Enriquez for this remark.
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where σ ∈ Γ0,[n] is an infinite order preimage of [γ]. As any permutation
associated to an element of H is a power of [γ] then H is torsion free, since
if τ ∈ H is torsion and gives the permutation [γ]i, then the element τ j is
torsion for ji = 1 mod ord([γ]) and gives the permutation [γ], which can
not happen since no torsion element is associated to [γ] by hypothesis .

Remark that the group H is good as an extension of good groups by
the exact sequence (3.1) where Γ0,n is good according to proposition 2.2.
From corollary 2.6 it then follows that the torsion-freeness of H implies the
torsion-freeness of the profinite completion Ĥ. Moreover, Ĥ is the closure
of H in Γ̂0,[n], since H is of finite index and since finite index subgroups are
open hence closed following [NS03], hence Ĥ ⊂ Γ̂0,[n]. Now, remark that
γσ−1 ∈ Γ̂0,n, hence γ = hσ for h ∈ Γ̂0,n. Thus we have γ ∈ Ĥ, which
contradicts the fact that Ĥ is torsion free.

Therefore, if γ ∈ Γ̂0,[n] is torsion, then [γ] is geometric and thus there
exists γ0 ∈ Γ0,[n] such that [γ] = [γ0]. Also, γp0 = 1 since [γp0 ] = 1, so
γp0 ∈ Γ0,n and this group is torsion free. �

We now prove theorem 3.3 by applying the cohomological results of the
previous section on a geometric element associated to [γ].

Proof of the theorem 3.3. Let γ ∈ Γ̂0,[n] be a p prime torsion element. By
the previous lemma there exists a torsion element γ0 of Γ0,[n] such that
[γ0] = [γ]. Since Γ̂0,n is torsion free, the preimage 〈[γ]〉 in Γ̂0,[n] is a semi-
direct product Γ̂0,no 〈γ〉. Since γ0 is in this preimage, there exists h ∈ Γ̂0,n
such that

γ = hγ0.

Let us consider the relation

(3.2) γp = (hγ0)p = hγ0(h) · · · γp−1
0 (h) = 1

where γ0 acts by conjugation on h. Then h is an order p cocycle of
H1(〈γ0〉, Γ̂0,n). Following lemma 3.6 there exists only a finite number of
conjugacy classes in the group Γ0,n o 〈γ〉.

As γ0 = h−1γ belongs to Γ̂0,n o 〈γ〉 we have

Γ̂0,n o 〈γ〉 = Γ̂0,n o 〈γ0〉

Following corollary 2.8 and the fact that Γ0,n o 〈γ0〉 is good (see exact
sequence (3.1) and argument below), the following non-abelian cohomology
sets correspond bijectively

H1(〈γ0〉, Γ̂0,n) ' H1(〈γ0〉,Γ0,n).
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Hence there exists h0 ∈ Γ0,[n] which gives the same cocycle as h, i.e. the
cocycles h and h0 differ by a coboundary

h = kh0γ0(k−1)

= kh0γ0k
−1γ−1

0 for k ∈ Γ̂0,[n].

By substitution of this relation into γ = hγ0 we have

γ = k.h0γ0.k
−1

where h0γ0 is a torsion element of Γ0,[n] since it is a conjugate of γ.
Hence every torsion element of prime order of Γ̂0,[n] is conjugate to a

geometric torsion element of same order of Γ0,[n]. �

Remark 3.8. In this result and the following, restriction to prime order is
only due to the Serre’s theory approach we employed in section 2.2.

Remark 3.9. From this point of view, the proposition 3 of [LS94] can be
seen as determining the order 2 and 3 (resp. 5) torsion in Γ̂0,[4] (resp. Γ̂0,[5]).

3.3. The ĜT action on torsion. As we know that any prime order tor-
sion element of Γ̂0,[n] is conjugate to a discrete one, we use the explicit
action of the Grothendieck-Teichmüller group ĜT on the braid group gen-
erators of the mapping class group Γ̂0,[n] to deduce the ĜT action on prime
order torsion elements of Γ̂0,[n].

Theorem 3.10. The Grothendieck-Teichmüller group ĜT acts by λ-conju-
gacy on the prime order torsion elements of Γ̂0,[n], i.e. if F = (λ, f) is an
element of ĜT and ε ∈ Γ̂0,[n] a prime order torsion element, then there
exists g ∈ Γ̂0,[n] such that

F (ε) = gελg−1.

The proof of this result requires us to consider a particular braid group
quotient with the following property.

Proposition 3.11. Let zn (resp. yn) denote the generator of the center
(resp. the Hurwitz element) of the braid group Bn and let us consider the
group

G = Bn/〈zny−1
n 〉.

Then G is good and every torsion element of Ĝ is conjugate to a power of
one of

ε̃n−2 = σ2
1σ2 · · ·σn−2 ε̃n−1 = σ1σ2 · · ·σn−2 or ε̃n = σ1σ2 · · ·σn−1

respectively of order n− 2, n− 1 and n in G.



A ĜT action on torsion of πgeom
1 (M0,[n]) 617

Proof. Let us show that G is good. We consider the exact sequence
(3.3)

1 −→ Ker(ψ) −→ G = Bn/〈y−1
n zn〉

ψ−→ Γ0,[n] = Bn/ < yn, zn >−→ 1

and let us identify Ker(ψ) with Z using the morphism φ : Bn → G where
we note ȳn = φ(yn) and z̄n = φ(zn). The element ȳn is central as ȳn = z̄n
in G. Hence for ω ∈ Ker(ψ) we have ω = ȳjnz̄

k
n = z̄j+kn in G and Ker(ψ) is

cyclic.
The group G is thus good, of finite type and FP group extension and

we conclude using the proposition 2.2.

Let γ be a torsion element of Ĝ of prime order p. Since G is good and
of finite type the profinite completion functor is exact according to lemma
2.1. The exact sequence (3.3) then induces

(3.4) 1 // Ker(ψ̂) // Ĝ
ψ̂ // Γ̂0,[n] // 1

where Ker(ψ̂) ' Ẑ, hence torsion free – or more generally by proposition
2.6. Considering ψ̂(γ) ∈ Γ̂0,[n], then ψ̂(γ) and γ have the same order.

Following proposition 3.3 the element ψ̂(γ) is conjugate to a power of a
geometric element of Γ0,[n]

ψ(γ) = gεki g
−1 with g ∈ Γ̂0,[n] and i ∈ {n− 2, n− 1, n}.

As ε̃i is a preimage in Ĝ of εi we obtain

(3.5) γ = g̃ε̃ri g̃
−1z̄jn

where z̄n is the generator of Ker(ψ̂) and g̃ is a preimage of g in G. Powering
the relation above to the order p of γ we obtain

z̄pjn = 1

as zn generates the center of B̂n. This implies j = 0 since Ker(ψ) ' Ẑ is
torsion free as a group of cohomological dimension one. We conclude with
equation (3.5) that γ is conjugate to a geometric element in Ĝ since

γ = g̃ε̃ri g̃
−1

with i ∈ {n− 2, n− 1, n} as announced. �

Lemma 3.12. The ĜT action defined on the braid group B̂n factors through
the quotient Ĝ = B̂n/〈zny−1

n 〉. This action is compatible with the morphism
Ĝ→ Γ̂0,[n].
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Proof. The proof is straightforward and comes from the action on B̂n de-
fined in [Dri90]. For F ∈ ĜT we have

F (yn) = yλn F (zn) = zλn.

Hence F (zny−1
n ) = (zny−1

n )λ since zn generates the center of B̂n. Then the
action of ĜT on B̂n and Γ̂0,[n], defined on each generator σi, is defined on
a compatible manner on Ĝ

B̂n
//

((RRRRRRRRRR Γ̂0,[n]

Ĝ = B̂n/〈zny−1
n 〉

OO

hence respects the morphism Ĝ→ Γ̂0,[n]. �

We now prove the main theorem of this article.

Proof of theorem 3.10. Let γ be a p-prime order torsion element of Γ̂0,[n]
and F = (λ, f) be an element of ĜT . Following proposition 3.3 the element
γ is conjugate to a r-power for some r ∈ Z of one of the maximal finite
order element εn, εn−1 or εn−2.

Since F (γ) has same order as γ, it is conjugate to a power of one of these
elements according to the same proposition. As the group ĜT preserves
permutation and as each of the distinct elements εk has a distinct number
of fixed points, we deduce

F (γ) = αγkα−1

for some k ∈ Ẑ. Let us consider the commutative diagram

Γ̂0,[n]

F
��

// Γ̂ab0,[n]

F
��

Γ̂0,[n] // Γ̂ab0,[n]

which gives the relation
(3.6) F (γab) = F (γ)ab.

We now compute in the abelianisation of Γ̂0,[n] to determine the k power.
Since Γ̂0,[n] = Bn/〈zn, yn〉, in Γ̂ab0,[n] one obtains σi = σ for 1 6 i 6 n − 1
from braid relation, σn(n−1) = 1 from relation zn = 1 and σ2(n−1) = 1 from
relation yn = 1. Hence

Γ̂ab0,[n] '
{
Z/(n− 1) if n is odd
Z/2(n− 1) if n is even.
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Let us first consider the case γ ∼ εrn−1. Then from the expression εn−1 =
σ1 . . . σn−2 in corollary 3.2 and theorem 3.3, the equation (3.6) gives

σr(n−2)λ = σr(n−2)k

and computing modulo the order of the element γ
(n− 2)λ ≡ (n− 2)k mod p

λ ≡ k mod p
since p divides n− 1.

For the case γ ∼ εrn in Γ̂0,[n], let us consider the subgroup Γ̂1
0,[n+1] in

Γ̂0,[n+1] constituted by elements fixing a point, and the orbifold fundamental
groups homomorphism induced by erasing the fixed point

Γ̂1
0,[n+1] → Γ̂0,[n].

Then γ = (σ1 · · ·σn−1)r ∈ Γ̂1
0,[n+1] is sent to ε

r
n which is of order n in Γ̂0,[n].

Thus the ĜT action on γ is induced by its action on εn.

The last case γ ∼ εrn−2 is more subtle since γab = ±1 in Γ̂ab0,[n]. We
then consider the quotient Ĝ = B̂n/〈zny−1

n 〉 in the braid group through the
factorization

Bn //

((QQQQQQQQ Γ0,[n]

Bn/〈zny−1
n 〉

OO

whose abelianisation is isomorphic to
Ĝab ' Ẑ/(n− 1)(n− 2).

Following proposition 3.11 let us consider ε̃n−2 the obvious preimage of
εn−2 in Ĝ. We remark that its abelianisation ε̃abn−2 has same order as εn−2
in Ĝab.

Let γ̃ be a preimage of γ in Ĝ and let F ∈ ĜT . Then γ̃ is conjugate
to a geometric element in G by proposition 3.11 and we can consider the
action of F on γ̃ by lemma 3.12. Because F preserves permutations, F (γ̃)
is conjugate to a power of the same geometric element as γ, so we have:
(3.7) F (γ̃) = β−1γ̃mβ with β ∈ Ĝ.

Computing in the abelianised Ĝab as previously, since the ĜT action on Ĝ
commutes with abelianisation, the equations

F (γ̃)ab = F (γ̃ab)
and (3.7) imply

grλ(n−1) = grm(n−1)
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where g is a generator of Ĝab. As gr(n−1) has same order p as γ̃ we have
λ = m mod p. Thus

F (γ̃) = β−1γ̃λβ where β ∈ Ĝ.

Following lemma 3.12 this relation is the same in Γ̂0,[n]. �

Due to the fact that elements considered have prime order, the computa-
tions in the proof could be simplified. However remark that the proof given
above is adapted to work for any order as soon as it is known that the
action of an element of ĜT preserves conjugacy classes of groups generated
by profinite torsion elements.

For example the exact analogous result can be established for the ab-
solute Galois group GQ ⊂ ĜT acting on any geometric torsion element of
πgeom1 (M0,[n]), regardless of order. The reason is that an explicit descrip-
tion of the the special loci – defined as the substacks ofM0,[n] whose closed
points admit the torsion element as automorphism – cf. [Sch03], is used to
control the action of GQ on the conjugacy classes – cf. [Col11b].

In the case of genus one, a complete description of special loci is not
available, hence the Galois action on the corresponding geometric inertia
is not fully determined. Moreover, it is not known whether ĜT acts on the
full mapping class groups Γ̂g,[n] for g > 1.

In [Col11a] we define a new Grothendieck-Teichmüller group ĜR, de-
fined in the torsion context of [Sch06], which contains GQ and acts on the
full mapping class groups Γ̂g,[n]. The cohomological results of section 1 on
prime order extension of profinite torsion free groups are still usable. We
adapt them to a description of discrete torsion conjugacy classes of Γ1,[n]
to obtain analogous results for Grothendieck-Teichmüller action on genus
one profinite torsion elements.
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