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Goldbach’s problem with primes in arithmetic
progressions and in short intervals

par Karin HALUPCZOK

Résumé. Nous discutons quelques théorèmes sur des valeurs
moyennes dans le style du théorème de Bombieri-Vinogradov. Ils
concernent des problèmes additifs binaires et ternaires avec des
nombres premiers dans des progressions arithmétiques et des inter-
vals courts. Nous donnons des estimations non-triviales pour cer-
taines de ces valeurs moyennes. Comme application entre autres,
nous démontrons que pour n 6≡ 1 (6) grand et impair, le problème
n = p1 + p2 + p3 de Goldbach a une solution avec des nombres
premiers p1, p2 dans des intervals courts : pi ∈ [Xi, Xi + Y ],
où Xθi

i = Y et θi ≥ 0.933 pour i = 1, 2, et tel que en plus,
(p1 + 2)(p2 + 2) a au plus 9 facteurs premiers.

Abstract. Some mean value theorems in the style of Bombieri-
Vinogradov’s theorem are discussed. They concern binary and
ternary additive problems with primes in arithmetic progressions
and short intervals. Nontrivial estimates for some of these mean
values are given. As application inter alia, we show that for large
odd n 6≡ 1 (6), Goldbach’s ternary problem n = p1 + p2 + p3 is
solvable with primes p1, p2 in short intervals pi ∈ [Xi, Xi+Y ] with
Xθi
i = Y , i = 1, 2, and θ1, θ2 ≥ 0.933 such that (p1 + 2)(p2 + 2)

has at most 9 prime factors.

Notations: By p, p1, p2, p3 we denote prime numbers. The symbol X � Y
meansX � Y � X, and the symbol n ∼ N denotes the rangeN ≤ n < 2N
for n. We write a (q) for a residue class a mod q. Throughout, a star at a
residue sum or maximum means that the sum or maximum goes over all
reduced residues. By τ(q) we denote the number of positive divisors of q,
and by ν(q) the number of prime factors of q. The symbol Ps stands for
a pseudo-prime of type s, that is a positive integer with at most s prime
factors. Further, ε, ε1 and ε2 are small positive real constants. By A > 0
we denote a given positive constant, and B = B(A) > 0 denotes a positive
constant depending only on A. All implicit constants may depend on A and
ε, ε1, ε2.

Mots clefs. additive problems; circle method; sieve methods; short intervals.
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By Q1 and Q2 we denote real numbers ≥ 1 serving as bounds for the
moduli of the considered arithmetic progressions.

For the least common multiple of two integers a and b, we write [a; b],
and (a, b) denotes their greatest common divisor.

Considering intervals, we use the notation [X,X + Y ] for the set of in-
tegers n with X < n ≤ X + Y , where X and Y denote real numbers ≥ 2.
We call such an interval short, if Y = Xθ for a real number 0 < θ < 1.

The real numbers R, Y,X, Y1, Y2, X1, X2 ≥ 2 are considered to be suffi-
ciently large, being at least as big as some constant depending only on A
and the ε, ε1, ε2. Further L := log Y .

The statements of the Theorems 1,2,3,4,6 in this article begin with “For
all A > 0 there is a B = B(A) > 0 such that for all R, Y,X,X1, . . . (list
of occurring parameters) the following holds:”. Theorems 5,7 begin with
“For all A > 0 and all R, Y,X,X1, . . . (list of occurring parameters) the
following holds:” This sentence is left out for an easier reading.

1. Introduction
1.1. Statement of results. This article examines binary and ternary
additive problems with primes in arithmetic progressions (APs for short)
and in short intervals. We study what kind of mixtures of such conditions on
the prime summands are treatable and where the limits of current methods
are, especially when treating ternary problems. We show two such ternary
theorems resulting from two different approaches and give corollaries for
additive problems with almost-twin primes in short intervals. Here we call
a prime p almost-twin, if p + 2 is an almost-prime Ps for some positive
integer s.

The first approach works with an estimate that goes back to Kawada in
[5] and leads to the following Theorem 1.1, in which we consider the ternary
Goldbach problem with two primes in APs, both lying in short intervals
being of the same length Y :

Theorem 1.1. Let n ≥ X1 +X2 +2Y be odd, let n� X1Y , let X2 ≥ Y �
(n−X1)2/3+ε1, let X1 ≥ Y � X

3/5+ε2
1 and assume that Qi � Y X

−1/2
i L−B

for i = 1, 2.
Then for any fixed integers a1, a2 with a1 ≤ n−X1 − Y we have∑
q1≤Q1

∑
q2≤Q2

∣∣∣ ∑
p1+p2+p3=n

pi∈[Xi,Xi+Y ], i=1,2
pi≡ai (qi), i=1,2

log p1 log p2 log p3 − T(n, q1, a1, q2, a2)Y 2
∣∣∣

� Y 2L−A.

The singular series T(n, q1, a1, q2, a2) contains the whole arithmetic in-
formation of the problem. It is given at the end of Section 3 in its Euler
product form.
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Using a sieve theorem for a two-dimensional sieve, we deduce from this
result the following ternary corollary.
Corollary 1.1. Let Y be large and consider any odd integer n 6≡ 1 (6) with
n ≥ X1 + X2 + 2Y and n � X1Y . Then the equation n = p1 + p2 + p3
is solvable in primes p1, p2, p3 such that (p1 + 2)(p2 + 2) = P9, where pi ∈
[Xi, Xi + Y ], Xθ1

1 = Y , (n−X1)θ2 = Y with θi ≥ 0.933, i = 1, 2.
Another variant of this corollary can be deduced as follows.
As a first step for this, we deduce in Section 5.1 a short interval version

of Meng’s result in [7]:
Corollary 1.2. For all but O(Y L−A) even integers 2k1 6≡ 2 (6) with k1 ∈
[X1, X1 + Y ], the equation 2k1 = p2 + p3 is solvable in primes p2, p3 such
that p2 + 2 = P3, p2 ∈ [X2, X2 + Y ], where Xθ

2 = Y with θ ≥ 0.861, and
X2 + Y ≤ 2X1 � Y 3/2−ε.

By a counting argument, we infer in Section 5.1 a variant of Corollary
1.1, using Corollary 1.2 and a theorem of Wu in [18] on the number of Chen
primes in short intervals.
Corollary 1.3. Let Xθ1

1 = Y = Xθ2
2 be large, where θ1 ≥ 0.971 and θ2 ≥

0.861. Let n be an odd integer n 6≡ 1 (6) with X1 +X2 + 2Y ≤ n� Y 3/2−ε.
Then the equation n = p1 + p2 + p3 is solvable in primes p1, p2, p3 such that
p1 + 2 = P2, p2 + 2 = P3 and pi ∈ [Xi, Xi + Y ], i = 1, 2.

This corollary cannot be deduced from Corollary 1.1 before since the
almost-prime conditions on p1 + 2 and p2 + 2 in Corollary 1.3 are stronger.
And also not vice versa since the short interval condition in Corollary 1.1
is stronger due to 0.971 > 0.933.

Now we state the results of the second approach, it leads to theorems
of a similar kind. In this approach, we use an adaption of the theorem of
Perelli and Pintz in [11].

For the ternary Goldbach problem with one prime in an arithmetic pro-
gression and two primes in given short intervals of different length, we show
in Section 4 the following result.
Theorem 1.2. Let n denote a large positive odd integer, let X1 ≥ Y1 �
X

3/5+ε1
1 , let X2 ≥ Y2 � X

7/12+ε2
2 . Assume that Y 1/3+ε

2 � Y1 � Y2 �
n − X1 − Y1 − X2 − Y2 ≥ 0 holds. Then, for Q � Y1X

−1/2
1 L−B with

Q � Y
3/2

1 (n − X1)−1/2 and any fixed integer a with a ≤ n − X1 − Y1 we
have∑
q≤Q

∣∣∣ ∑
p1+p2+p3=n

pi∈[Xi,Xi+Yi], i=1,2
p1≡a (q)

log p1 log p2 log p3 − T(n, q, a)Y1Y2
∣∣∣� Y1Y2L

−A.
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Further, if Q � Y
1/2

1 is assumed instead of Q � Y
3/2

1 (n − X1)−1/2, then
max∗a(q) can be inserted after the sum over q.

The condition n−X1−Y1−X2−Y2 � Y2 is rather restrictive: If n,X1, Y1
are given, one has to choose X2, Y2 then appropriately, but still feasible in
such a way that Y1 and Y2 may be of different magnitude. The theorem
gives a sharp estimate then.

Here T(n, q, a) denotes the ternary singular series with one prime in an
arithmetic progression, namely

T(n, q, a) := 1
ϕ(q)

∏
p|n,p-q

or p-n−a,p|q

(
1− 1

(p− 1)2

) ∏
p-nq

(
1+ 1

(p− 1)3

) ∏
p|n−a,p|q

p

p− 1 .

From Theorem 1.2 we deduce: Every large odd n can be written as n =
p1+p2+p3 with two primes in short intervals of different length, one of which
lying in an arithmetic progression a modulo q for almost all admissible
moduli q ≤ Q, where Q� Y1X

−1/2
1 L−B and Q� Y

3/2
1 (n−X1)−1/2.

A last corollary with almost-twin primes in short intervals of different
interval lengths can be deduced from Theorem 1.2 above, again using sieve
methods:

Corollary 1.4. Let Xθ1
1 = Y1 be large, let Xθ2

2 = Y2 with θ2 > 3/5,
and let Y η

2 � Y1 � Y2. Let n be an odd integer n 6≡ 1 (6) with Y2 �
n−X1 −X2 − Y1 − Y2 > 0. Then the equation n = p1 + p2 + p3 is solvable
in primes p1, p2, p3 such that p1 + 2 = P3 and pi ∈ [Xi, Xi+Yi], i = 1, 2, if

• either 1 ≥ θ1 ≥ 0.861, 1 ≥ η > (1 + 1/θ1)−1 > 0.462,
• or 0.5 ≥ η ≥ 0.463, 1 ≥ θ1 > 1/min(1/η−1, (3−1/η)Λ3/2) > 0.782,
where Λ3 := 4− log(27/7)/ log 3.

1.2. A conjectured unification of the results. Now we ask what would
be the strongest version of a theorem that combines both classes of re-
sults. All theorems above are deduced either by the Kawada-approach or by
the Perelli-Pintz-approach. It would be interesting if there exists a slightly
stronger theorem that would incorporate all such results. Such a unifica-
tion, which seems to be unreachable by current methods, can be stated in
the following way:

Conjecture 1.1. There exist absolute constants 0 < θ, θ1, θ2 < 1 such that
for X1 ≥ R� Xθ1

1 , X2 ≥ Y � Xθ2
2 and R� Y θ, the estimate∑

r∈[X1,X1+R]
2|r

∑
q≤Q

max∗
a (q)

(a−r,q)=1

∣∣∣ ∑
p2∈[X2,X2+Y ]

p2≡a (q)
p2+p3=r

log p2 log p3 −S(r, q, a)Y
∣∣∣� RY

LA



Goldbach’s problem with primes in APs and in short intervals 335

holds for all Q� Y X
−1/2
2 L−B. Here the numbers r and p2 are chosen from

short intervals of length R respectively Y . In this statement, the Goldbach
equation p2 + p3 = r may be replaced by the twin equation p2 − p3 = r.

We note that a version of the conjecture with Y � Rθ would also be
desirable, but this seems to be also hard.

Here the singular series S(r, q, a) is the expression

(1.1) S(r, q, a) :=
{ 1
ϕ(q)S(rq), if 2 | r, (a, q) = (a− r, q) = 1,
0, otherwise,

with

(1.2) S(r) :=

2
∏
p6=2(1− 1

(p−1)2 )
∏

p|r
p 6=2

p−1
p−2 , if 2 | r,

0, otherwise.
Given as a series, it can be written as

S(r, q, a) =
∑
s≥1

Hs(r, q, a)

with

(1.3) Hs(r, q, a) := µ(s)
ϕ(s)ϕ([q; s])

∑∗
b(s)

e
(−rb
s

) ∑∗
c(s)

(q,s)|c−a

e
(bc
s

)
,

see e.g. [1, eq. (33)]. Further, we have

(1.4) S(r) =
∑
s≥1

µ2(s)
ϕ2(s)

∑∗
b(s)

e
(−rb
s

)
.

A number of theorems proved by several authors can be seen as special
cases of this conjecture. Mikawa [9] considered the case for R � Y � X1 �
X2, and Laporta [6] the one for Y � R and short intervals for r. Meng
[7],[8] considered the Goldbach variant for R � Y and non-short intervals.
Kawada’s estimate [5] for the special case k = 2, a0 = 1, b0 = 0, a1 = ±1,
b1 = r is contained in the conjecture with R � Y , with short intervals for
both p2 and r. Perelli’s and Pintz’s result [11] is contained in the conjecture
when taking no primes in arithmetic progressions, but such that r lies in a
short interval.

By now, the paper [1] of A. Balog, A. Cojocaru and C. David contains an
interesting result of this kind which can be seen closest to the conjecture,
namely, that the Barban/Davenport/Halberstam-variant of the conjecture
is true, that means, the corresponding estimate when max over a is replaced
by sum over a. It suggests that also the conjecture, which is a sharper
estimate of Bombieri-Vinogradov-type, could be true. It would be the next
step for reaching stronger results in this area.
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We remark that the major arc contribution of the conjecture can be
shown with known standard methods. We obtain that R � Y with Y �
X

7/12+ε1
1 , Y � X

3/5+ε2
2 , X1 −X2 ≥ Y suffices. The problem to prove the

conjecture lies in the minor arc contribution.
Theorems 1.2 and 1.1 show that we can put one AP-condition and

two short-interval-conditions or two AP-conditions and one short-interval-
condition (two with the same length are counted as one) on the primes when
treating the ternary Goldbach problem. But stronger versions seem to be
hard. The stated conjecture would lead to a version with two AP-conditions
and two short-interval-conditions.

We would like to mention that a mean value theorem as Theorem 1.1
could also hold with all three primes in arithmetic progressions with large
moduli. But this problem is of similar kind and seems to be unreachable,
too. See also [14], [15],[16] and [4] for discussions of this conjecture.

2. Tools

As a corollary of the known inequalities of Halasz and Montgomery, see
Satz 7.3.1 [2], we first state the following lemma.

Lemma 2.1. Consider a fixed integer a. For a real bound Q ≥ 1, positive
integers M,N with Q ≤M , N ≤M , M ≥ a and vM+1, . . . , vM+N ∈ C we
have

(2.1)
∑
q∼Q

∣∣∣ ∑
n∈[M,M+N ]
n≡a (q)

vn
∣∣∣� (N +Q2/3M1/3)1/2(log(M + 1))3/2·

·
( ∑
n∈[M,M+N ]

|vn|2
)1/2

.

Proof. Write v := (vM+1, . . . , vM+N )T ∈ CN and consider the usual scalar
product 〈v, w〉 :=

∑
n∼N vnwn on CN , where v, w ∈ CN . For every q ∼ Q

let

ϕq(n) :=
{

1, if n ≡ a (q)
0, else,

so that ϕq ∈ CN .
The left hand side of (2.1) then becomes

∑
q∼Q |〈v, ϕq〉|. Halasz-Montgo-

mery’s inequality states that this is

≤ ‖v‖
( ∑
q1,q2∼Q

|〈ϕq1 , ϕq2〉|
)1/2

,

where ‖v‖ :=
(∑

n∈[M,M+N ] |vn|2
)1/2

.
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Write τQ(n) :=
∑
d|n,d∼Q 1. Now we have, since M ≥ a (also Q,M ≥ 2

may be assumed w.l.o.g).∑
q1,q2∼Q

|〈ϕq1 , ϕq2〉|(2.2)

=
∑

q1,q2∼Q

∑
n∈[M,M+N ]

ϕq1(n)ϕq2(n) =
∑

n∈[M,M+N ]

∑
q1∼Q
q1|n−a

∑
q2∼Q
q2|n−a

1

=
∑

s,0≤M−a<s≤M+N−a

∑
q1∼Q
q1|s

∑
q2∼Q
q2|s

1 ≤
∑

s∈[M−a,M+N−a]
τQ(s)2

=
∑

s∈[M−a,M+N−a]
τQ(s)

∑
s=uv,u∼Q

1 =
∑

uv∈[M−a,M+N−a],u∼Q
τQ(uv)

≤
∑

uv∈[M−a,M+N−a],u∼Q
τ(u)τ(v) =

∑
u∼Q

τ(u)
∑

v∈[M−a
u

,M+N−a
u

]

τ(v).

For the inner sum, we use Voronoï’s estimate∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/3 log x),

and continue (2.2) with

�
∑
u∼Q

τ(u)
(N
u

logM + M1/3

u1/3 logM
)

� N logM
∑
u∼Q

τ(u)
u

+
∑
u∼Q

τ(u)
u1/3M

1/3 logM

� N(logM)3 +Q2/3M1/3(logM)3,

where we used that
∑
u≤Q

τ(u)
u � (logQ)2 ≤ (logM)2. �

In a similar way, we can also prove the following variant which is uniform
in the residues. We can expect nontrivial estimates from this for the range
Q� N1/2 for Q:
Lemma 2.2. For a real Q ≥ 1, integers M,N ≥ 2 and vM+1, . . . , vM+N ∈
C we have
(2.3)∑
q∼Q

max
a (q)

∣∣∣ ∑
n∈[M,M+N ]
n≡a (q)

vn
∣∣∣� (N log(Q+ 1) +Q2)1/2

( ∑
n∈[M,M+N ]

|vn|2
)1/2

.

Proof. For a mod q define

ϕq,a(n) :=
{

1, if n ≡ a (q),
0, else,
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and let a = aq be a residue mod q such that |〈v, ϕq,a〉| is maximal. Then
we have∑

q1,q2∼Q
|〈ϕq1,aq1

, ϕq2,aq2
〉| =

∑
q1,q2∼Q

∑
n∈[M,M+N ]

ϕq1,aq1
(n)ϕq2,aq2

(n)

=
∑

q1,q2∼Q

∑
n∈[M,M+N ]
n≡aq1 (q1)
n≡aq2 (q2)

1 ≤
∑

q1,q2∼Q

( N

[q1; q2] + 1
)

= Q2 +
∑
q1∼Q

N

q1

∑
d|q1

∑
q2∼Q

(q2,q1)=d

d

q2
≤ Q2 + N

Q

∑
q1∼Q

∑
d|q1

∑
q′2∼Q/d

1
q′2

� Q2 + N

Q

∑
q1∼Q

τ(q1)� Q2 +N logQ.

Then again Halasz-Montgomery’s inequality shows the assertion. �

As a further tool, we use the theorem of Perelli, Pintz and Salerno in
[12] in the following form, it is a Bombieri-Vinogradov theorem for short
intervals.

Theorem 2.1. Let X ≥ Y � X3/5+ε and Q� Y X−1/2(logX)−B. Then∑
q≤Q

max
(a,q)=1

∣∣∣ ∑
p∈[X,X+Y ]
p≡a (q)

log p− Y

ϕ(q)

∣∣∣� Y

LA
.

Further we use a special case of Kawada’s Theorem in [5] in the following
formulation:

Theorem 2.2. Let X2/3+ε
1 � Y ≤ X1, let Y ≤ X2, let X2 ≤ 2X1− Y and

Q2 � Y X
−1/2
2 L−B. Then for any integer a2, we have

(2.4)∑
q2≤Q2

∑
k1∈[X1,X1+Y ]

∣∣∣ ∑
p2+p3=2k1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1, q2, a2)Y
∣∣∣� Y 2L−A,

with S as given in (1.1).

This is by Kawada’s result [5, Thm. 2] for the special case k = 2, a0 =
1, b0 = 0, a1 = −1, b1 = 2k1, but with a small change made, namely the
left boundaries X1 and X2 of the short intervals. Originally, the restriction
X1 = X2 has been stated in [5], but Kawada’s proof works also for anyX2 ≤
2X1−Y : In fact, for the minor arc contribution, the interval boundaries in
the exponential sums do not play a role due to the use of Bessel’s inequality
at the end of §4 in [5], cp. also [5, (4.3)–(4.5)], where the case k = 2 is
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treated individually. For the minor arc contribution, just the assumption
Y � X

2/3+ε
1 is used.

The conditionX2 ≤ 2X1−Y is added to avoid that the necessary interval
for p3 = 2k1 − p2 has a negative left boundary and hence a cut-off at 0. In
Kawada’s major arc treatment, the exponential sum range for p3 has then
still length � Y (there the sum is termed P (α) and is approximated by
µ(q)
ϕ(q)T (β)). Then the proof of (3.8) and (3.9) in §5 of [5] reads the same.
The major arc treatment uses then the assumption Q2 � Y X

−1/2
2 L−B and

Y � X
3/5+ε2
2 , but the latter estimate follows from the other assumptions

in Theorem 2.2.
For the second approach, we use an adaption of the Theorem of Perelli

and Pintz in [11]. It was independently found by Mikawa in [10]. Originally,
this theorem states: If X1/3+ε

1 � R ≤ X1, then

∑
2k∈[X1,X1+R]

∣∣∣ ∑
p2+p3=2k

log p2 log p3 −S(2k)2k
∣∣∣2 � RX2

1L
−A.

The proof in [11] can be adapted in such a way that an additional short
interval-condition can be put on one of the primes, namely it can be shown
(cp. [11, Thm. 3]):

Theorem 2.3. Let Y 1/3+ε � R � Y � 2X1 − X2 − Y ≥ 0, let R ≤ X1
and X7/12+ε2

2 � Y ≤ X2, then

∑
k∈[X1,X1+R]

∣∣∣ ∑
p2+p3=2k

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k)Y
∣∣∣2 � RY 2L−A.

The condition Y � 2X1−X2−Y comes from the necessary interval con-
dition for the prime p3, in the original proof in [11] this plays an important
role in the application of Gallagher’s Lemma and an argument due to Saf-
fari and Vaughan in [13]. It is not easy to delete this condition. In contrast,
the replacement of 2k by Y in the main term is an obvious adaption.

3. Proof of Theorem 1.1–Kawada-approach
We start by proving the following binary theorem with one prime in a

given arithmetic progression and lying in a short interval.

Theorem 3.1. Let X2/3+ε
1 � Y ≤ X1, let Y ≤ X2 ≤ 2X1 − Y , let

Q1 � Y 3/2X
−1/2
1 and Q2 � Y X

−1/2
2 L−B. Then, for any fixed integers a1
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and a2, where a1 ≤ X1, we have∑
q1≤Q1

∑
k1∈[X1,X1+Y ]

2k1≡a1 (q1)

∑
q2≤Q2

∣∣∣ ∑
p2+p3=2k1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1, q2, a2)Y
∣∣∣

� Y 2L−A.

If Q1 � Y 3/2X
−1/2
1 is replaced by Q1 � Y 1/2, then the estimate holds true

with maxa1 (q1) inserted after
∑
q1.

Proof: By Lemma 2.1, for a1 ≤ X1 and since Q2/3
1 X

1/3
1 � Y , we deduce

from Kawada’s Theorem 2.2:∑
q1≤Q1

∑
k1∈[X1,X1+Y ]

2k1≡a1 (q1)

∑
q2≤Q2

∣∣∣ ∑
p2+p3=2k1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1, q2, a2)Y
∣∣∣

�Y 1/2L3/2

·
( ∑
k1∈[X1,X1+Y ]

(∑
q2≤Q2

∣∣∣ ∑
p2+p3=2k1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1, q2, a2)Y
∣∣∣)2)1/2

�Y 1/2L3/2

·
(
Y L2 ∑

k1∈[X1,X1+Y ]

∑
q2≤Q2

∣∣∣ ∑
p2+p3=2k1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1, q2, a2)Y
∣∣∣)1/2

�Y 1/2L3/2(Y L2Y 2L−2A−5)1/2 � Y 2L−A by (2.4).

Note that for Q1 � Y 1/2, we can apply Lemma 2.2 in the same way to
get an estimate which is uniform over the residues a1; we get then∑
q1≤Q1

max
a1 (q1)

∑
k1∈[X1,X1+Y ]

2k1≡a1 (q1)

∑
q2≤Q2

∣∣∣ ∑
p2+p3=2k1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1, q2, a2)Y
∣∣∣

� Y 2L−A.

So Theorem 3.1 follows. �

Proof of Theorem 1.1:
Write down the estimate of Theorem 3.1, but where the singular series

in (1.3) is replaced by the partial sum for s ≤ LC . The estimate is still true
since Theorem 2.2 is true in this form (see the treatment of S2 in [5, §6]).



Goldbach’s problem with primes in APs and in short intervals 341

Further, restrict the summation over k1 to the k1 of the form 2k1 = n−p1
with p1 ≡ a1 (q1), this gives then

∑
q1≤Q1
q2≤Q2

∑
p1≡a1 (q1)

p1∈[X1,X1+Y ]

∣∣∣ ∑
p2+p3=n−p1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −
∑
s≤LC

Hs(n− p1, a2, q2)Y
∣∣∣

� Y 2L−A,

with Hs as in (1.3).
Since we used Theorem 3.1 for the 2k1-interval [n−X1−Y, n−X1], the

assumptions n ≥ X1+X2+2Y , Y � (n−X1)2/3+ε1 , a1 ≤ n−X1−Y , Q2 �
Y X

−1/2
2 L−B and Q1 � Y 3/2(n − X1)−1/2 are used (the latter one holds

true since n� X1Y , so Q1 � Y 3/2X
−1/2
1 Y −1/2L−B � Y 3/2(n−X1)−1/2).

In the previous estimate, we insert the weight log p1 and deduce that

∑
q1≤Q1
q2≤Q2

∣∣∣ ∑
p1+p2+p3=n
pi≡ai (qi),i=1,2

pi∈[Xi,Xi+Yi],i=1,2

log p1 log p2 log p3

−
∑

p1≡a1 (q1)
p1∈[X1,X1+Y ]

log p1
∑
s≤LC

Hs(n− p1, a2, q2)Y
∣∣∣� Y 2L−A.

Now the main term is

= Y
∑

p1≡a1 (q1)
p1∈[X1,X1+Y ]

log p1
∑
s≤LC

µ(s)
ϕ(s)ϕ([q2; s])

·
∑∗
b (s)

e
(
− (n− p1) b

s

) ∑∗
c (s)

c≡a2((q2,s))

e
(bc
s

)

= Y
∑

p1≡a1 (q1)
p1∈[X1,X1+Y ]

log p1
∑
s≤LC

µ(s)
ϕ(s)ϕ([q2; s])

·
∑∗
b (s)

∑∗
c (s)

c≡a2((q2,s))

∑∗
d (s)

d≡a1((q1,s))
d≡p1 (s)

e
(
− (n− d− c) b

s

)
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= Y
∑
s≤LC

µ(s)
ϕ(s)ϕ([q2; s])

·
∑∗
b (s)

∑∗
c (s)

c≡a2((q2,s))

∑∗
d (s)

d≡a1((q1,s))

e
(
− (n− d− c) b

s

) ∑
p1∈[X1,X1+Y ]
p1≡a1 (q1)
p1≡d (s)

log p1

= Y 2 ∑
s≤LC

µ(s)G(n; a1, q1, a2, q2, s)
ϕ(s)ϕ([q2; s])ϕ([q1; s])

+ O
(
Y
∑
s≤LC

µ2(s)
ϕ([q2; s]) max∗

f([q1;s])
|∆(X1, X1 + Y ; [q1; s], f)|

)
,

with

G(n; a1, q1, a2, q2, s) :=
∑∗
b (s)

∑∗
c (s)

c≡a2((q2,s))

∑∗
d (s)

d≡a1((q1,s))

e
(
− (n− d− c) b

s

)
.

The O-term gives an admissible error due to Theorem 2.1 (the result of
Perelli, Pintz and Salerno [12]). For this, the assumptions Q1�Y X−1/2

1 L−B

and X3/5+ε2
1 � Y are used, cp. also [4, Sec. 2.1].

In the other term, the partial sum with s ≤ LC can be replaced by the
full singular series, giving an admissible error. This can also be proved as
in [4, Sec. 2.2], where we just have to set q3 = 1. In addition, there the
singular series is obtained in Euler product form being the term given here:

It equals 0 if (q1, q2, n− (a1 + a2)) > 1, and in the notation of [4], it can
be given in its Euler product form as

1
2ϕ(q1)ϕ(q2)

∏
p,(A) or (D)

(
1− 1

(p− 1)2

)
·
∏
p,(B)

(
1+ 1

(p− 1)3

)
·

∏
p,(C) or (F )

p

p− 1 ,

where

(A)⇔ p | n, p - q1, p - q2 (B)⇔ p - n, p - q1, p - q2

(C)⇔ p | n− a1, p | q1, p - q2 or p | n− a2, p | q2, p - q1

(D)⇔ p - n− a1, p | q1, p - q2 or p - n− a2, p | q2, p - q1

(F )⇔ p | q1, p | q2, p - n− (a1 + a2).

So we are done with Theorem 1.1. �
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4. Proof of Theorem 1.2–Perelli/Pintz-approach
We show:

Theorem 4.1. Let X2 ≥ Y � X
7/12+ε1
2 , let Y 1/3+ε2 � R ≤ Y , let

Q � R3/2X
−1/2
1 and Y � X1 − X2 − Y ≥ 0. Then, for any fixed posi-

tive integer a with a ≤ X1, we have∑
q≤Q

∑
k1∈[X1,X1+R]

2k1≡a (q)

∣∣∣ ∑
p2+p3=2k1

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1)Y
∣∣∣� RY L−A,

whereas for Q � R1/2 instead of Q � R3/2X
−1/2
1 , the estimate holds true

with maxa (q) inserted after the sum over q.

Proof: We start with the following estimate from Theorem 2.3.
By Lemma 2.1, for fixed a ≤ X1 and since Q2/3X

1/3
1 � R, we have

∑
q≤Q

∑
k1∈[X1,X1+R]

2k1≡a (q)

∣∣∣ ∑
p2+p3=2k1

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1)Y
∣∣∣(4.1)

�R1/2L3/2
( ∑
k1∈[X1,X1+R]

∣∣∣ ∑
p2+p3=2k1

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1)Y
∣∣∣2)1/2

.

By Theorem 2.3 above, the expression in brackets is � RY 2L−A−3, and
we get the desired estimate RY L−A for the left hand side in Theorem 4.1.

Note that for Q � R1/2, we can apply Lemma 2.2 in order to get an
estimate being uniform for all residues a, namely in the same way we get∑
q≤Q

max
a (q)

∑
k1∈[X1,X1+R]

2k1≡a (q)

∣∣∣ ∑
p2+p3=2k1

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k1)Y
∣∣∣� RY L−A.

�

Proof of Theorem 1.2: Let us write Y1 for R and Y2 for Y . The proof now
follows the same idea as in the proof of Theorem 1.1: Use estimate (4.1)
with 2k1 of the form 2k1 = n− p1 and multiply with the weight log p1. The
necessary conditions for using (4.1) have been formulated in Theorem 1.2.

But we use (4.1) with the singular series S(2k1) in the main term re-
placed by its partial sum for s ≤ LC (cp. (1.4)). This is possible, the
contribution of the series for s > LC gives an admissible error, as shown in
[11, p. 45].
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So we deduce the estimate

∑
q≤Q

∣∣∣ ∑
p1+p2+p3=n

pi∈[Xi,Xi+Yi],i=1,2
p1≡a (q)

log p1 log p2 log p3

(4.2)

−Y2
∑

p1∈[X1,X1+Y1]
p1≡a (q)

log p1
∑
s≤LC

µ2(s)
ϕ2(s)

∑∗
b (s)

e
(
− (n− p1) b

s

)∣∣∣� Y1Y2L
−A.

Here, the main term is

Y2
∑

p1∈[X1,X1+Y1]
p1≡a (q)

log p1
∑
s≤LC

µ2(s)
ϕ2(s)

∑∗
b (s)

∑∗
c (s)

c≡a ((q,s))
c≡p1 (s)

e
(
− (n− c) b

s

)

= Y2
∑
s≤LC

µ2(s)
ϕ2(s)

∑∗
b (s)

∑∗
c (s)

c≡a ((q,s))

∑
p1∈[X1,X1+Y1]

p1≡a (q)
p1≡c (s)

log p1 e
(
− (n− c) b

s

)

=
∑
s≤LC

µ2(s)
ϕ2(s)F (n; a, q, s) Y1Y2

ϕ([q; s])

+ O
(
Y2

∑
s≤LC

µ2(s)
ϕ(s) max∗

f ([q;s])
|∆(X1, X1 + Y1; [q; s], f)|

)
,

where

F (n; a, q, s) :=
∑∗
b (s)

∑∗
c (s)

c≡a ((q,s))

e
(
− (n− c) b

s

)

and where we used (q, a) = 1 in the last step, what we can assume w.l.o.g.,
else (4.2) holds true clearly. Note that the version of (4.2) can be shown
with maxa (q) inserted after the sum over q by the use of the supplement of
Theorem 4.1 coming from Lemma 2.2.

The O-term is � Y1Y2L
−A and therefore admissible since we may apply

Theorem 2.1 for Y1 � X
3/5+ε
1 and Q� Y1X

−1/2
1 L−B.

The error that comes now from the replacement of the partial sum
∑
s≤LC

by the full singular series can be estimated to be admissible in exactly the
same way as in [4], Section 2.2: there, let q1 = q, a1 = a, q2 = q3 = 1 and
the same proof applies here, too. And since the singular series sums up to
the given one T(n, q, a), we are done.
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Further, the same proof with Lemma 2.2 instead of Lemma 2.1 gives the
supplement of the theorem, and Q � Y

1/2
1 is needed then as assumption.

�

5. Proof of the Corollaries with sieve methods
For the proof of these Corollaries we proceed as in the proof of Meng [7].

This works in exactly the same way for Corollaries 1.2 and 1.3. We give an
indication of these proofs now. They rely on the application of Theorem 9.3
in [3], there Λs := s+ 1− log(4/(1+3−s))

log 3 with a natural number s, and it is
assumed that we sieve for a finite set A, where ξ serves as an approximation
for #A (this corresponds X in [3]).

Proof of Corollary 1.2.
Here we work with the sequence A of all p2 + 2 with k1 = p2 + p3 such

that p2 lies in the short interval p2 ∈ [X2, X2 + Y ] with Y = Xθ
2 , and k1

lies in the short interval k1 ∈ [X1, X1 + Y ] with Y � X
2/3+ε
1 . We have

ξ � Y L−2. We use then Theorem 9.3 in [3], its conditions can be checked
in the same way as in [7], where for (d) we have to apply Theorem 3.1 in the
version (5.3) below with Q1 = 1 instead. This works with α = 1−1/2θ, and
|a| ≤ ξα(Λs−δ) (this is Condition (9.3.6) in [3]) holds if 1/θ < (1− 1/2θ)Λs.
This is true for s = 3 since Λ3 ≥ 2.771, and θ ≥ 0.861. �

Proof of Corollary 1.4.
Consider Xi, Yi, i = 1, 2, and n as given. Now we work with the sequence

A of all p2 + 2 with n = p1 + p2 + p3 such that pi lies in the short interval
pi ∈ [Xi, Xi + Yi], i = 1, 2. We have ξ � Y1L

−3. Write Y1 = Y η
2 with

1
3 < η ≤ 1. Again Theorem 9.3 in [3] applies with α = min(1− 1

2θ1
, 3

2 −
1
2η ),

this time with Theorem 1.2. Now since |a| ≤ X1 + Y1 + 2 � X1 � Y
1/θ1

1 ,
the condition |a| ≤ ξα(Λs−δ) is true if 1 < θ1αΛs.

First case: If 1− 1
2θ1

< 3
2 −

1
2η , we have as in Corollary 1.2 before s = 3,

θ1 ≥ 0.861, then we have to choose η > (1 + 1/θ1)−1 ≥ 0.463. Second case:
Here η has to be η ≤ 0.5, so that θ1 ≤ 1 can be such that 1/θ1 ≤ 1/η − 1.
Also αΛs = (3/2−1/2η)Λs > 1, what gives η > 0.439 for s = 3. So with η in
this range, one can choose θ1 such that 1/θ1 < min(1/η−1, (3/2−1/2η)Λ3);
we will have then that θ1 > 0.782. �

Now Corollary 1.3 is a consequence of Corollary 1.2:

Proof of Corollary 1.3.
Consider the number of n−p1 such that p1+2 = P2 and p1 ∈ [X1, X1+Y ].

By Wu’s Theorem in [17], we know that this number is� Y L−2 if Y = Xθ1
1
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for θ1 ≥ 0.971. So not all of them can be exceptions in Corollary 1.2, so
there is at least one of them being the sum of two primes p2 and p3, where
p2 lies in a short interval of length Y = Xθ2

2 with θ2 ≥ 0.861, such that
p2 + 2 = P3. Note that Corollary 1.2 is applicable since we assumed that
X1 + X2 + 2Y ≤ n � Y 3/2−ε, so for the lower bound n − X1 − Y of the
numbers n− p1 we have X2 + Y ≤ n−X1 − Y � Y 3/2−ε. �

Now for Corollary 1.1 we have to work in a slightly different style; there-
fore we here give the proof of Corollary 1.1 in detail. As sieve method we
need Theorem 10.3 of Halberstam and Richert [3], which we present first:
For this let A be a finite sequence of integers, P an infinite set of primes,
and Ad the sequence of all a ∈ A with d | a. Further, for the number of
elements in Ad we write

#Ad = ω(d)
d

ξ +Rd

with a multiplicative arithmetic function ω such that ω(p) = 0 for p 6∈ P.
Let L := log ξ, ξ ≥ 2. We assume that (a, p) = 1 for any prime p 6∈ P and
any a ∈ A.

Theorem 5.1. (Theorem 10.3 of [3]) Assume that
(a) there exist a constant A1 > 0 such that

1 ≤ 1
1− ω(p)

p

≤ A1

for all p ∈ P,
(b) for a constant κ > 1 (the sieve dimension), a constant A2 ≥ 1 and for

all real v, w with 2 ≤ v ≤ w we have∑
v≤p≤w
p∈P

ω(p)
p

log p ≤ κ log w
v

+A2,

(c) for a constant A3 > 0 and for all real z, y with 2 ≤ z ≤ y ≤ ξ we have∑
z≤p<y
p∈P

#Ap2 ≤ A3
(ξL
z

+ y
)
,

(Any fixed power of L is here possible, too, as remarked by Halberstam
and Richert [3]),

(d) for constants 0 < α < 1 and A4, A5 > 0 we have∑
d< ξα

LA4

µ2(d)3ν(d)|Rd| ≤ A5
ξ

Lκ+1 .
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Further assume that there exists a real µ > 0 such that |a| ≤ ξαµ for all
a ∈ A. Let ζ ∈ R, 0 < ζ < νκ for a certain real νκ > 1 depending on κ
only, and let r ∈ N with

(5.1) r > (1 + ζ)µ− 1 + (κ+ ζ) log νκ
ζ
− κ− ζ µ− κ

νκ
.

Then there exists a δ = δ(r, µ, κ, ζ) > 0 with

(5.2) |{Pr; Pr ∈ A}| ≥ δ
ξ

(log ξ)κ
(
1− C√

logX

)
for a constant C > 0 depending at most on r, µ, ζ (as well as on the Ai’s,
κ and α).

We use this theorem in the case κ = 2, for which the numerical value
νκ = 4.42 . . . is known (see [3, (7.4.9)]).

We are going to apply Theorem 3.1 and Theorem 1.1, but we need them
in non-weighted version. With an obvious partial summation, we can trans-
form the first estimate in Theorem 3.1 into

∑
q1≤Q1
q2≤Q2

∑
k1∈[X1,X1+R]

2k1≡a1 (q1)

∣∣∣ ∑
p2+p3=2k1
p2≡a2 (q2)

p2∈[X2,X2+Y ]

1−S(2k1, q2, a2)
∫ X2+Y

X2

dt

log t log(k1 − t)

∣∣∣
(5.3)

� Y 2L−A.

A non-weighted version of the estimate in Theorem 1.1 is the following:∑
q1≤Q1
q2≤Q2

∣∣∣ ∑
p1+p2+p3=n

pi∈[Xi,Xi+Yi],i=1,2
pi≡ai (qi),i=1,2

1− T(n, q1, a1, q2, a2)H(X1, X2, Y, n)
∣∣∣(5.4)

� Y 2L−A,

where

(5.5) H(X1, X2, Y, n) :=
∫ X1+Y

X1

1
log v

∫ X2+Y

X2

dt

log t log(n− v − t)dv.

This version can be obtained in the same way as the original version of the
Theorem, but where estimate (5.3) and the π-version of the Theorem of
Perelli, Pintz and Salerno [12] is used, namely∑

q≤Q
max∗
a (q)

max
h≤Y

∣∣∣ ∑
p∈[X,X+h]
p≡a (q)

1− 1
ϕ(q)

∫ X+h

X

dt

log t

∣∣∣� Y L−A.

This version can be gained from the original one in the same way like
Bombieri-Vinogradov’s theorem can be transformed from a ψ-version into
a π-version, as done in [2].
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Proof of Corollary 1.1.
To prepare the application of Theorem 5.1, we set P := {p; p 6= 2} and

for large odd n 6≡ 1(6), where n ≥ X1 +X2 +2Y . Let A denote the sequence
of all (p1 + 2)(p2 + 2) such that p1 + p2 + p3 = n and pi ∈ [Xi, Xi + Y ] for
i = 1, 2 is solvable. So this sequence assigns the number (p1 + 2)(p2 + 2) to
each pair (p1, p2), and these pairs may be given in some order.

Then (a, 2) = 1 holds for all a ∈ A. Let Ad denote the sequence of all
elements a ∈ A with d | a.

Now

|Ad| =
∑

pi∈[Xi,Xi+Y ],i=1,2
p1+p2+p3=n

(p1+2)(p2+2)≡0 (d)

1 =
∑
t|d

∑
pi∈[Xi,Xi+Y ],i=1,2

p1+p2+p3=n
p1≡−2 (t)
p2≡−2 (d/t)

((p1+2)/t,d/t)=1

1

=
∑
t|d

∑
pi∈[Xi,Xi+Y ],i=1,2

p1+p2+p3=n
p1≡−2 (t)
p2≡−2 (d/t)

∑
s|(p1+2)/t,

s|d/t

µ(s) =
∑
t|d

∑
s|d/t

µ(s)
∑

pi∈[Xi,Xi+Y ],i=1,2
p1+p2+p3=n
p1≡−2 (st)
p2≡−2 (d/t)

1

which we want to approximate by∑
t|d

∑
s|d/t

µ(s)T(n, st,−2, d/t,−2)H(X1, X2, Y, n).

So in view of Theorem 5.1, we write |Ad| = ω(d)
d ξ +Rd with

ξ := 1
2H(X1, X2, Y, n)

∏
p|n

(
1− 1

(p− 1)2

)∏
p-n

(
1 + 1

(p− 1)3

)
and

ω(d) := d
∑
t|d

∑
s|d/t

µ(s)
ϕ(st)ϕ(d/t)

∏
p-n+2,p|st,p-d/t

or p-n+2,p-st,p|d/t

(
1− 1

(p− 1)2

)
(5.6)

·
∏

p|n,p|ds

(
1− 1

(p− 1)2

)−1 ∏
p-n,p|ds

(
1 + 1

(p− 1)3

)−1

·
∏

p|n+2,p|st,p-d/t
or p|n+2,p|d/t,p-st
or p-n+4,p|st,p|d/t

(
1 + 1

p− 1
)
.

From this formula it can be seen that ω is multiplicative in d.
Now we are going to check all conditions of Theorem 5.1 in this setting.
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By a computation, from (5.6) we can deduce that, for a prime ` 6= 2 we
have:

ω(`) =



2`
`−2 −

1
`−1 , if ` | n, ` - n+ 2, ` - n+ 4,

`2(2`−3)
(`−1)3+1 , if ` - n, ` | n+ 2, ` - n+ 4,

`2(`−1)2−1−`
(`−1)3+1 , if ` - n, ` - n+ 2, ` | n+ 4,

`2(`−1)2−2−`
(`−1)3+1 , if ` - n, ` - n+ 2, ` - n+ 4.

So it follows that (a) holds (note that the second case, where ω(3)/3 = 1,
does not occur for ` = 3 since n 6≡ 1 (6)).

For condition (b) we see that for all w ≥ v ≥ 2, we have

∑
v≤p≤w

ω(p)
p

log p ≤ 2
∑

v≤p≤w

log p
p− 2 ≤ 2 log w

v
+A2

for a A2 ≥ 1 since

∑
p≤x

log p
p− 2 =

∑
p≤x

log p
p

+ 2
∑
p≤x

log p
(p− 2)p = log x+ O(1).

So κ = 2 works as sieve dimension.

For condition (c) we see that |Ap2 | � Y 2

p2 + 1, so

∑
z≤p<y

|Ap2 | �
∑

z≤q<y

(Y 2

q2 + 1
)
� Y 2

z
log y + y � ξ

z
L4 + y.

We are going to check now condition (d). LetD = Y 1−1/2θL−B = ξαL−B,
where α = 1

2 −
1
4θ and θ = min(θ1, θ2). Abbreviate

A(q1, q2) :=
∑

pi∈[Xi,Xi+Y ],i=1,2
p1+p2+p3=n
p1≡−2 (q1)
p2≡−2 (q2)

1− T(n, q1,−2, q2,−2)H(X1, X2, Y, n).



350 Karin Halupczok

Then we have∑
d∼D

µ2(d)3ν(d)|Rd| =
∑
d∼D

(d,2)=1

µ2(d)3ν(d)
∣∣∣∑
t|d

∑
s|d/t

µ(s)A(st, d/t)
∣∣∣

�
∑
d∼D

(d,2)=1

µ2(d)3ν(d)∑
t|d

∑
s|d/t

Y

(sd)1/2 |A(st, d/t)|1/2

� Y
∑

q1,q2≤2D

( ∑
t|q1

(t,q2)=1

µ2(tq2)3ν(tq2)q
−1/2
1 q

−1/2
2

)
|A(q1, q2)|1/2

� Y
( ∑
q1,q2≤2D

1
q1q2

∑
t|q1

(t,q2)=1

µ2(tq2)32ν(tq2)
)1/2( ∑

q1,q2≤2D
|A(q1, q2)|

)1/2

� Y 2L−A−3 � ξL−A,

using Theorem 1.1 in the version (5.4), and since∑
q1,q2

1
q1q2

∑
t|q1

32ν(t)32ν(q2) �
∑
q1

τ(q1)5

q1

∑
q2

τ(q2)4

q2
� L48.

Now we need to know whether |a| ≤ ξαµ for all a ∈ A and some r ≥ 2.
We have a = (p1 + 2)(p2 + 2) ≤ (X1 + Y + 2)(X2 + Y + 2)� Y 2/θ, so we
have to take µ > 4/(2θ− 1) > 4. Write µ = 4 + ∆, then the right hand side
of (5.1) is < 9 for ζ = 0.360 and ∆ = 0.628. This gives the value θ ≥ 0.933.
r = 9 is the smallest possible value, and also θ ≥ 0.933 is optimal such

that r ≥ 9 can be chosen.
Therefore Theorem 5.1 applies with r = 9. From this we deduce that

there always exists a P9 in A, their number is at least � ξ/(log ξ)2. So we
are done with the proof of Corollary 1.1. �
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