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on coclass graphs
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Dedicated to the memory of Emil Artin

Résumé. Des concepts et des stratégies généraux sont dévelop-
pés pour identifier le type d’isomorphisme du deuxième p-groupe
de classes G = Gal(F2

p(K)|K), c’est donc le groupe de Galois
du deuxième p-corps de classes de Hilbert F2

p(K), d’un corps de
nombres K, pour un nombre premier p. Le type d’isomorphisme
détermine la position de G sur un des graphes de coclasses G(p, r),
r ≥ 0, dans le sens de Eick, Leedham-Green et Newman. Il est dé-
montré que, pour des types spéciaux du corps de base K et de
son p-groupe de classes Clp(K), la position de G est limitée à cer-
taines branches d’arbres de coclasses admissibles par des règles de
sélection. Une compréhension plus profonde, en particulier la den-
sité de population de sommets particuliers au niveau des graphes
de coclasses, est acquise en calculant la distribution effective des
deuxièmes p-groupes de classes G pour diverses séries de corps de
nombres K ayant des p-groupes de classes Clp(K) de type fixe et
p ∈ {2, 3, 5, 7}.

Abstract. General concepts and strategies are developed for
identifying the isomorphism type of the second p-class group G =
Gal(F2

p(K)|K), that is the Galois group of the second Hilbert p-
class field F2

p(K), of a number field K, for a prime p. The iso-
morphism type determines the position of G on one of the coclass
graphs G(p, r), r ≥ 0, in the sense of Eick, Leedham-Green, and
Newman. It is shown that, for special types of the base fieldK and
of its p-class group Clp(K), the position ofG is restricted to certain
admissible branches of coclass trees by selection rules. Deeper in-
sight, in particular, the density of population of individual vertices
on coclass graphs, is gained by computing the actual distribution
of second p-class groups G for various series of number fields K
having p-class groups Clp(K) of fixed type and p ∈ {2, 3, 5, 7}.
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1. Introduction

Let p denote a prime and let K be an algebraic number field. By the
Hilbert p-class field F1

p(K) of K we understand the maximal abelian un-
ramified p-extension of K. The Hilbert p-class field tower, briefly p-tower,
of K, F0

p(K) ≤ F1
p(K) ≤ F2

p(K) ≤ . . ., is defined recursively by F0
p(K) = K

and Fnp (K) = F1
p

(
Fn−1
p (K)

)
, for n ≥ 1. According to the uniqueness theo-

rem of class field theory, all members of the p-tower are Galois extensions of
K, and their union F∞p (K) = ∪∞n=0Fnp (K) is the maximal unramified pro-p
extension of K. Let Clp(K) be the p-class group of K, that is the Sylow p-
subgroup of the class group Cl(K). If Clp(K) = 1 is trivial, then F1

p(K) = K

and the p-tower of K has length `p(K) = 0. If Clp(K) 6= 1 and Fn−1
p (K) <

Fnp (K) = Fn+1
p (K), for some n ≥ 1, the p-tower is finite of length `p(K) = n.

Otherwise the p-tower of K is infinite and F∞p (K) is an infinite Galois
extension of K, having a pro-p group G∞p (K) = Gal(F∞p (K)|K) as Ga-
lois group, endowed with the Krull topology. For each n ≥ 1, the finite
quotient Gn

p (K) = Gal(Fnp (K)|K) = G∞p (K)/
(
G∞p (K)

)(n)
of the p-tower

group G∞p (K) by the closed subgroup
(
G∞p (K)

)(n)
= Gal(F∞p (K)|Fnp (K))

is called the nth p-class group of K, in analogy to G1
p(K) = Gal(F1

p(K)|K),
which is isomorphic to the (first) p-class group Clp(K) of K, by Artin’s
reciprocity law. All these higher p-class groups Gn

p (K) of K with n ≥ 2 are
usually non-abelian and share two essential common invariants, as the fol-
lowing theorem shows. The germs of these general concepts are contained
in Artin’s famous papers [2, 3].

Theorem 1.1. Suppose that n ≥ 2 and G = Gn
p (K). For any subgroup

H ≤ G which contains the commutator subgroup G′ of G, there exists a
unique intermediate field K ≤ L ≤ F1

p(K) such that H = Gal(Fnp (K)|L),
and the following statements hold.

(1) The abelianization H/H ′ is isomorphic to the p-class group Clp(L).
In particular,

G/G′ ' Clp(K) and G′/G′′ ' Clp(F1
p(K)).

(2) The kernel ker(TG,H) of the transfer TG,H : G/G′ → H/H ′ is iso-
morphic to the p-principalization kernel of K in L, that is, the
kernel ker(jL|K) of the natural class extension homomorphism
jL|K : Clp(K)→ Clp(L). In particular,

ker(TG,G) ' ker(jK|K) = 1
and

ker(TG,G′) = G/G′ ' ker(jF1
p(K)|K) = Clp(K).
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Proof. Since H contains G′, H is a normal subgroup of G = Gal(Fnp (K)|K).
The intermediate field K ≤ L ≤ F1

p(K) of degree [L : K] = (G : H), such
that H = Gal(Fnp (K)|L), is determined uniquely as the fixed field Fix(H)
within Fnp (K), by the Galois correspondence. From the viewpoint of class
field theory, the norm class group NL|K(Clp(L)) of L|K is isomorphic to
H/G′ = Gal(Fnp (K)|L)/Gal(Fnp (K)|F1

p(K)) ' Gal(F1
p(K)|L) and thus of

index [L : K] in Clp(K) ' Gal(F1
p(K)|K), as required.

(1) We have
H/H ′ = Gal(Fnp (K)|L)/Gal(Fnp (K)|F1

p(L)) ' Gal(F1
p(L)|L) ' Clp(L),

by the Galois correspondence and Artin’s reciprocity law [2].
(2) The isomorphism ker(TG,H) ' ker(jL|K) is a consequence of the

commutativity of the diagram in Table 1.1, which was proved by
Artin [3] and investigated in more detail by Miyake [65]. The special
case ker(TG,G′) = G/G′ is the principal ideal theorem [38].

�

Table 1.1. Class extension homomorphism jL|K and trans-
fer TG,H

jL|K
Clp(K) −→ Clp(L)

Artin isomorphism l /// l Artin isomorphism
G/G′ −→ H/H ′

TG,H

Since each finite quotient G = Gn
p (K) of the p-tower group G∞p (K)

of K, which is isomorphic to the inverse limit lim
←− n≥1 Gn

p (K), behaves in
the same manner with respect to the kernels ker(TG,H) and targets H/H ′
of the transfers TG,H : G/G′ → H/H ′, for G′ ≤ H ≤ G, we define two
invariants τ(K) = τ(G) and κ(K) = κ(G) either of the entire p-tower of
K or of the individual nth p-class group G.

Definition 1.1. Let p be a prime and K be a number field.
(1) The family τ(K) = (Clp(L))K≤L≤F1

p(K) of p-class groups of all in-
termediate fields L between K and F1

p(K) is called transfer target
type, briefly TTT, of the p-tower of K.

(2) The family κ(K) = (ker(jL|K))K≤L≤F1
p(K) of p-principalization ker-

nels of K in all intermediate fields L between K and F1
p(K) is called

transfer kernel type, briefly TKT, of the p-tower of K.
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In general, third and higher p-class groups Gn
p (K) of K, n ≥ 3, are non-

metabelian with rather complex structure. For this reason, we focus our
investigation on the second p-class group G = G2

p(K) = Gal(F2
p(K)|K)

which is metabelian with commutator subgroup

G′ = Gal(F2
p(K)|F1

p(K)) ' Clp(F1
p(K)).

It is the simplest group admitting the calculation of the TTT, τ(K) =
(H/H ′)G′≤H≤G, and the TKT, κ(K) = (ker(TG,H))G′≤H≤G, ofK by means
of the transfers from G to the subgroups H ≤ G containing G′.

1.1. Identifying G2
p(K) via κ(K) and τ (K). First, we illustrate that

second p-class groups G2
p(K) of number fields K can frequently but not

always be identified uniquely by means of TKT and TTT.
For p = 5, we apply our recently calculated TKTs of § 3.5 to prove the

following Theorem. It gives criteria for second 5-class groups of number
fields in terms of TKTs which were unknown up to now.

Theorem 1.2. Let K be an arbitrary number field with 5-class group
Cl5(K) of type (5, 5). In the following four cases, the second 5-class group
G2

5(K) of K is determined uniquely by the TKT and TTT of K.
(1) κ(K) = (1, 2, 3, 4, 5, 6) (identity), τ(K) =

(
(5, 5, 5)6) =⇒

G2
5(K) ' 〈3125, 14〉.

(2) κ(K) = (1, 2, 5, 3, 6, 4) (4-cycle), τ(K) =
(
(5, 25)4, (5, 5, 5)2) =⇒

G2
5(K) ' 〈3125, 11〉.

(3) κ(K) = (5, 1, 2, 6, 4, 3) (6-cycle), τ(K) =
(
(5, 25)6) =⇒

G2
5(K) ' 〈3125, 12〉.

(4) κ(K) = (3, 1, 2, 5, 6, 4) (two 3-cycles), τ(K) =
(
(5, 25)6) =⇒

G2
5(K) ' 〈3125, 9〉.

In one case, there are two possibilities for G2
5(K).

κ(K) = (6, 1, 2, 4, 3, 5) (5-cycle), τ(K) =
(
(5, 25)5, (5, 5, 5)

)
=⇒

either G2
5(K) ' 〈3125, 8〉 or G2

5(K) ' 〈3125, 13〉.
The powers in TTTs denote iteration and the 5-groups are identified by

their numbers in the SmallGroups library [14].

Proof. In section § 3.5, we prove that the metabelianization G2
5(K) =

Gal(F2
5(K)|K) = G/G′′ of the 5-tower group G = G∞5 (K) of any alge-

braic number field K with 5-class group Cl5(K) of type (5, 5), having one
of the five pairs of TKT and TTT in Theorem 1.2, is one of the six terminal
top vertices 〈3125, 8 . . . 9〉 and 〈3125, 11 . . . 14〉 of the coclass graph G(5, 2)
in Figure 3.8. �

Remark. We conjecture that the TKT alone suffices for the characteriza-
tion of G2

5(K) in Theorem 1.2.
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Example 1.1. Discriminants D with smallest absolute values of complex
quadratic fields K = Q(

√
D) having one of the five pairs of TKT and TTT

in Theorem 1.2 are given by −89751, −37363, −11199, −17944, −12451, in
the same order. They were computed by means of MAGMA [56]. According
to section § 3.5.3, the vertices 〈3125, 8〉 and 〈3125, 13〉 of coclass graph
G(5, 2) in Figure 3.8, corresponding to the last case of Theorem 1.2, are
populated by 167 occurrences (17.4%) of 959 complex quadratic fields K =
Q(
√
D) with −2 270 831 ≤ D < 0 and Cl5(K) of type (5, 5). This shows

that even the last case alone occurs with rather high density.

For p = 3, we use four TKTs which occurred repeatedly in the literature
[72, 45, 25]. These TKTs define infinite sequences, in fact periodic coclass
families (§ 2), of possible groups G2

3(K), and neither Heider and Schmithals
[45] nor Brink and Gold [24, 25] have been aware that the TTT is able to
identify a unique member of the sequences, as we proved in [58, 60].

Theorem 1.3. Let K be an arbitrary number field with 3-class group
Cl3(K) of type (3, 3). In the following four cases, the second 3-class group
G2

3(K) of K is either determined uniquely or up to the sign of the relational
exponent γ by the TKT and the parametrized TTT of K, for each integer
j ≥ 2.

(1) κ(K) = (1, 3, 1, 3), τ(K) =
(
(3j , 3j+1), (3, 9)2, (3, 3, 3)

)
=⇒

G2
3(K) ' G2j+2,2j+3

0 (1,−1, 1, 1).
(2) κ(K) = (2, 3, 1, 3), τ(K) =

(
(3j , 3j+1), (3, 9)2, (3, 3, 3)

)
=⇒

G2
3(K) ' G2j+2,2j+3

0 (0,−1,±1, 1).
(3) κ(K) = (1, 2, 3, 1), τ(K) =

(
(3j , 3j+1), (3, 9)3) =⇒

G2
3(K) ' G2j+2,2j+3

0 (1, 0,−1, 1).
(4) κ(K) = (2, 2, 3, 1), τ(K) =

(
(3j , 3j+1), (3, 9)3) =⇒

G2
3(K) ' G2j+2,2j+3

0 (0, 0,±1, 1).
The groups in the first two cases are located on the coclass tree T (〈243, 6〉)

in Fig. 3.6, the groups in the last two cases on the coclass tree T (〈243, 8〉)
in Fig. 3.7. 3-groups of order 3n and index m of nilpotency are identified
by their parametrized presentations given in the form Gm,nρ (α, β, γ, δ) in §
3.3.3.

Proof. We proved that the second derived quotient G2
3(K) = G/G′′ of the

3-tower group G = G∞3 (K) of any algebraic number field K with 3-class
group Cl3(K) of type (3, 3), transfer kernel type E.6, κ(K) = (1, 3, 1, 3),
resp. E.14, κ(K) = (2, 3, 1, 3) [59, Tbl. 6, p. 492], and parametrized transfer
target type τ(K) =

(
(3j , 3j+1), (3, 9)2, (3, 3, 3)

)
, j ≥ 2, is isomorphic to

the unique group G2j+2,2j+3
0 (1,−1, 1, 1), resp. to one of the two groups

G2j+2,2j+3
0 (0,−1,±1, 1), of the coclass tree T (〈243, 6〉) in Figure 3.6 [60,

Thm. 4.4, Tbl. 8].
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Similarly, we proved for transfer kernel type E.8, κ(K) = (1, 2, 3, 1), resp.
E.9, κ(K) = (2, 2, 3, 1), and parametrized transfer target type τ(K) =(
(3j , 3j+1), (3, 9)3), j ≥ 2, that G2

3(K) is isomorphic to the unique group
G2j+2,2j+3

0 (1, 0,−1, 1), resp. to one of the two groups G2j+2,2j+3
0 (0, 0,±1, 1),

of the coclass tree T (〈243, 8〉) in Figure 3.7. �

Example 1.2. By [58, Thm. 5.2, p. 492], the complex quadratic field
K = Q(

√
−9748) is a number field having the TKT and TTT of the last

case in Theorem 1.3, actually with smallest absolute discriminant. It was
first mentioned by Scholz and Taussky [72, p. 25]. Among the 93 complex
quadratic fields K = Q(

√
D) with discriminants −6 · 104 < D < 0 and

Cl3(K) of type (3, 3), there are 11 cases (12%) having the TKT and TTT
of the last case in Theorem 1.3. So even the last case alone occurs quite
frequently.

In contrast, we can also prove that certain metabelian p-groups are ex-
cluded as second p-class groups for special base fields. The following nega-
tive result for p = 3 gives an exact justification for a particular instance of
our weak leaf conjecture, Cnj. 3.1.

Theorem 1.4. The 3-group 〈243, 4〉, resp. 〈243, 9〉, cannot occur as sec-
ond 3-class group G2

3(K) for a complex quadratic field K = Q(
√
D), D <

0, whose TKT and TTT are given by κ(K) = (4, 4, 4, 3) and τ(K) =(
(3, 9), (3, 3, 3)3), resp. κ(K) = (2, 1, 4, 3) and τ(K) =

(
(3, 9)4).

Proof. The assumption that one of the groups g ∈ {〈243, 4〉, 〈243, 9〉} were
the second 3-class group g = G2

3(K) of a complex quadratic field K implies
two contradictory consequences. On the one hand, both groups g are of class
cl(g) = 3, whence the fourth lower central γ4(g) = 1 is trivial. According to
Heider and Schmithals [45, p. 20], any number field K whose second p-class
group g = G2

p(K) has trivial γ4(g) = 1 possesses a p-tower of length `p(K) =
2. On the other hand, since K is complex quadratic, its 3-tower group G
must be a Schur σ-group [74], [50, p. 58]. The Schur multiplier H2(g,Z)
of both groups g is non-trivial of order 3, as can be verified by means of
GAP [40]. Hence they cannot be Schur σ-groups [20, p. 6]. Therefore, the
3-tower of K cannot stop at the second stage, G 6= G2

3(K), and G must be
a non-metabelian group of derived length at least 3, that is, the 3-tower of
K has length `3(K) ≥ 3. �

1.2. Length of p-towers. As the following Theorems 1.5–1.6 show, the
length `p(K) of the p-tower of K can either be determined exactly or at
least be estimated by a lower bound, once the second p-class group G2

p(K)
of K and its properties are known in sufficient detail.

A criterion for 3-towers of exact length 2 was proved in three independent
ways by Scholz and Taussky [72], by Heider and Schmithals [45], and by
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Brink and Gold [24, 25]. With our new methods, we can give a short proof
of this criterion.

Theorem 1.5. Let K be an arbitrary number field with 3-class group
Cl3(K) of type (3, 3). In the following two cases, the second 3-class group
G2

3(K) of K and the TTT of K are determined uniquely by the TKT of K.

(1)κ(K) = (2, 2, 4, 1) =⇒ G2
3(K) ' 〈243, 5〉, τ(K) =

(
(3, 9)3, (3, 3, 3)

)
.

(2)κ(K) = (4, 2, 2, 4) =⇒ G2
3(K) ' 〈243, 7〉, τ(K) =

(
(3, 9)2, (3, 3, 3)2).

In both cases, the 3-class field tower of K has exact length `3(K) = 2.

Proof. The metabelianization G2
3(K) ' G/G′′ of the 3-tower group G =

G∞3 (K) of any algebraic number field K with 3-class group Cl3(K) of
type (3, 3) having transfer kernel type D.10, κ(K) = (2, 2, 4, 1), resp. D.5,
κ(K) = (4, 2, 2, 4) [59, Tbl. 6, p. 492], is isomorphic to the terminal top
vertex 〈243, 5〉, resp. 〈243, 7〉, of the sporadic part G0(3, 2) of the coclass
graph G(3, 2) in Figure 3.5, according to Nebelung [66, Thm. 6.14, p. 208].
In [60, Thm. 4.2, Tbl. 4] it is shown that the corresponding transfer target
type is given by τ(K) =

(
(3, 9)3, (3, 3, 3)

)
, resp. τ(K) =

(
(3, 9)2, (3, 3, 3)2).

According to the proof of [20, Thm. 4.2, p. 14], 〈243, 5〉 and 〈243, 7〉 are
Schur σ-groups [1, 26].

However, independently from K being complex quadratic or not, when
the second derived quotient G/G′′ ' G2

3(K) of G is a Schur σ-group, then
the 3-tower group G of K must be isomorphic to it, G ' G2

3(K), by the
argument given in [22, Lem. 4.10]. Consequently, the 3-tower of K stops at
the second stage and has length `3(K) = 2. �

Remark. We point out that the figure in [20, p. 10] is not a coclass graph
in our sense (§ 2.2), since it contains vertices of four different coclass graphs
G(3, r), 1 ≤ r ≤ 4, partially connected by edges of depth 2. The top level
of this figure, where 〈243, 5〉 and 〈243, 7〉 are emphasized by surrounding
circles, coincides with the top vertices of our Figure 3.5.

Example 1.3. Discriminants D with smallest absolute values of complex
quadratic fields K = Q(

√
D) having one of the two TKTs in Theorem 1.5

are given by −4027, −12131, in the same order. The first was communicated
in [72, p. 22] (see also [11, Cor. 3.3, p. 164]), the second in [45, p. 19].
Corresponding minimal discriminants of real quadratic fields are 422573,
631769 [58, Tbl. 4, p. 498]. Among the 2020 complex quadratic fields K =
Q(
√
D) with discriminants −106 < D < 0 and Cl3(K) of type (3, 3), there

are 936 cases (46.3%) having one of the two pairs of TKT and TTT in
Theorem 1.5 [58, Tbl. 3, p. 497]. So these types of fields are definitely
among the high-champs with respect to density of population.
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In the next Theorem, the second 3-class group G2
3(K) is not at all deter-

mined by the TKT κ(K) alone. Furthermore, we must restrict ourselves to
an estimate of the 3-tower length `3(K) ≥ 3.

Theorem 1.6. Let K = Q(
√
D), D < 0, be a complex quadratic field with

3-class group Cl3(K) of type (3, 3). In the following two cases, the second
3-class group G2

3(K) of K is determined uniquely by the TKT and the TTT
of K.

(1)κ(K) = (4, 4, 4, 3), τ(K) =
(
(3, 9), (3, 3, 3)3) =⇒ G2

3(K) ' 〈729, 45〉.
(2)κ(K) = (2, 1, 4, 3), τ(K) =

(
(3, 9)4) =⇒ G2

3(K) ' 〈729, 57〉.
In both cases, K has a 3-class field tower of length `3(K) ≥ 3.

Proof. We proved that the second derived quotient G2
3(K) = G/G′′ of the

3-tower group G = G∞3 (K) of a complex quadratic field K with 3-class
group Cl3(K) of type (3, 3), transfer kernel type H.4, κ(K) = (4, 4, 4, 3),
resp. G.19, κ(K) = (2, 1, 4, 3) [59, Tbl. 6, p. 492], and transfer target type
τ(K) =

(
(3, 9), (3, 3, 3)3), resp. τ(K) =

(
(3, 9)4) [60, Thm. 4.3, Tbl. 6], is

isomorphic to the unique vertex 〈729, 45〉, resp. 〈729, 57〉, of the sporadic
part G0(3, 2) of coclass graph G(3, 2) in Figure 3.5. For an arbitrary number
field K, several other candidates for G2

3(K) are possible. However, for a
complex quadratic field K, 〈243, 45〉, resp. 〈243, 57〉, are discouraged by
Theorem 1.4, and the siblings 〈729, 44〉 and 〈729, 46 . . . 47〉, resp. 〈729, 56〉,
of 〈729, 45〉, resp. 〈729, 57〉, do not admit the mandatory automorphism of
order 2 acting as inversion on the abelianization.
Since K is complex quadratic, its 3-tower group G must be a Schur σ-group
[74], [50, p. 58]. However, neither 〈729, 45〉 nor 〈729, 57〉 is a Schur σ-group
[20, p. 6], because the Schur multiplier is non-trivial of type (3, 3), as can be
verified with the aid of GAP [40]. Therefore, the 3-tower of K cannot stop
at the second stage, G 6= G2

3(K), and G must be a non-metabelian group
of derived length at least 3, that is, the 3-tower has length `3(K) ≥ 3. �

Example 1.4. Discriminants D with smallest absolute values of complex
quadratic fields K = Q(

√
D) having one of the two pairs of TKT and TTT

in Theorem 1.6 are given by −3896, −12067, in the same order. They were
communicated in [45, p. 19] (see also [11, p. 165]). Among the 2020 complex
quadratic fields K = Q(

√
D) with discriminants −106 < D < 0 and Cl3(K)

of type (3, 3), there are 391 cases (19.4%) having one of the two pairs of
TKT and TTT in Theorem 1.6 [58, Tbl. 3, p. 497]. This shows that fields
with 3-towers of at least three stages occur quite frequently.

Note that the proofs of the preceding Theorems 1.5, and 1.6 are very
brief. This is the beginning of powerful new methods of research concerning
the maximal unramified pro-p extensions of number fields by joining the co-
class theory of finite p-groups and suitable generalizations of Schur σ-groups
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[21]. We optimistically expect further prolific impact of these new founda-
tions on the investigation of p-towers and p-principalization, although Artin
called the capitulation problem ‘hopeless’.

1.3. Overview. In §§ 3.2 and 3.4, we analyze number fields K with p-
class group Clp(K) of type (p, p). Based on [58], we prove that the p-class
numbers hp(Li) = |Clp(Li)| of two distinguished intermediate fields Li,
1 ≤ i ≤ 2, lying strictly between K and F1

p(K), and the p-class number
hp(F1

p(K) of the Hilbert p-class field ofK, that is, the orders of three special
members of the TTT τ(K), contain sufficient information for determining
the order |G| = 3n, class c = cl(G), coclass r = cc(G), and the so-called
defect of commutativity k = k(G) of the second p-class group G = G2

p(K)
of K. These invariants are related by the equation n = cl(G) + cc(G) and
restrict G to the finite subset of groups of equal order 3n of the coclass
graph G(p, r). If the TKT κ(K) is known additionally, the position of G
can be restricted further, either to a branch B of a coclass tree T , forming
a subgraph of G(p, r), or even to a unique isomorphism type of metabelian
p-groups.

Group theoretic foundations concerning coclass graphs and their main-
lines, parametrized presentations, polarization, and defect are provided in
preliminary sections §§ 2, 3.1, and 3.3.

In [60], it was shown for number fields K of type (p, p), that the abelian
type invariants of the p-class groups Clp(Li) of all intermediate fields K <
Li < F1

p(K), 1 ≤ i ≤ p + 1, that is, the structures of the first layer of
the TTT τ(K), usually determine the TKT κ(K), at least in the case that
G2
p(K) is one of the most densely populated metabelian p-groups.
The density of population of a metabelian p-group G by second p-class

groups G2
p(K) of certain base fields K can be calculated explicitly from

a purely group theoretic probability measure by non-abelian generaliza-
tions of the Cohen-Lenstra-Martinet asymptotic, as developed recently by
Boston, Bush, Hajir [20], and also by Bembom [12], resp. Boy [23], under
supervision by Mihailescu, resp. Malle. The heuristic is in good accordance
with our extensive computational results for quadratic base fields in [58].
Our results have in fact actually been used in [12, pp. 5, 126]. Further,
they eliminate all incomplete IPADs (index-p abelianization data), which
coincide with the first layer of our TTTs, and correct the frequencies given
in [20, Tbl. 1–2, pp. 17–18], which are uniformly slightly too low.

It is to be expected that similar strategies, exploiting the interplay be-
tween TTT and TKT, but now extended to the higher layers of these in-
variants, can be used to identify the isomorphism type of the second p-class
group G = G2

p(K) of number fields K with more complicated p-class group
Clp(K), for example of type (p2, p) or (p, p, p). Extensions in this direction
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will be presented in subsequent papers, e. g. [61]. An outlook is given in
section § 4.

2. Visualizing finite p-groups on coclass graphs

2.1. Periodic patterns. An important purpose of this paper is to empha-
size that coclass graphs G(p, r) are particularly well suited for visualizing
periodic properties [30, 33] of infinite sequences of finite p-groups G, such
as parametrized power-commutator presentations [15, 66], automorphism
groups Aut(G), Schur multipliers H2(G,Zp) and other cohomology groups
of G, transfer kernel types κ(G) [59], transfer target types τ(G) [60], and
defect of commutativity k(G) expressed by the depth dp(G) (Corollaries
3.1.1 and 3.10.1). In number theoretic applications, selection rules for sec-
ond p-class groups G = G2

p(K) of special base fields K [58] are additional
periodic properties. Computational results on the density of distribution of
second p-class groups can also be represented very clearly on coclass graphs.

2.2. Coclass graphs. For a given prime p, Leedham-Green and Newman
[53] have defined the structure of a directed graph G(p) on the set of all
isomorphism classes of finite p-groups. Two vertices are connected by a
directed edge H → G if G is isomorphic to the last lower central quotient
H/γc(H) of H, where c denotes the nilpotency class cl(H) of H.

If the condition |H| = p|G| is imposed on the edges, G(p) is partitioned
into countably many disjoint subgraphs G(p, r), r ≥ 0, called coclass graphs
of p-groups G of coclass r = cc(G) = n − cl(G), where |G| = pn [52, p.
155, 166]. A coclass graph G(p, r) is a forest of finitely many coclass trees
Ti, each with a single infinite mainline having a pro-p group of coclass r as
its inverse limit, and additionally contains a set G0(p, r) of finitely many
sporadic groups outside of coclass trees, G(p, r) = (∪i Ti) ∪ G0(p, r).

The terminology concerning the structure of coclass graphs G(p, r) with
a prime p ≥ 2 and an integer r ≥ 0 must be recalled briefly. We adopt the
most recent view of coclass graphs, which is given by Eick and Leedham-
Green [33], and by Dietrich, Eick, Feichtenschlager [27, p. 46].

• The coclass cc(G) of a finite p-group G of order |G| = pn and
nilpotency class cl(G) is defined by n = cl(G) + cc(G).
• By a vertex of the coclass graph G(p, r) we understand the isomor-
phism class of a finite p-group G of coclass cc(G) = r.
• The vertex H is an immediate descendant of the vertex G, if G is
isomorphic to the last lower central quotient H/γc(H) of H, where
c = cl(H) denotes the nilpotency class of H, and γc(H) is cyclic of
order p, that is, cl(H) = 1 + cl(G) and |H| = p|G|. In this case, H
and G are connected by a directed edge H → G of the coclass graph
and G is called the parent G = π(H) of H.
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• A capable vertex has at least one immediate descendant, whereas a
terminal vertex has no immediate descendants.
• The vertex Gm is a descendant of the vertex G0, if there is a path

(Gj → Gj−1)m≥j≥1 of directed edges from Gm to G0. In particular,
the vertex G0 is descendant of itself, with empty path.
• The tree T (G) with root G consists of all descendants of the vertex
G.
• A coclass tree is a maximal rooted tree containing exactly one infi-
nite path.
• The mainline (Mj+1 → Mj)j≥n of a coclass tree T (Mn) with root
Mn of order |Mn| = pn is its unique maximal infinite path. The
projective limit S = lim

←− j≥nMj , is an infinite pro-p group, whose
finite quotients by closed subgroups return the mainline vertices
Mj .
• For i ≥ n, the branch B(Mi) of a coclass tree T (Mn) with tree root
Mn and mainline (Mj+1 → Mj)j≥n is the difference set T (Mi) \
T (Mi+1). The branch B(Mi) is briefly denoted by Bi and we assume
that the order of the branch root Mi is |Mi| = pi.
• The depth dp(G) = m − j of a vertex G of order |G| = pm on a
branch B(Mj) of a coclass tree is its distance from the branch root
Mj of order |Mj | = pj on the mainline. For d ≥ 1, Bd(Mj) denotes
the pruned branch of bounded depth d with root Mj .
• The periodic sequence S(G) of a vertex G ∈ Bd(Mi) of order |G| =
pm, i ≤ m ≤ i + d, on a coclass tree of G(p, r), where Mi denotes
the vertex of order pi on the mainline and i is sufficiently large
so that periodicity has set in already [33], is the infinite sequence
(Gm+j`)j≥0 of vertices defined recursively by Gm = G and Gm+j` =
ϕi+(j−1)`(Gm+(j−1)`), for j ≥ 1, using the periodicity isomorphisms
[33, Thm. 27–28, p. 286] of graphs ϕi+(j−1)` : Bd(Mi+(j−1)`) →
Bd(Mi+j`) with period length `, which is a divisor of pr+1(p− 1).

3. p-Groups with single layered abelianization of type (p, p)

3.1. Metabelian p-groups G of coclass cc(G) = 1. For an arbitrary
prime p ≥ 2, let G be a metabelian p-group of order |G| = pn and nilpotency
class cl(G) = n− 1, where n ≥ 3. In the terminology of Blackburn [15] and
Miech [64], G is of maximal class, that is, of coclass cc(G) = 1, whence
the commutator factor group G/G′ of G is of type (p, p). The converse is
only true for p = 2: A 2-group G with G/G′ ' (2, 2) is of coclass 1, a fact
which is usually attributed to Taussky [75]. The lower central series of G
is defined recursively by γ1(G) = G and γj(G) = [γj−1(G), G] for j ≥ 2.
Nilpotency of G is expressed by γn−1(G) > γn(G) = 1.
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3.1.1. Polarization and defect. The two-step centralizer χ2(G) =
{g ∈ G | [g, u] ∈ γ4(G) for all u ∈ γ2(G)} of the two-step factor group
γ2(G)/γ4(G), which can also be defined by

χ2(G)/γ4(G) = CentralizerG/γ4(G)(γ2(G)/γ4(G)) ,

is the largest subgroup of G such that [χ2(G), γ2(G)] ≤ γ4(G). It is char-
acteristic, contains the commutator subgroup γ2(G), and coincides with G
if and only if n = 3. For n ≥ 4, χ2(G) is one of the maximal subgroups
(Hi)1≤i≤p+1 of G and causes a polarization among them, which will be
standardized in Definition 3.1. Let the isomorphism invariant k = k(G) of
G be defined by

[χ2(G), γ2(G)] = γn−k(G) ,

where k = 0 for n = 3, 0 ≤ k ≤ n−4 for n ≥ 4, and 0 ≤ k ≤ min{n−4, p−2}
for n ≥ p+ 1, according to Miech [64, p. 331]. k(G) provides a measure for
the deviation from the maximal degree of commutativity [χ2(G), γ2(G)] = 1
and will be called defect of commutativity of G.

3.1.2. Parametrized presentation. Suppose that generators of G =
〈x, y〉 are selected such that x ∈ G\χ2(G), if n ≥ 4, and y ∈ χ2(G)\γ2(G),
and define the main commutator by s2 = [y, x] ∈ γ2(G) and the higher com-
mutators by sj = [sj−1, x] = sx−1

j−1 ∈ γj(G) for j ≥ 3. We use identifiers sj
to emphasize those elements of G for which addition of symbolic exponents
f1, f2 in the group ring Z[G] is commutative, sf1+f2

j = sf2+f1
j . Nilpotency of

G is expressed by sn = 1 and a power-commutator presentation of G with
generators x, y, s2, . . . , sn−1 is given as follows. There are two relations for
pth powers of the generators x and y of G,

(3.1)

xp = swn−1 and yp
p∏
`=2

s
(p

`)
` = szn−1 with exponents 0 ≤ w, z ≤ p− 1 ,

according to Miech [64, p. 332, Thm. 2, (3)]. Blackburn uses the notation
δ = w and γ = z for these relational exponents [15, p. 84, (36), (37)].

Additionally, the group G satisfies relations for pth powers of the higher
commutators,

spj+1

p∏
`=2

s
(p

`)
j+` = 1 for 1 ≤ j ≤ n− 2 ,

and the commutator relation of Miech [64, p. 332, Thm. 2, (2)], containing
the defect k = k(G),
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(3.2) [y, s2] =
k∏
`=1

s
a(n−`)
n−` ∈ [χ2(G), γ2(G)] = γn−k(G) ,

with exponents 0 ≤ a(n − `) ≤ p − 1 for 1 ≤ ` ≤ k, and a(n − k) > 0, if
k ≥ 1. Blackburn restricts his investigations to k ≤ 2 and uses the notation
β = a(n− 1) and α = a(n− 2) [15, p. 82, (33)].

By Gna(z, w) we denote the representative of an isomorphism class of
metabelian p-groups G of coclass cc(G) = 1 and order |G| = pn, which
satisfies the relations (3.1) and (3.2) with a fixed system of exponents a =
(a(n− k), . . . , a(n− 1)),w, and z. We have a = 0 if and only if k = 0.

3.1.3. A distinguished maximal subgroup. Since the maximal normal
subgroups Hi, 1 ≤ i ≤ p + 1, of G contain the commutator subgroup G′

as a normal subgroup of index p, they are of the shape Hi = 〈gi, G′〉 with
suitable generators gi, and we can arrange them in a fixed order.

Definition 3.1. The polarization or natural order of the maximal sub-
groups (Hi)1≤i≤p+1 of G is given by the distinguished first generator g1 =
y ∈ χ2(G) and the other generators gi = xyi−2 /∈ χ2(G) for 2 ≤ i ≤ p + 1,
provided that |G| ≥ p4. Then, in particular χ2(G) = H1 = 〈y,G′〉.

3.1.4. Parents of CF groups. Together with group counts in Black-
burn’s theorems [15, p. 88, Thm. 4.1–4.3], Theorem 3.1 describes the struc-
ture of the metabelian skeleton of the unique coclass tree T (Cp × Cp) [28,
§ 1, p. 851] of the coclass graph G(p, 1) with an arbitrary prime p ≥ 2. The
graph consists of all isomorphism classes of CF groups (with cyclic factors)
[4, § 4, p. 264] of coclass 1.

Theorem 3.1. Let p ≥ 2 be an arbitrary prime, and G be a metabelian
p-group of coclass cc(G) = 1 having defect of commutativity k = k(G), such
that G ' Gna(z, w) with parameters n ≥ 3, a = (a(n − k), . . . , a(n − 1)),
0 ≤ a(n − k), . . . , a(n − 1), w, z < p, where a(n − k) > 0, if k ≥ 1, that is,
G is of order |G| = pn and nilpotency class cl(G) = n− 1. Then the parent
π(G) of G on the coclass tree T (Cp × Cp) is given by

π(G) '



Cp × Cp, if n = 3 (and thus k = 0),
Gn−1

0 (0, 0), if n ≥ 4, k = 0,
Gn−1

0 (0, 0), if n ≥ 5, k = 1 (and thus p ≥ 3),
Gn−1
ã (0, 0), where ã = (a(n− k), . . . , a(n− 2)),

if n ≥ 6, k ≥ 2 (and thus p ≥ 5).

Remark. The various cases of Theorem 3.1 can be described as follows.
(1) In the first case, n = 3, where G ' G3

0(0, w) with 0 ≤ w ≤ 1 is
an extra-special p-group of order p3, the parent π(G) is the abelian
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root Cp×Cp of the tree T (Cp×Cp), which can formally be viewed
as G2

0(0, 0).
(2) In the second and third case of a group G of defect k ≤ 1, the parent

π(G) is a mainline group.
(3) In the last case of a group G of higher defect k ≥ 2, which can occur

only for p ≥ 5, the parent π(G) lies outside of the mainline and the
defect k̃ and family ã of relational exponents of π(G) are given by
k̃ = k − 1 and ã = (ã((n − 1) − (k − 1)), . . . , ã((n − 1) − 1)) =
(a(n− k), . . . , a(n− 2)), where ã((n− 1)− (k − 1)) > 0. We point
out that the parent is always characterized by parameters z̃ = 0
and w̃ = 0.

Proof. For n = 3, G is an extra special p-group of nilpotency class cl(G) =
n − 1 = 2 having the commutator subgroup γ2(G) as its last (non-trivial)
lower central γn−1(G). In this special case, the definition of the parent
π(G) = G/γn−1(G) of G yields the abelianization π(G) = G/γ2(G) of type
(p, p), which is isomorphic to the root Cp × Cp of T (Cp × Cp).

For n ≥ 4, G can be assumed to be isomorphic to a group G ' Gna(z, w)
with pc-presentation consisting of the relations (3.1) and (3.2) for the two
generators x, y,

xp = swn−1, yp
p∏
`=2

s
(p

`)
` = szn−1, [y, s2] =

k∏
`=1

s
a(n−`)
n−` .

Since the parent π(G) = G/γn−1(G) of G is defined as the last lower central
quotient, we denote the left coset of an element g ∈ G with respect to
γn−1(G) by ḡ = g · γn−1(G) and we obtain s̄n−1 = 1, because γn−1(G) =
〈sn−1〉. Therefore, the nilpotency class of the parent is cl(π(G)) = cl(G)−
1 = n− 2 and a pc-presentation of π(G) is given by

x̄p = s̄wn−1 = 1, ȳp
p∏
j=2

s̄
(p

j)
j = s̄zn−1 = 1, [ȳ, s̄2] =

k∏
`=1

s̄
a(n−`)
n−` ,

where the last product equals 1, if k ≤ 1, and
∏k
`=2 s̄

a(n−`)
n−` 6= 1, if k ≥

2, because s̄a(n−k)
n−k 6= 1. Since the order of the parent is |π(G)| = |G| :

|γn−1(G)| = pn : p = pn−1, the coclass remains the same cc(π(G)) =
n− 1− cl(π(G)) = n− 1− (n− 2) = 1 = cc(G). �

The following principle, that the kernel κ(1) of the transfer from G to
the first distinguished maximal subgroup H1 = χ2(G) decides about the
relation between depth dp(G) and defect k = k(G) of G, will turn out to
be crucial for metabelian p-groups G of coclass cc(G) ≥ 2, too.
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Corollary 3.1.1. For a metabelian p-group G of coclass cc(G) = 1 with
defect of commutativity k = k(G), the depth dp(G) of G on the coclass tree
T (Cp × Cp) of G(p, 1) is given by

dp(G) =
{
k + 1, if κ(1) 6= 0,
k, if κ(1) = 0,

with respect to the natural order of the maximal subgroups of G.

Proof. Theorem 3.1 shows that (Gn0 (0, 0))n≥2 is the mainline of the coclass
tree T (Cp ×Cp), consisting of all groups G of depth dp(G) = 0 and defect
k = 0, because each of these vertices occurs as a parent and possesses
infinitely many descendants, whereas the groups Gna(0, 0) with a 6= 0, k ≥ 1
can only have finitely many descendants, due to the bound k ≤ p − 2 by
Miech [64]. Since the defect of any group Gna(z, w) with parameter a = 0 is
given by k = 0, all the other groups G = Gn0 (z, w), (z, w) 6= (0, 0), which
contain H1 as an abelian maximal subgroup, must be located as terminal
vertices at depth dp(G) = 1 = k+ 1, because they never occur as a parent.
On the other hand, the third and fourth case of Theorem 3.1 show that the
relation between the defects of parent π(G) and immediate descendant G
is given by k̃ = k − 1 for any group G = Gna(z, w), a 6= 0, with positive
defect k ≥ 1, whence the depth, being the number of steps required to reach
the mainline by successive construction of parents, (G, π(G), π2(G), . . .), is
given by dp(G) = k. Finally, the groups G = Gn0 (z, w), (z, w) 6= (0, 0),
containing the abelian maximal subgroup H1, are characterized uniquely
by a partial transfer κ(1) 6= 0 to the distinguished maximal subgroup H1,
according to [59, Thm. 2.5–2.6]. �

We conjecture that the following property of mainline groups of G(p, 1)
might be true for mainline groups on any coclass tree of G(p, r), r ≥ 1.

Corollary 3.1.2. Mainline groups of G(p, 1), that is, groups of depth
dp(G) = 0, must have a total transfer κ(1) = 0 to the distinguished maxi-
mal subgroup H1 = χ2(G). The converse is only true for p = 2: A 2-group
G ∈ T (C2 × C2) having κ(1) = 0 is mainline.

Proof. The statement for p ≥ 2 is an immediate consequence of Corollary
3.1.1 and it only remains to prove the converse for p = 2. This, however, is
contained in [59, Thm. 2.6, p. 481]. �

Concerning the transfer kernel type κ(G) of a p-group G of coclass 1 we
can state:

Corollary 3.1.3. The transfer kernel types of groups on the unique coclass
tree T (Cp × Cp) of coclass graph G(p, 1) are given by the following rules.
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(1) The root Cp × Cp is of TKT a.1 (0p+1) for any prime p ≥ 2. The
extra-special group G3

0(0, 1) is of TKT A.1 (1p+1) for odd p ≥ 3,
and of TKT Q.5 (123) for p = 2. In the sequel, these exceptions are
excluded.

(2) Mainline groups are of TKT a.1 (0p+1) for odd p ≥ 3, and of TKT
d.8 (032) for p = 2.

(3) Groups of depth 1 and defect 0 are of TKT either a.2 (1, 0p) or a.3
(2, 0p) for p ≥ 3, and of TKT either Q.6 (132) or S.4 (232) for
p = 2.

(4) Groups of positive defect 1 ≤ k ≤ p− 2 are exclusively of TKT a.1
(0p+1).

Proof. This is a result of combining Theorem 3.1 with Theorems 2.5 and
2.6 in [59]. �

3.2. Second p-class groups G = G2
p(K) of coclass cc(G) = 1.

3.2.1. Weak transfer target type τ0(G) expressed by p-class num-
bers. The group theoretic information on the second p-class group G =
G2
p(K), that is, order, class, coclass, and defect, is contained in the p-class

numbers of the distinguished extension L1 and of the Hilbert p-class field
F1
p(K). Additionally, the principalization κ(1) of K in the distinguished

extension L1 determines the connection between defect and depth of G.

Theorem 3.2. Let K be an arbitrary number field with p-class group
Clp(K) of type (p, p). Suppose that the second p-class group G =
Gal(F2

p(K)|K) is abelian or metabelian of coclass cc(G) = 1 with defect
k = k(G), order |G| = pn, and class cl(G) = n − 1, where n ≥ 2. With
respect to the natural order among the maximal subgroups of G, the weak
transfer target type τ0(G) of G, that is, the family of p-class numbers of
the multiplet (L1, . . . , Lp+1) of unramified cyclic extension fields of K of
relative prime degree p ≥ 2 is given for the first layer by

τ0(G) = (hp(L1),hp(L2), . . . ,hp(Lp+1) =


(
p+1 times︷ ︸︸ ︷
p . . . , p ), if n = 2,

(pcl(G)−k,

p times︷ ︸︸ ︷
p2, . . . , p2), if n ≥ 3,

where defect k and depth dp(G) of G are related by

k =
{

dp(G)− 1, if κ(1) 6= 0,
dp(G), if κ(1) = 0,

and for the single member of the second layer by
hp(F1

p(K)) = pcl(G)−1.
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Proof. The statement is a succinct version of [58, Thm. 3.2], expressed
by concepts more closely related to the position of G on the coclass graph
G(p, 1) and to the transfer kernel type κ(G) of G, using Corollary 3.1.1. �

Remark. Whereas hp(L2), . . . ,hp(Lp+1) only indicate that cc(G) = 1, the
p-class number hp(F1

p(K)) of the Hilbert p-class field of K determines the
order pn, n = cl(G) + 1, and class of G, and the distinguished hp(L1) gives
the defect k of G.

With respect to the mainline (Mj)j≥2 of the coclass tree T (Cp×Cp), the
order |Mi| = 3i of the branch root Mi of G is given by i = n − dp(G) =
cl(G) + 1− dp(G), where

dp(G) =
{
k, if κ(1) = 0,
k + 1, if κ(1) 6= 0.

3.2.2. The complete coclass graph G(2, 1). We start our investigation
of special cases by showing that the distribution of second 2-class groups
G2

2(K) of complex quadratic fields K = Q(
√
D), D < 0, with Cl2(K) '

(2, 2) on G(2, 1) is not restricted by selection rules. This distribution will
only be given qualitatively, without exact counts.

Theorem 3.3. The diagram in Figure 3.1 visualizes the complete coclass
graph G(2, 1) up to order 28 = 256. It is periodic with length 1. The first
period consists of branch B3, whereas branch B2 is irregular and forms the
pre-period.

Proof. G(2, 1) begins with two abelian groups of order 22, the isolated cyclic
group C4, having different abelianization, and Klein’s four group V4, that
is the bicyclic root C2 × C2 of the unique coclass tree T (C2 × C2).

As immediate descendants of the root, G(2, 1) contains the capable main-
line group D(8) and the terminal group Q(8), both of order 23.

Applying Blackburn’s results [15] on counts of metabelian p-groups of
maximal class and order pn with n ≥ 4, to the special case p = 2, we only
need to consider metabelian groups containing an abelian maximal sub-
group, characterized by defect k = 0. They consist of the capable mainline
group D(2n) = Gn0 (0, 0), the terminal group Q(2n) = Gn0 (0, 1), and the
terminal group S(2n) = Gn0 (1, 0), which is expressed by specialization of
[15, p. 88, Thm. 4.3] to p = 2. The count is independent from n, yielding
the constant number 2 + (n− 2, p− 1) = 3.

�

We recall from [59] that the transfer kernel types κ(G) for p-groups of
coclass cc(G) = 1 are exceptional in the case p = 2, compared to the
uniform standard case of odd primes p ≥ 3.
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Theorem 3.4. Table 3.1 gives the transfer kernel type κ(G) of all non-
isolated vertices G, having abelianization G/G′ ' (2, 2), on the coclass
graph G(2, 1). The 2-groups G are identified by their Blackburn invariants
|G| = 2n and a,w, z as exponents in the relations (3.1) and (3.2). The
graph information gives the depth dp(G) and the location of each 2-group
G with respect to the unique coclass tree T (C2 × C2) of G(2, 1).

The mainline, consisting of the dihedral 2-groups D(2n) = Gn0 (0, 0) in-
cluding the abelian root C2 ×C2 = D(4) = G2

0(0, 0), is characterized by the
total transfer κ(1) = 0 to the distinguished maximal subgroup H1 = χ2(G).
Total transfers κ(i) = 0 are counted by ν(G).

Table 3.1. κ(G), ν(G) in dependence on non-isolated G ∈ G(2, 1)

2-group Gn
a (z, w) of coclass 1 graph information transfer kernels

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
G cl(G) n a z w k dp(G) tree position TKT κ(G) ν(G)

C2 × C2 1 2 0 0 0 0 0 root a.1 (000) 3
Q(8) 2 3 0 0 1 0 1 pre-period Q.5 (123) 0
D(2n) ≥ 2 ≥ 3 0 0 0 0 0 mainline d.8 (032) 1
Q(2n) ≥ 3 ≥ 4 0 0 1 0 1 periodic sequence Q.6 (132) 0
S(2n) ≥ 3 ≥ 4 0 1 0 0 1 periodic sequence S.4 (232) 0

Proof. See [59, Thm. 2.6, Tbl. 2–3] for the technique of determining kernels
of transfers and the definition of transfer kernel types as orbits of integer
triplets [0, 3]3 under the action of the symmetric group of degree 3. �

The statements of Theorem 3.4 can be visualized very conveniently by
the diagram of a finite part of the coclass graph G(2, 1), which is shown
in Figure 3.1. It contains the isolated vertex C4, the root C2 × C2 and
branches Bj , 2 ≤ j ≤ 7, of the coclass tree T (C2 ×C2). Branch B2 consists
of two initial exceptions, the elementary abelian bicyclic 2-group C2 × C2
with TKT a.1, κ = (000), and the quaternion group Q(8) with TKT Q.5,
κ = (123). Periodicity of length ` = 1 sets in with branch B3 which consists
of the starting vertices of three periodic sequences, S(D(8)), the mainline of
dihedral groups, S(Q(16)), the sequence of generalized quaternion groups,
and S(S(16)), the sequence of semi-dihedral groups. Transfer kernel types
(TKT) in the bottom rectangle concern all vertices in the periodic sequence
located vertically above. Large contour squares� denote abelian groups and
big full discs • denote metabelian groups with defect k = 0. A number in
angles gives the identifier of a group in the SmallGroups Library [14]. The
symbols Γs denote isoclinism families given by Hall and Senior [43]. The
population of each vertex is indicated by a surrounding circle labelled by
the discriminantD < 0 of a suitable complex quadratic fieldK = Q(

√
D) of

type (2, 2). There are no selection rules for p = 2 and the numerical results
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Figure 3.1. Population of G(2, 1) by groups G2
2(K) of K =

Q(
√
D), D < 0
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main

line T (C2 × C2)

C2 × C2 = V4C4

Q(8)

Gn
0 (0, 0)Gn

0 (0, 1)Gn
0 (1, 0)

= D(2n)= Q(2n)= S(2n)

Γ1〈1〉 〈2〉

Γ2〈4〉 〈3〉

Γ3〈8〉 〈9〉 〈7〉

Γ8〈19〉 〈20〉 〈18〉

〈53〉 〈54〉 〈52〉

〈162〉 〈163〉 〈161〉

TKT: d.8Q.6S.4

(032)(132)(232)

TKT: Q.5

(123)

TKT: a.1

(000)D = −84

D = −408

D = −6 168

D = −29 208

D = −609 816

D = −670 872

D = −120

D = −312

D = −888

D = −3 768

D = −8 952

D = −40 632

D = −340

D = −2 260

D = −5 140

D = −17 140

D = −165 460

suggest the conjecture that the tree T (V4) is covered entirely by second
2-class groups G2

2(K) of complex quadratic fields K = Q(
√
D), D < 0.

Ground states are due to Kisilevsky [49, p. 277–278]. All excited states
have been determined with the aid of Theorem 3.2. See [58, § 9]. Here we
refrain from giving the exact distribution up to some bound for |D| and we
do not claim that the given examples have minimal absolute discriminants.
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3.2.3. Selection Rule for quadratic base fields. Let K = Q(
√
D) be

a quadratic number field with discriminant D and p-class group Clp(K) of
type (p, p), where p ≥ 3 denotes an odd prime. Then the p+ 1 unramified
cyclic extension fields (L1, . . . , Lp+1) of K of relative prime degree p have
dihedral absolute Galois groups Gal(Li|K) of degree 2p, according to [58,
Prop. 4.1].

Theorem 3.5. Let G = Gal(F2
p(K)|K) be the second p-class group of K.

If G ∈ G(p, 1), then K must be real quadratic, D > 0, and, with respect
to the natural order of the maximal subgroups of G, the family of p-class
numbers of the non-Galois subfields Ki of Li is given by

(hp(K1), hp(K2), . . . ,hp(Kp+1)) = (p
cl(G)−dp(G)

2 ,

p times︷ ︸︸ ︷
p, . . . , p),

where depth and defect k of G are related via the first component of the
TKT κ(K) by

dp(G) =
{
k, if κ(1) = 0,
k + 1, if κ(1) 6= 0.

Consequently, the order |Mi| = pi of the branch root Mi of G ∈ B(Mi)
on the unique coclass tree of G(p, 1) with mainline (Mj)j≥2 must have odd
exponent

i = n− dp(G) = cl(G) + 1− dp(G) ≡ 1 (mod 2).

Remark. Whereas hp(K2), . . . ,hp(Kp+1) do not give any information,
the distinguished p-class number hp(K1) enforces the congruence
cl(G)− dp(G) ≡ 0 (mod 2).

Proof. The statement is a compact version of [58, Thm. 4.1], expressed by
the depth dp(G), and thus more closely related to the position of G on
the coclass graph G(p, 1) and to the transfer kernel type κ(G) of G, using
Corollary 3.1.1. �

Theorem 3.6. Table 3.2 gives the transfer kernel type (TKT) κ(G) of
all non-isolated metabelian vertices G on the coclass graph G(p, 1), for odd
p ≥ 3. The p-groups G are identified by their Blackburn-Miech invariants
|G| = pn and a,w, z as exponents in the relations (3.1) and (3.2). The
graph information gives the depth dp(G) and the location of each p-group
G with respect to the unique coclass tree T (Cp × Cp) of G(p, 1).
The mainline, consisting of the p-groups Gn0 (0, 0) including the abelian root
Cp×Cp = G2

0(0, 0), and all groups of positive defect k ≥ 1 are characterized
by the total transfer κ(1) = 0 to the distinguished maximal subgroup H1 =
χ2(G).
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Table 3.2. κ(G), ν(G) in dependence on non-isolated G ∈
G(p, 1) for p ≥ 3

p-Group Gn
a (z, w) of Coclass 1 graph information transfer kernels

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
G cl(G) n a z w k dp(G) tree position TKT κ(G) ν(G)

Cp × Cp 1 2 0 0 root a.1 (

p+1 times︷ ︸︸ ︷
0 . . . 0 ) p+ 1

G3
0(0, 1) 2 3 0 0 1 0 1 pre-period A.1 (

p+1 times︷ ︸︸ ︷
1 . . . 1 ) 0

Gn
0 (0, 0) ≥ 2 ≥ 3 0 0 0 0 0 mainline a.1 (

p+1 times︷ ︸︸ ︷
0 . . . 0 ) p+ 1

Gn
0 (0, 1) ≥ 3 ≥ 4 0 0 1 0 1 periodic sequences a.2 (1

p times︷ ︸︸ ︷
0 . . . 0) p

Gn
0 (z, 0) ≥ 3 ≥ 4 0 6= 0 0 0 1 periodic sequences a.3 (2

p times︷ ︸︸ ︷
0 . . . 0) p

Gn
a (z, w) ≥ 4 ≥ 5 6= 0 ≥ 1 ≥ 1 periodic sequences a.1 (

p+1 times︷ ︸︸ ︷
0 . . . 0 ) p+ 1

Proof. See [59, Thm. 2.5, Tab. 1]. �

3.2.4. The complete coclass graph G(3, 1). This section and the fol-
lowing sections §§ 3.2.5–3.2.8 will show, that second p-class groups G2

p(K)
of real quadratic fields K = Q(

√
D), D > 0, with Clp(K) ' (p, p) are only

distributed on odd branches of the metabelian skeleton of G(p, 1), for an
odd prime p ≥ 3, in contrast to the complete population of the coclass
graph G(2, 1). The effect is due to the number theoretic selection rule in
Theorem 3.5. The quantitative distribution for p ∈ {3, 5, 7} reveals a domi-
nant population of ground states and decreasing frequency of hits of excited
states.

Theorem 3.7. The diagram in Figure 3.2 visualizes the complete coclass
graph G(3, 1) up to order 38 = 6 561. It is periodic with length 2. The period
consists of branches Bj with 4 ≤ j ≤ 5, whereas branches Bj with 2 ≤ j ≤ 3
are irregular and form the pre-period.

Proof. The top of G(3, 1) consists of two abelian groups of order 32, the
isolated cyclic group C9 and the bicyclic root C3×C3 of the unique coclass
tree T (C3 × C3).

Immediate descendants of the root are the two well-known extra special
groups, the capable mainline group G3

0(0, 0) of exponent 3 and the terminal
group G3

0(0, 1) of exponent 9, both of order 33.
Blackburn’s results [15] on counting metabelian p-groups of maximal

class and order pn with n ≥ 4 can now be applied to the special case p = 3,
which is entirely metabelian [16, p. 26, Thm. 6].

We start with metabelian groups containing an abelian maximal sub-
group, which are characterized by defect k = 0. They consist of the capable
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Figure 3.2. Root C3 × C3 and branches Bj , 2 ≤ j ≤ 7, of
coclass graph G(3, 1)
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Syl3A9

Φ1
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1

mainline group Gn0 (0, 0), the terminal group Gn0 (0, 1) and (n− 2, p− 1) ter-
minal groups of the form Gn0 (z, 0). Specialization of [15, p. 88, Thm. 4.3]
to p = 3 in dependence on n yields their number

2 + (n− 2, p− 1) =
{

2 + 1 = 3 for 5 ≤ n ≡ 1 (mod 2),
2 + 2 = 4 for 4 ≤ n ≡ 0 (mod 2).

Further, the number of metabelian groups with defect k = 1, which are
terminal and of the form Gn1 (z, w) with a = (a(n − 1)) = (1), is given,
independently from n ≥ 5, by 3 [15, p. 88, Thm. 4.2]. �

Vertices G of coclass graph G(3, 1) in Figure 3.2 are classified according
to their defect k(G) by using different symbols:

(1) large contour squares � denote abelian groups,
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(2) big full discs • denote metabelian groups with abelian maximal
subgroup and k = 0,

(3) small full discs • denote metabelian groups with defect k = 1.

The actual distribution of the 2576 second 3-class groups G2
3(K) of real

quadratic number fields K = Q(
√
D) of type (3, 3) with discriminant 0 <

D < 107 is represented by underlined boldface counters of hits of vertices
surrounded by the adjacent oval. See [58, § 6, Tbl. 2] and [60, § 6, Tbl. 6.1].
The results verify the selection rule, Theorem 3.5, for groups G2

3(Q(
√
D)),

D > 0, and underpin the weak leaf conjecture 3.1 that mainline vertices
are forbidden for second 3-class groups of quadratic fields. A remarkably
different behavior is revealed by certain biquadratic fields to be presented
in a forthcoming paper.

Conjecture 3.1. A vertex G on the metabelian skeleton M(p, r) of a
coclass graph G(p, r), with an odd prime p ≥ 3 and r ≥ 1, cannot be
realized as second p-class group G2

p(K) of a quadratic field K = Q(
√
D), if

it possesses a metabelian immediate descendantH having the same transfer
kernel type κ(H) = κ(G) and a higher defect of commutativity k(H) >
k(G).

3.2.5. Separating TKTs on G(p, 1) via first TTT. For increasing
odd primes p ≥ 5, the structure τ(1) of the p-class group Clp(L1) of the
distinguished first unramified extension L1 of degree p of an arbitrary base
field K with second p-class group G = G2

p(K) of coclass cc(G) = 1 admits
the separation of more and more excited states of the TKTs a.2, with fixed
point κ(1) = 1, and a.3, without fixed point κ(1) ∈ {2, . . . , p+ 1}. Further,
the order of the exceptional p-group G ' SylpAp2 becomes increasingly
larger.

Theorem 3.8. Let p ≥ 3 be an odd prime and G ∈ G(p, 1) a p-group of
order |G| = pn, n ≥ 4, depth dp(G) = 1, and defect k(G) = 0.

(1) The exceptional case of TKT a.3∗, having an elementary abelian
first TTT τ(1) of elevated p-rank rp = p, occurs if and only if
n = p+ 1 and G ' Gp+1

0 (1, 0) = SylpAp2

(2) The regular cases of the TKTs a.2 and a.3, having a first TTT τ(1)
of usual p-rank rp ≤ p− 1, can be separated by the structure τ(1) of
the distinguished first maximal subgroup H1 = χ2(G) if and only if
n ≤ p. In this case,

(a) G is of TKT a.2 if and only if τ(1) = (
n−1 times︷ ︸︸ ︷
p . . . , p ) is elementary

abelian of rank rp = n− 1 ≤ p− 1,
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(b) G is of TKT a.3 if and only if τ(1) = (p2,

n−3 times︷ ︸︸ ︷
p . . . , p ) is of rank

rp = n − 2 ≤ p − 2, neither nearly homocyclic nor elementary
abelian.

Proof. All groups G ∈ G(p, 1) of order |G| ≥ pn, n ≥ 4, depth dp(G) = 1,
and defect k(G) = 0 are metabelian and contain the abelian distinguished
maximal subgroup A = H1 = χ2(G), having A′ = 1. Thus, all statements
are a consequence of [45, Thm. 7, p. 11], where G is of TKT a.2 if and
only if G ' Gn0 (0, 1), and G is of TKT a.3 if and only if G ' Gn0 (z, 0),
z /∈ {0, 1}. �

Table 3.3 displays the possibilities for the first TTT τ(1) in dependence
on the ground state (GS) and excited states (ES) of TKTs, as stated in
Theorem 3.8 for the smallest odd primes p ∈ {3, 5, 7}. Here, we assume a
quadratic base field K = Q(

√
D), taking into account the selection rule,

Theorem 3.5, for odd branches.

Table 3.3. Separating TKT a.2, a.3 and a.3∗ on G(p, 1)

First TTT, τ(1), for TKT

p state branch of ︷ ︸︸ ︷
T (Cp × Cp) a.2 a.3 a.3∗

3 GS B3 (32, 3) (32, 3) (3, 3, 3)

ES 1 B5 (33, 32) (33, 32) —

ES 2 B7 (34, 33) (34, 33) —

5 GS B3 (5, 5, 5) (52, 5) —

ES 1 B5 (52, 5, 5, 5) (52, 5, 5, 5) (5, 5, 5, 5, 5)

ES 2 B7 (52, 52, 52, 5) (52, 52, 52, 5) —

7 GS B3 (7, 7, 7) (72, 7) —

ES 1 B5 (7, 7, 7, 7, 7) (72, 7, 7, 7) —

ES 2 B7 (72, 7, 7, 7, 7, 7) (72, 7, 7, 7, 7, 7) (7, 7, 7, 7, 7, 7, 7)

3.2.6. Metabelian 5-groups G of coclass cc(G) = 1.

Theorem 3.9. The diagram in Figure 3.3 visualizes the metabelian skele-
ton M(5, 1) of coclass graph G(5, 1) up to order 511 = 48 828 125. This
subgraph of G(5, 1) is periodic with length 4. The period consists of the
branches Bj with 5 ≤ j ≤ 8, whereas the branches Bj with 2 ≤ j ≤ 4 are
irregular and form the pre-period.

Vertices of coclass graph G(5, 1) in Figure 3.3 are classified according to
their defect k by using different symbols:
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Figure 3.3. All metabelian 5-groups of order up to 511 on G(5, 1)
Order 5n
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292 55

3 13

(1) large contour squares � represent abelian groups,
(2) big full discs • represent metabelian groups with defect k = 0,
(3) big contour circles ◦ represent metabelian groups with k = 1,
(4) small full discs • represent metabelian groups with k = 2,
(5) small contour circles ◦ represent metabelian groups with k = 3.

The symbol n∗ adjacent to a vertex denotes the multiplicity of a batch
of n immediate descendants sharing a common parent. The selection rule,
Theorem 3.5, for second 5-class groups G2

5(K) of real quadratic number
fields K = Q(

√
D), D > 0, is indicated by ovals surrounding admissible

vertices.
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The actual distribution of the 377 second 5-class groups G2
5(Q(
√
D)) with

discriminant 0 < D ≤ 26 695 193, discussed in section 3.2.7, is represented
by underlined boldface counters of hits of vertices in the adjacent oval. The
13 cases of TKT a.1, κ = (000000), underpin the weak leaf conjecture 3.1.

Proof. G(5, 1) starts with two abelian groups of order 52, the isolated
cyclic group C25 and the bicyclic root C5 × C5 of the unique coclass tree
T (C5 × C5).

As immediate descendants of the root, G(5, 1) contains the two well-
known extra special groups, the capable mainline group G3

0(0, 0) of expo-
nent 5 and the terminal group G3

0(0, 1) of exponent 25, both of order 53.
Now we use Blackburn’s results [15] on counting metabelian p-groups of

maximal class and order pn with n ≥ 4, for the special case p = 5.
First, we consider the metabelian groups containing an abelian maxi-

mal subgroup, which are characterized by the defect k = 0. They consist
of the capable mainline group Gn0 (0, 0), the terminal group Gn0 (0, 1) and
(n− 2, p− 1) terminal groups of the form Gn0 (z, 0). Specialization of [15, p.
88, Thm. 4.3] for p = 5 in dependence on n yields their number

2 + (n− 2, p− 1) =


2 + 1 = 3 for 5 ≤ n ≡ 1 (mod 2),
2 + 2 = 4 for 4 ≤ n ≡ 0 (mod 4),
2 + 4 = 6 for 6 ≤ n ≡ 2 (mod 4).

Next, the number of metabelian groups with defect k = 1, which contain
exactly one capable group Gn1 (0, 0) with a = (a(n − 1)) = (1) for every
n ≥ 5, is given by [15, p. 88, Thm. 4.2]:

1+(2n−6, p−1)+(n−2, p−1) =


1 + 4 + 1 = 6 for 5 ≤ n ≡ 1 (mod 2),
1 + 2 + 2 = 5 for 8 ≤ n ≡ 0 (mod 4),
1 + 2 + 4 = 7 for 6 ≤ n ≡ 2 (mod 4).

Finally, the number of metabelian groups with defect k = 2, containing
exactly two capable groups Gna(0, 0) with a = (1,±1) for every n ≥ 7 [51,
§ 3, ramification level], but only one capable group Gn(1,−1)(0, 0) for n = 6,
is given by [15, p. 88, Thm. 4.1]:

p+ (2n− 7, p− 1) + (n− 2, p− 1) = 5 + 1 + 4 = 10 for n = 6,

2p+ (2n− 7, p− 1) + (n− 2, p− 1)

=


10 + 1 + 1 = 12 for 7 ≤ n ≡ 1 (mod 2),
10 + 1 + 2 = 13 for 8 ≤ n ≡ 0 (mod 4),
10 + 1 + 4 = 15 for 10 ≤ n ≡ 2 (mod 4).
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Since Blackburn restricts his investigations to defects k ≤ 2, we need a
supplementary count of metabelian groups with defect k = 3. The results
for the head of the 4 virtually periodic branches Bj with 14 ≤ j ≤ 17
given by Dietrich, Eick, Feichtenschlager [27, Fig. 7–10, p. 57–60] and by
Dietrich [29, Fig. 4–5, p. 1086] are accumulated counts of metabelian and
non-metabelian groups, whereas the collars and tails entirely consist of non-
metabelian groups. According to private communications by H. Dietrich,
one of the two capable groups Gn−1

(1,±1)(0, 0) at depth two has always 25
metabelian descendants, which are all terminal, independently from n ≥
8, and the other has 15, resp. 13, metabelian descendants, which are all
terminal, for even n ≥ 8, resp. odd n ≥ 9. The count of metabelian groups
with defect k = 3 is also given by Miech [64, Thm. 6–7, p. 336–337]. �

3.2.7. Distribution of G2
5(K) on G(5, 1). In Table 3.4, we list the 8

variants of second 5-class groups G2
5(K) for the 377 real quadratic fields

K = Q(
√
D) of type (5, 5) with discriminant 0 < D ≤ 26 695 193, mainly

on the coclass graph G(5, 1), but modestly also on G(5, 2). τ(0) denotes the
5-class group of F1

5(K). Schur σ-groups are starred.

Table 3.4. 8 variants of G = G2
5(K) for 377 K = Q(

√
D),

0 < D ≤ 26 695 193

D τ(K); τ(0) Type κ(K) G cc(G) # %

244 641 (5, 52), (5, 5)5; (5, 5) a.3 (2, 05) 〈625, 9|10〉 1 292 77.5

1 167 541 (5, 5, 5), (5, 5)5; (5, 5) a.2 (1, 05) 〈625, 8〉 1 55 14.6

1 129 841 (5, 5, 5, 5), (5, 5)5; (5, 5, 5, 5) a.1 (06) 〈15625, 637 . . .642〉 1 13 3.4

3 812 377 (5, 5, 5, 52), (5, 5)5; (5, 5, 5, 5) a.2,3↑ (?, 05) 〈15625, 631 . . .635〉 1 3

4 954 652 (5, 52)6; (5, 5, 5) (B6) 〈3125, 9|10|12〉 2 7 1.9

10 486 805 (5, 5, 5)2, (5, 52)4; (5, 5, 5) (A2, B4) 〈3125, 7|11〉 2 2

18 070 649 (5, 5, 5), (5, 52)5; (5, 5, 5) (A,B5) 〈3125, 8|13〉∗ 2 1

7 306 081 (5, 5, 5, 5), (5, 5, 5), (5, 52)4 (0, A,B4) 〈3125, 4〉 2 4 1

There occur 13 cases (3.4%) of TKT a.1, κ = (000000), starting with
D = 1 129 841, 3 cases of the first excited state of TKT a.2 ↑, κ = (100000),
or a.3 ↑, κ = (200000), for D ∈ {3 812 377, 19 621 905, 21 281 673}, and 55
cases (14.6%) of the ground state of TKT a.2, κ = (100000), starting with
D = 1 167 541. The remaining 292 cases (77.5%) of the ground state of
TKT a.3, κ = (200000), starting with D = 244 641, are clearly dominating.
The TKTs were identified by means of Theorem 3.8, taking into account the
selection rule for quadratic base fields as given in Table 3.3. The distribution
of the corresponding second 5-class groups G2

5(K) on the coclass graph
G(5, 1), resp. G(5, 2), is shown in Figure 3.3, resp. 3.8. See also section §
3.5.3.
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Figure 3.4. All 7-groups of order up to 74 on G(7, 1)
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3.2.8. Metabelian 7-groups G of coclass cc(G) = 1. Figure 3.4 vi-
sualizes the lowest range of the distribution of second 7-class groups G2

7(K)
for the 17 real quadratic fields K = Q(

√
D) of type (7, 7) with discrimi-

nant 0 < D < 107 on the coclass graph G(7, 1). With the aid of MAGMA
[56], we found 13 cases, 76%, of TKT a.3, κ = (20000000), starting with
D = 1 633 285, and 3 occurrences, 18%, of TKT a.2, κ = (10000000), for
D ∈ {2 713 121, 6 872 024, 9 659 661}. These two TKTs can be separated
by means of Theorem 3.8. There were no cases of excited states, but for
the single discriminant D = 6 986 985, G2

7(K) is a top vertex of G(7, 2)
without total 7-principalization and of Taussky’s coarse transfer kernel
type κ = (BBBBBBBB) [76]. Table 3.5 shows the corresponding TTT
τ(K) = (Cl7(Li))1≤i≤8 using power notation for repetitions and including
τ(0) = Cl7(F1

7(K)), separated by a semicolon. 7-groups Gna(z, w) of positive
defect k ≥ 1 appear in higher branches and are invisible in Figure 3.4.

Table 3.5. 3 variants of G = G2
7(K) for 17 K = Q(

√
D),

0 < D < 107

D τ(K); τ(0) Type κ(K) G cc(G) # %

1 633 285 (7, 72), (7, 7)7; (7, 7) a.3 (2, 07) 〈2401, 9|10〉 1 13 76

2 713 121 (7, 7, 7), (7, 7)7; (7, 7) a.2 (1, 07) 〈2401, 8〉 1 3 18

6 986 985 (7, 72)8; (7, 7, 7) (B8) 〈16807, 10|14 . . .16〉 2 1 6

In the next section, we proceed to p-groups G of coclass cc(G) ≥ 2.



Distribution of second p-class groups 429

3.3. Metabelian 3-groups G of coclass cc(G) ≥ 2 with G/G′ '
(3, 3).

3.3.1. Non-CF groups. In contrast to CF groups of coclass 1, metabelian
3-groups G of coclass cc(G) ≥ 2 with abelianization G/G′ of type (3, 3)
must have at least one bicyclic factor γ3(G)/γ4(G) [66], and are therefore
called non-CF groups. They are characterized by an isomorphism invariant
e = e(G), defined by e + 1 = min{3 ≤ j ≤ m | 1 ≤ |γj(G)/γj+1(G)| ≤ 3}.
This invariant 2 ≤ e ≤ m − 1 indicates the first cyclic factor
γe+1(G)/γe+2(G) of the lower central series of G, except γ2(G)/γ3(G),
which is always cyclic. We can calculate e from order |G| = 3n and nilpo-
tency class cl(G) = m−1, resp. index m of nilpotency, of G by the formula
e = n−m+2. Since the coclass ofG is given by cc(G) = n−cl(G) = n−m+1,
we have the relation e = cc(G) + 1. CF groups are characterized by e = 2
and non-CF groups by e ≥ 3.

3.3.2. Bipolarization and defect. For a group G of coclass cc(G) ≥ 2
we need a generalization of the group χ2(G). Denoting by m the index of
nilpotency of G, we let χj(G) with 2 ≤ j ≤ m−1 be the centralizers of two-
step factor groups γj(G)/γj+2(G) of the lower central series, that is, the
biggest subgroups of G with the property [χj(G), γj(G)] ≤ γj+2(G). They
form an ascending chain of characteristic subgroups of G, γ2(G) ≤ χ2(G) ≤
. . . ≤ χm−2(G) < χm−1(G) = G, which contain the commutator subgroup
γ2(G), and χj(G) coincides with G if and only if j ≥ m−1. We characterize
the smallest two-step centralizer different from the commutator subgroup
by an isomorphism invariant s = s(G) = min{2 ≤ j ≤ m − 1 | χj(G) >
γ2(G)}. Again, CF groups are characterized by s = 2 and non-CF groups
by s ≥ 3.

Now we can generalize the defect of commutativity k = k(G) to any
metabelian 3-group G with G/G′ of type (3, 3) by defining 0 ≤ k ≤ 1 such
that [χs(G), γe(G)] = γm−k(G).

The following assumptions for a metabelian 3-group G of coclass cc(G) ≥
2 with abelianization G/γ2(G) of type (3, 3) can always be satisfied, accord-
ing to Nebelung [66, Thm. 3.1.11, p. 57, and Thm. 3.4.5, p. 94].

Let G be a metabelian 3-group of coclass cc(G) ≥ 2 with abelianisation
G/γ2(G) of type (3, 3). Assume that G has order |G| = 3n, class cl(G) =
m − 1, and invariant e = n − m + 2 ≥ 3, where 4 ≤ m < n ≤ 2m −
3. Let generators of G = 〈x, y〉 be selected such that the bicyclic factor
γ3(G)/γ4(G) is generated by their third powers, γ3(G) = 〈y3, x3, γ4(G)〉,
and that x ∈ G \χs(G), if s < m− 1, and y ∈ χs(G) \ γ2(G). This causes a
bipolarization among the four maximal subgroups H1, . . . ,H4 of G, which
will be standardized in Definition 3.2.
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3.3.3. Parametrized presentation. Let the main commutator of G be
declared by s2 = t2 = [y, x] ∈ γ2(G) and higher commutators recursively
by sj = [sj−1, x], tj = [tj−1, y] ∈ γj(G) for j ≥ 3. Starting with the powers
σ3 = y3, τ3 = x3 ∈ γ3(G), which generate γ3(G) modulo γ4(G), let σj =
[σj−1, x], τj = [τj−1, y] ∈ γj(G) for j ≥ 4. Nilpotency of G is expressed by
σm−1 = 1 and τe+2 = 1. According to Nebelung [66], the group G satisfies
the following relations with certain exponents −1 ≤ α, β, γ, δ, ρ ≤ 1 as
parameters.

s3
2 = σ4σ

−ρβ
m−1τ

−1
4 , s3σ3σ4 = σρβm−2σ

γ
m−1τ

δ
e ,(3.3)

t−1
3 τ3τ4 = σρδm−2σ

α
m−1τ

β
e , τe+1 = σ−ρm−1.

By Gm,nρ (α, β, γ, δ) we denote the representative of an isomorphism class
of metabelian 3-groups G, having G/G′ of type (3, 3), of coclass cc(G) =
n − m + 1 ≥ 2, class cl(G) = m − 1, and order |G| = 3n, which satisfies
the relations (3.3) with a fixed system of exponents (α, β, γ, δ, ρ). We have
ρ = 0 if and only if k = 0.

3.3.4. Two distinguished maximal subgroups. The maximal normal
subgroups H1, . . . ,H4 of G contain the commutator subgroup G′ as a nor-
mal subgroup of index 3 and are thus of the shape Hi = 〈gi, G′〉 with
suitable generators gi. We want to arrange them in a fixed order.

Definition 3.2. The bipolarization or natural order of the maximal sub-
groups (Hi)1≤i≤4 of G is given by the distinguished first generator g1 = y ∈
χs(G), the distinguished second generator g2 = x /∈ χs(G), both satisfying
y3, x3 ∈ γ3(G) \ γ4(G), and the other generators gi = xyi−2 /∈ χs(G) for
3 ≤ i ≤ 4, provided that s < m − 1. Then, in particular, χs(G) = H1 =
〈y,G′〉.

3.3.5. Parents of core and interface groups.

Definition 3.3. For an arbitrary prime p, let G be a finite p-group of
nilpotency class c = cl(G). We call G a core group, resp. an interface group,
if its last lower central γc(G) is of order pd with d = 1, resp. d ≥ 2.

If G is of order pn, the last lower central quotient Q = G/γc(G) of G is
of order |Q| = |G|/pd = pn−d and of class cl(Q) = cl(G)− 1. Therefore, the
coclass of Q is given by

cc(Q) = n− d− cl(Q) = n− d− cl(G) + 1 = cc(G)− (d− 1).

Consequently, the last lower central quotient Q of a core group G is of the
same coclass as G, whereas the last lower central quotient Q of an interface
group G is of lower coclass than G. Obviously, a CF group must necessarily
be a core group.
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Now we apply these new concepts to the case p = 3 and investigate the
parent π(G) of a metabelian 3-group G with G/G′ of type (3, 3). Since
the invariant e = e(G) = cc(G) + 1 indicates the first cyclic quotient
γe+1(G)/γe+2(G), G is an interface group if and only if e = cl(G) = m− 1,
where m denotes the index of nilpotency of G. This maximal possible
value of e enforces a special relation between order |G| = 3n and class
cl(G) = m− 1 of G,

n = e+m− 2 = m− 1 +m− 2 = 2m− 3.
Together with group counts in Nebelung’s theorem [66, p. 178, Thm.

5.1.16], the following two theorems describe the structure of the metabelian
skeleton of those subgraphs of the coclass graphs G(3, r), r ≥ 2, which are
formed by isomorphism classes of metabelian 3-groups G having abelian-
ization G/G′ ' (3, 3). This restriction concerns both, the coclass trees T
and the sporadic part G0(3, r) of each coclass graph G(3, r). We distinguish
core groups and interface groups and begin with the former.
Theorem 3.10. Let G be a metabelian 3-group of coclass r = cc(G) ≥ 2
with G/G′ ' (3, 3), such that G ' Gm,nρ (α, β, γ, δ) ∈ G(3, r) with pa-
rameters −1 ≤ α, β, γ, δ, ρ ≤ 1, that is, G is of order |G| = 3n, class
cl(G) = m− 1, 4 ≤ m < n ≤ 2m− 3, coclass 2 ≤ r = n−m+ 1 ≤ m− 2,
and invariant 3 ≤ e = n −m + 2 ≤ m − 1. Assume additionally that G is
a core group with cyclic last lower central γm−1(G) of order 3, thus having
5 ≤ m < n ≤ 2m−4 and e ≤ m−2. Then the parent π(G) of G is generally
given by π(G) ' Gm−1,n−1

0 (ρδ, β, ρβ, δ) ∈ G(3, r), and in particular,

π(G) '


Gm−1,n−1

0 (0, β, 0, δ), if ρ = 0,
Gm−1,n−1

0 (ρδ, β, ρβ, δ), if ρ = ±1, (β, δ) 6= (0, 0),
Gm−1,n−1

0 (0, 0, 0, 0), if ρ = ±1, (β, δ) = (0, 0).

Remark. The various cases of Theorem 3.10 can be described as follows.
(1) IfG is a group with parameter ρ = 0, or equivalently with defect k =

0, then the parent π(G) ' Gm−1,n−1
0 (0, β, 0, δ) is a mainline group

on one of the coclass trees, since these groups are characterized
uniquely by α = 0, γ = 0, ρ = 0 [67]. A summary is given in Table
3.6.

(2) However, if G is a group with ρ = ±1 or equivalently k = 1, then
the parent π(G) has defect k̃ = 0 = k − 1 but lies outside of any
mainline, either on a branch of a coclass tree T or on the sporadic
part G0(3, r).

(3) The only exception is the very special case that G with ρ = ±1 has
the parameters β = 0 and δ = 0. According to [67], this uniquely
characterizes groups G of transfer kernel type b.10, κ = (0043),
outside of mainlines, having mainline parent π(G) of the same TKT.
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Table 3.6 summarizes parametrized power-commutator presentations
Gm,nρ (α, β, γ, δ) with parameters α = γ = 0, −1 ≤ β, δ ≤ 1, ρ = 0,
4 ≤ m < n ≤ 2m − 3, n = r + m − 1, and transfer kernel types κ of
all metabelian mainline groups on coclass trees T of the coclass graphs
G(3, r) with given coclass r ≥ 2. In any case, the metabelian root G of
a tree T = T (G) is given by the top vertex G = Gr+2,2r+1

0 (0, β, 0, δ), for
which e = m− 1, r = m− 2, and thus n = 2r+ 1 = 2(r+ 2)− 3 = 2m− 3.
For the sake of comparison, the mainline of G(3, 1) is also included. Total
transfers κ(i) = 0, 1 ≤ i ≤ 4, are counted by the invariant ν(G), cfr. [58,
Dfn. 4.2, p. 488].

Table 3.6. Metabelian mainline groups of G(3, r), r ≥ 1,
sharing the total transfer kernel κ(1) = 0

3-group of order 3n transfer kernels

︷ ︸︸ ︷ ︷ ︸︸ ︷
G cc(G) m ≥ r + 2 n ≥ 2r + 1 TKT κ(G) ν(G)

Gn
0 (0, 0) r = 1 ≥ 3 ≥ 3 a.1 (0000) 4

Gm,n
0 (0, 0, 0, 0) r ≥ 2 ≥ 4 ≥ 5 b.10 (0043) 2

Gm,n
0 (0,−1, 0, 1) r = 2 ≥ 4 ≥ 5 c.18 (0313) 1

Gm,n
0 (0, 0, 0, 1) r = 2 ≥ 4 ≥ 5 c.21 (0231) 1

Gm,n
0 (0, 1, 0, 1) r ≥ 3 ≥ 5 ≥ 7 d∗.19 (0443) 1

Gm,n
0 (0,−1, 0, 1) r ≥ 4 even ≥ 6 ≥ 9 d∗.19 (0343) 1

Gm,n
0 (0, 0, 0, 1) r ≥ 3 ≥ 5 ≥ 7 d∗.23 (0243) 1

Gm,n
0 (0, 1, 0, 0) r ≥ 3 ≥ 5 ≥ 7 d∗.25 (0143) 1

Gm,n
0 (0,−1, 0, 0) r ≥ 4 even ≥ 6 ≥ 9 d∗.25 (0143) 1

Proof. The assumption 5 ≤ m < n ≤ 2m−4, and thus e = n−m+2 ≤ m−2,
ensures that G is not a top vertex of the coclass graph G(3, r). Therefore,
the last lower central γm−1(G) = 〈σm−1〉 of G is cyclic of order 3. Since
G ' Gm,nρ (α, β, γ, δ), G is defined by the relations (3.3),

s3σ3σ4 = σρβm−2σ
γ
m−1τ

δ
e , t3τ

−1
3 τ−1

4 = σ−ρδm−2σ
−α
m−1τ

−β
e , τe+1 = σ−ρm−1,

and the relations for the parent π(G) = G/γm−1(G) of G are

s̄3σ̄3σ̄4 = σ̄ρβm−2σ̄
γ
m−1τ̄

δ
e , t̄3τ̄

−1
3 τ̄−1

4 = σ̄−ρδm−2σ̄
−α
m−1τ̄

−β
e , τ̄e+1 = σ̄−ρm−1,

where the left coset of an element g ∈ G with respect to γm−1(G) is denoted
by ḡ = g ·γm−1(G). In particular, we have σ̄m−1 = 1. Since the order of the
parent is |π(G)| = |G| : |γm−1(G)| = 3n : 3 = 3n−1 and the nilpotency class
is cl(π(G)) = cl(G) − 1 = m − 2, the coclass r and the invariant e remain
the same, and we can view the relations as

s̄3σ̄3σ̄4 = σ̄0
m−3σ̄

ρβ
m−2τ̄

δ
e , t̄3τ̄

−1
3 τ̄−1

4 = σ̄0
m−3σ̄

−ρδ
m−2τ̄

−β
e , τ̄e+1 = 1.



Distribution of second p-class groups 433

Consequently, π(G) ' Gm−1,n−1
0 (ρδ, β, ρβ, δ), that is π(G) '

Gm−1,n−1
0 (α̃, β̃, γ̃, δ̃) with α̃ = ρδ, γ̃ = ρβ, but β̃ = β, δ̃ = δ remain

unchanged. �

The following principle, that the kernel κ(1) of the transfer from G to
the first distinguished maximal subgroup H1 = χs(G) decides about the
relation between depth dp(G) and defect k = k(G) of G, is already known
from metabelian p-groups G of coclass cc(G) = 1.

Corollary 3.10.1. For a metabelian 3-group G of coclass r = cc(G) ≥ 2
having abelianization G/G′ ' (3, 3) and defect of commutativity k = k(G),
which does not belong to the sporadic part G0(3, r), the depth dp(G) of G
on its coclass tree T , as a subset of G(3, r), is given by

dp(G) =
{
k + 1, if κ(1) 6= 0,
k, if κ(1) = 0,

with respect to the natural order of the maximal subgroups of G.

Proof. This follows immediately from Theorem 3.10 and the remark there-
after: The system of all groups Gm,n0 (0, β, 0, δ) with arbitrary 4 ≤ m < n ≤
2m− 3, −1 ≤ β, δ ≤ 1, but α = γ = ρ = 0, consists of all mainline groups
on coclass trees T of G(3, r), r = n −m + 1, that is, of all groups G with
depth dp(G) = 0 = k equal to the defect k. According to Table 3.6, all these
mainline groups have a total transfer κ(1) = 0 to the first distinguished
maximal subgroup H1.

Since the defect of a group Gm,nρ (α, β, γ, δ) with parameter ρ = 0 is k = 0,
all the other groups G = Gm,n0 (α, β, γ, δ), (α, γ) 6= (0, 0), with defect k = 0
must be located at depth dp(G) = 1 = k + 1 on a coclass tree T or as a
top vertex on the sporadic part G0(3, r) of G(3, r). According to [66, Thm.
6.14, pp. 208 ff], supplemented by [59, Thm. 3.3], all these groups have a
partial transfer κ(1) 6= 0 to the first distinguished maximal subgroup H1.

On the other hand, Theorem 3.10 shows that the relation between the
defects k̃ of parent π(G) and k of descendant G is given by k̃ = 0 = k−1 for
any group G = Gm,nρ (α, β, γ, δ), ρ = ∓1, with positive defect k = 1, whence
the depth, that is the number of steps required to reach the mainline by
successive construction of parents, is given by

dp(G) =
{

2 = k + 1, if κ(1) 6= 0,
1 = k, if κ(1) = 0.

The groups G with positive defect k = 1 are characterized by a partial
transfer κ(1) 6= 0 to the first distinguished maximal subgroupH1, according
to [66, Thm. 6.14, pp. 208 ff]. The only exception are the groups G with
parameters β = 0 and δ = 0, that is, those with transfer kernel type b.10,
κ = (0043), κ(1) = 0, outside of mainlines. �
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We conjecture that the following property of mainline groups of G(3, r)
might be true for mainline groups on any coclass tree of G(p, r), p ≥ 3
prime, r ≥ 1.

Corollary 3.10.2. Mainline groups on a coclass tree T of G(3, r), r ≥ 1,
that is, groups of depth dp(G) = 0, must have a total transfer κ(1) = 0 to
the distinguished maximal subgroup H1 = χs(G).

Proof. See Table 3.6. �

Only the groups of TKT a.1, κ = (0000), and b.10, κ = (0043), outside
of mainlines, prohibit that the converse of Corollary 3.10.2 is also true.

Top vertices G on coclass trees T and on the sporadic part G0(3, r) of a
coclass graph G(3, r) are groups of minimal class within their coclass r ≥ 2.
They are BF groups with bicyclic factors, except γ2(G)/γ3(G), in particular
having a bicyclic last lower central γm−1(G) of type (3, 3), and consequently
they do not possess a parent π(G) on the same coclass graph. They form
the interface between the coclass graphs G(3, r) and G(3, r−1). We call the
last lower central quotient G/γm−1(G) of G the generalized parent π̃(G) of
G but we point out that there is no directed edge of depth 1 from G to
π̃(G). However, in the complete graph G(3) of all finite 3-groups as defined
by Newman and O’Brien [69, p. 131], there is a directed edge of depth 2
from G to π̃(G). This supergraph G(3) is the disjoint union of all coclass
graphs G(3, r), r ≥ 0.

Theorem 3.11. Let G be a metabelian 3-group of coclass r = cc(G) ≥ 2
with G/G′ ' (3, 3), such that |G| = 3n, cl(G) = m−1, 4 ≤ m < n = 2m−3,
r = n−m + 1 = m− 2, e = n−m + 2 = m− 1, and consequently k = 0,
that is, G is an interface group with bicyclic last lower central γm−1(G) of
type (3, 3). Then the generalized parent π̃(G) ∈ G(3, r− 1) of G ∈ G(3, r) is
given by

π̃(G) '


G3

0(0, 0) ∈ G(3, 1), if m = 4
(and thus n = 5, r = 2),

Gm−1,n−2
0 (0, 0, 0, 0) ∈ G(3, r − 1), if m ≥ 5

(and thus n ≥ 7, r ≥ 3).

Proof. First, we consider the very special transition from second maximal
to maximal class. The assumption m = 4 implies n = 2m− 3 = 5. The last
lower central γ3(G) = 〈σ3, τ3〉 is bicyclic of order 32, and the generalized
parent π̃(G) = G/γ3(G) is of order 33, of nilpotency class 2 and of coclass
1. The group G of type G ' G4,5

0 (α, β, γ, δ) satisfies the following special
form of Nebelung’s relations (3.3),

s3
2 = 1, s3σ3 = σγ3 τ

δ
3 , t3τ

−1
3 = σ−α3 τ−β3 ,
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and since σ̄3 = 1 and τ̄3 = 1, the relations for the generalized parent π̃(G)
can be written as Blackburn’s relations (3.1) and (3.2),

x̄3 = τ̄3 = 1, ȳ3s̄3
2s̄3 = σ̄3 · 1 · σ̄γ−1

3 τ̄ δ3 = 1, [s̄2, ȳ] = t̄3 = σ̄−α3 τ̄1−β
3 = 1,

which imply that π̃(G) ' G3
0(0, 0).

Now, let m ≥ 5. Since e = m− 1, and the last lower central γm−1(G) =
〈σm−1, τm−1〉 is bicyclic of type (3, 3), the order of the generalized parent
is |π̃(G)| = |G| : |γm−1(G)| = 3n : 32 = 3n−2, the nilpotency class is
cl(π̃(G)) = cl(G) − 1 = m − 2, and the coclass r̃ = n − 2 − (m − 2) =
2m − 3 − m = m − 3 = r − 1 and the invariant ẽ = r̃ + 1 = r = e − 1
decrease by 1. Since k = 0, ρ = 0, the group G of type G ' Gm,n0 (α, β, γ, δ),
is defined by a special form of the relations (3.3),

s3σ3σ4 = σγm−1τ
δ
e , t3τ

−1
3 τ−1

4 = σ−αm−1τ
−β
e , τe+1 = 1.

Since σ̄m−1 = 1 and τ̄m−1 = 1, the relations for the generalized parent π̃(G)
are

s̄3σ̄3σ̄4 = σ̄γm−1τ̄
δ
m−1 = 1, t̄3τ̄

−1
3 τ̄−1

4 = σ̄−αm−1τ̄
−β
m−1 = 1, τ̄e = τ̄m−1 = 1,

and therefore we have π̃(G) ' Gm−1,n−2
0 (0, 0, 0, 0). �

3.4. Second 3-class groups G = G2
3(K) of coclass cc(G) ≥ 2 with

G/G′ ' (3, 3).

3.4.1. Weak transfer target type τ0(G) expressed by 3-class num-
bers. The group theoretic information on the second 3-class group G =
G2

3(K), that is, its class, coclass, and defect, is contained in the 3-class
numbers of the two distinguished extensions L1, L2 and of the Hilbert 3-
class field F1

3(K). Additionally, the principalization κ(1) of K in the first
distinguished extension L1 determines the connection between defect and
depth of G.

Theorem 3.12. Let K be an arbitrary number field having 3-class group
Cl3(K) of type (3, 3). Suppose the second 3-class group G = Gal(F2

3(K)|K)
of K is of coclass cc(G) ≥ 2 with defect k = k(G), order |G| = 3n, and
class cl(G) = m − 1, where 4 ≤ m < n ≤ 2m − 3. With respect to the
natural order of the maximal subgroups (Hi)1≤i≤4 of G, fixed in Definition
3.2, the weak transfer target type τ0(G) = (|Hi/H

′
i|)1≤i≤4, that is the family

of 3-class numbers of the quadruplet (L1, . . . , L4) of unramified cyclic cubic
extension fields of K, forming the first layer, is given by

τ0(G) = (h3(L1), . . . ,h3(L4)) = (3cl(G)−k, 3cc(G)+1, 33, 33),
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where, in the case of a non-sporadic group G on some coclass tree, defect k
and depth dp(G) are related by

k =
{

dp(G)− 1, if κ(1) 6= 0,
dp(G), if κ(1) = 0.

For the second layer, consisting of the Hilbert 3-class field F1
3(K) only,

the 3-class number is given by

h3(F1
3(K)) = 3cl(G)+cc(G)−2.

Proof. The statement is a succinct version of [58, Thm. 3.4], expressed by
concepts more closely related to the position of G on the coclass graphs
G(3, r), r ≥ 2, and to the transfer kernel type κ(G) of G, using Corollary
3.10.1. �

Remark. Whereas h3(L3) and h3(L4) only indicate that cc(G) ≥ 2, the
second distinguished h3(L2) gives the precise coclass r of G, h3(F1

3(K))
determines the order 3n, n = cl(G) + cc(G), and class of G, and the first
distinguished h3(L1) yields the defect k of G.

With respect to the mainline (Mj)j≥2r+1 of the coclass tree T containing
G, the order |Mi| = 3i of the branch root Mi of a non-sporadic group G is
given by i = n− dp(G) = cl(G) + cc(G)− dp(G), where

dp(G) =
{
k, if κ(1) = 0,
k + 1, if κ(1) 6= 0.

3.4.2. Selection Rules for quadratic base fields. Let K = Q(
√
D) be

a quadratic number field with discriminant D and 3-class group Cl3(K) of
type (3, 3). Then the 4 unramified cyclic cubic extension fields (L1, . . . , L4)
of K have dihedral absolute Galois groups Gal(Li|K) of degree 6, according
to [58, Prop. 4.1]. Consequently each sextic field Li contains a cubic subfield
Ki, whose invariants can be computed easier than those of Li and are also
sufficient to determine complete information on the group G = G2

3(K).

Theorem 3.13. Let G = Gal(F2
3(K)|K) be the second 3-class group of

K = Q(
√
D). If G ∈ G(3, r) for some coclass r ≥ 2, then the family of

3-class numbers of the non-Galois subfields Ki of Li, with respect to the
natural order fixed in Definition 3.2 is given by

(h3(K1), . . . ,h3(K4)) =


(3

cl(G)−(k+1)
2 , 3

cc(G)
2 , 3, 3) for sporadic G,

(where always κ(2) 6= 0, )
(3

cl(G)−dp(G)
2 , 3

cc(G)+1
2 , 3, 3) otherwise, if κ(2) = 0,

(3
cl(G)−dp(G)

2 , 3
cc(G)

2 , 3, 3) otherwise, if κ(2) 6= 0.
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The order |Mi| = 3i of the root Mi for a non-sporadic group G on branch
B(Mi) of some coclass tree is given by

i = cl(G) + cc(G)− dp(G) ≡
{

1 (mod 2), if κ(2) = 0,
0 (mod 2), if κ(2) 6= 0.

Remark. While h3(K3) and h3(K4) do not provide any information, the
second distinguished h3(K2) indicates the coclass of G and enforces the
parity

cc(G) ≡
{

1 (mod 2), if κ(2) = 0,
0 (mod 2), if κ(2) 6= 0,

in dependence on the principalization κ(2) of K in the second distinguished
extension L2, and the first distinguished h3(K1) demands cl(G)−dp(G) ≡ 0
(mod 2), for non-sporadic G.

Proof. See [58, Thm. 4.2.]. For the branch root order |Mi| = 3i of a non-
sporadic vertex G of order |G| = 3n, we use the relations n = cl(G) + cl(G)
and i = n− dp(G), the depth being the number of successive steps on the
path between G and Mi, each decreasing order and class by 1 and keeping
the coclass constant. �

3.4.3. Identifying densely populated vertices by fast algorithms.
The top vertices G on G(3, 2) with G/G′ of type (3, 3) in Figure 3.5 can be
identified by the fast algorithm given in [60, § 5.2–5.3], using the TTT and
the counter ε of τ(i) = (3, 3, 3), 1 ≤ i ≤ 4, in Table 3.7.

Table 3.7. TTT and ε of the top vertices of type (3, 3) on G(3, 2)

Id of isoclinism Hilbert TTT τ(G)

3-group G family TKT κ TTT ︷ ︸︸ ︷
τ(0) τ(1) τ(2) τ(3) τ(4) ε

〈243, 5〉 Φ6 D.10 (2241) (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (9, 3) 1

〈243, 7〉 Φ6 D.5 (4224) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) (9, 3) 2

〈243, 9〉 Φ6 G.19 (2143) (3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

〈729, 57〉 Φ43 G.19 (2143) (3, 3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

〈243, 4〉 Φ6 H.4 (4443) (3, 3, 3) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) 3

〈729, 45〉 Φ42 H.4 (4443) (9, 3, 3) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) 3

〈243, 3〉 Φ6 b.10 (0043) (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (3, 3, 3) 2

〈243, 6〉 Φ6 c.18 (0313) (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (9, 3) 1

〈729, 49〉 Φ23 c.18 (0313) (9, 3, 3) (9, 9) (9, 3) (3, 3, 3) (9, 3) 1

〈243, 8〉 Φ6 c.21 (0231) (3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

〈729, 54〉 Φ23 c.21 (0231) (9, 3, 3) (9, 9) (9, 3) (9, 3) (9, 3) 0

For quadratic fields K = Q(
√
D), the following metabelian 3-groups

G ∈ Φ6 cannot be realized as second 3-class groups G2
3(K).
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• 〈243, 9〉, 〈243, 4〉, according to Theorem 1.4, if K is complex.
• 〈243, 6〉, 〈243, 8〉, due to the selection rule for branches in Theorem
3.13.
• 〈243, 3〉, according to the remark after Theorem 3.13, since κ(2) = 0
enforces odd coclass.

3.4.4. Top vertices of type (3, 3) on G(3, 2). Figure 3.5 shows the
interface between the coclass graphs G(3, 1) and G(3, 2). The extra special
group G3

0(0, 0) of order 27 and exponent 3, which is the second member
of the unique mainline of G(3, 1), is the generalized parent π̃(G) of all top
vertices G of G(3, 2). We point out that the connecting edges of depth 2
neither belong to G(3, 1) nor to G(3, 2). The metabelian skeleton of this
graph is also shown in [66, p. 189 ff] and the complete graph, including the
non-metabelian leaves, was first drawn in [4, Tbl. 1–2, pp. 265–266] and [5,
Fig. 4.6–4.7, p. 74]. Among the non-CF groups G with abelianization G/G′
of type (3, 3) at the top of coclass graph G(3, 2), which form the stem of
isoclinism family Φ6, we have, from the left to the right:

• two terminal vertices 〈243, 5〉, 〈243, 7〉, the only Schur σ-groups of
order 35 [20, Thm. 4.2, p. 14],
• two roots 〈243, 9〉 and 〈243, 4〉 of finite trees of depth 2, whose
metabelian descendants belong to the stem of the isoclinism families
Φ43 and Φ42,
• a root 〈243, 3〉 of an infinite tree, which is not a coclass tree,
• and two roots 〈243, 6〉, 〈243, 8〉 of coclass trees, shown in detail in
Figures 3.6 and 3.7.

The sporadic part G0(3, 2) of G(3, 2) consists of the terminal vertices
〈243, 5〉 and 〈243, 7〉, the finite trees T (〈243, 9〉) and T (〈243, 4)〉, and a
certain finite subset of the difference T (〈243, 3〉) \ T (〈729, 40〉).

The vertices of the coclass graph G(3, 2) in Figure 3.5 are classified by
using different symbols:

(1) a large contour square � represents an abelian group,
(2) a big contour circle ◦ represents a metabelian group containing

an abelian maximal subgroup, all other metabelian groups do not
possess abelian subgroups,

(3) big full discs • represent metabelian groups with bicyclic centre of
type (3, 3) and defect k = 0,

(4) small full discs • represent metabelian groups with cyclic centre of
order 3 and defect k = 1,

(5) small contour squares � represent non-metabelian groups.
Groups of particular importance are labelled by a number in angles. This

is the identifier in the SmallGroups library [14] of GAP [40] and MAGMA
[56], where we omit the order, which is given on the left hand scale.
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Figure 3.5. Sporadic groups and roots of coclass trees on
the coclass graph G(3, 2)
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The actual distribution of the 2020, resp. 2576, second 3-class groups
G2

3(K) of complex, resp. real, quadratic number fields K = Q(
√
D) of type

(3, 3) with discriminant −106 < D < 107 is represented by underlined bold-
face counters (in the format complex/real) of the hits of vertices surrounded
by the adjacent oval.

It is illuminating to compare these frequencies, which we have computed
in [58, § 6, Tbl. 3–5] and [60, § 6, Tbl. 6.3–6.5 and 6.7] with the non-
abelian generalization of the asymptotic Cohen-Lenstra-Martinet probabil-
ity, which is given for complex quadratic fields by [20, p. 18, Tbl. 2] with
respect to all 3190 discriminants of 3-rank 2 instead to the 2020 discrim-
inants of type (3, 3) in the range −106 < D < 0. In three cases of Table
3.8, the actual percentage exceeds the conjectural asymptotic probability.
In the first case the excess is significant. A possible interpretation is that
the population of vertices of higher order will become more probable in
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ranges of considerably bigger absolute values of discriminants so that the
percentage of hits of the low order vertices in the table will decrease.

Table 3.8. Asymptotic probability for densely populated
vertices of G(3, 2)

Id of G frequency percentage probability
〈243, 5〉 667 20.91 17.56
〈243, 7〉 269 8.43 8.78
〈729, 57〉 94 2.95 2.19
〈729, 45〉 297 9.31 8.78

Identification of the vertex 〈729, 57〉, resp. 〈729, 45〉, among two, resp.
four, closely related vertices in isoclinism family Φ43, resp. Φ42, was pos-
sible by means of the following Artin criterion for second p-class groups
G of quadratic base fields, which can be verified by testing for a suitable
automorphism σ ∈ Aut(G) of order 2 acting as inversion on G/G′.

Theorem 3.14. Let p ≥ 3 be an odd prime. The second p-class group
G = G2

p(K) of a quadratic field K = Q(
√
D) admits an extension by the

cyclic group C2, 1→ G→ H → C2 → 1, such that H ′ ' G.

Proof. See the letter of E. Artin to H. Hasse from November 19, 1928
[37]. �

3.4.5. Coclass trees of type (3, 3) and (9, 3) on G(3, 2).

Definition 3.4. Let p ≥ 3 be an odd prime. A rooted subtree T of a coclass
graph G(p, r), r ≥ 1, is called forbidden, if none of its vertices G ∈ T can be
realized as the second p-class group G2

p(K) of a quadratic fieldK = Q(
√
D).

Otherwise T is called admissible.

Theorem 3.15. Let T be a coclass tree of a coclass graph G(3, r), r ≥ 1,
such that all its mainline groups M are metabelian with abelianization of
type (3, 3).

(1) The unique tree of G(3, 1) and the trees of G(3, 2), whose mainline
groups M are of transfer kernel type either c.18, κ = (0313), or
c.21, κ = (0231), are admissible.

(2) If all mainline groups M are of transfer kernel type b.10, κ =
(0043), with distinguished second member κ(2) = 0, then T is for-
bidden if and only if the coclass r ≥ 2 is even.

(3) If all mainline groups M are of transfer kernel type either d∗.23,
κ = (0243), or d∗.19, κ = (0443), or d∗.25, κ = (0143), with
distinguished second member κ(2) 6= 0, then T is forbidden if and
only if the coclass r ≥ 3 is odd.



Distribution of second p-class groups 441

Referring to [66, p. 189 ff] we point out the following details.
(1) There is a periodic pattern of period length 2 of rooted subtrees

with metabelian mainlines of type (3, 3) among the coclass graphs
G(p, r), setting in with r = 3. The roots of the trees with fixed
coclass r are of order 32r+1. The metabelian skeletons of the trees
with common mainline TKT and coclass of the same parity are
isomorphic as graphs. The same is true for the metabelian skeletons
of sporadic groups with coclass of the same parity.

(2) For odd coclass r ≥ 3, there are 4 trees with mainlines of transfer
kernel types b.10, κ = (0043), d∗.23, κ = (0243), d∗.19, κ = (0443),
and d∗.25, κ = (0143).

(3) For even coclass r ≥ 4, there are 6 trees with mainlines of transfer
kernel types b.10, κ = (0043), and d∗.23, κ = (0243), each occur-
ring only once, and on the other hand d∗.19, κ = (0443), and d∗.25,
κ = (0143), each occurring in two instances, isomorphic as graphs.

Proof. Theorem 3.15 is an immediate consequence of Theorem 3.13, due
to the second distinguished member κ(2) of the TKT. See the diagrams
on the pages without numbers, following [66, p. 189]. These diagrams were
constructed by means of the lists of representatives Gm,nρ (α, β, γ, δ) for iso-
morphism classes, given in the appendix [67] of Nebelung’s thesis. The con-
nection with the transfer kernel types κ is established in [66, Thm. 6.14,
pp. 208 ff]. �

Table 3.9. Infinite trees of types (3, 3) or (9, 3) with
metabelian mainline on G(3, 2)

SmallGroups Id of root G G/G′ TKT resp. pTKT κ ε η ∈ (f, g, h) population

〈729, 40〉 (3, 3) b.10 (0043) 2 {1, 2} (0, 1, 0) forbidden

〈243, 6〉 (3, 3) c.18 (0313) 1 {0, 1} (0, 1, 2) admissible

〈243, 8〉 (3, 3) c.21 (0231) 0 {2, 3} (1, 1, 2) admissible

〈243, 17〉 (9, 3) a.1 (000; 0) 2 {3, 4} (0, 0, 1) admissible

〈243, 15〉 (9, 3) a.1 (000; 0) 1 {3, 4} (1, 0, 0) admissible

Aside from the single forbidden coclass tree with metabelian mainline of
transfer kernel type b.10, κ = (0043), there exist 4 admissible coclass trees
with metabelian mainline on G(3, 2) which are populated quite densely by
second 3-class groups G2

3(K) of quadratic fieldsK with 3-class group of type
(3, 3), resp. (9, 3). They can be characterized by the number of members of
the TTT with 3-rank bigger than 2, ε = #{1 ≤ i ≤ 4 | r3(Hi/H

′
i) ≥ 3},

or by the number of members of the TKT, resp. punctured TKT (pTKT),
having Taussky’s type A, η = #{1 ≤ i ≤ 4 | κ(i) = A}, as shown in
Table 3.9. Groups along their mainlines arise as quotients of infinite pro-3
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groups of coclass 2 having a non-trivial centre, whose pro-3 presentations
are defined by suitable triplets (f, g, h) of relational exponents in [34, Thm.
4.1].

Figure 3.6. Distribution of G2
3(K) on the coclass 2 tree T (〈243, 6〉)
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Theorem 3.16. The structure of the complete coclass tree T (〈243, 6〉) as
part of the coclass graph G(3, 2), restricted to 3-groups G with abelianization
G/G′ ' (3, 3), is globally characterized by the tree invariant ε(G) = 1 and
given up to order 311 = 177 147 by Figure 3.6. The branches are of depth
3 and periodic of length 2. The pre-period consists of B5,B6, the primitive
period of B7,B8
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In Figure 3.6, we have G2
3(Q(
√
D)) ∈ T (〈243, 6〉) for 270 (13.4%) of the

2020 discriminants −106 < D < 0 and for 39 (1.5%) of the 2576 discrimi-
nants 0 < D < 107, investigated in [58, § 6], [60, § 6].

Since the TKT c.18, κ = (0313), of the mainline is total with κ(1) = 0,
there only occur G2

3(K) of real quadratic fields K = Q(
√
D), D > 0, on

the mainline.
Due to the Selection Rule in Theorem 3.13, the G2

3(K) are distributed on
even branches only, since the second distinguished transfer kernel κ(2) 6= 0.

Underpinning the weak leaf conjecture, there is no actual hit of the ver-
tices at depth 1 with TKT H.4, κ = (3313), e. g., of 〈2187, 286 . . . 287〉.

Figure 3.7. Distribution of G2
3(K) on the coclass 2 tree T (〈243, 8〉)
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Theorem 3.17. The structure of the complete coclass tree T (〈243, 8〉) as
part of the coclass graph G(3, 2), restricted to 3-groups G with abelianization
G/G′ ' (3, 3), is globally characterized by ε(G) = 0 and given up to order
311 = 177 147 by Figure 3.7. The branches are of depth 3 and periodic of
length 2. The pre-period consists of B5,B6, the primitive period of B7,B8

In Figure 3.7, we have G2
3(Q(
√
D)) ∈ T (〈243, 8〉) for 291 (14.4%) of the

2020 discriminants −106 < D < 0 and for 43 (1.7%) of the 2576 discrimi-
nants 0 < D < 107, investigated in [58, § 6], [60, § 6].

Since the TKT c.21, κ = (0231), of the mainline is total with κ(1) = 0,
there only occur G2

3(K) of real quadratic fields K = Q(
√
D), D > 0, on

the mainline.
Due to the Selection Rule in Theorem 3.13, the G2

3(K) are distributed on
even branches only, since the second distinguished transfer kernel κ(2) 6= 0.

Underpinning the weak leaf conjecture, there is no actual hit of the
vertices at depth 1 with TKT G.16, κ = (4231), e. g., of 〈2187, 301〉,
〈2187, 305〉.

The vertices of the coclass trees in both Figures 3.6 and 3.7 are classified
by using different symbols:

(1) big full discs • represent metabelian groups with bicyclic centre of
type (3, 3) and defect k = 0,

(2) small full discs • represent metabelian groups with cyclic centre of
order 3 and defect k = 1,

(3) small contour squares � represent non-metabelian groups.
A number adjacent to a vertex denotes the multiplicity of a batch of

immediate descendants sharing a common parent. The groups of particular
importance are labelled by a number in angles, which is the identifier in the
SmallGroups library [14] of GAP [40] and MAGMA [56], where the order
is omitted since it is given on the left hand scale.

The actual distribution of the 2020, resp. 2576, second 3-class groups
G2

3(K) of complex, resp. real, quadratic number fields K = Q(
√
D) of type

(3, 3) with discriminant −106 < D < 107 is represented by underlined bold-
face counters (in the format complex/real) of the hits of vertices surrounded
by the adjacent oval. See [58, § 6, Tbl. 3–5] and [60, § 6, Tbl. 6.5–6.8].

The realization of mainline vertices with TKT c.18 and c.21 as G2
3(K)

is no violation of the weak leaf conjecture 3.1, since these vertices do not
possess metabelian immediate descendants of the same TKT and of higher
defect of commutativity.

Proof. (Proof of Theorems 3.16 and 3.17) The metabelian skeletons were
drawn in [66, p. 189 ff], the complete trees were given in [5, p. 76, Fig. 4.8
and p. 123, Fig. 6.1], and ε was determined in [60, Cor. 4.4.1]. �
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When we had completed our extensive investigation of second 3-class
groups G2

3(K) of all 4596 quadratic fields K = Q(
√
D) of type (3, 3) in the

range −106 < D < 107, we wondered whether the distribution of second
3-class groups G2

3(K) for other sequences of base fields K of type (3, 3)
shows similarities or differences.

Since fields of degree 4 are still within the reach of numerical computa-
tions, we were able to analyze bicyclic biquadratic fields, either of Gauss-
Dirichlet-Hilbert type K = Q

(√
− 1,

√
d
)

[46] or of Eisenstein-Scholz-

Reichardt type K = Q
(√
− 3,

√
d
)
[71, 70]. Whereas the former reveal

strong similarities to quadratic fields, the latter exhibit a completely differ-
ent behavior, as will be shown in a forthcoming paper.

3.5. Stem of isoclinism family Φ6. In this section, we provide group
theoretic foundations for determining second 5-class groups G2

5(K) of co-
class cc(G) ≥ 2 for quadratic and quartic number fields K of type (5, 5).
The stem of Hall’s isoclinism family Φ6 is the key for a deeper understand-
ing of the 5-principalization of these base fields in their six unramified cyclic
quintic extensions L1, . . . , L6, which has partially but not completely been
investigated by Heider and Schmithals [45] and by Bembom [12].

The stem groups G of Hall’s isoclinism family Φ6 [44, p. 139] are p-groups
of order |G| = p5 with odd prime p, nilpotency class cl(G) = 3, and coclass
cc(G) = 2. They were discovered in 1898 by Bagnera [10, pp. 182–183], and
were constructed as extensions of C3

p by C2
p , for p ≥ 5, in 1926 by Schreier

[73, pp. 341–345]. Bagnera also pointed out that these groups do not have
an analog for p = 2.

Every stem group of isoclinism family Φ6 is a 2-generator group G =
〈x, y〉 with main commutator s2 = [y, x] in γ2(G) and higher commutators
s3 = [s2, x], t3 = [s2, y] in γ3(G), satisfying the power relations sp2 = sp3 =
tp3 = 1. The lower central series of G is given by

γ2(G) = 〈s2, s3, t3〉 of type (p, p, p), γ3(G) = 〈s3, t3〉 of type (p, p),

γ4(G) = 1,

and the center by ζ1(G) = γ3(G). The central quotient G/ζ1(G) is of type
Φ2(13) ' G3

0(0, 0), the extra special p-group of order p3 and exponent
p, and the abelianization G/γ2(G) is of type (p, p). Therefore, the lower
central structure of these groups uniformly consists of two bicyclic factors,
the head G/γ2(G), and the tail γ3(G)/γ4(G), separated by the cyclic factor
γ2(G)/γ3(G).

For any stem group G in Φ6, there exists a nice 1-to-1 correspondence
between the two bicyclic factors, the head and the tail, by taking the derived
subgroups.
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Lemma 3.1. The maximal normal subgroups Hi of G contain the commu-
tator subgroup G′ = γ2(G) and are given by
Hi = 〈gi, G′〉 with generators g1 = y and gi = xyi−2 for 2 ≤ i ≤ p+ 1.

Their derived subgroups H ′i = (G′)gi−1 are given by
H ′1 = 〈t3〉 and H ′i = 〈s3t

i−2
3 〉 for 2 ≤ i ≤ p+ 1.

As a consequence of Lemma 3.1, we only have trivial two-step centralizers
G′ = χ2(G) < χ3(G) = G and the invariants e(G) and s(G) of section §
3.3 take the same value e = s = 3.

Individual relations for isomorphism classes by James [47, pp. 620–621]
are given in Table 3.10, where ν denotes the smallest positive quadratic
non-residue modulo p and g denotes the smallest positive primitive root
modulo p.

Table 3.10. Relations for the stem groups of Φ6

stem group xp yp parameters
Φ6(221)a s3 t3

Φ6(221)br s3 tk3 1 ≤ r ≤ p−1
2 , k = gr

Φ6(221)cr sr3t
r
3 s

− r
4

3 r ∈ {1, ν}
Φ6(221)d0 tν3 s3

Φ6(221)dr s3t3 sk3 1 ≤ r ≤ p−1
2 , k = g2r+1−1

4
Φ6(213)a 1 t3 p ≥ 5
Φ6(213)br tr3 1 r ∈ {1, ν}, p ≥ 5
Φ6(15) 1 1

These presentations for 7 isomorphism classes of 3-groups, resp. 12 iso-
morphism classes of 5-groups, among the stem of Φ6 are now used to cal-
culate the kernels of all transfers Ti : G/G′ → Hi/H

′
i, 1 ≤ i ≤ p+ 1, whose

images are given for p = 5 in very convenient form by Lemma 3.2, since the
expressions for inner transfers are well-behaved pth powers. Outer transfers
always map to pth powers, anyway.

Lemma 3.2. For any 1 ≤ i ≤ 6, the image of an arbitrary element gG′ ∈
G/G′ with representation xjy`G′, 0 ≤ j, ` ≤ 4, under the transfer Ti is
given by Ti(xjy`G′) = xpjyp`H ′i.

In Table 3.11, TKTs κ of 3-groups in the notation of [59, § 3.3] were
determined by Nebelung [66, p. 208, Thm. 6.14] already, using different
presentations in equation (3.3), section § 3.3.3. For 5-groups the TKTs
are given here for the first time. The only exception is the group 〈3125, 14〉,
which was discussed in the well-known paper by Taussky [76, p. 436, Thm.2]
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Table 3.11. TKT of corresponding p-groups in Φ6 for p ∈ {3, 5}

p = 3 p = 5

3-group TKT κ 5-group η κ property

〈243, 7〉 G4,5
0 (1, 1,−1, 1) D.5 (4224) 〈3125, 14〉 Φ6(221)a 6 (123456) identity

〈243, 4〉 G4,5
0 (1, 1, 1, 1) H.4 (4443) 〈3125, 11〉 Φ6(221)b1 2 (125364) 4-cycle

no analog 〈3125, 7〉 Φ6(221)b2 2 (126543) two transpos.

〈243, 8〉 G4,5
0 (0, 0, 0, 1) c.21 (0231) 〈3125, 8〉 Φ6(221)c1 1 (612435) 5-cycle

〈243, 5〉 G4,5
0 (0, 0,−1, 1) D.10 (2241) 〈3125, 13〉 Φ6(221)c2 1 (612435) 5-cycle

〈243, 9〉 G4,5
0 (0,−1,−1, 0) G.19 (2143) 〈3125, 10〉 Φ6(221)d0 0 (214365) three transpos.

〈243, 6〉 G4,5
0 (0,−1, 0, 1) c.18 (0313) 〈3125, 12〉 Φ6(221)d1 0 (512643) 6-cycle

no analog 〈3125, 9〉 Φ6(221)d2 0 (312564) two 3-cycles

no analog 〈3125, 4〉 Φ6(21
3)a 2 (022222) nrl.const.with fp.

no analog 〈3125, 5〉 Φ6(21
3)b1 1 (011111) nearly constant

no analog 〈3125, 6〉 Φ6(21
3)b2 1 (011111) nearly constant

〈243, 3〉 G4,5
0 (0, 0, 0, 0) b.10 (0043) 〈3125, 3〉 Φ6(1

5) 6 (000000) constant

as an example to show that the coarse TKT κ = (AAAAAA) can occur for
p = 5, and also for primes p ≥ 7. A convenient partial characterization is
provided by counters of fixed point transfer kernels, resp. abelianizations
of type (5, 5, 5), η = #{1 ≤ i ≤ 6 | κ(i) = A} = #{1 ≤ i ≤ 6 | τ(i) =
(5, 5, 5)}, which must coincide, according to [45, Thm. 7, p. 11].

The correspondence between p = 3 and p = 5 is due to the formally
identical power-commutator presentation. However, it is partially rather
shallow, since corresponding groups can have different properties with re-
spect to their role on the coclass graphs G(3, 2) and G(5, 2). For example,
the 3-groups 〈243, 6〉 and 〈243, 8〉 are mainline vertices having the manda-
tory total first transfer kernel κ(1) = 0 whereas the 5-groups 〈3125, 12〉 and
〈3125, 8〉 are terminal without total transfer.

3.5.1. Top vertices of type (5, 5) on G(5, 2). Figure 3.8 shows the
non-CF groups at the top of coclass graph G(5, 2). It was constructed by
means of the SmallGroups library [14] of GAP [40] and MAGMA [56].
The groups are labelled by a number in angles, which is their identifier in
that library. Additional confirmation was obtained by explicit descendant
calculation with the aid of the ANUPQ package [39].

The vertices of the coclass graph G(5, 2) in Figure 3.8 are classified by
using different symbols:

(1) a large contour square � represents an abelian group,
(2) a big contour circle ◦ represents a metabelian group with abelian

maximal subgroup,
(3) big full discs • represent metabelian groups with bicyclic centre of

type (5, 5),
(4) small full discs • represent metabelian groups with cyclic centre of

order 5.
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Figure 3.8. Sporadic groups and roots of conjectural co-
class trees on G(5, 2)
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The actual distribution of the 959, resp. 377, second 5-class groupsG2
5(K)

of complex, resp. real, quadratic number fields K = Q(
√
D) of type (5, 5)

with discriminant −2 270 831 < D < 26 695 193 is represented by under-
lined boldface counters (in the format complex/real) of the hits of vertices
surrounded by the adjacent oval.

3.5.2. Fixed point principalization problem. We are pleased to pre-
sent the solution of a problem posed in 1970 by Taussky [76, p. 438, Rem.
1]. It concerns the lack of realizations, in the form of second 5-class groups
G2

5(K) of number fields K, of the unique metabelian 5-group 〈55, 14〉 with 6
fixed point transfer kernels, that is with coarse TKT κ = (AAAAAA), but
without total transfer kernels κ(i) = 0. Actually, we now have 5 realizations
of this very special TKT κ = (123456) (identity permutation) for qua-
dratic fields K = Q(

√
D), D ∈ {−89 751,−235 796,−1 006 931,−1 996 091,

−2 187 064}, in Table 3.13, and 4 further realizations for certain cyclic quar-
tic fields [48] K = Q

(
(ζ5 − ζ−1

5 )
√
D
)
, D ∈ {581, 753, 2 296, 4 553}.
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3.5.3. Statistical evaluation of second 5-class groups G2
5(K). The

possibilities for 5-groups of coclass 2 are more extensive than those for
coclass 1.

For the 377 real quadratic fields K = Q(
√
D), 0 < D < 26 695 193,

in Table 3.4, there occur 7 cases of coarse TKT κ = (BBBBBB), for
D ∈ {4 954 652, 7 216 401, 12 562 849, 16 434 245, 18 434 456, 19 115 293,
20 473 841}, a single case of TKT κ = (612435), for D = 18 070 649, 2
cases of coarse TKTκ = (AABBBB), for D ∈ {10 486 805, 18 834 493},
and 4 cases of the first excited state of TKT κ = (022222), for D ∈
{7 306 081, 11 545 953, 14 963 612, 22 042 632}.

Table 3.12. 9 variants of G = G2
5(K) for 959 K = Q(

√
D),

−2 270 831 ≤ D < 0

D τ(K) τ(0) κ(K) G cc(G) # %

−11 199 (5, 52)6 (5, 5, 5) (B6) 〈3125, 9|10|12〉 2 301 31.4

−12 451 (5, 5, 5), (5, 52)5 (5, 5, 5) (A,B5) 〈3125, 8|13〉∗ 2 167 17.4

−30 263 (5, 5, 5)2, (5, 52)4 (5, 5, 5) (A2, B4) 〈3125, 7|11〉 2 283 29.5

−89 751 (5, 5, 5)6 (5, 5, 5) (A6) 〈3125, 14〉∗ 2 5

−62 632 (5, 5, 5, 52), (5, 5, 5), (5, 52)4 (?, A,B4) 〈78125,#〉 2 124 12.9

−67 031 (5, 5, 5, 5, 5), (5, 52)5 (B6) 〈78125,#〉 2 6

−67 063 (5, 5, 5, 5, 5), (5, 5, 5), (5, 52)4 (B,A,B4) 〈78125,#〉 2 37 3.9

−280 847 (5, 5, 5, 52), (5, 52)5 (?, B5) 〈78125,#〉 2 32 3.3

−181 752 (5, 52, 52, 52), (5, 5, 5), (5, 52)4 (?, A,B4) 〈1953125,#〉 2 4

Among the 959 complex quadratic fieldsK = Q(
√
D), −2 270 831 ≤ D <

0, in Table 3.12, ground states (GS) appear exclusively with sporadic, and
mostly terminal, top vertices of G(5, 2). The 5 cases of TKT κ = (123456)
have been presented separately in section § 3.5.2 as solutions of Taussky’s
problem of 1970. Further, there are 167 cases (17.4%) of TKT κ = (612435)
(5-cycle with coarse TKT κ = (BBBABB)) starting with D = −12 451,
which was attempted but not analyzed completely in 1982 by Heider and
Schmithals [45] and 283 cases (29.5%) of coarse TKT κ = (AABBBB)
starting with D = −30 263. The remaining 301 cases (31.4%) of coarse
TKT κ = (BBBBBB), starting with D = −11 199 are slightly dominating.

For excited states (ES) of coclass 2 as well as of coclass 1, the distin-
guished first 5-class group Cl5(K1) of the non-Galois absolute quintic sub-
field K1 of the unramified extension L1|K is of 5-rank r5(K1) = 2, which
shows impressively that the rank equation for p = 3, r3(Ki) = r3(K) − 1,
by Gras [42] and Gerth [41] generalizes to a double inequality for p ≥ 5,

rp(K)− 1 ≤ rp(Ki) ≤
p− 1

2 · (rp(K)− 1),

as predicted, and partially proved, by Bölling [17] and Lemmermeyer [55].
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Table 3.13. 10 subvariants of G = G2
5(K) for 31 fields

K = Q(
√
D), −89 751 ≤ D < 0

D τ(K) τ(0) κ(K) G cc(G) #

−11 199 (5, 52)6 (5, 5, 5) (512643) 〈3125, 12〉∗ 2 7

−17 944 (5, 52)6 (5, 5, 5) (312564) 〈3125, 9〉∗ 2 2

−42 871 (5, 52)6 (5, 5, 5) (214365) 〈15625, 680〉 2 3

−12 451 (5, 5, 5), (5, 52)5 (5, 5, 5) (612435) 〈3125, 8〉∗ 2 5

or 〈3125, 13〉∗
−30 263 (5, 5, 5)2, (5, 52)4 (5, 5, 5) (126543) 〈15625, 674〉 2 4

−37 363 (5, 5, 5)2, (5, 52)4 (5, 5, 5) (125364) 〈3125, 11〉∗ 2 2

−89 751 (5, 5, 5)6 (5, 5, 5) (123456) 〈3125, 14〉∗ 2 5

−62 632 (5, 5, 5, 52), (5, 5, 5), (5, 52)4 (5, 5, 5, 5, 5) (322222) 〈78125,#〉 2 1

−67 031 (5, 5, 5, 5, 5), (5, 52)5 (5, 5, 5, 5, 5) (211111) 〈78125,#〉 2 1

−67 063 (5, 5, 5, 5, 5), (5, 5, 5), (5, 52)4 (5, 5, 5, 5, 5) (322222) 〈78125,#〉 2 2

The transfer target type (TTT) τ(G) of second 5-class groups G2
5(K)

has been computed for all quadratic number fields K = Q(
√
D), having

discriminant −2 270 831 < D < 26 695 193 and 5-class group Cl5(K) of
type (5, 5), with the aid of MAGMA [56]. As a refinement, we calculated
the transfer kernel type (TKT) κ(G) for 31 fields K = Q(

√
D), −89 751 ≤

D < 0, as given in Table 3.13. This also refines results of Bembom in
[12, p. 129]. Observe that Bembom does not give TKTs in our sense and
consequently was not able to discover the distinguished role of D = −89 751
with respect to the Taussky problem. Schur σ-groups are starred.

3.5.4. Statistical evaluation of second 7-class groups G2
7(K).

Among the 94 complex quadratic fields K of type (7, 7) with discrimi-
nants −106 ≤ D < 0, we found 7 variants of the second 7-class group
G = G2

7(K), characterized by different TTT τ(K) and Taussky’s coarse
TKT κ(K), which are related by [45, Thm. 7, p. 11].

Table 3.14. 7 variants of G = G2
7(K) for 70 fields K =

Q(
√
D), −751 288 ≤ D < 0

D τ(K) τ(0) κ(K) G cc(G) # %

−63 499 (7, 72)8 (7, 7, 7) (B8) 〈16807, 10|14|15|16〉 2 40 43

−183 619 (7, 7, 7)2, (7, 72)6 (7, 7, 7) (A2, B6) 〈16807, 11|12|13〉 2 29 31

−227 860 (7, 7, 7), (7, 72)7 (7, 7, 7) (A,B7) 〈16807, 8|9〉 2 9 9.6

unknown (7, 7, 7)8 (7, 7, 7) (A8) 〈16807, 7〉 2

−159 592 (7, 7, 7, 7, 7), (7, 7, 7), (7, 72)6 (A2, B6) 〈823543,#〉 2 3

−227 387 (7, 7, 7, 72), (7, 7, 7), (7, 72)6 (B,A,B6) 〈823543,#〉 2 10

−272 179 (7, 7, 7, 72), (7, 72)7 (B8) 〈823543,#〉 2 2

−673 611 (7, 7, 7, 7, 7, 72), (7, 7, 7), (7, 72)6 (?, A,B6) 〈40353607,#〉 2 1
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In Table 3.14 we present the discriminants with smallest absolute values,
corresponding to these variants. τ(0) denotes the 7-class group of F1

7(K).
Using the SmallGroups library [14], we identified 78 ground states (83%)
having their G among the sporadic top vertices of G(7, 2) in the stem of iso-
clinism family Φ6. Unfortunately, there didn’t occur a solution of Taussky’s
1970 fixed point capitulation problem for p = 7, in form of a realization
of 〈16807, 7〉. However, there appeared 15 first excited states (16%) with G
located on coclass trees of G(7, 2), where the non-Galois subfield K1 of the
distinguished extension L1 has a 7-class group of type (7, 7), and, partic-
ularly remarkable, a single second excited state for D = −673 611, where
the maximal 7-rank 3 in Bölling’s inequality [17, 55] is attained in form of
Cl7(K1) ' (7, 7, 7).

4. p-Groups with double layered abelianization of type
(p2, p) or (p, p, p)

For a number field K with p-class group Clp(K) of type (p2, p), resp.
(p, p, p), there exist two layers of unramified abelian extensions L|K, each
containing p + 1, resp. p2 + p + 1, members. Extensions in the first layer
are of relative degree p, those in the second layer are of relative degree
p2. Consequently, the second layer tends to be out of the scope of actual
computations. However, there are some exceptions of modest degree.

4.1. Quadratic fields of type (9, 3). On the one hand, there is the case
p = 3 for quadratic fields K = Q(

√
D) with 3-class group Cl3(K) of type

(9, 3) or (3, 3, 3), where extensions in the second layer are of absolute degree
18. From the viewpoint of 3-towers, there are no open problems for complex
quadratic fieldsK of type (3, 3, 3), since it is known that `3(K) =∞ [50, 63],
that is, G∞3 (K) is always an infinite pro-3 group.

Thus, we focussed on 3-class rank 2 and computed the first layer of
the TTT and TKT of all 875 complex quadratic fields K of type (9, 3)
with discriminant −106 < D < 0 and of all 271 real quadratic fields K of
type (9, 3) with discriminant 0 < D < 107. In [61], we will show that this
information is sufficient to identify the second 3-class group G2

3(K) for 565
negative discriminants (65%) and for 188 positive discriminants (70%). For
the remainder, the second layer of the TTT and TKT is required.

4.2. Quadratic and biquadratic fields of type (2, 2, 2). On the other
hand, we have the case p = 2 for quadratic, resp. quartic, fields K with 2-
class group Cl2(K) of type (4, 2) or (2, 2, 2), where extensions in the second
layer are of absolute degree 8, resp. 16.

We were particularly interested in fields K of 2-class rank 3, where the
2-tower length `2(K) is still an open problem. We found that the coclass
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tree T (〈16, 11〉), which is the unique tree of coclass graph G(2, 2) contain-
ing groups with abelianization of type (2, 2, 2), is populated by second 2-
class groups G2

2(K) of real quadratic fields K of type (2, 2, 2). The tree
T (〈16, 11〉) corresponds to the pro-2 group S5 in [35, 32] with periodic se-
quences Ki

x, 46 ≤ i ≤ 51, given by explicit parametrized presentations for
x ≥ 0 in [35]. It also corresponds to the so-called family #59 with explicit
pro-2 presentation given in [69].

Further, we obtained deeper results concerning second 2-class groupsG =
G2

2(K) of complex quadratic fields of type (2, 2, 2), which have been clas-
sified in terms of the smallest non-abelian lower central quotient G/γ3(G),
usually coinciding with the root of the coclass tree T such that G ∈ T ,
by E. Benjamin, F. Lemmermeyer, and C. Snyder [54, 13]. Note that these
authors use the Hall-Senior classification [43], whereas we give identifiers
of the SmallGroups library [14]. The groups G are mainly, but not exclu-
sively, located at the terminal top vertices 〈32, 32〉 and 〈32, 33〉 of coclass
graph G(2, 3) and on the coclass trees T (〈32, 29〉), T (〈32, 30〉), T (〈32, 35〉),
corresponding to the families #75, #76, #79 with explicit pro-2 presenta-
tions given in [69]. These subtrees of G(2, 3) seem to be populated on every
branch, with the only exception of the root.

We intend to include these results on complex quadratic fields in a
forthcoming paper in cooperation with Azizi, Zekhnini, and Taous,
where the principal aim is to investigate bicyclic biquadratic fields
K = Q

(√
− 1,

√
d
)
, called special Dirichlet fields by Hilbert [46], with

2-class groups of type (2, 2, 2), based on work in [7, 8, 9]. The second
2-class groups G2

2(K) for certain series of radicands d > 0, for example
d ∈ {170, 730, 2314}, seem to be distributed on every branch of the coclass
tree T (〈64, 140〉) of coclass graph G(2, 3), which corresponds to family #73
with explicit pro-2 presentation given in [69].
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