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On the error term of the logarithm of the lcm of a
quadratic sequence

par Juanjo RUÉ, Paulius ŠARKA et Ana ZUMALACÁRREGUI

Résumé. Nous étudions le logarithme du plus petit commun
multiple de la séquence de nombres entiers 12 + 1, 22 + 1, . . . , n2 +
1. En utilisant un résultat de Homma [5] sur la distribution des
racines de polynômes quadratiques modulo des nombres premiers,
nous calculons le terme d’erreur dans les formules obtenues par
Cilleruelo [3].

Abstract. We study the logarithm of the least common multi-
ple of the sequence of integers given by 12 + 1, 22 + 1, . . . , n2 + 1.
Using a result of Homma [5] on the distribution of roots of qua-
dratic polynomials modulo primes we calculate the error term for
the asymptotics obtained by Cilleruelo [3].

1. Introduction
The first important attempt to prove the Prime Number Theorem was

made by Chebyshev. In 1853 [2] he introduced the function

ψ(n) =
∑
pm≤n

log p

and proved that the Prime Number Theorem was equivalent to the asymp-
totic estimate ψ(n) ∼ n. He also proved that if ψ(n)/n had a limit as n
tends to infinity then that limit is 1. The proof of this result was only com-
pleted (independently) two years after Chebyshev’s death by Hadamard
and de la Vallée Poussin.

Observe that Chebyshev’s function is precisely ψ(n) = log lcm (1, 2, . . , n),
so it seems natural to consider the following question: for a given polyno-
mial f(x) ∈ Z[x], what can be said about the log lcm (f(1), f(2), . . . , f(n))?
As Hadamard and de la Vallée Poussin proved, for f(x) = x this quantity
asymptotically behaves as n. Some progress has been made in the direc-
tion of generalising this result to a broader class of polynomials. In [1] the
authors use the Prime Number Theorem for arithmetic progressions to get
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the asymptotic estimate for any linear polynomial f(x) = ax+ b:

log lcm (f(1), f(2), . . . , f(n)) ∼ nk q

ϕ(q)

q∑
k=1

(k,q)=1

1
k
,

where q = a/ gcd(a, b). Recently, Cilleruelo [3] extended this result to the
quadratic case, obtaining that for an irreducible polynomial f(x) = ax2 +
bx+ c ∈ Z[x] the following asymptotic estimate holds:
(1.1) log lcm(f(1), f(2), . . . , f(n)) = n logn+Bfn+ o(n),
where the constant Bf is explicit. The author also proves that for reducible
polynomials of degree two, the asymptotic is linear in n. For polynomials of
higher degree nothing is known, except for products of linear polynomials,
which are studied in [6].

An important ingredient in Cilleruelo’s argument is a result of Tóth [10],
a generalisation of a deep theorem of Duke, Friedlander and Iwaniec [4]
about the distribution of solutions of quadratic congruences f(x) ≡ 0
(mod p), when p runs over all primes. Recent improvements of the latter
result in the negative discriminant case [5] allowed us prove Theorem 1.1,
sharpening the error term in a special case of expression (1.1).

We focus our study on the particular polynomial f(x) = x2 + 1, which
simplifies the calculation, and shows how the method developed in [3] works
in a clear manner. The same ideas could be extended to general irreducible
quadratic polynomials of negative discriminant, however, a generalisation
of [5] (in the same direction as Tóth’s) would be necessary.

For this particular polynomial the expression for B is given by

(1.2) γ − 1− log 2
2 −

∑
p 6=2

(−1
p

)
log p

p− 1 ≈ −0.0662756342,

where γ is the Euler constant,
(−1
p

)
is the Legendre symbol and the sum is

taken over all odd prime numbers (B can be computed with high numerical
precision by using its expression in terms of L-series and zeta-series, see [3]
for details). More precisely, we obtain the following estimate:
Theorem 1.1. For any θ < 4/9 we have

log lcm(12 + 1, 22 + 1, . . . , n2 + 1) = n logn+Bn+O

(
n

(logn)θ
)
,

where the constant B is given by Expression (1.2).
The infinite sum in (1.2) appears in other mathematical contexts: as it

is pointed in [8] this sum is closely related to multiplicative sets whose
elements are non-hypotenuse numbers (i.e. integers which could not be
written as the hypothenuse of a right triangle with integer sides).
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Plan of the paper: in Section 2 we recall the basic necessary results and
fix the notation used in the rest of the paper. We explain the strategy for
the proof of Theorem 1.1 in Section 3, which is based on a detailed study of
medium primes (Section 4). Then, using these partial results, in Section 5
we provide the complete proof of Theorem 1.1.

2. Background and notation
Throughout the paper p will denote a prime number and the Landau

symbols O and o, as well as the Vinogradov symbols�,� will be employed
with their usual meaning. We will also use the following notation:

π(n) = |{p : p ≤ n}| ,
π1(n) = |{p : p ≡ 1 (mod 4), p ≤ n}| ,

π1([a, b]) = |{p : p ≡ 1 (mod 4), a < p ≤ b}| .
The Prime Number Theorem states that the following estimate holds:

ψ(n) = log lcm(1, 2, . . . , n) = n+ E(n), E(n) = O

(
n

(logn)κ
)
,(2.1)

where κ can be chosen as large as necessary. We also use the following
estimate, which follows from the Prime Number Theorem for arithmetic
progressions:

(2.2) π1(n) = n

2 logn +O

(
n

(logn)2

)
.

The result needed in order to refine the error term of (1.1) is the main
theorem in [5], which deals with the distribution of fractional parts ν/p,
where p is a prime less than or equal to n and ν is a root in Z/pZ of a
quadratic polynomial f(x) with negative discriminant. For this f , we define
the discrepancy Df (n) associated to the set of fractions {ν/p : f(ν) ≡
0 (mod p), p ≤ n} as

Df (n) = sup
[u,v]∈[0,1]

∣∣∣∣∣|[u, v]| − 1
π(n)

∑
p≤n

∑
u<ν/p≤v

f(ν)≡0 (mod p)

1
∣∣∣∣∣,

where |[u, v]| := v − u. Under these assumptions, the main theorem of
Homma [5] can be stated as follows:

Theorem 2.1. Let f be any irreducible quadratic polynomial with integer
coefficients and negative discriminant. Then for any δ < 8/9 we have

Df (n) = O

( 1
(logn)δ

)
.

As a consequence of this result, we have the following lemma:
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Lemma 2.1. Let g : [0, 1]→ R be any function of bounded variation, and
n < N two positive real numbers. Then for any δ < 8/9

∑
n<p<N
0≤ν<p

ν2≡−1 (mod p)

g

(
ν

p

)
= 2π1([n,N ])

∫ 1

0
g(t) dt+O

(
N

(logN)1+δ

)
.

Proof. We know by the Koksma–Hlawka identity (see Theorem 2.11 in [9])
that for any sequence A = {a1, a2, . . . , an}, A ⊂ [0, 1], with discrepancy
D(n) and for any g : [0, 1]→ R with bounded variation, we have

1
n

n∑
i=1

g(ai) =
∫ 1

0
g(t) dt+O(D(n)),

so

N∑
i=n

g(ai) =
N∑
i=1

g(ai)−
n∑
i=1

g(ai)

= (N − n)
∫ 1

0
g(t) dt+O(ND(N)) +O(nD(n)).

In our case, using Theorem 2.1, we get

∑
n<p<N
0≤ν<p

ν2≡−1 (mod p)

g

(
ν

p

)
= 2π1([n,N ])

∫ 1

0
g(t) dt+O

(
π1(N)

(logN)δ
)
.

Using the rough estimate π1(N) = O
(

N
logN

)
we get the required error

term. �

3. The strategy
The content of this section can be found in [3]. We include it here for

completeness and to prepare the reader for the forthcoming arguments.
Denote by Pn =

∏n
i=1(i2 + 1) and Ln = lcm(12 + 1, 22 + 1, . . . , n2 + 1),

and write αp(n) = ordp(Pn) and βp(n) = ordp(Ln). The argument for
estimating Ln stems from the following equality:

logLn = logPn +
∑
p

(βp(n)− αp(n)) log p.
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Clearly it is not difficult to estimate logPn. Indeed, using Stirling’s approx-
imation formula, we get

log
n∏
i=i

(i2 + 1) = log
n∏
i=1

i2 + log
n∏
i=1

(
1 + 1

i2

)
= 2 logn! +O(1)
= 2n logn− 2n+O(logn),

and so in the remainder of the paper we will be concerned with the esti-
mation of

∑
p(βp(n) − αp(n)) log p. We start here by making three simple

observations:

Lemma 3.1.
i) β2(n)− α2(n) = −n/2 +O(1),
ii) βp(n)− αp(n) = 0, when p > 2n.
iii) βp(n) = αp(n) = 0, when p ≡ 3 (mod 4).

Proof.
i) i2 + 1 is never divisible by 4 and is divisible by 2 for every odd i.
ii) Note that αp(n) 6= βp(n) only if there exist i < j ≤ n such that p|i2 +1

and p|j2 + 1. But this implies p|(i− j)(i+ j), and so p ≤ 2n.
iii) i2 + 1 is never divisible by p ≡ 3 (mod 4) as −1 is not a quadratic

residue modulo such prime.
�

Since we have dealt with the prime 2, from now on we will only consider
odd primes. Lemma 3.1 also states that it is sufficient to study the order of
prime numbers which are smaller than 2n and are equivalent to 1 modulo
4. We split these primes in two groups: ones that are smaller than n2/3 and
others that are between n2/3 and 2n, small andmedium primes respectively.

The computation for small primes is easy and is carried out in the lemma
below, after obtaining simple estimates for αp(n) and βp(n). Analysis of
medium primes, which is left for the next section, is more subtle and will
lead to improvement of the error term.

Lemma 3.2. For primes p ≡ 1 (mod 4) the following estimates hold:
i) βp(n)� logn

log p ,
ii) αp(n) = 2n

p−1 +O
(

logn
log p

)
.

Proof.
i) It is clear that βp(n) satisfies pβp(n) ≤ n2 + 1, so

βp(n) ≤ log(n2 + 1)
log p � logn

log p .
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ii) In order to estimate αp(n) note that for primes p ≡ 1 (mod 4) the
equation i2 ≡ −1 (mod pa) has two solutions ν1 and ν2 in the interval
[1, pa] and every other solution is of the form ν1 + kpa or ν2 + kpa,
k ∈ Z. The number of times pa divides i2 + 1, i = 1, . . . , n is given by

(3.1) 2 +
⌊
n− ν1
pa

⌋
+
⌊
n− ν2
pa

⌋
,

which equals to 0 for pa > n2 + 1 and 2n/pa + O(1) for pa ≤ n2 + 1.
Therefore we get

αp(n) = 2

⌊
log(n2+1)

log p

⌋∑
j=1

n

pj
+O

( logn
log p

)

= 2n
∞∑
j=1

1
pj
− 2n

∞∑
j=
⌊

log(n2+1)
log p

⌋
+1

1
pj

+O

( logn
log p

)

= 2n
p− 1 +O

( logn
log p

)
,

and the claim follows. �

Lemma 3.3. The following estimate holds:

∑
2<p<n2/3

(αp(n)− βp(n)) log p =
∑

2<p<n2/3

(
1 +

(−1
p

))
n log p

p− 1 +O(n2/3).

Proof. Using the estimates from Lemma 3.2 we get∑
2<p<n2/3

βp(n) log p�
∑

2<p<n2/3

logn� n2/3,

and also ∑
2<p<n2/3

αp(n) log p =
∑

p<n2/3

p≡1 (mod 4)

(2n log p
p− 1 +O(logn)

)

=
∑

2<p<n2/3

(
1 +

(−1
p

))
n log p

p− 1 +O(n2/3),

and hence the claim follows. �
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4. Medium primes
In order to deal with the remaining primes, we note, that if a prime

p ≡ 1 (mod 4) satisfies n2/3 ≤ p ≤ 2n then it divides i2 + 1 for some i ≤ n.
However, since such a prime is sufficiently large compared to n2 + 1, the
case that p2 divides some i2 + 1, i ≤ n is unlikely.

Having this in mind, we separate contribution of higher degrees from the
contribution of degree 1. Define for p ≡ 1 (mod 4):

α∗p(n) =
∣∣∣{i : p|i2 + 1, i ≤ n}

∣∣∣ ,
β∗p(n) = 1,

and, for p ≡ 3 (mod 4), α∗p(n) = β∗p(n) = 0. Then∑
n2/3≤p≤2n

(βp(n)−αp(n)) log p =
∑

n2/3≤p≤2n

β∗p(n) log p−
∑

n2/3≤p≤2n

α∗p(n) log p

+
∑

n2/3≤p≤2n

(βp(n)− β∗p(n)− αp(n) + α∗p(n)) log p(4.1)

We now estimate each sum in the previous equation. We start estimating
the last one:

Lemma 4.1. The following estimate holds:∑
n2/3≤p≤2n

(βp(n)− β∗p(n)− αp(n) + α∗p(n)) log p� n2/3 logn.

To prove this lemma we need some preliminary results. As it was in-
tended, if (βp(n) − β∗p(n) − αp(n) + α∗p(n)) log p is nonzero, then we must
have p2|i2 + 1 for some i ≤ n. We claim, that number of such primes is
small:

Lemma 4.2. The following estimate holds:∣∣∣{p : p2|i2 + 1, n2/3 ≤ p ≤ 2n, i ≤ n}
∣∣∣� n2/3.

Proof. Let us split the interval [n2/3, 2n] into dyadic intervals, consider one
of them, say [Q, 2Q], and define

Pk = { p : i2 + 1 = kp2 for some i ≤ n}.
We estimate the size of the set Pk ∩ [Q, 2Q], which is nonempty only when
k ≤ (n2 +1)/Q2. For every p ∈ Pk∩ [Q, 2Q] we have i2−kp2 = (i+

√
kp)(i−√

kp) = −1, thus∣∣∣∣ ip −√k
∣∣∣∣ = 1

p2

(
i

p
+
√
k

)−1
≤ 1
p2 ≤

1
Q2 .
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On the other hand, all fractions i/p, p ∈ Pk, are pairwise different, since
ip′ = i′p implies p = p′ (otherwise p|i, and so p|i2 − kp2 = −1, a contradic-
tion), therefore ∣∣∣∣ ip − i′

p′

∣∣∣∣ ≥ 1
pp′
� 1

Q2 .

Combining both inequalities we get |Pk ∩ [Q, 2Q]| � 1 for every k ≤ (n2 +
1)/Q2. Recalling that Pk ∩ [Q, 2Q] is empty for other values of k we have∣∣∣{p : p2|i2 + 1, Q ≤ p ≤ 2Q, i ≤ n}

∣∣∣ = |∪k(Pk ∩ [Q, 2Q])| � n2

Q2 .

Summing over all dyadic intervals the result follows. �

Now we use this estimate to prove Lemma 4.1.

Proof of Lemma 4.1. We use estimates from Lemma 3.2 and the estimate
for α∗p(n), which follows from Expression (3.1):

βp(n)� logn
log p ,

αp(n) = 2n
p− 1 +O

( logn
log p

)
,

α∗p(n) = 2n
p

+O(1).

For any prime n2/3 < p < 2n, such that p2|i2 + 1 for some i ≤ n, we get∣∣∣βp(n)− β∗p(n)− αp(n) + α∗p(n)
∣∣∣ = 2n

p(p− 1) +O

( logn
log p

)
� logn

log p .

It follows from Lemma 4.2 that the number of such primes is � n2/3, thus∑
n2/3≤p≤2n

(βp(n)− β∗p(n)− αp(n) + α∗p(n)) log p� n2/3 logn.

�

We continue estimating the second sum in Equation (4.1):

Lemma 4.3. The following estimate holds:∑
n2/3≤p≤2n

β∗p(n) log p = n+O

(
n

logn

)
.
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Proof. Summing by parts and using estimate (2.2) for π1(x) we get:∑
n2/3≤p≤2n

β∗p(n) log p =
∑

n2/3≤p≤2n
p≡1 (mod 4)

log p

=
∑
p≤2n

p≡1 (mod 4)

log p+O(n2/3)

= log (2n)π1(2n)−
∫ 2n

2

π1(t)
t

dt+O(n2/3)

= n+O

(
n

logn

)
.

�

Finally, we deal with the contribution of the coefficients α∗p. In this point
we need to take care of the error term in a more detailed way:

Lemma 4.4. For any δ < 8/9 the following estimate holds:

∑
n2/3≤p≤2n

α∗p(n) log p = n
∑

n2/3≤p≤2n

(
1 +

(−1
p

))
log p

p− 1 +O

(
n

(logn)δ/2

)
.

Proof. Using (3.1) and noting that ν1 + ν2 = p, where 1 ≤ ν1, ν2 ≤ p are
solutions of i2 ≡ −1 (mod p), we get

α∗p(n) = 2 +
⌊
n− ν1
p

⌋
+
⌊
n− ν2
p

⌋
= 2 + 2n

p
− ν1 + ν2

p
−
{
n− ν1
p

}
−
{
n− ν2
p

}
= 2n

p
+ 1

2 −
{
n− ν1
p

}
+ 1

2 −
{
n− ν2
p

}
,

so the sum over all primes in the interval [n2/3, 2n] is equal to

∑
n2/3≤p≤2n

α∗p(n) log p = n
∑

n2/3≤p≤2n

(
1 +

(−1
p

))
log p

p

+
∑

n2/3≤p≤2n
ν2≡−1 (mod p)

0≤ν<p

log p
(1

2 −
{
n− ν
p

})
.
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We rewrite

n
∑

n2/3≤p≤2n

(
1 +

(−1
p

))
log p

p
= n

∑
n2/3≤p≤2n

(
1 +

(−1
p

))
log p

p− 1 +O(n1/3 logn)

and ∑
n2/3≤p≤2n

∑
0≤ν<p

ν2≡−1 (mod p)

log p
(1

2 −
{
n− ν
p

})

= logn
∑
p≤2n

∑
0<ν<p

ν2≡−1 (mod p)

(1
2 −

{
n− ν
p

})
+O

(
n

logn

)
.

Notice that for any sequence ap satisfying ap � 1 we have by a summing
by parts argument that∑

p<x

ap log p = log x
∑
p<x

ap −
∫ x

1

1
t

∑
p<t

ap dt = log x
∑
p<x

ap +O

(
x

log x

)
.

In order to get the claimed bound, it remains to show that∑
p≤2n

∑
0<ν<p

ν2≡−1 (mod p)

(1
2 −

{
n− ν
p

})
= O

(
n

(logn)1+δ/2

)
.

To do that, we divide the summation interval into 1 + H parts [1, 2n] =
[1, A] ∪ L1 ∪ · · · ∪ LH , where

Li =
( 2nAH

2n(H − i+ 1) +A(i− 1) ,
2nAH

2n(H − i) +Ai

]
.

We choose A = bn/(logn)δ/2c and H = b(logn)δc in order to minimize the
error term, but we continue using these notations for the sake of conciseness.

Observe that in every of these parts, except the first one, n/p is almost
constant, which enables to use the fact that ν/p is well distributed. More
precisely, if p ∈ Li then

n

p
∈ [λi, λi−1) :=

[2n(H − i) +Ai

2AH ,
2n(H − i+ 1) +A(i− 1)

2AH

)
,

and the length of such interval is small: |[λi, λi−1)| = 2n−A
2AH . We would then

like to replace n
p by λi whenever n

p ∈ [λi, λi−1) using

(4.2)
{
n

p
− ν

p

}
=
{
λi −

ν

p

}
+
{
n

p
− λi

}
,

but this equality does not hold if λi < ν
p + k < n

p for some integer k,
in particular ν

p + k ∈ [λi, λi−1]. Therefore we must distinguish these two
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cases: if λi ≤ ν
p + k ≤ λi−1 for some k we rewrite it as ν

p ∈ [λi, λi−1]1 and
ν
p 6∈ [λi, λi−1]1 otherwise.
We now split the previous sum into three parts:

∑
p≤2n

∑
0<ν<p

ν2≡−1 (mod p)

(1
2 −

{
n− ν
p

})
= Σ1 + Σ2 + Σ3 +O(π1(A)),

where Σ1, Σ2 and Σ3 are defined as

Σ1 =
H∑
i=1

∑
p∈Li

∑
0≤ν<p

ν2≡−1 (mod p)

(1
2 −

{
λi −

ν

p

})
,

Σ2 =
H∑
i=1

∑
p∈Li

∑
0≤ν<p

ν2≡−1 (mod p)
ν
p
6∈[λi,λi−1]1

({
λi −

ν

p

}
−
{
n

p
− ν

p

})
,

Σ3 =
H∑
i=1

∑
p∈Li

∑
0≤ν<p

ν2≡−1 (mod p)
ν
p
∈[λi,λi−1]1

({
λi −

ν

p

}
−
{
n

p
− ν

p

})
.

Recall that A = n/(logn)δ/2 +O(1) and H = (logn)δ+O(1), so π1(A) =
O(n/(logn)1+δ/2). We now estimate each of the sums Σ1,Σ2,Σ3 separately,
making use of Lemma 2.1. For the first one note that∫ 1

0

(1
2 − {λi − t}

)
dt = 0,

so we get, using Lemma 2.1,

Σ1 =
H∑
i=1

∑
p∈Li

∑
0≤ν<p

ν2≡−1 (mod p)

(1
2 −

{
λi −

ν

p

})

=
H∑
i=1

O

( 2nAH
2n(H − i) +Ai

/(
log 2nAH

2n(H−i)+Ai

)1+δ
)

(4.3)

= O

(
2nAH

(logn)1+δ

∫ H

0

di
2n(H − i) +Ai

)

= O

( 2nAH
(logn)1+δ

log 2n/A
2n−A

)
= O

(
n log logn

(logn)1+δ/2

)
.
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For the second sum we use Equation (4.2):

Σ2 =
H∑
i=1

∑
p∈Li

∑
0≤ν<p

ν2≡−1 (mod p)
ν
p
6∈[λi,λi−1]1

{
n

p
− λi

}

≤
H∑
i=1

∑
p∈Li

∑
0≤ν<p

ν2≡−1 (mod p)

|[λi, λi−1]|(4.4)

≤ 2n−A
2AH 2π1(2n) = O

(
n

(logn)1+δ/2

)
.

Finally, for the third sum we use the notation I[λi,λi−1]1 for the indicator
function of the interval [λi, λi−1] modulo 1, which satisfies∫ 1

0
I[λi,λi−1]1(t) dt = |[λi, λi−1]|,

so using Lemma 2.1 we get

Σ3 �
H∑
i=1

∑
0≤ν<p∈Li

ν2≡−1 (mod p)
ν
p
∈[λi,λi−1]1

1 =
H∑
i=1

∑
0≤ν<p∈Li

ν2≡−1 (mod p)

I[λi,λi−1]1

(
ν

p

)

=
H∑
i=1

2πi(Li)|[λi, λi−1]|+O

( 2nAH
2n(H − i) +Ai

/(
log 2nAH

2n(H−i)+Ai

)1+δ
)
.

= O

(
n log logn

(logn)1+δ/2

)
,

estimating similarly as in the derivation of (4.3) and (4.4).
Finally, we note that any function f satisfying f(n) = O

(
n log logn

(logn)1+δ/2

)
for

every δ < 8/9 also satisfies f(n) = O
(

n
(logn)1+δ/2

)
for every δ < 8/9, hence

this concludes the proof. �

5. Proof of theorem 1.1
Combining Lemmas 3.3, 4.1, 4.3 and 4.4, and taking θ = δ/2, we get

that
(5.1)

logLn = 2n logn−n

1 + log 2
2 +

∑
2<p≤2n

(
1 +

(−1
p

))
log p

p− 1

+O
(

n

(logn)θ
)
,
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for any constant θ < 4/9. Note that,

∑
2<p≤2n

(
1 +

(−1
p

))
log p

p− 1 =
∑

2<p≤2n

log p
p− 1 +

∑
2<p≤2n

(−1
p

)
log p

p− 1 .

For the first sum, observe that Merten’s Theorem implies

(5.2)
∑

2<p≤2n

log p
p− 1 =

∑
pj≤2n

log p
pj
− log 2 +

∑
pj>2n

2<p≤2n

log p
pj

= logn− γ + o(1),

and the error term can be bounded by O (1/logn) using Prime Number
Theorem in the form (2.1) and summation by parts. Note that this bound
can be sharpened to O(exp(−c

√
logn)) for certain constant c, see [7] (Ex-

ercise 4, page 182).
For the second sum, we recall that the complete oscillating sum is conver-

gent, and it follows from Prime Number Theorem in arithmetic progressions
that ∑

2<p≤2n

(−1
p

)
log p

p− 1 =
∑
p 6= 2

(−1
p

)
log p

p− 1 +O

( 1
logn

)
.

Thus we have that, for every θ < 4/9,

logLn = n logn− n

1− γ + log 2
2 +

∑
p6=2

(−1
p

)
log p

p− 1

+O

(
n

(logn)θ
)
,

which completes the proof.
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