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Diophantine approximations with Fibonacci
numbers

par VICTORIA ZHURAVLEVA

RESUME. Soit F,, le n-iétme nombre de Fibonacci. Notons
p = 1+T\/5 Nous prouvons les inégalités suivantes pour tous les
nombres réels « :

1) infen [[Frall < %a
2) liminf,, o0 || Frel| < 1,
3) liminf, o ||"al| < %
Ces résultats sont les meilleurs possibles.

ABSTRACT. Let F,, be the n-th Fibonacci number.
Put ¢ = % We prove that the following inequalities hold
for any real a:

1) infpen || Faal| < £33,

2) lim infp, o0 || Fra|| < 2,

3) iminf, 0 ||@"al| < %
These results are the best possible.

1. Introduction

In this paper ||a|| denotes the distance from a real « to the nearest
integer. Let

Fl=F=1F=2F=3F=51F;=8 F=13,...

be the Fibonacci numbers. For convenience we put F_; =1, Fy = 0.

As F,, are distinct integers we deduce from Weyl’s Theorem (see [3],
Ch.1 §4) that the fractional parts {F,«a} are uniformly distributed for
almost all real a. From the other hand the Fibonacci numbers form a
lacunary sequence. So the set

N ={a: Fy(a) > 0 such that ilellf\I || Frall > v(a)}

Research is supported by RFBR Grant 12-01-00681.
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is an a-winning set for every o € (0,1/2] in the sense of Schmidt’s («a, §)-
games and hence the Hausdorff dimension of the set N is equal to one.
For the definition and the simplest properties of winning sets see Ch.3
from [4] and [5]. Some quantitative version of Schmidt’s results one can
find in [1].

Put ¢ = 12—\/5 As

(1.1) Fo1 = By + Fp_y, "= 4 ol

one can easily see that for any real o and for any positive integer n we
have the following inequalities:

Wl

: 1
. i Jal| < = i all <
12 mnlWell<z  min IR <

2. A result by A. Dubickas

In [2] Dubickas proved a result related to Diophantine approximations
with powers of algebraic numbers. Here we would like to give the formu-
lation of this result.

The length L(P) of a polynomial P(x) = pg + p1x + ... + prz’ € R[z]
is defined as the sum of absolute values of all coefficients of P(z):

L(P) = |po| + Ip1] + - + |pxl-
The reduced length I[(P) of a polynomial P(x) is defined as
1(P) = inf L(PQ),

where the infinum is taken over all polynomials Q(x) = g0 + 1z + ... +
grz” € Rlz] such that g9 = 1 or ¢, = 1. The reduced length I(a) of an
algebraic number « is defined as the reduced length of the irreducible
polynomial P,(x) € Z[z] such that P,(«) = 0.

Theorem 2.1 (A. Dubickas, [2]). Suppose T > 1 is an arbitrary algebraic
number. Suppose a be a positive real number that lies outside the field
Q(7) if T is a Pisot or a Salem number. Then it is not possible that all
the fractional parts of the form {ria}, j € N belong to a certain open
interval of the length 1/1(T).

The history of the question as well as the definitions of Pisot and Salem
numbers one can find in [2]. Here we should note that ¢ = HT‘/E is a Pisot

number and I(¢) =1 + ¢ (see [2]). In particular Theorem 2.1 shows that



Diophantine approximations with Fibonacci numbers 501

under the condition a € R\Q(¢) for any ng there exists an integer n > ng
such that

1 1 1 1
n —_ — —
{eta} ¢<2 21+9)2 " 2(1+g0))
So Theorem 2.1 leads to the following asymtotical inequality:
1 \/5 -1
20 4

As for the Fibonacci numbers we have the formula
1, 1\n
Fo= (e =(=3))

1 VE—1

(2.2) lim inf || £, of| < % 1

(2.1) hmmegp al] <

it follows that

in the case o € R\Q(¢p).

3. Statement of results

In this section we summarize all results obtained in this paper.
Let K, N be positive integers. Put

d¥ = max min HFkaH
a€R k=K, . K+N—
Theorem 3.1.
(1) Weha,ved%:dl—% d%,:%, di:d}):%.
(2) Let N > 6, putn = [—2] Then dy, = %

Corollary 3.1. We have

Jin =2
Corollary 3.2. For any real a we have
-1
1nf || Fro| < oo
Theorem 3.2. For N > 4, a1 = ﬁ we have
p—1

min[[Fuenl] = =05
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Theorem 3.3. Let a1 = ;i5. Then Ve > 0 VYN 3K = K(N):

1
i F - — €.
ey el = 5 =

Theorem 3.4. Let Gy and Go be arbitrary real numbers, and G, =
Gno1+ Gn_s forn > 3. Then:

(1) maxg, @, ming=12||Gnl| = 3,

(2) maxg, @, ming,=123|Gall = 3,

(3) maxq, ¢, ming—1234||Gn|| = 1,

(4) maxg, g, minp=12345 ||Gall = 1,

(5) maxg, g, ming=1,_ 1 ||Gn|| = é for k> 6.

Corollary 3.3. If N > 6, then

lim d¥ = 1.
K—oo 5

Corollary 3.4. If N > 6, then

1
lim max min |kl = =.
K—o00 a€R k=K,..,K+N—-1 5

Corollary 3.5. The following inequalities hold for any real a:
. 1 . 1
liminf ||[Foall < . liminf{jp"all < =

One can see that we improve inequalities (2.1) and (2.2). So we improve
Theorem 2.1, but only for 7 = ¢.

4. The proof of Theorem 3.1 for N < 6

The function ||Fjx|| is periodic with period smaller than or equal to 1.
Also it is symmetric with the respect to the line z = 1/2. Thus without
loss of generality we consider this function on [0, 1/2].

Since ||Fiz|| is a piecewise linear function its graph consists of line
segments. Let £ be an arbitrary integer. Then

<

t—Fr ifze[t — 5, ],
HFWH:{ kT 1 [k 2 zlrk]

Frx —t ifare[tk

7
R
+ 3
[N}

=5

Put Fy(z) = ming=1,_n ||Frz||



503

Diophantine approximations with Fibonacci numbers

Lemma 4.1. One can easily see, that for x € [0, %],
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Put dy = max,cr Fn(x). Let zy be the point where the function
Fy(x) attains its maximal value.

From Lemma 4.1 we find z and dy for N =1,...,7 (see Table 1). So
we obtain the first statement of Theorem 3.1.

Lemma 4.2. The graph of the function Fy(x) (see Fig.1) has only one
verter which lies above the line y = i—;;. This vertex has coordinates
(15 10)-

FIGURE 4.1. F;(x)

We continue to calculate the values of xn and dy (see Table 4.1).

TABLE 4.1.
N TN dn
1,2 1/2 1/2
3 1/3 1/3
4,5 1/4 1/4

6,7,8,9 3/11 | 2/11
10,11,12,13 | 8/29 | 5/29
14,15,16,17 | 21/76 | 13/76

18 55/199 | 34/199
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From these results we note that

3 Fy 2 F3
$6 R d6 = —=—",
11 Fy+ Fg 11 Fy+ Fg
8 F 5 F:
$10=®=F76, dio = = = —2>—,
o+ Fs 29~ Fs + Fi
21 F; 13 F
3014:%:}778, d14:*:777
s + Fio 76 Fg+ Fio
_ 55 Fig - 34 Iy
18 = dig =

199 Fio+ Fio’ 199 Fio+ Fip’

One can see that points (3/11,2/11), (8/29,5/29), (21/76,13/76),
(55/199,34/199) are the elements of the sequence of the points (ay, by,)

S i NS N N 725 S
where a, = Fonratbonsa? On = TonatFonsa 1
s 1 . _
We note that lim, o an = 12 and limy, o by, = &
5. The nearest integer to %

Let Ty = S0/ (~1)* Py o = Fymo = Fyea+ Fucg — Fag + ...

Ey
p+2°

Lemma 5.1. T, is the nearest integer to
Proof. Consider the sums:

Sy =Fo+Fy+Fg+ ...+ Fy,
Syt1=F1+F5+ Fo+ ...+ Fyy1,
Saty2 =Fo + Fg+ Fio+ ... + Fuyo,
Sar43 = F3+ Fr + Fip + ...+ Fyys.

From (1.1) one can see that these sums satisfy the following system of
linear equations:

Sat + Satr1 + Sapyo + Sarr3 = Fuq5 — 1,
Syt + Saty1 = Sapy2,

Sat+1 + Sat+2 = Sarys,

Syt+3 + Sat = Sar+1 + Farys — F1.
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Therefore

(4Fyt43 — Fagp5 — 3)

S4t = 5 )
S . (2F4t+5 — 3F4t+3 + 1)
441 = 3 )
Gy — (Fatys + Faey3 — 2)
4t+2 — 5 5
Gt (3F4t45 — 2F 4143 — 1)
4t+3 = 3 .

Then the explicit formulas for 7T, are

2Fy41 — 3Fy 1 +1

Tyt = Sat—1)+2 — Sag—1) =

5 )
Fyyp1+Fyq—2
Tu+1 = Sa-1)43 = Sa-1)+1 = = 5 t )
4F, — F - F —Fy 1 —1
Tira = Su — Sy(p-1ya = — : w1 = Py =1
—  2Fy45 — 3Fu43 — 3Fy41 4+ 2Fy—1 + 2
Tyty3 = Sat+1 — Sa—1)43 = . '

For convenience we rewrite these expressions in the following form:

2Fy — Fyo1 41

(5.1) T4t 5 ’
F, 2F 1 —2

(5.2) Tyerr = 4t + 54t 1 :
3F. Fyu_1—1

(5.3) Tyrro = 4t + 54t 1 7
4F, SFy— 2

(5.4) Thers = 4t + 54t 1+ .

Fy

Now, we calculate the difference T}, — using Binet’s formula.

p+2
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(1) If n = 4t then
F4t 1 2¢4t _ 2(1 _ (p>4t _ S041‘/71 4 (1 _ (p)4t71

Ty — =
4t 512 5 55
Pt — (1 —p)*
V5(p +2)
1 2¢4t+1 + 4(P4t _ (p4t _ 29041‘,71 _ 5(,04t(/7(1 _ @)41571
-+
5vV5(p + 2)
L2l 21— ) A - )T+ 51— o)
5vV5(¢ + 2)
1 2 20 - 2)
5 5vVb(p+2)
Q=) (-9 +4(1-p) - 1)
5vV5(¢p +2)
I [ D
5 V(e +2)
Similar formulas are obtained in the three remaining cases.
(2) If n =4t + 1 then

_l’_

T Fan 2 2-9)(1—@)"?
441 — =—c -
p+2 5 V(e +2)

(3) If n =4t + 2 then

(4) If n =4t + 3 then

Tues — Fips 2 (5-3¢p)(1— P2
Tetr2 5 V(e +2)
For convenience we define the function r(n) so that the following equal-
ities hold:

Fy 1

5.5 Ty — =
(5:5) o p+2 5
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Fyq 2
5.6 T, — = —— 4t + 1
(5.6) 441 512 5 + (4t + 1),
Fyyo 1
5.7 T, — = —— 4t + 2
( ) 4t4-2 o+ 2 5 + 7’( + ))
Fyys3 2
5.8 T, — = - 4t + 3).
(5.8) 4t+3 212 5 + (4t + 3)

We see that [r(4t)| > |r(4t+1)| > [r(4t+2)| > |r(4t+3)| > |r(4t +4)|.
So the function |r(n)| is decreasing.

To complete the proof of Lemma 5.1 we need to bound r(4t), r(4t+1),
r(4t +2) and r(4t + 3) for t = 1.

We use the bounds 1.618 < ¢ < 1.619 and 2.236 < /5 < 2.237. Then

(1-9)(1—¢p)?

(5.9) —0.030 < V5ot 2) =r(4) < —0.029,
2—¢)(1—¢)?
(5.10) &MS<( ¢§X+2? = r(5) < 0.019,
4
3—2p)(1—¢)?
(5.11) _0.012 < ¢ v@§22—®¢> = r(6) < —0.011,
5—30)(1 —¢)?
(5.12) 0.006 < ¢ ¢§j+%@ = r(7) < 0.007.
So we proved Lemma 5.1 for t > 1. For ¢ = 0 this statement can be
verified directly: 0 is the nearest integer to % = % = ﬁ, 1 is the
nearest integer to % = ﬁ. O

6. Proof of Theorem 3.1

We fix an arbitrary integer ¢ > 1.
To prove the second part of Theorem 3.1 we need to find an explicit

formula for the function Fuy3(x) for z € [%Z:i , %’;]
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T
Lemma 6.1. For z € [ini , %] we have

Tat41 T4t+3+T4t+1*1]
Fpep1’ Fapi+Faeys

Tyt43+Tat41—1 Tary3— 1]
F4t+1+F4t+3 > Fapqg 7

Fypprw — Ty if v €

Tyys —1— Fyq3x ifx €
Fouisx =Ty +1 ifx e

Tyt — Farq2x if v €

Tyt43— T4t+2+T4t+3*1]
Farys 7 Farpz+Faqpo V7
Tyt4o+Tyt43—1 T4t+2]
Fatys+Farro 7 Fapqpod?

[
[
[
[
[
1—-3z ifx € [T““r2+1 Tl
[
Sowreom
[
Someenom

. T, T, +1
Fyppow — Thyyo if € Fags)
- F ’ F, +3
(6.1) Fuys(x) = wiatl Ty
F4t+2+37: Fyp— %
_ . Typ—=1 Lapyz—Tar
T4t F4tx fo S §4t 377E4t+%1 F4t]
. . 4t+3 4t 4t43
Tyit3 — Faps ifre $4t+3 1;415’ %?3]
_ . 4t+3  L4t43T L4t
Fatysr — Tays ifre 524t+3 ’ :,1f4t+3+F4t]
T4t _ F4tx fo e at+3+7Tae T4t]

Fyty3+Fu Fyt

Proof. We prove Lemma 6.1 by induction. For ¢ = 1 the statement follows
from Lemma 4.1 (we are interested in the segment [, 1]). We assume that
Lemma 6.1 holds for ¢t = k.

To make our proof more clear we draw the graph of the function
Fyy3(x) on [%ﬁ, %Z] (see Fig.2). The domain below this graph is col-
ored in black. The point M is the intersection of the graphs of the func-
tions y = 1 — 3z and y = ||Fyxrox||. The function Fyi3(z) attains its
maximal value at this point. The scheme of the graph of the function

T. T, . . .
Fyiy7(x) on [FE2 2k g marked with white.
Fup  Fakg1 Fapyo  Fapgs

Fupys5’ Fakya
The distance to the nearest integer from P13 ot pi20 a2 ATC
also marked on the graph (according to (5.5) (5.8)).

Remark. To prove the inductive step we need to compare several num-
bers. These comparisons can be made in the following way:

(1) We have two expressions A and B depending on Tyxi7, Takt6,
Takvs, Takvar Tarrs, Takvo, Fakvr, Fakre, Fagrs, Fiagra, Fakys,
Fyi0, Firi1, Fir. We want to prove that A > B. Let us consider
A— B.

(2) The values of T; are defined in (5.1)-(5.4). We substitute these
formulas into A — B. The expression obtained depends on Fyj,7,
Fikve, Fakrs, Fakras Fakys, Fakvo, Fagr1, Fag, Fagp—1.

(3) The following formulas can be obtained from the definition of the
Fibonacci sequence:
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Figrr = 21Fy, + 13Fy 1,
Fugr6 = 13Fy + 8F k-1,
Fagys = 8Fuyp + 5Fyk—1,
Figra = 5Fyk + 3Fyp—1,
Fikrs = 3Fuk + 2Fy,1,
Figro = 2Fy, + Fig1,
Figr1 = Fa + Fap—1.

We substitute them into the expression obtained in the second
step. Now the difference A — B depends on Fy, and Fy_1.
(4) We use the equality (—1)" = F,11F,_1 — F? and the fact that
Fy, > 3 and Fy_1 > 2 for £k > 1 to obtain the inequality
A—-B>0.

18]

[ | Faresx ||

|| Faes1x]]

[|Faix|]

2l | | 4k+3 1Lk
@+2 Fak+3 Fak

Tak+3-1 Tak+z
Fak+3 Fak+2

FIGURE 6.1. Fyi3(x)
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Now we write the proof of one of such inequalities in detail, for example,
Tagt2 Tak+s
Fupy2 Fupys”

After substitution described at step 2 we obtain

Tarrs  Tarre _ Fagra +2Funy3 =2 3Fuy + Fip1 — 1

Farys  Faryo 5Fyk+5 5Fyj 12
After substitution described at step 3 we obtain

Takrs  Tapro _ VFy +TFypy =2 3Fy + Fapq — 1
Furys  Fagyo 40Fyy, + 25F 51 10Fy +5Fy_1

We rewrite the expression obtained according to step 4:

Taprs  Tagso  —10F + 10F | + 10Fy Fy 1 + 20Fy;, + 15Fy,
Fiys  Fuppo (40Fyy, + 25Fy—1)(10Fy, + 5Fy;—1)
—10(FypFap—o — FZ,_1) + 20Fy, + 15Fy, 1
(40Fyy, + 25F 1) (10Fy, + 5Fy_1)
—10(=1)*~1 + 60 + 30
= (40Fy, + 25F 1) (10Fy, + 5Fy_1)

> 0.

The procedure described in Remark will be used in our proof several
times. Each time we use this procedure we refer to Remark.
We move on to the proof of the inductive step. We assume that on the

segment, [2#5+1 Tik] we know the explicit formula for Fyy3(x). We want

Fupq1? Fag

. T T
to find the explicit formula for Fy;,7(x) on the segment [ Fiiiz’ Fi:iz]‘
Typyo Tyrys

Fapqo < Fapts <

Proposition 6.1. The following inequalities hold:

Typq7—1 Tuk16 <1 - Ty Thk4a Tak3
Fupsr Fik+e P+2 Fapyr Fajya Fapys”
. . . T, 5 1 o s
Proof. To obtain the inequality Ff;iz < 33 we should divide (5.7) by
Fyj1¢. Similarly, the inequality 1%:1; > ﬁ can be obtained from (5.8).
The remaining inequalities of the proposition can be obtained by the
means of the procedure from Remark. U

Proposition 6.2. The zeros of the function Fyi7(x) on the segment
[T4k+5 Thkta Tyr+s Taky7r—1 Takte Takyr Takta
Farys5’ Fagpga Fapys’  Fapyr 7 Fapye’ Faps7’ Fapga”

are the points
] p
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Proof. One can easily see that Fygy7(x) = min{Fyis(x), ||Figraxll,
|| Fak+s5z||, || Fagrex||, || Farr7z||}. Hence we should find the zeros of func-
tions F4k+3(56), HF4]€+4$| |, ||F4k+5£l?| |, ”FZUH—GZE‘ |, ||F4k+7$|| on the Segment
considered.

From the inductive assumption it follows that the function Fyj3(z)
Tart2 Takts
T T . ,1}34k+2 ? Fypys
4k+5 4k+4 4k+42 4k+43 s 9
[F4k+5’ F4k+4] C [F4k+.2, F4k+3]' So the function Fyiy3(z) doesn’t have zeros
on the segment considered.
a

The function ||Fyxt4|| is equal to zero only when z = Yo where a

doesn’t have zeros on ( ). From Proposition 6.1 we know that

Tyrpqs Tarta
Fypys5’ Fapya

is integer. The segment [ | has only one point of such a kind

7124’“*4 T‘},’“+4_1 and T‘},’”‘*H with

Ak44 Ak44 Ak44

the endpoints of the segment considered to prove that there are no other
Tak+s T4k+4]

Fapys’ Fapgal

which is x = . We need to compare points

zeros on |

. o T, —1 T, T, 1
So we need to prove the inequalities —+4—1 « Likts gpq Lakratl
Fapta Farts Fapta

Typt4a . : iro Tapyatl Takvya
Farrs' Obviously the inequality Firee ~ Firra holds. To prove the sec

ond one we need to use the procedure from Remark.
A similar argument must be used to the analysis of the three remaining
functions.
The function ||Fyr152|| is equal to zero on the segment |

Taps T4k+4]
Fapis? Fapqa
Tags
Fapys
function ||Fyx45z|| on the segment considered. Obviously the inequality
Tarys Tar+5—1 1 1ds Taristl o Taksa

only when z = . We need to prove that there are no other zeros of the

The inequality can be proved by

Fakys Fukys Fukys Fapya
the means of the procedure from Remark.
. . T.
The function ||Fyxi¢x|| is zero only when z = ﬁ. From Propo-

sition 6.1 it follows that ~#+6 ¢ [Lakts Tiktd] e peed to prove that
Fapte Fapt5’ Fapta

|| Far+6x|| doesn’t have other zeros on the segment considered. The in-

itne LTak4s Typye—1 Typyet+1 Tykya
equalites Farre Firro and Fine > Faroa
of the procedure from Remark.

are proved by the means

Ty
Fypyr
Tak+s T4k+4]
Fapys? Fapqal
show that the function ||Fyx7x|| doesn’t have other zeros. By the means
Lanys  Taksr=2
Fapys Fapqr

Typyr—1
Fypyr

Proposition 6.1 we know that these points belong to |

The function ||Fyg4+7z|| is zero when x = and x = . From

of the procedure from Remark we prove the inequalities

T, +1 T,
4k+7 > Zdkdd

and .
Fupyr Fapyiq
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Proposition 6.2 is proved.

O
sqs Tyk+e _ Tapyotl Takta
Proposition 6.3. For each k we have Fure — Finrat3 W0 Fpry =
Typ—1
. Furthermore,
. Tyr+s Takte
6.9 N ) Fapyor —Tapyo if v € [7F4k+57 7F4k+6]’
(6.2) ak+3(7) = 1— 3z ifx € [T4k+6 T4k+4]
Fupye’ Fapgal”

T T 1
Proof. We prove the equality Fi::f; = FiZizi?)

Typve  Targo+1  3Fyppa+ Fuqs — 1 3Fy + Fyp +4

Fue  Fugo+3 S5Fikt6 5Fyp42 +15

_ 18Fuy + 11 Fy 1 — 1 SFy + Fyp—1 +4

© 65Fy, +40Fy_,  10Fy +5Fy 1 +15
—15(FypFap—o — F3,_1) — 15

(65F4k; + 40F4k_1)(10F4k; + b5Fy_1 + 15)

This equality has the following meaning: the function Fy;y3(x) attains

its maximal value just at the zero of the function Fy47(x).
We prove the equality Tapta _ Tup—1.

Fypta Fyp—3"

Tag =1 Tapya _ 2F4 — Fap1 =4 2P — Fagyg +1

= 0.

Fy, —3  Fapqa 5(Fu, — 3) S5F 14
_ 2Fy — Fapq =4 TFy +4Fy 1 +1
N 5Fy — 15 25Fy; + 15F 1

15(FypFap—o — F3, 1) + 15
(5Fyx — 15)(25Fy, + 15F 1)

These two equalities and the inequality %ﬁ < %ﬁ) (which was

proved in Proposition 6.1) lead to formula (6.2). Proposition 6.3 is proved.
O

=0.

Proposition 6.4. For each x € 25 Tikes

Farre: F4k+4] we have

|| Fagtax|| = Tag+a — Fagtaz,

Fypis5? 2F4p45

. 2Tup45+1 Tapia
Tapys +1— Fypysxr ifx € [m’ F4ki4]’

Fui5 — Tapys if v e [Lawts 2liistl)
|| Fagysz|| =
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‘- v T l o
j -+ ) (= 21 + +1

. 2Tyk 6+l Tykqa
Tarys + 1= Faper  if w € [0 7]

L , Tyrys Taryr—1
Tyry7 — 1= Fypyrr ifw € Fap+s’ Fapyr J

[

if x € [T4k+7*1 2T4k+7*1]7
(Sr—
[

Py — Tapir + 1 Fapy7 7 2Fupqr

2Ty pyr—1 T4k+7]
2F4k+7 > Fapqrd?

Tyr+7 Takta ]

Fapi7? Fagya

|| gl =

Tykt7 — Fagyro ifz €
Fupyrr — Typqr ifx €

Proof. For an explicit formula of the function ||F,,z|| we should know the
zeros of this function as well as the points where this function attains its
maximal value.

From Proposition 6.2 we know the zeros of the functions ||Fyriaz||,
| Fak+s5z||, || Fakrex||, ||Farsr7x|| on the segment considered. The maxi-
mal value of the function ||Fj,z|| is attained at the middle between two
neighbouring zeros of this function. So it’s enough to prove the following
inequalities:

T, 2T, —1 . T -1 T
0 552 B e ion ot (i )
(9 S < i ot e of 25 )
o T e e e Fane)
(4) Firs < Firs (for the middle of [F4k+6 T ),
(5) T3E=2 < P2 (for the middle of [FAE—2, T —]),
(6) T3 > P2 (for the middle of [ﬁizg ),

All these inequalities are proved by the means of the procedure from
2Typ45+1  2T4p46+1

Remark. These inequalities mean that the points = Firrs ' 2Farre be-
long to the segment [%ﬁ;, %ﬁi]. Proposition 6.4 is proved. O

Now we now the explicit formula for the functions Fyy3(x), ||Fakraz||,

F. T,
|| Fakrsx|], || Fakvez||, || Fakr7x|| on the segment [ﬁ, ﬁ] and the rela-

tive position of zeros of these functions on this segment (from Proposition
6.1). So the method of proof of Lemma 6.1 is clear. By the means of the
procedure from Remark for comparison of two numbers the formula (6.1)
is obtained. g
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Lemma 6.2. The graph of the function Fy43(x) on the segment [0, l]

has only one vertexr which lies above the line y = % This vertex has
. _ Tyq0+1 _ 1 _ 9Tatya+1 Tyt42+1
coordinates xr = Fiot3 ¥ = 1 3F4t 3 Moreover we have Taat3 €

[T4t+2 T4t+3]
Fapyo? Fapqs!”

Proof. We prove Lemma 6.2 by induction. For ¢ = 1 the statement is
obtained from Lemma 4.2. We assume that Lemma 6.2 holds for ¢ = k.

The point (Tg:i;rl, - 3%’:’2) is the intersection of the lines y =
Fypiox — Typio and y = 1 — 3z. These lines intersect the line y = %
in points x = el T a(042) apg g = L correspondently. So from

(p+2) Fagr2 P2
the assumption of induction it follows that Fyxis(x) > i—;; only if x €
[@—1+T4k+2(<ﬂ+2) L]
(p4+2)Fapto 7 20
We prove that the statement of Lemma 6.2 holds for ¢t = k + 1.
o= 14Tup42(0+2)
(o+2) Fup12

segment | Fi’;ii, %Tj] Indeed, for the pomt 5 it follows from Proposi-

We note that the points z = and x = i belong to the

Likys - o= 1+Tup+2(+2)
Fapys (p+2) Fypy2
by the means of the procedure from Remark and the bound 1.618 < ¢ <

1.619.

o—1 : Tak+s Takta
So Fypis(z) < 572 outside of the segment [F4k+5’F4k+4]’

Fyii7(z) < Fypqs(x), then Fypir(x) < i—;é outside of this segment.

tion 6.1. For the other one we prove the 1nequahty

Since

From Lemma 6.1 we know the explicit formula for Fy;,7(z) on the
Tag+s Thakta

segment [ Fare’ Fans 4]. This formula leads to the fact that the only vertex
_ 1 Tyrqet1
of the graph is above the line y = 2. It has the coordinates ( Firy o3’
1— T4k+2+1)
Fppqo+3/°
Lemma 6.2 is proved. O

So we obtain that the maximum of the function Fyy3(z) is equal to

T 1 . . .. . . T 1
1 — 3Lar2®tl Phig function attains its maximum in ¢ = =421
Fat42+3 Fypyo+3

sys Typqo+1 Foiy2 _ qTaya+l
Proposition 6.5. We have Furat3 = ForrotFona and 1 37F4z+2+3 =
Foty1
Foiqpo+Fopqq”

Proof. To prove the first equality it’s enough to show that

Firyo + 3 = For1(Foryo + Forqa), Tatyo + 1 = Foy_1Fo40.
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We prove the equality Fyiio + 3 — For—1(Far42 + Forra) = 0. As for the
Fibonacci numbers we have the formula Fo, = F2 | — F2 ; it follows that

Furyo+3—Fy1(Fuyo+Forra) = Foy o= F3+3—For 1 Faryo0—Fo 1 For 4.
Then we substitute the formulas
For 1 = Forpq — Foy,

Foppo = Fopy1 + Foy,
For g = 3F5 1 + 2F5.

into the expression obtained. This substitution leads to the following
equalities:
F3 g — F3 43— Fo 1Fo0 — Foy 1Foqs
=3 —3F5 | +3Fy + 3Fy 1 Fy
=3 — 3Fy41 o1 + 3F5,
=3-3(-1D*=0.

A similar argument must be used to prove the equality Ty40 + 1 =

. Tytqio+1 Foryo
Fy_1F549. Since we have Fiat3 = Pt then the proof of the

remaining equality is easy:
Ty +1 Fatyo
Fuio+3 Fopyo+ Fopqy
_ Forio+ Foppg — 3F540
B For o+ Foryg
_ For 1
" Forpo+ Fopya

1-3

Theorem 3.1 is proved.

7. Proofs of Theorem 3.2, Theorem 3.3, Theorem 3.4

Proof of Theorem 8.2. From Lemma 4.1, Lemma 6.1 and Proposition 6.1
we have
: 4 _p—1
n:%l,l.{l,NHFnalH =1-3a; = 790 —-
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Proof of Theorem 3.3. From (5.5) - (5.8) we have || F4’52|| =14+0(p™),
F, — F, — —

1255 = =3 +0(0™ ), |42l = =5 +0(e™*), [| 5] = 3 +0(p™ ™).

O

Proof of Theorem 3.4. Put Gi(x,y) = x, Ga(z,y) = y. Then Gp(z,y) =

ming—1,...n [|Gn(z,y)|]. Put

Gn1+ Gp_o for n > 3. Let GV(x,v)
tN = max, yer GN(z,y).

For each N we divide the square [0,1] x [0, 1] into domains with the
same minimal functions. The maximum is attained at the boundaries of
the neighbouring domains.

The graphs below represent such division into domains for N = 2,...5.
For the first three graphs the minimal distance to the nearest integer is
indicated in each domain. The points where GV (z,y) attains its maxi-
mum, the boundaries of the domains, the lines where GV (z,y) = 0 are
also marked.

1-y
1-y
yoxet i
- (25,25)
2x+j=1 '
x i x+y==1 X+y & X
1-x -
X 1-x y
(173, r@
yzx x+§'y=1
For N =21ty = %, which attains at For N = 3, ty = %, which attains
1 1 )
xr= = = =. at.
Y =13 1
T = 37 Y1 =3
\|G3(901,y1)H = %7
v =3, y2 =3,
1G3 (22, 92)|| = 3.
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x+y-1 ?3/4

412
1-x

For N =4ty = i, which attains at:

=491 = 4 [Galarw)ll = 3. [|Ga(anm)l| = &,
zo =1, y2 = %, |Gs(z2,52)|| = 3, [|Ga(a, 1)l = 1,
ra =13, ys =13, ||Gs(ws,ys)l| = 2, ||Galws,ys)|| = 1,
va=3,y1 =2, [|Ga(a,a)|| = L, [|Galza, w)l| = 3.

On the next two graphs we only mark the lines where G (x, %) is equal
to zero and the points where this function attains its maximal value.




Diophantine approximations with Fibonacci numbers 519

For N =5ty = % which attains at:
)

w1 =1, 9 =1 |Ga(zr, )|l = §, [|Galar, 1)l = =3
w2 =5, 2= 5, [|Ga(wa,92)[| = %, ||Ga(a2,92)|| = =3
I"':I::::i:,l [T T
@445, 28), "
e @2y, 115)
For N =61ty = %, which attains at:
21 =32,y = 1, [|Ga(zr,y)|| = 2, [|Ga(zr, )| = 5, [|Gs (@1, m)]| = 3,
|Ge (1, y1)]l = 3
w2 =5, 42 = 2, |Gs(z2, )| = 5, [|Gaw2, 2)|| = 3, [|G5(22, 92)|| = 3,
\|G6(332,y2)\| =3
T3 = 5: Y3 = % [|G3(x3,y3)|| = %7 |Ga(x3,93)|| = %, ||Gs(23,y3)|| = %»
G (23, y3)|| = 2
wa= 5,91 = 2, [|Ga(za, pa)l| = 5, |G, yo)l| = &, ||Gs(wa, 94) | = 5,
G (za, ya)l| = 3
We note that each of these sequences is periodic. For example,
for x = % and y = 1 the sequence Gy (z,y) is as follows: g, %, %, %,

213421 It meansthat||GN(5,5)||—1forN>2
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For each N we have the inequality GN*!(z,y) < GV(z,y). Hence,
ty=1for N>6. O
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