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The n-th prime asymptotically

par Juan ARIAS DE REYNA et Jérémy TOULISSE

Résumé. Dans cet article nous donnons une nouvelle dérivation
du développement asymptotique classique du n-ième nombre pre-
mier ; ainsi qu’un algorithme permettant de calculer les termes
rapidement, améliorant celui de Salvy (1994).

Nous donnons des bornes réalistes de l’erreur avec li−1(n) après
avoir pris en compte les m premiers termes, pour 1 ≤ m ≤ 11.
Finalement, en supposant l’Hypothèse de Riemann, nous donnons
une estimation du meilleur r3 possible tel que pour n ≥ r3 on ait
pn > s3(n) où s3(n) désigne la somme des quatre premiers termes
du développement asymptotique.

Abstract. A new derivation of the classic asymptotic expansion
of the n-th prime is presented. A fast algorithm for the compu-
tation of its terms is also given, which will be an improvement of
that by Salvy (1994).

Realistic bounds for the error with li−1(n), after having re-
tained the first m terms, for 1 ≤ m ≤ 11, are given. Finally, as-
suming the Riemann Hypothesis, we give estimations of the best
possible r3 such that, for n ≥ r3, we have pn > s3(n) where s3(n)
is the sum of the first four terms of the asymptotic expansion.

1. Introduction.

1.1. Historical note. Chebyshev failed to fully prove the Prime Num-
ber Theorem (PNT), but he obtained some notable approximations. For
example, he proved that for every natural number n: if the limit

lim
x→∞

logn x
x

(
π(x)− li(x)

)
exists, then this limit must be equal to 0.

The question was decided by de la Vallée Poussin (1899) when he gave
his bound on the error in the PNT: The above limits exist and equal 0.

Manuscrit reçu le 23 mars 2012.
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In 1894, Pervushin ([13],[14]), a priest in Perm, published several for-
mulae obtained empirically about prime numbers1. One of these formulae
gives the following approximation to the n-th prime

pn
n

= logn+ log logn− 1 + 5
12 logn + 1

24 log2 n
.

Cesàro then published a note [1, 1894] where he asserts that the true for-
mula is
pn
n

= logn+ log logn− 1 + log logn− 2
logn −

− (log logn)2 − 6 log logn+ 11
2 log2 n

+ o(log−2 n).

Despite no mention by Cesàro in [1], the editors of his collected works
added a note to [1] pointing out that certain formulae quoted by Cesàro,
since they followed from the results of Chebyshev, were only established
under the assumption of the existence of the implied limits. It therefore
remains unsurprising that Hilbert, in the Jahrbuch2 stated that Cesàro did
not prove his formula.

Landau [6, 1907] several years later was better informed: a formula,
like that of Cesàro, would imply the PNT, which had yet to be proved
at Cesàro’s time. However, using the results of Chebyshev, Cesàro may
claim that if there is some formula for pn correct to the order n(logn)−2,
then it must coincide with his formula.

Cipolla [3, 1902] obtained an infinite asymptotic expansion for pn and
gave a recursive formula to compute its terms. He published after the results
of de la Vallée Poussin but it seems that he was unaware of these results,
so that gave his proof under the same hypotheses as Cesàro. So uninformed
was he that he attempted to prove some false formulae of Pervushin already
corrected by Torelli [21]

pn+1 − pn = logn+ log logn+ log logn− 1
logn + O

( log logn
logn

)2

with an impeccable proof that if such a formula exists, then it must be this
formula. (Such a formula would refute the twin prime conjecture, and today
the above formula is known to be false.)

In his Handbuch Landau [7, § 57] obtained by means of the procedure
of Cesàro, some approximative formulae for pn, and explained that the

1Ivan Mikheevich Pervushin (1827-1900) (Ivan Miheeviq Pervuxin). No small achievement
if we note that he had only a table of primes up to 3 000 000.

2Jahrbuch Über die Fortschritte der Mathematik (1868–1942), a forerunner for the Zentral-
blatt für Mathematik, at present digitalized at http://www.emis.de/MATH/JFM/JFM.html.

http://www.emis.de/MATH/JFM/JFM.html
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method could give further terms. He also mentioned some recursive formu-
lae without giving any clue for their derivation.

We may say that Pervushin was the first to deal with a formula for pn,
albeit that he gave only the first few terms. Cesàro then proved that in the
case such a formula exists, it must be one from which he would be able
to derive several terms. Cipolla found a method to write all the terms of
the expansion if there is one. Landau saw that the results of de la Vallée
Poussin imply that the expansion certainly exists.

The algorithm given by Cipolla is not very convenient for the computa-
tion of the terms of the expansion. He iteratively computes the derivative
of some polynomials appearing in the expansion but computes the constant
terms as determinants of increasing order. Robin [16, 1988] considers the
problem of computing these and other similar expansions, leaving the prob-
lem of computing the constant terms of the polynomials as an open problem.
Later Salvy [19, 1994] gives a satisfactory algorithm. This algorithm needs
O(n7/2√logn) coefficient operations to compute all the polynomials up to
the n-th polynomial.

The asymptotic expansion of pn also plays a role in the study of g(n),
which is the maximum order of any element in the symmetric group Sn. In
fact, log g(n) has the same asymptotic expansion as

√
li−1(x) [10].

There are many results giving true bounds on pn, for example we mention
pn ≥ n logn [17, 1939], and pn ≥ n(logn+ log logn− 1) [4, 1999] both for
n ≥ 2 (with partial results given in [18], [15], [11], [4]). In [5] it is also
proved that

pn ≤ n
(
logn+ log logn− 1 + log logn− 2

logn
)
, n ≥ 688 383.

1.2. Organization of the paper. In this paper we present a new deriva-
tion of the asymptotic expansion for pn and obtain explicit bounds for the
error.

First, it must be said that the asymptotic expansion has, in a certain
sense, nothing to do with prime numbers: it is an asymptotic expansion
of ali(x) := li−1 x which is the inverse of the usual logarithmic integral
function.

In Section 3 a proof of the existence of the expansion is given, following
the path of Cesàro, since it cannot be found elsewhere, although it is fre-
quently claimed it can be done. This Section is not needed in the rest of
the paper.

In Section 4, a new formal derivation of the expansion is given. We obtain
a new algorithm to compute the polynomials (Theorem 4.7). This is simpler
than that given by Salvy [19]. Our algorithm allows all the polynomials up
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to the n-th one to be computed in O(n2) coefficient operations (Theorem
4.9). It must be said that these polynomials have O(n2) coefficients.

In Section 5, independently of Section 3, we prove that the formal ex-
pansion given in Section 4 is in fact the asymptotic expansion of ali(x) and
gives realistic bounds on the error (Theorem 5.2 and 5.3).

In Section 6, the results are applied to pn the n-th prime. Using the results
of de la Vallée Poussin it can be shown that the asymptotic expansion of
ali(n) is also an asymptotic expansion for pn.

By assuming the Riemann Hypothesis, we found (Theorem 6.1) that

|pn − ali(n)| ≤ 1
π

√
n (logn)

5
2 , n ≥ 11.

This bound of pn is better than all the bounds cited above.
We end the paper by motivating why the above bounds have not been

extended to further terms of the asymptotic expansion (Theorem 6.2).

Notations: With a certain hesitation we have introduced the notation
ali(x) to denote the inverse function of li(x).

In Section 5, where explicit bounds are sought, it has been useful to
denote by θ a real or complex number of absolute value |θ| ≤ 1, which will
not always be the same, and depends on all parameters or variables in the
corresponding equation.

Acknowledgement: The authors would like to thank Jan van de Lune
( Hallum, The Netherlands ) for his linguistic assistance in preparing the
paper, and his interest in our results.

2. The inverse function of the logarithmic integral.

Usually li(x) is defined for real x as the principal value of the integral

li(x) = P.V.
∫ x

0

dt

log t .

It may be extended to an analytic function over the region Ω = Cr(−∞, 1],
which is the complex plane with a cut along the real axis x ≤ 1. The main
branch of the logarithm is defined in Ω and does not vanish there. Therefore,
li(z) may be defined in Ω by

(2.1) li(z) = li(2) +
∫ z

2

dt

log t , z ∈ Ω

where we integrate, for example, along the segment from 2 to z.
For real x > 1, the function li(x) is increasing and maps the inter-

val (1,+∞) onto (−∞,+∞), so that we may define the inverse function
ali : R→ (1,+∞) by
(2.2) li(ali(x)) = x.
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The function li(x) is analytic on Ω, so that ali(x) is real analytic. It is clear
that we have the following rules of differentiation

(2.3) d

dx
li(x) = 1

log x,
d

dx
ali(x) = log ali(x).

It is well known that the function li(x) has an asymptotic expansion:

Theorem 2.1. For each integer N ≥ 0

(2.4) li(x) = x

log x
(
1 +

N∑
k=1

k!
logk x

+ O
( 1

logN+1 x

))
, (x→ +∞).

This may be proved by repeated integration by parts (see [12, p. 190–
192]).

3. Asymptotic expansion of ali(x).

In this section, we prove the following

Theorem 3.1. For each integer N ≥ 0

(3.1) ali(ex)
xex

= 1 +
N∑
n=1

Pn−1(log x)
xn

+ O
( logN+1 x

xN+1

)
, (x→ +∞)

where the Pn−1(z) are polynomials of degree ≤ n.

In the case of N = 0 the sum must be understood as equal to 0.
The theorem says that, for each N , there exists an xN > 1 and a constant

CN such that∣∣∣ali(ex)
xex

− 1−
N∑
n=1

Pn−1(log x)
xn

∣∣∣ ≤ CN logN+1 x

xN+1 , (x > xN ).

In the course of the proof we will make repeated use of the following

Lemma 3.1. Let f(x) be a function defined on a neighbourhood of x = 0
such that
(3.2) f(x) = a1x+ · · ·+ aNx

N + O(xN+1), (x→ 0)
where the ak are given constants. Assume that g(x) satisfies

(3.3) g(x) =
N∑
n=1

pn(log x)
xn

+ O
( logN+1 x

xN+1

)
, (x→ +∞)

where the pn(z) are polynomials of degree ≤ n. Then there exist polynomials
qk(z) of degree ≤ k such that

(3.4) f(g(x)) =
N∑
k=1

qk(log x)
xk

+ O
( logN+1 x

xN+1

)
, (x→ +∞).
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Proof. It is clear that, for each 1 ≤ n ≤ N we have pn(log x)x−n =
O((log x/x)n). Therefore, g(x) = O(log x/x) (this is true even when N = 0
and there is no pn). It follows that limx→+∞ g(x) = 0 and by substitution
in (3.2), we obtain

(3.5) f(g(x)) =
N∑
n=1

ang(x)n + O
( logN+1 x

xN+1

)
.

By expanding the powers g(x)n by (3.3) it is easy to obtain an expression
of the form

(3.6) g(x)n =
N∑
k=1

pn,k(log x)
xk

+ O
( logN+1 x

xN+1

)
, (x→ +∞)

where each pn,k(z) is a polynomial of degree ≤ k. By substituting these
values in equation (3.5) and collecting terms with the same power of x,
(3.4) is obtained. �

We will prove Theorem 3.1 by induction. The following theorem yields
the first step of this induction.

Theorem 3.2.

(3.7) ali(x)
x log x = 1 + O

( log log x
log x

)
, (x→ +∞).

Proof. From (2.4) with N = 0 we have li(y) log y
y = 1+O(log−1 y) for y →∞.

Since limx→+∞ ali(x) = +∞ we may substitute y = ali(x) and obtain

(3.8) x log ali(x)
ali(x) = 1 + O

( 1
log ali(x)

)
.

By taking logarithms

log x− log ali(x) + log log ali(x) = O
( 1

log ali(x)
)

we obtain

(3.9) log x
log ali(x) = 1 + O

( log log ali(x)
log ali(x)

)
and it follows that

(3.10) lim
x→+∞

log x
log ali(x) = 1.

By taking log in (3.9)

log log x− log log ali(x) = O
( log log ali(x)

log ali(x)
)
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we obtain
log log x

log log ali(x) = 1 + O
( 1

log ali(x)
)

so that

(3.11) lim
x→+∞

log log x
log log ali(x) = 1.

In view of (3.10) and (3.11), we may write (3.8) and (3.9) in the form

(3.12) x log ali(x)
ali(x) = 1 + O

( 1
log x

)
,

log x
log ali(x) = 1 + O

( log log x
log x

)
and by multiplying these two, we obtain

x log x
ali(x) = 1 + O

( log log x
log x

)
from which (3.7) can easily be deduced. �

Proof of Theorem 3.1. We proceed by induction. For N = 0, our theorem
is simply Theorem 3.2 with ex instead of x.

Hence we assume (3.1) and try to prove the case N + 1.
Our objective will be obtained by starting from the expansion of li(y).

By (2.4)

li(y) = y

log y
(
1 +

N+1∑
k=1

k!
logk y

+ O
( 1

logN+2 y

))
.

By substituting y = ali(ex) and applying (3.10) we obtain

(3.13) ex log ali(ex)
ali(ex) = 1 +

N+1∑
k=1

k!
(log ali(ex))k + O

( 1
xN+2

)
.

From our induction hypothesis, the expansion of the functions log ali(x)
and (log ali(x))−k is now sought.

By taking the log of (3.1) we obtain

log ali(ex) = x+ log x+ log
{

1 +
N∑
n=1

Pn−1(log x)
xn

+ O
( logN+1 x

xN+1

)}
.

Lemma 3.1 may be applied with

log(1 +X) = X − X2

2 + X3

3 − · · · (−1)N+1X
N

N
+ O(XN+1)

to obtain

log ali(ex) = x+ log x+
N∑
n=1

Qn+1(log x)
xn

+ O
( logN+1 x

xN+1

)
.
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The reason why we have written Qn+1 instead of Qn(x) is revealed below.
The above may be written as

log ali(ex) = x
{

1 + log x
x

+
N∑
n=1

Qn+1(log x)
xn+1 + O

( logN+1 x

xN+2

)}
or

(3.14) log ali(ex) = x
{

1 +
N+1∑
n=1

Qn(log x)
xn

+ O
( logN+2 x

xN+2

)}
where the Qn(z) are polynomials of degree ≤ n. Observe that knowing the
expansion of ali(ex) up to (log x/x)N+1 has enabled us to obtain log ali(ex)
up to (log x/x)N+2; this will be of great importance in what follows.

From (3.14), for all natural numbers n,

1
(log ali(ex))n = 1

xn

{
1 +

N+1∑
k=1

Qk(log x)
xk

+ O
( logN+2 x

xN+2

)}−n
.

By applying Lemma 3.1 with

(1 + x)−n − 1 =
N+1∑
r=1

(
−n
r

)
xr + O(x−N−2)

we obtain

(3.15) 1
{log ali(ex)}n = 1

xn

(
1 +

N+1∑
k=1

Vn,k(log x)
xk

+ O
( logN+2 x

xN+2

))
where the Vn,k(z) are polynomials of degree ≤ k.

By substituting these values of {log ali(ex)}−n in (3.13), we obtain

ex log ali(ex)
ali(ex) = 1 +

N+1∑
k=1

Uk(log x)
xk

+ O
( logN+2 x

xN+2

)
.

Hence again from (3.15) with n = 1

ex

ali(ex) = 1
x

{
1 +

N+1∑
k=1

V1,k(log x)
xk

+ O
( logN+2 x

xN+2

)}
×

×
{

1 +
N+1∑
k=1

Uk(log x)
xk

+ O
( logN+2 x

xN+2

)}
from which we derive that there exist polynomials Wk(z) of degree ≤ k
such that

xex

ali(ex) = 1 +
N+1∑
k=1

Wk(log x)
xk

+ O
( logN+2 x

xN+2

)
.
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Another application of Lemma 3.1 yields

ali(ex)
xex

= 1 +
N+1∑
k=1

Tk(log x)
xk

+ O
( logN+2 x

xN+2

)
with polynomials Tk(z) of degree ≤ k. Therefore, we have an asymptotic
expansion of type (3.1) with N + 1 instead of N . The usual argument of
uniqueness of the asymptotic expansion applies here so that Tk(z) = Pk(z)
for 1 ≤ k ≤ N . �

4. Formal Asymptotic expansion.

First we give some motivation. We have seen that the asymptotic expan-
sion of ali(ex) is

ali(ex) = xexV (x, log x), where V (x, y) := 1 +
∞∑
n=1

Pn−1(y)
xn

and differentiation yields

ex log ali(ex) = (ex + xex)V + xexVx + exVy.

Here log ali(ex) = log
(
xexV (x, log x)

)
= y + x+ log V , so that

y + x+ log V = V + xV + xVx + Vy

which we write as

(4.1) V = 1 + y

x
− 1
x
V − Vx −

1
x
Vy + 1

x
log V.

This ends our motivation for considering this equation.
Consider now the ring A of the formal power series of the type

∞∑
n=0

qn(y)
xn

where the qn(y) are polynomials with complex coefficients of degree less
than or equal to n. In particular q0(y) is a constant.

It is clear that A, with the obvious operations, is a ring. The elements
with q0 = 0 form a maximal ideal I. An element 1 + u with q0 = 1 is
invertible, with inverse 1 − u + u2 − · · · . It follows that if a 6∈ I, then a is
also invertible. Hence I is the unique maximal ideal and A is a local ring. If
a ∈ A is a non-vanishing element, then there exists a least natural number
n with qn(y) 6= 0. We define deg(a) = n in this case, with deg(0) =∞.

As is usual in local rings, (see [8]) we may define a topology induced
by the norm ‖a‖ = 2− deg(a), which, with the associated metric, induces a
complete metric space. Indeed A is isomorphic to C[[X,Y ]], by means of
the application that sends X 7→ x−1, Y 7→ yx−1.
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Given a ∈ A with a = ∑∞
n=0

qn(y)
xn , we define two derivates

ax = −
∞∑
n=1

nqn(y)
xn+1 and ay =

∞∑
n=1

q′n(y)
xn

.

Finally the set U ⊂ A of elements with q0 = 1 form a multiplicative
subgroup of A∗ (the group of invertible elements of A). For 1 + u ∈ U , we
define

log(1 + u) =
∞∑
k=1

(−1)k+1u
k

k

which is a series that is easily shown to converge since uk ∈ Ik.
We are now ready to prove the following

Theorem 4.1. The equation (4.1) has one and only one solution in the
ring A.

Proof. For V ∈ U , we define T (V ) as

T (V ) := 1 + y

x
− 1
x
V − Vx −

1
x
Vy + 1

x
log V.

It is clear that T (V ) ∈ U . We may apply Banach’s fixed-point theorem.
Indeed, we have deg(T (V ) − T (W )) ≤ 1 + deg(V −W ), so that ‖T (V ) −
T (W )‖ ≤ 1

2‖V −W‖.
By Banach’s theorem there is a unique solution to V = T (V ). We

may obtain this solution as the limit of the sequence Tn(1). In fact, since
deg(T (V )−T (W )) ≤ 1 + deg(V −W ), in each iteration we obtain one fur-
ther term of the expansion. In this way, it is easy to prove that the solution
is

V = 1 + y − 1
x

+ y − 2
x2 + · · ·

However, we are going to find more direct methods to compute the terms
of the expansion. �

Definition. Let V be the unique solution to equation (4.1). Since it is in
A, it has the form

(4.2) V (x, y) = 1 +
∞∑
n=1

Pn−1(y)
xn

where for n ≥ 0, Pn−1(y) is a polynomial of degree ≤ n.

In the following sections, we prove that V yields the asymptotic expan-
sion of ali(ex). For this proof the following property is crucial.

Theorem 4.2. For N ≥ 1, let

(4.3) W (x, y) = WN (x, y) := 1 +
N∑
k=1

Pn−1(y)
xn

.
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Then
(4.4)
W − 1− y

x
+ 1
x
W +Wx + 1

x
Wy−

1
x

logW = −PN (y)
xN+1 + u(y)

xN+2 + v(y)
xN+3 + · · ·

Proof. By the definition of the Pn we know that deg(V − W ) ≥ N + 1.
Therefore, deg(V − T (W )) ≥ N + 2. That is

V − T (W ) = u0(y)
xN+2 + v0(y)

xN+3 + · · ·

where u0, v0 are polynomials. We also have

V = W +
∞∑

n=N+1

Pn−1(y)
xn

so that

W − T (W ) = u0(y)
xN+2 + v0(y)

xN+3 + · · · −
∞∑

n=N+1

Pn−1
xn

.

That is,

W − T (W ) = −PN (y)
xN+1 + u(y)

xN+2 + v(y)
xN+3 + · · ·

for certain polynomials u, v, . . . �

In the sequel V will denote the unique solution to (4.1). The element
log V belongs to A, so that there are polynomials Qn(y) of degree less than
or equal to n such that

(4.5) log V =
∞∑
n=1

Qn(y)
xn

.

From equation (4.1), we may obtain log V in terms of V and its derivatives.
It is easy to obtain from this expression the following relation
(4.6) Qn(y) = Pn(y)− (n− 1)Pn−1(y) + P ′n−1(y), (n ≥ 1).

Theorem 4.3. The polynomials Pn(y) that appear in the unique solution
(4.2) to equation (4.1) may be computed by the following recurrence rela-
tions:

P0 = y − 1, and for n ≥ 1

Pn = nPn−1 − P ′n−1 + 1
n

n−1∑
k=1

k
{
(k − 1)Pk−1 − Pk − P ′k−1

}
Pn−k−1.

(4.7)

Proof. By differentiating (4.5) with respect to x, we obtain( ∞∑
n=1

nQn(y)
xn+1

)(
1 +

∞∑
n=1

Pn−1(y)
xn

)
=
∞∑
n=1

nPn−1(y)
xn+1 .
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By equating the coefficients of x−n−1, we obtain

(4.8) nPn−1 = nQn +
n−1∑
k=1

kQkPn−k−1, (n ≥ 2).

Now we substitute the values of the Qn given in (4.6)

nPn−1 = nPn − n(n− 1)Pn−1 + nP ′n−1 +
n−1∑
k=1

kQkPn−k−1

so that

nPn = n2Pn−1 − nP ′n−1 −
n−1∑
k=1

k
{
Pk − (k − 1)Pk−1 + P ′k−1

}
Pn−k−1.

�

From this expression it is very easy to compute the first terms of the
expansions

V = 1 + y − 1
x

+ y − 2
x2 − y2 − 6y + 11

2x3 + 2y3 − 21y2 + 84y − 131
6x4 −

− 3y4 − 46y3 + 294y2 − 954y + 1333
12x5 + · · · ,

log V = y − 1
x
− y2 − 4y + 5

2x2 + 2y3 − 15y2 + 42y − 47
6x3 −

− 3y4 − 34y3 + 156y2 − 366y + 379
12x4 + · · ·

Theorem 4.4. We have
(a) For n ≥ 1, the degree of Pn is less than or equal to n.
(b) n!Pn(y) has integer coefficients.

Proof. The equation (4.1) may be written

V − 1− y

x
= 1
x

(
log V − V − xVx − Vy

)
.

Since xVx ∈ A, it is clear that

xV − x− y = −1 +
∞∑
n=1

Pn(y)
xn

∈ A.

This implies that the degree of Pn is less than or equal to n.
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We prove (b) by induction. The first few Pn satisfy this property. We
define pk := k!Pk so that the recurrence relation (4.7) may be written as

pn = n2pn−1 − np′n−1+

+ (n− 1)
n−1∑
k=1

(
n− 2
k − 1

){
k(k − 1)pk−1 − pk − kp′k−1

}
pn−k−1.

Hence, by induction, all pn have integer coefficients. �

The most significant contribution by Cipolla is his proof of a recurrence
for the coefficients an,k of Pn (see (4.11)), which is better than the recur-
rence given in (4.7). We intend to give a slightly different proof. The result
of Cipolla is equivalent to the following surprising fact: The solution V
of equation (4.1) formally satisfies the following linear partial differential
equation:

(4.9) V = (x− 1)Vy − xVx.

This equation can easily be deduced from the following Theorem.

Theorem 4.5. For n ≥ 1, we have

(4.10)
(n− 1)Pn−1(y) = P ′n−1(y)− P ′n(y), (n ≥ 1)
(n− 1)Qn−1(y) = Q′n−1(y)−Q′n(y), (n ≥ 2).

Proof. We will proceed by induction. For n ≤ 3 it can be verified that these
equalities are satisfied.

We now assume that (4.10) is satisfied for n ≤ N , and we will show that
these equations are true for n = N + 1.

By differentiating (4.5) with respect to y we get

( ∞∑
n=1

Q′n(y)
xn

)(
1 +

∞∑
n=1

Pn−1(y)
xn

)
=
∞∑
n=1

P ′n−1(y)
xn

so that by equating the coefficients of x−N−1 and of x−N we obtain

Q′N+1 = P ′N −
N−1∑
k=0

PkQ
′
N−k, Q′N = P ′N−1 −

N−2∑
k=0

PkQ
′
N−k−1.

Subtracting these equations we get

Q′N+1 −Q′N = P ′N − P ′N−1 −
N−2∑
k=0

Pk(Q′N−k −Q′N−k−1)− PN−1
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and by the induction hypothesis this is equal to

− (N − 1)PN−1 +
N−2∑
k=0

Pk · (N − k − 1)QN−k−1 − PN−1 =

= −NPN−1 +
N−1∑
k=1

kQkPN−k−1.

By (4.8) this is equal to NPN−1 −NQN so that we obtain
Q′N+1 −Q′N = −NQN .

This is the second equation of (4.10) for n = N + 1. In order to achieve the
result for the first equation, observe that from (4.6) we get

NQN = NPN −N(N − 1)PN−1 +NP ′N−1

−Q′N = −P ′N + (N − 1)P ′N−1 − P ′′N−1

Q′N+1 = P ′N+1 −NP ′N + P ′′N .

By adding these equations we obtain

0 = NPN − P ′N + P ′N+1 +N
{
P ′N−1 − P ′N − (N − 1)PN−1

}
−

−
{
P ′′N−1 − P ′′N − (N − 1)P ′N−1

}
= NPN − P ′N + P ′N+1

which is the first equation of (4.10) for n = N + 1. �

We define the coefficients an,k implicitly by

(4.11) Pn(y) = (−1)n+1

n!
(
an,0y

n − an,1yn−1 + · · · (−1)nan,n
)

=

= (−1)n+1

n!

n∑
k=0

(−1)k an,k yn−k, (n ≥ 1).

Analogously, Qn is of a degree less than or equal to n, and we define the
coefficients bn,k implicitly by

(4.12) Qn(y) = (−1)n+1

n!

n∑
k=0

(−1)k bn,k yn−k, (n ≥ 1).

Remark 4.1. P0(y) has degree 1, which is not given by (4.11). However,
we can extend the definition of a(n, k) in such a way that, for n ≥ 1 we
have a(n, k) = 0 for k < 0 or k > n. Then a formula such as (4.11) also
holds for n = 0 if we add up the values from k = −1 to k = n and define
a(0, 0) = 1, a(0,−1) = 1 and a(0, k) = 0 for other values of k

(30 bis) Pn(y) = (−1)n+1

n!

n∑
k=−1

(−1)k an,k yn−k, (n ≥ 0).

Note that Q0(y) remains undefined.
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Theorem 4.6. For 1 ≤ n and 0 ≤ k < n, we have (when defined)
(4.13)
an,k = nan−1,k−1 + n(n− 1)

n− k
an−1,k, bn,k = nbn−1,k−1 + n(n− 1)

n− k
bn−1,k.

For 1 ≤ n and 0 ≤ k ≤ n, we have

(4.14) an,k = bn,k + (n− k + 1)an,k−1.

For n ≥ 1, we have

(4.15) bn,n = nan−1,n−1 +
n−1∑
k=1

(
n− 1
k

)
k bk,k an−k−1,n−k−1.

Proof. (4.13) is obtained by equating the coefficients of yn−k−1 in the first
equation in (4.10). In this way, we obtain

(n− 1)(−1)n+k

(n− 1)! an−1,k =

= (n− k)(−1)n+k+1

(n− 1)! an−1,k−1 − (n− k)(−1)n+k+1

n! an,k.

If n 6= k, then the equation for an,k in (4.13) is obtained. The other equation
in bn,k is obtained analogously from the second equation in (4.10).

To prove (4.14), observe that by (4.6), Qn = Pn − (n − 1)Pn−1 + P ′n−1,
and from (4.10) it follows that

(4.16) Qn = Pn + P ′n, (n ≥ 1).

Now by equating the coefficient of yn−k in both members of this equality
we obtain (4.14).

Finally (4.15) follows from (4.8). Recall that −an,n

n! and − bn,n

n! are respec-
tively the values of Pn(0), and Qn(0). Hence, by setting y = 0 in (4.8), we
obtain (4.15) through multiplication by (n − 1)! and the reordering of the
terms. �

The main problem now is that equations (4.13) do not allow us to com-
pute the coefficients an,n. Cipolla gives an algorithm to simultaneously com-
pute the coefficients an,k and bn,k based on Theorem 4.6. In the procedure
of Cipolla, these key coefficients an,n are recursively computed using all the
previous coefficients. We prefer a method that computes An := an,n and
Bn := an,n−1 separately and then compute the remaining coefficients by
using (4.13).
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Theorem 4.7. In order to compute the numbers an,k, we may first compute
the sequences An := an,n and Bn := an,n−1 by the recursions

A0 = 1, A1 = 2, B0 = 1, B1 = 1,(4.17)
Bn = nBn−1 + n(n− 1)An−1(4.18)

(4.19) An = n2An−1 + nBn−1−

− (n− 1)
n−1∑
k=1

(
n− 2
k − 1

){
k(k − 1)Ak−1 −Ak + kBk−1

}
An−k−1.

After this one we may obtain a(n, k) := an,k. Setting

a(0, 0) = 1, a(0,−1) = 1, a(1, 0) = 1, a(1, 1) = 2

and all other a(0, k) and a(1, k) = 0. Then, for n ≥ 2, put

a(n, n) = An,

a(n, k) = na(n− 1, k − 1) + n(n− 1)
n− k

a(n− 1, k), (0 ≤ k < n)(4.20)

where a(n, k) = 0 for k < 0 or k > n.
Finally, we may obtain the b(n, k) := bn,k from

(4.21) b(n, k) = a(n, k)− (n− k + 1)a(n, k − 1).

Proof. The constant term of Pn is −An
n! and the coefficient of y in Pn is Bn

n! ,
so that equation (4.18) follows from the first equation in (4.10) taking it
with y = 0.

In the same way, (4.19) follows from (4.7), and (4.20) is the first equation
in (4.13).

Equation (4.21) for the b(n, k) follows easily from (4.16). �

The array of coefficients a(n, k) for 0 ≤ n, k ≤ 7, reads

1 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
1 6 11 0 0 0 0 0
2 21 84 131 0 0 0 0
6 92 588 1908 2666 0 0 0

24 490 4380 22020 62860 81534 0 0
120 3084 35790 246480 1075020 2823180 3478014 0
720 22428 322224 2838570 16775640 66811920 165838848 196993194

and the b(n, k) for 1 ≤ n ≤ 7 and 0 ≤ k ≤ 7 are
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1 1 0 0 0 0 0 0
1 4 5 0 0 0 0 0
2 15 42 47 0 0 0 0
6 68 312 732 758 0 0 0

24 370 2420 8880 18820 18674 0 0
120 2364 20370 103320 335580 673140 654834 0
720 17388 187656 1227450 5421360 16485000 32215008 31154346

Theorem 4.8. (a) The coefficients b(n, k) are integers.
(b) a(n, k) ≥ 0 and b(n, k) ≥ 0.
(c) a(n, k − 1) ≤ a(n, k) for 1 ≤ k ≤ n.
(d) For n ≥ 1, a(n, 0) = (n− 1)!.

Proof. (a) We have proved in Theorem 4.4 that the numbers a(n, k) are
integers, so that from (4.21), the coefficients b(n, k) are also integers.

(b) We proceed by induction on n. Assuming that we have proved that
a(m, k) and b(m, k) are positive for m < n, it follows from (4.13) that
a(n, k) and b(n, k) are positive for 0 ≤ k < n. Then (4.15) implies that
b(n, n) ≥ 0, and (4.14) with k = n proves that a(n, n) ≥ 0.

(c) This is a simple consequence of (4.14).
(d) The equation follows from (4.20) by induction. �

Theorem 4.9. By means of the rule in Theorem 4.7, one may compute
all coefficients an,k of the polynomials Pn(y) for 1 ≤ n ≤ N in O(N2)
coefficient operations.
Proof. We count the operations needed, following the indications in Theo-
rem 4.7, to compute every an,k for 0 ≤ n ≤ N and 0 ≤ k ≤ n.

First we must compute the numbers
(m
j

)
for 0 ≤ m ≤ N − 2. Using the

scheme of the usual triangle, we need to carry out ∑N−3
k=1 k additions, which

involves (N − 2)(N − 3)/2 operations.
The numbers Bn must now be computed for 2 ≤ n ≤ N by means of the

formula
Bn = n ∗ (Bn−1 + (n− 1) ∗An−1).

Each Bn requires 4 operations, therefore a total of 4(N − 1) operations are
needed. We compute the An for 2 ≤ n ≤ N using the formula

An = n ∗ n ∗An−1 + n ∗Bn−1 − (n− 1)∗

∗
n−1∑
k=1

(
n− 2
k − 1

)
∗ {k ∗ (k − 1) ∗Ak−1 −Ak + k ∗Bk−1} ∗An−k−1.

Hence An requires 7 + ∑n−1
k=1 8 = 8n − 1 operations. All An together take∑N

n=2(8n−1) = 4N2 +3N−7 operations. These numbers are the an,n. The
a0,k and a1,k require no operations. Finally we compute for 0 ≤ k < n

an,k = n ∗
{
an−1,k−1 + (n− 1) ∗ an−1,k/(n− k)

}
.
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Therefore, an,k takes 6 operations. For each n, every an,k for 1 ≤ k < n takes
6(n − 1) operations. And each an,k for 2 ≤ n ≤ N takes ∑N

n=2 6(n − 1) =
3N(N − 1).

The total cost in number of operations is therefore

(N − 2)(N − 3)
2 + 4(N − 1) + 4N2 + 3N − 7 + 3N(N − 1) =

= 1
2(15N2 + 3N − 16).

�

5. Bounds for the asymptotic expansion.

5.1. The sequence (an). First we define a sequence of numbers as the
coefficients of a formal expansion in A.

Lemma 5.1. There exists a sequence of integers (an) such that

(5.1) log
(
1−

∞∑
n=1

n!
xn

)−1
=
∞∑
n=1

an
n

1
xn
.

The coefficients may be computed by the recursion

(5.2) a1 = 1, an = n! · n+
n−1∑
k=1

k! an−k.

Proof. It is clear that u = 1 −∑n!x−n ∈ U ⊂ A, so that u−1 ∈ U and
log u−1 are well defined. To obtain the recursion we differentiate (5.1) to
obtain

−
∞∑
n=1

n · n!
xn+1 = −

( ∞∑
n=1

an
xn+1

)(
1−

∞∑
n=1

n!
xn

)
.

Equation (5.2) is obtained by equating the coefficients of x−n−1. The re-
currence (5.2) proves that an is a natural number for each n ≥ 1. �

The first terms of the sequence (an)∞n=1 are

1, 5, 25, 137, 841, 5825, 45529, 399713, 3911785, 42302225, . . .

Lemma 5.2. For each natural number n we have

(5.3) an ≤ 2n · n!.

Proof. We may verify this property for a1, a2, a3 and a4 directly. For n ≥ 4
we proceed by induction. Assume the inequality for ak with k < n, so that
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by (5.2)

1 ≤ an
n! · n ≤ 1 +

n−1∑
k=1

an−k
(n− k)! · (n− k)

n− k
n

(
n

k

)−1

≤

≤ 1 + 2
( 1
n

+
n−2∑
k=2

(
n

k

)−1

+ 1
n2

)
≤ 1 + 2

( 1
n

+ 1
n2 + (n− 3) 2

n(n− 1)
)
.

For n ≥ 4, it is easy to see that this is ≤ 2. �

Lemma 5.3. For each natural number N there is a positive constant cN
such that

(5.4) x
(
1−

N∑
n=1

n!
xn

)
≥ 1, x ≥ cN .

Proof. It is clear that the left-hand side of (5.4) is increasing and tends to
+∞ when x→ +∞, from which the existence of cN is clear.

The value of cN may be determined as the solution of the equation

(5.5) x
(
1−

N∑
n=1

n!
xn

)
= 1, x > 1.

In this way we found the following values.

c1 2 c6 4.15213 c11 5.61664 c20 8.70335
c2 2.73205 c7 4.43119 c12 5.93649 c30 12.34925
c3 3.20701 c8 4.71412 c13 6.26449 c40 16.03475
c4 3.56383 c9 5.00517 c14 6.59947 c50 19.72833
c5 3.86841 c10 5.30597 c15 6.94035 c60 23.42351

�

Remark 5.1. Notice that for x ≥ cN the sum in (5.4) is positive and less
than 1.

Proposition 5.1. For each natural number N there exists dN > 0 such
that, for x ∈ C with |x| ≥ dN , there exists θ with |θ| ≤ 1 such that

(5.6) log
(
1−

N∑
n=1

n!
xn

)−1
=

N∑
n=1

an
n

1
xn

+ θ
aN+1
N + 1

1
xN+1 , |x| > dN .

Proof. By comparing the expansions (5.1) and

(5.7) log
(
1−

N∑
n=1

n!
xn

)−1
=

N∑
n=1

an
n

1
xn

+
∞∑

n=N+1

bn
n

1
xn

it is clear that bN+1
N+1 + (N + 1)! = aN+1

N+1 , so that bN+1 < aN+1.
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The above expansion is convergent for all sufficiently large |x|, so that
∞∑

n=N+1

bn
n

1
xn

= bN+1
N + 1

1
xN+1 gN (x)

where limx→∞ gN (x) = 1. Hence there exist sufficiently large dN such that
|bN+1gN (x)| < aN+1, |x| > dN .

This ends the proof of the existence of dN .
We have(
log
(
1−

N∑
n=1

n!
xn

)−1
−

N∑
n=1

an
n

1
xn

)(N + 1)xN+1

aN+1
=

= (N + 1)
aN+1

∞∑
n=N+1

bn
n

1
xn−N−1 .

Since all an and bn are positive, this is a decreasing function for x→ +∞,
and the lowest value of dN will be the unique solution of(

log
(
1−

N∑
n=1

n!
xn

)−1
−

N∑
n=1

an
n

1
xn

)(N + 1)xN+1

aN+1
= 1.

We obtain the following table of values

d1 1.03922 d6 4.54145 d11 5.73661 d20 8.73298
d2 2.38568 d7 4.75734 d12 6.03061 d30 12.37349
d3 3.33232 d8 4.97336 d13 6.33969 d40 16.05983
d4 3.92171 d9 5.20626 d14 6.66091 d50 19.75448
d5 4.28707 d10 5.46090 d15 6.99175 d60 23.45053

�

Remark 5.2. The numbers dN in Lemma 5.1 are very similar to the num-
bers cN of Lemma 5.3. This is no more than an experimental observation,
but since the cN numbers are easy to compute and dN are somewhat elu-
sive, it has been useful to start from cN as an approximation to dN in order
to compute dN .

5.2. Some inequalities.

Lemma 5.4. For u ≥ 2 we have log ali(u) ≤ 2 log u. For u ≥ e2 we have
ali(u) ≤ 2u log u.

Proof. The first inequality is equivalent to ali(u) ≤ u2. Since li(x) is strictly
increasing, the inequality is equivalent to u ≤ li(u2).

For u > 2 we have li(u) > li(2) = 1.04516 . . . so that

li(u2) = li(u) +
∫ u2

u

dt

log t > 1 + u2 − u
log u2 .
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Hence, our inequality follows from u2−u
log u2 > u − 1, that is from u > 2 log u.

However, this last inequality is certainly true for u > 2.
The second inequality is equivalent to u ≤ li(2u log u) and has a similar

easy proof. �

Lemma 5.5. For all integers n ≥ 1 we have

(5.8)
∫ u

efn

(log log t)n

logn+1 t
dt ≤ 4u(log log u)n

logn+1 u
, (u ≥ efn)

where fn = 4(n+ 1)/3.

Proof. Notice that fn > 1. For t ≥ e the function log log t is positive and
increasing so that∫ u

efn

(log log t)n

logn+1 t
dt ≤ (log log u)n

∫ u

efn

dt

logn+1 t
.

It remains to be shown that∫ u

efn

dt

logn+1 t
≤ 4u

logn+1 u
, (u ≥ efn).

Replacing u by ex this is equivalent to∫ x

fn

et

tn+1 dt ≤
4ex
xn+1 , (x ≥ fn).

For the function
G(x) := 4ex

xn+1 −
∫ x

fn

et

tn+1 dt

we have
G′(x) = ex

xn+1

(
4− 4(n+ 1)

x
− 1

)
so that for x > 4(n + 1)/3 we obtain G′(x) > 0. Since G(fn) > 0 we have
G(x) > 0 for all x > fn. �

Theorem 5.1. The polynomials Pn(y) defined in (4.2) satisy the inequal-
ities
(5.9) |Pn(y)| ≤ 3 · n! yn, y ≥ 2, n ≥ 1
and |P0(y)| ≤ y for y ≥ 2.

Proof. Since P0(y) = y − 1, the second assertion is trivial.
Given r > 0, for each polynomial P (x) = ∑N

n=0 anx
n we define

‖P‖ =
N∑
n=0
|an|rn.

It is easy to show that
‖P +Q‖ ≤ ‖P‖+ ‖Q‖, ‖PQ‖ ≤ ‖P‖ · ‖Q‖
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and that for the derivative of a polynomial of degree ≤ N

‖P ′‖ =
N∑
n=0

n|an|rn−1 ≤ N

r

N∑
n=0
|an|rn = N

r
‖P‖.

For y ≥ r we have the inequality

|P (y)| =
∣∣∣ N∑
n=0

any
n
∣∣∣ ≤ N∑

n=0
|an|yn ≤

N∑
n=0
|an|rn(y/r)n ≤ (y/r)N‖P‖.

Hence, our Theorem follows if it can be shown that for n ≥ 1 we have
‖Pn‖ ≤ 3 · 2n n! (for r = 2).

Define Sn := ‖Pn‖. By (4.11) we have Sn = −Pn(−2), and it can be
shown that Sn ≤ 3 · 2n n! for 0 ≤ n ≤ 15.

For n > 15 it follows from (4.7) and the aforementioned properties of
‖P‖ that

Sn ≤ nSn−1 + n

2Sn−1 + 1
n

n−1∑
k=1

k
(
(k − 1)Sk−1 + Sk + k

2Sk−1
)
Sn−k−1.

It follows that Sn ≤ Tn where Tn := Sn ≤ 3 · 3n n! for 0 ≤ n ≤ 15, and that
for n > 15

Tn := 3n
2 Tn−1 + 1

n

n−1∑
k=1

(
kTk + k(3k − 2)

2 Tk−1
)
Tn−k−1.

Now we proceed by induction. For n > 15 and assuming that we have
proved Tk ≤ 3 · 2k k! for k < n, we obtain

Tn ≤
9n
2 2n−1(n− 1)!+

+ 9
n

n−1∑
k=1

(
k2kk! + k(3k − 2)

2 2k−1(k − 1)!
)
2n−k−1(n− k − 1)!.

Hence

Tn
3 · 2n n! ≤

3
4 + 3

n

n−1∑
k=1

(k · k!(n− k − 1)!
2 · n! + (3k − 2)k!(n− k − 1)!

8 · n!
)
≤

≤ 3
4 + 3

8n2

n−1∑
k=1

7k − 2(n−1
k

) ≤ 3
4 + 3(7n− 9)

8n2 + 3
8n2

n−2∑
k=1

7k − 2(n−1
k

) .
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Therefore, by using the symmetry of the combinatorial numbers, we obtain

Tn
3 · 2n n! ≤

3
4 + 3(7n− 9)

8n2 + 3
16n2

n−2∑
k=1

7n− 11(n−1
k

) ≤
≤ 3

4 + 3(7n− 9)
8n2 + 3

16n2 · (n− 2)7n− 11
n− 1 ≤

≤ 3
4 + 3(7n− 9)

8n2 + 3
16n2 · (7n− 11) = 1− n(4n− 63) + 87

16n2 < 1

for n > 15. �

Corollary 5.1. We have
(5.10) |Pn−1(y)| ≤ n! yn, n ≥ 1, y ≥ 2.

Proof. This follows easily from the above Theorem. �

5.3. Main inequalities. To simplify our formulae we introduce some no-
tation. First we set rn := 3 · n! so that, for n ≥ 1, we have |Pn(y)| ≤ rny

n

when y > 2.
Let cn and dn be the constants introduced in Lemma 5.3 and Proposition

5.1. Let αn be equal to max(e, cn, dn) and let βn ≥ e be the solution of the
equation

(5.11) x

log x = αn.

(The function t
log t is increasing for t ≥ e).

Finally, define xn := max(βn, fn, e2), where fn is defined in Lemma 5.5.

Proposition 5.2. Let x be a real number such that x ≥ xn, and set y :=
log x. Then

y ≥ 2, x ≥ cny, x ≥ dny, x ≥ fn.

Proof. Since x ≥ xn = max(βn, fn, e2) we have x ≥ e2, so that y = log x ≥
2.

We also have x ≥ βn ≥ e. Since t
log t is an increasing function for t ≥ e we

obtain x
log x ≥

βn

log βn
= αn = max(e, cn, dn). Therefore, x

y ≥ cn and x
y ≥ dn

as required. �

We insert a table of the constants xn.

x1 7.38906 x6 10.81135 x11 16.00000 x20 29.57923
x2 7.38906 x7 11.70187 x12 17.33333 x30 47.86556
x3 7.38906 x8 12.60164 x13 18.66667 x40 67.69154
x4 8.29874 x9 13.58167 x14 20.00000 x50 88.57644
x5 9.77283 x10 14.66667 x15 21.42740 x60 110.29065
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For each natural number N we set

(5.12) WN = 1 +
N∑
n=1

Pn−1(y)
xn

and frequently we write W := WN when N is fixed.

Proposition 5.3. For N ≥ 1 let W = WN (as in (5.12)). Then for x ≥ xN
and y = log x there exists θ with |θ| ≤ 1 such that

(5.13) W + xW + xWx +Wy − x− y − logW = θ · rN+1
yN

xN
.

Proof. Denote by T = T (x, y) the value of W + xW + xWx +Wy − x− y−
logW . Then we have

T = (1 + x)
N∑
n=0

Pn−1(y)
xn

−
N∑
n=1

nPn−1(y)
xn

+
N∑
n=1

P ′n−1(y)
xn

−

− x− y + log
(
1 +

N∑
n=1

Pn−1(y)
xn

)−1
.

From (4.5) we have the expansion

(5.14) log
(
1 +

∞∑
n=1

Pn−1(y)
xn

)−1
= −

∞∑
n=1

Qn(y)
xn

.

From Proposition 5.2 we know that y = log x > 2 and x ≥ ydN . From
(5.10), for y > 2, we have |Pn−1(y)| ≤ n!yn so that we have the majorant

(5.15) log
(
1 +

N∑
n=1

Pn−1(y)
xn

)−1
� log

(
1−

N∑
n=1

n!
(x/y)n

)−1

(by considering this expression as a power series in x−1, and y as a param-
eter). From (5.14) and (5.15), we obtain

(5.16) log
(
1 +

N∑
n=1

Pn(y)
xn

)−1
= −

N∑
n=1

Qn(y)
xn

+ SN (x, y)

where SN (x, y) is a power series majorized by the Taylor expansion of

log
(
1−

N∑
n=1

n!
(x/y)n

)−1
−

N∑
n=1

an
n

1
(x/y)n

(compare equation (5.7)).
By applying Proposition 5.1 we deduce that, for x > ydN , there exists θ

with |θ| ≤ 1 and

(5.17) SN (x, y) = θ
aN+1
N + 1

yN+1

xN+1 .
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If we substitute (5.16) in the expression for T , then by Theorem 4.2, all
the terms in x−n with n < N cancel out, and the terms in x−N add up to
−PN (y)x−N . It follows that

(5.18) T = −PN (y)
xN

+ SN (x, y).

Therefore, since y > 2, we have

|T | ≤ rN
yN

xN
+ aN+1
N + 1

yN+1

xN+1

so that from (5.3) ,

|T | ≤ yN

xN

(
3 ·N ! + 2 · (N + 1)! log x

x

)
≤ 3 · (N + 1)!yN

xN
= rN+1

yN

xN

where N ≥ 1 and 3
2 + 2 log x

x ≤ 3 for x ≥ e2 are applied. �

Proposition 5.4. For each natural number N let uN = exN . Then there
exists vN > uN such that

(5.19) li(fN (u))− u = θ · 13(N + 1)! u(log log u)N

logN+1 u
, (u > vN )

where |θ| ≤ 1 and

(5.20) fN (ex) := xexWN (x, log x) = xex
(
1 +

N∑
n=1

Pn−1(log x)
xn

)
.

Proof. To simplify the notation, the abbreviation W (x, y) = WN (x, y) is
used. Differentiating (5.20) we obtain

d

dx

(
li(fN (ex))− ex

)
=

= 1
log(fN (ex))

{
exW + xexW + xex

(
Wx + 1

x
Wy

)}
− ex.

Assume that x ≥ xN , so that x ≥ dN log x and x ≥ e2. We may apply
(5.13) to obtain

d

dx

(
li(fN (ex))− ex

)
= ex

log(fN (ex))
{
W + xW + xWx +Wy

}
− ex =

= ex

log(fN (ex))
{
x+ log x+ logW + θrN+1

logN x
xN

}
− ex.

This may be simplified to
d

dx

(
li(fN (ex))− ex

)
= ex

log(fN (ex)) · θ
rN+1 logN x

xN
.
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Since x > xN we have x ≥ ycN , so that by Lemma 5.3∣∣∣x(1 +
N∑
n=1

Pn−1(log x)
xn

)∣∣∣ ≥ x(1−
N∑
n=1

n!
(x/y)n

)
≥ 1

that is xWN (x, log x) ≥ 1, so that log(fN (ex)) ≥ x. Hence, for x ≥ xN
(with another θ), we have

d

dx

(
li(fN (ex))− ex

)
= θ

rN+1 logN x
xN+1 ex.

Defining HN (u) := li(fN (u))− u the above equation is equivalent to

H ′N (ex) = θ
rN+1 logN x

xN+1 , (x ≥ xN )

and, since uN := exN ,

H ′N (u) = θ
rN+1 (log log u)N

logN+1 u
, (u ≥ uN ).

Lemma 5.5 can be applied since xN ≥ fN , so that u ≥ uN ≥ efN . Hence,
integrating over the interval (uN , u) we get

HN (u) = HN (uN ) + θ
4rN+1 u(log log u)N

logN+1 u
, (u ≥ uN ).

The function (N + 1)! u
logN+1 u

· (log log u)N is increasing (as product of
two positive increasing functions) for u > efn , so that there exists vN > uN
for which this function is greater than HN (uN ), so that

HN (u) = θ
13 · (N + 1)!u(log log u)N

logN+1 u
, (u ≥ vN ).

�

Remark 5.3. For the values of n appearing in our tables, the equality
un = vn holds, since, in these cases,

Hn(un) ≤ (n+ 1)!un(log log un)n

logn+1 un
.

Lemma 5.6. For any natural number N , and u > exN we have log fN (u) <
2 log u.

Proof. First observe that the hypothesis u > exN implies (with u = ex)
that x > xN , so that log x > 2 and x > cN log x. (Proposition 5.2).

The inequality log fN (u) < 2 log u is equivalent to fN (u) < u2, and
together with u = ex it is equivalent to

xex
(
1 +

N∑
n=1

Pn−1(log x)
xn

)
< e2x.
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From Corollary 5.1, since x ≥ e2 and x ≥ cNy, and by Remark 5.1,

x
(
1 +

N∑
n=1

Pn−1(log x)
xn

)
≤ x

(
1 +

N∑
n=1

n!
(x/y)n

)
< x

(
1−

N∑
n=1

n!
(x/y)n

)−1
.

Hence our inequality follows from

x <
yex

x
· x
y

(
1−

N∑
n=1

n!
(x/y)n

)
, y = log x.

Since we assume that x ≥ ycN , the second factor is greater than 1, so that

yex

x
· x
y

(
1−

N∑
n=1

n!
(x/y)n

)
>
yex

x

Finally, it is easy to prove that ex log x > x2 for x > e2. �

The asymptotic expansion with bounds can now be proved.

Theorem 5.2. For each integer N ≥ 1

(5.21) ali(u) = fN (u) + 26θ(N + 1)!u
( log log u

log u
)N
, (u ≥ vN ),

where vN is the number defined in Proposition 5.4 .

Proof. Since li(ali(u)) = u, Proposition 5.4 yields, for u > vN ,

li(fN (u))− li(ali(u)) =
∫ fN (u)

ali(u)

dt

log t = 13θ(N + 1)!u(log log u)N

logN+1 u
.

Since vN ≥ uN = exN , u ≥ vN implies log u ≥ 2, hence u ≥ 2.
From Lemma 5.4, log ali(u) ≤ 2 log u, for u > 2. Analogously, Lemma

5.6 implies that log fN (u) ≤ 2 log u, for u > exN . Therefore, for u > vN , we
have

| ali(u)− fN (u)|
2 log u ≤

∣∣∣∫ fN (u)

ali(u)

dt

log t
∣∣∣.

It follows that there exists θ′ with |θ′| ≤ 1 such that

ali(u)− fN (u) = θ′(2 log u)
∫ fN (u)

ali(u)

dt

log t
and the result follows easily. �

The actual error appears to be much smaller than that given in Theorem
5.2. However, as usual with asymptotic expansions, having a true bound
allows realistic bounds to be given of the remainder for specific values of
N .

The true error after N terms of an asymptotic expansion, while the terms
are decreasing in magnitude, is often of the size of the first omitted term.
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In our case, the magnitude of the term PN (log x)x−N−1 depends on the
polynomial PN (log x).

Numerically, it appears that for n ≥ 3:

(5.22) |Pn(y)| ≤
( n

e logn
)n
yn, (y > 2 logn)

although we have not been able to prove this.
From Theorem 5.2, more realistic bounds can be obtained for the first

values of N . This is done in the following Theorem.

Theorem 5.3. For 2 ≤ N ≤ 11, we have
(5.23)
ali(ex)
xex

= 1 +
N∑
n=1

Pn−1(log x)
xn

+ θ · 20 ·
( N

e logN
)N
· logN x
xN+1 , (x > zN )

where
z2 = 1.50, z3 = 2.34, z4 = 3.32, z5 = 4.33, z6 = 5.36,
z7 = 6.39, z8 = 7.43, z9 = 8.46, z10 = 9.50, z11 = 10.53.

Proof. By taking N = 10 in Theorem 5.2, we have, for u = ex > ex10 ,
(recall also Remark 5.3)

ali(ex)
xex

= 1 +
10∑
n=1

Pn−1(log x)
xn

+ θR
log10 x

x11 , (x > x10)

with R = 26 · 11! = 1 037 836 800.
We compute the maximum3 Mn of |Pn−1(log x)/ logn−1 x| for x > x10,

so that for any 2 ≤ N ≤ 10, we have

ali(ex)
xex

= 1 +
N∑
n=1

Pn−1(log x)
xn

+

+ logN x
xN+1

( 10∑
n=N+1

Pn−1(log x)
logn−1 x

logn−N−1 x

xn−N−1 + θR
log10−N x

x10−N

)
so that

ali(ex)
xex

= 1 +
N∑
n=1

Pn−1(log x)
xn

+

+ θ
logN x
xN+1

( 10∑
n=N+1

Mn logn−N−1 x

xn−N−1 +R
log10−N x

x10−N

)
.

3M2 = 1, M3 = 1/2, M4 = 1/3, M5 = 0.250636, M6 = 0.526887, M7 = 1.300565, M8 =
3.719653, M9 = 12.070813, M10 = 43.788782. This last maximum would be much smaller if the
maximum were taken from a point slighthly greater than x10.
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We determine a value z′N > x10 such that, for x = z′N ,

( 10∑
n=N+1

Mn logn−N−1 x

xn−N−1 +R
log10−N x

x10−N

)
< 20

( N

e logN
)N
.

Since this is a decreasing function of x, we obtain for x > z′N

(5.24) ali(ex)
xex

= 1 +
N∑
n=1

Pn−1(log x)
xn

+ θ · 20
( N

e logN
)N logN x

xN+1 .

We consider the function(ali(ex)
xex

− 1−
N∑
n=1

Pn−1(log x)
xn

) xN+1

logN x

on the interval (1.3, z′N ), to determine the least value of zN for which (5.24)
is true.

In this way we find: z′2 = 32 and then z2 = 1.5; z′3 = 49.5 and then
z3 = 2.3395; z′4 = 82 and then z4 = 3.3114; z′5 = 155 and then z5 = 4.3237.

If we take N = 20 in Theorem 5.2, we obtain z′6 = 113, z′7 = 143, z′8 =
187, z′9 = 251 z′10 = 353, z′11 = 528 from which z6 = 5.3514, z7 = 6.3851,
z8 = 7.4208, z9 = 8.4566, z10 = 9.4914 and z11 = 10.5251 are obtained. �

Remark 5.4. We have proved (5.23) only for 2 ≤ N ≤ 11, although
something similar appears to be true for the general case. If (5.23) were
true for all n, then for a large u = ex we could take N ≈ x terms in the
expansion and in this way the error would be ≈ 20

xex , so that ali(u) could
be computed with an error less than ≈ 20.

In fact, for several values of u, the terms of the expansion have been
computed up to the point where these terms start to increase. Always
the computation is terminated when N ≈ x and the error appears to be
bounded. ( For example, with u = 10100, we compute 230 terms of the ex-
pansion, which coincides with log 10100 ≈ 230.259. The approximate value
obtained for ali(u) has an absolute error equal to 40.94738, which can be
compared with the fact that ali(10100) has 103 digits ).

6. Applications to pn.

6.1. Asymptotic expansion of pn. Inequalities for the n-th prime num-
ber can be found in [17], [15], [11], [4]. In fact, from π(x) = li(x) +O(r(x))
we may obtain pn = ali(n) + O(r(n logn) logn), if r(x)/x is sufficiently
small. For example, in [11], it is noticed that from a result of Massias [9],
it follows that

(6.1) pn = ali(n) + O(ne−c
√

logn)
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so that the asymptotic expansion of ali(n) is also an asymptotic expansion
for pn, that is,

(6.2) pn = n logn
(
1 +

N∑
k=1

Pk−1(log logn)
logk n

)
+ O

(
n
( log logn

logn
)N)

.

By assuming the Riemann hypothesis, Schoenfeld [20] has proved

(6.3) |π(x)− li(x)| < 1
8π
√
x log x, (x > 2657).

This result will be used to obtain (under RH) some precise bounds for pn.

Lemma 6.1. We have
√
x(log x) 5

2 < ali(x) for x > 94.

Proof. The inequality is equivalent to

li(
√
x(log x)

5
2 ) < x.

Differentiating the function f(x) := x− li(
√
x(log x) 5

2 ) we get

f ′(x) = 1− 1
log(
√
x(log x) 5

2 )

( log5/2 x

2
√
x

+ 5 log3/2 x

2
√
x

)
.

Hence this derivative is positive if and only if

log3/2 x
( log x

2 + 5
2
)
<
√
x
( log x

2 + 5
2 log log x

)
.

For x > 94 we have (log x) 3
2 <
√
x, so that f ′(x) > 0 for x > 94.

Finally, one may verify that f(94) > 0. Hence f(x) > 0 for x > 94. �

Theorem 6.1. The Riemann hypothesis is equivalent to the assertion

(6.4) |pn − ali(n)| < 1
π

√
n log

5
2 n for all n ≥ 11.

Proof. First we assume the Riemann Hypothesis and prove (6.4). Let r(x) :=
1

8π
√
x log x, f(x) := li(x) − r(x), and g(x) := li(x) + r(x). For x > 1 we

have f(x) < li(x) < g(x), where the three functions are strictly increasing.
From (6.3) for x > 2657, we also have f(x) < π(x) < g(x).

The inverse functions satisfy g−1(y) < ali(y) < f−1(y), and if y = n >
π(2657) = 384 is a natural number, then g−1(n) < pn < f−1(n). It follows
that the distance from ali(n) to pn is bounded by

|pn − ali(n)| ≤ max
(
f−1(n)− ali(n), ali(n)− g−1(n)

)
.

Hence, we have to bound f−1(y)− ali(y) and ali(y)− g−1(y).
We consider y as a parameter and set α = ali(y), so that li(α) =

li(ali(y)) = y.
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Consider the function u(ξ) := f(ξ) − li(α) = f(ξ) − y, which is strictly
increasing and satisfies

u(ξ) = li(ξ)− r(ξ)− li(α) =
∫ ξ

α

dt

log t − r(ξ).

Therefore, u(α) = −r(α) < 0 and

u(f−1(y)) = f(f−1(y))− li(α) = y − li(ali(y)) = 0.
If a point b is found where u(b) > 0, then α < f−1(y) < b, so that b− α >
f−1(y)− α and one of the required bounds is obtained.

Therefore, we try b = α+ c
√
y(log y) 5

2 with c < 1. We have

u(α+ c
√
y(log y)

5
2 ) =

∫ α+c√y(log y)
5
2

α

dt

log t − r(α+ c
√
y(log y)

5
2 ) >

>
c
√
y(log y) 5

2

log(α+ c
√
y(log y) 5

2 )
− r(α+ c

√
y(log y)

5
2 ).

From Lemma 6.1 for y > 94, we have √y(log y) 5
2 < ali(y) = α, so that

u(α+ c
√
y(log y)

5
2 ) >

c
√
y(log y) 5

2

log(2α) − r(2α)

=
c
√
y(log y) 5

2 − 1
8π
√

2α log2(2α)
log(2α) .

We want to show that this expression is positive. For y > 94, we have
α = ali(y) < 2y log y (by Lemma 5.4), so that α < 2y log y < 4y log y < y2

(for y > 94), which yields (with c = 1/π)

c
√
y(log y)

5
2 − 1

8π
√

2α log2(2α) >

> c
√
y(log y)

5
2 − 1

8π
√

4y log y log2(4y log y) >

> c
√
y(log y)

5
2 − 1

8π
√

4y log y log2(y2)) = 0.

Hence, we have proved that f−1(y)− α < 1
π

√
y(log y)5/2 for y > 94.

To bound α − g−1(y), we consider the function v(ξ) := g(ξ) − li(α) =
g(ξ)− y. Then

v(ξ) = r(ξ)−
∫ α

ξ

dt

log t
and v(α) = r(α) > 0, v(g−1(y)) = g(g−1(y)) − y = 0. If a value b is found
such that v(b) < 0, it will follow that α− g−1(y) < α− b.
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Choose b = α − c√y(log y)5/2 with c = 1
π . We claim that v(b) < 0. We

have
v(b) = r(b)−

∫ α

b

dt

log t < r(b)− α− b
logα

and our claim will follow from r(b) logα− c√y(log y)5/2 < 0. Finally, since
b < α = ali(y) < 2y log y, and by Lemma 5.4,

r(b) logα < 1
8π

√
ali(y)(log ali(y))2 <

1
8π
√

2y log y(2 log y)2

which proves our claim.
Hence, (assuming RH), we have proved that |pn−ali(n)| < 1

π

√
n(logn) 5

2

for n > 384 > 94. By verifying all 1 ≤ n ≤ 385, we find that the inequality
holds except for n < 11.

The reverse implication is simple. From |pn − ali(n)| = O(n 1
2 +ε) for any

ε > 0, we may derive that π(x) = li(x) + O(x 1
2 +ε). It is well known that

this is equivalent to the Riemann Hypothesis. �

Remark 6.1. The inequality (6.4) is only proved by assuming the Riemann
Hypothesis, but is stronger than those contained in [17], [15], [11], [4].
Inequality (6.4) gives approximately half of the digits of pn. If our conjecture
that (5.23) is true for all N is also assumed, then the asymptotic expansion
gives about half of the digits of pn.

6.2. Inequalities for the n-th prime. Let

sN (n) = n logn
(
1 +

N∑
k=1

Pk−1(log logn)
logk n

)
where s0 = n logn.

Cipolla noted that for k ≥ 1, Pk(y) = (−1)k+1 yk

k + · · · , and P0(y) =
y− 1. Hence, except for the first term, eventually the sign of the k-th term
Pk−1(log logn) log−k n becomes (−1)k. The asymptotic expansion implies
that there exist rN such that

pn > s0(n), n > r0, pn > s1(n), n > r1,

pn < s2N (n), n > r2N , pn > s2N+1(n), n > r2N+1.
(6.5)

In fact, r0 = 2 is the main result in [17], r1 = 2 is proved in [4] and
r2 = 688 383 is proved in [5]. The value of rN for N ≥ 3 has not been
determined. See Theorem 6.2 for an estimation of r3 by assuming RH.

The above reasoning may give the impression that the terms of the as-
ymptotic expansion of ali(u) are alternating in sign, starting from the sec-
ond term. However this is not true. For example, computing the first 230
terms for ali(10100), we found only three positive terms P0/x, P1/x

2, and
P3/x

4. In fact, the sign of the k-th term is that of Pk−1(log logn). Thus we
are interested in the sign of these polynomials.
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The polynomials PN (y), for 1 ≤ N ≤ 23 of odd index, have one and
only one real root, which is positive. Starting from P1(y) which vanishes at
y = 2, these roots are

2, 4.23415, 5.83131, 7.43591, 9.07979, 10.6881, 12.2538,
13.7876, 15.2977, 16.79, 18.2683, 19.7353.

The polynomials P2, P4 and P6 have no real roots, and all P8, . . . , P22 have
two positive real roots. These pairs of roots are:

(6.4306, 8.2185), (7.16158, 9.88528), (7.90293, 11.4752),
(8.63359, 13.0241), (9.3507, 14.5452), (10.055, 16.0458),

(10.7478, 17.5307), (11.4307, 19.003).

For example, P9(log logn) is positive only for n > exp(e9.07...), which is
a very big number.

The even terms at first sight appear negative. However P10(log logn), for
example, is negative except in the interval exp(e7.16...) < n < exp(e9.88...).

In a certain sense, the inequalities (6.5) are the wrong inequalities. These
inequalities would hold only for very large values of rN , especially when we
want a lower bound of pn > s2N+1 (except for the three known cases). We
estimate r3.

Theorem 6.2. Let r3 be the smallest number such that

(6.6) pn > s3 := n logn+ n(log logn− 1) + n
log logn− 2

logn −

− n(log logn)2 − 6 log logn+ 11
2 log2 n

, n ≥ r3.

Then, if the Riemann Hypothesis is assumed,

39× 1029 < r3 ≤ 39.58× 1029.

Proof. By Theorem 6.1, there exists θ1 with |θ1| ≤ 1 such that

pn = ali(n) + θ1

√
n

π
(logn)

5
2 , n ≥ 11.

By Theorem 5.3, with 5 ≤ N ≤ 10 and setting n = ex, x = logn, and
y = log logn, we have for n > ezN

ali(n) = xex
(
1 + y − 1

x
+ y − 2

x2 − y2 − 6y + 11
2x3 +

+ P3(y)
x4 +

N∑
k=5

Pk−1(y)
xk

+ θ2cN
yN

xN+1

)
.
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The inequality of the Theorem is obtained if

xex
(P3(y)

x4 +
N∑
k=5

Pk−1(y)
xk

− cN
yN

xN+1

)
− ex/2

π
x

5
2 > 0.

This is equivalent to

P3(y) +
N∑
k=5

Pk−1(y)e−(k−4)y > cNy
Ne−(N−3)y + 1

π
e

11
2 ye−

1
2 e

y
.

Since P3(y) → +∞ and all the other terms tend to 0 as y → +∞, it is
clear that the inequality is true for y > y0. With N = 10, we find y0 =
4.254946453 . . . The inequality pn < sn is true for n ≥ 3.957022241488456×
1030. This proves that r3 ≤ 39.58× 1029.

In order to show that r3 > 39 × 1029, we directly show that, for n =
39× 1029, the opposite inequality pn < s3 is obtained.

We compute
s3 = 2.87527 18639 02974 79681 42399 35057 89294 02005 87915× 1032.

Now we can compute ali(n), for which we already have obtained a good ap-
proximation through the asymptotic expansion, and then apply the Newton
method

ali(n) = 2.87527 18639 02495 21516 14800 14732 45414 39731× 1032.

Therefore, from Theorem 6.1, we obtain pn < ali(n) + 1
π

√
n log 5

2 n, so that

pn < 2.87527 18639 02756 97808 39055 05640 30082 86370 11482× 1032

and we can conclude that pn < s3. �
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[6] E. Landau, Über die Multiplikation Dirichlet’scher Reihen, Rend. Circ. Matem. Palermo,

24 (1907), 81–159.
[7] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig 1909.

[Reprint: Chelsea 1953].
[8] S. Lang, Algebra, Revised 3rd edition, Springer, New York 2002.
[9] J.-P. Massias, Ordre maximum d’un élément du groupe symétrique et applications, Thèse
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bres premiers, J. Théor. Nombres Bordeaux 8 (1996), 215–242.

[12] H. L. Montgomery & R. C. Vaughan, Multiplicative Number Theory: I Classical Theory,
Cambridge University Press, 2006.
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Jérémy Toulisse
University of Luxembourg, Campus Kirchberg
Mathematics Research Unit, BLG
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
Grand Duchy of Luxembourg
E-mail: jeremytoulisse@gmail.com

mailto:arias@us.es
http://personal.us.es/arias/index.html
mailto:jeremytoulisse@gmail.com

	1. Introduction.
	1.1. Historical note.
	1.2. Organization of the paper.

	2. The inverse function of the logarithmic integral.
	3. Asymptotic expansion of `39`42`"613A``45`47`"603Aali(x).
	4. Formal Asymptotic expansion.
	5. Bounds for the asymptotic expansion.
	5.1. The sequence (an).
	5.2. Some inequalities.
	5.3. Main inequalities.

	6. Applications to pn.
	6.1. Asymptotic expansion of pn.
	6.2. Inequalities for the n-th prime.

	References

