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A characterization of Eisenstein polynomials
generating extensions of degree p2 and cyclic of

degree p3 over an unramified p-adic field

par Maurizio MONGE

Résumé. Soit p 6= 2 un nombre premier. Nous obtenons une
technique basée sur la théorie du corps de classes local et sur les
développements de certains résultants qui permet de retrouver très
facilement la caractérisation de Lbekkouri des polynômes d’Eisen-
stein qui génèrent une extension cyclique totalement ramifiée de
degré p2 sur Qp, et de l’étendre au cas de corps de base K qui est
une extension non ramifiée de Qp.

Quand un polynôme satisfait un sous-ensemble de ces condi-
tions, la première condition insatisfaite caractérise le groupe de
Galois de la clôture normale. Nous obtenons une classification
complète des polynômes d’Eisenstein de degré p2 dont le corps
de décomposition est une p-extension, fournissant une description
complète du groupe de Galois et de ses sous-groupes de ramifica-
tion.

Les mêmes méthodes sont utilisées pour donner une caractéri-
sation des polynômes d’Eisenstein de degré p3 qui génèrent une
extension cyclique.

Dans la dernière section, on en déduit une interprétation combi-
natoire des fonctions symétriques monômiales évaluées aux racines
de l’unité, qui apparaissent dans certains développements.

Abstract. Let p 6= 2 be a prime. We derive a technique based
on local class field theory and on the expansions of certain resul-
tants allowing to recover very easily Lbekkouri’s characterization
of Eisenstein polynomials generating cyclic wild extensions of de-
gree p2 over Qp, and extend it to when the base fields K is an
unramified extension of Qp.

When a polynomial satisfies a subset of such conditions the
first unsatisfied condition characterizes the Galois group of the
normal closure. We derive a complete classification of Eisenstein
polynomials of degree p2 whose splitting field is a p-extension,
providing a full description of the Galois group and its higher
ramification subgroups.

Manuscrit reçu le 15 octobre 2012, révisé le 6 juillet 2013, accepté le 3 septembre 2013.
Classification math. 11S05, 11S15.
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The same methods are used to give a characterization of Eisen-
stein polynomials of degree p3 generating a cyclic extension.

In the last section, we deduce a combinatorial interpretation of
monomial symmetric functions evaluated in the roots of the unity,
which appear in certain expansions.

1. Introduction
In this paper we introduce a technique which can be used to deduce

necessary and sufficient conditions on the coefficients of an Eisenstein poly-
nomial over a p-adic field for the Galois group of the splitting field to be
a prescribed group, when the field is an unramified extension of Qp and
the polynomial has degree p2 or p3. Even when not explicitly stated, the
residual characteristic p will always be assumed 6= 2.

In [Lbe09], Lbekkouri gave a list of congruence conditions for the coeffi-
cients of Eisenstein polynomials of degree p2 with coefficients in the rational
p-adic field Qp, and these conditions are satisfied if and only if the gener-
ated extension is Galois. Since the multiplicative group U1,Qp of 1-units of
Qp has rank 1 as Zp-module, and in particular U1,Qp (Q×p )p/(Q×p )p ∼= Z/pZ, we
have by local class field theory that every Galois totally ramified exten-
sion of degree p2 over Qp is cyclic. Consequently when the base field is Qp

the problem is reduced to finding conditions for Eisenstein polynomials of
degree p2 to generate a cyclic extension.

If the base field K is a proper extension of Qp a Galois extension of
degree p2 may not be cyclic, so the restriction of considering polynomials
that generate cyclic extensions has to be added explicitly. If K is ramified
over Qp the bare characterization of the possibilities for upper ramification
breaks is a non-trivial problem (see [Mau71, Mik81]) and the problem seems
to be very difficult for a number of other reasons, so we will only consider
fields K that are finite unramified extensions over Qp, with residual degree
f = f(K/Qp) = [K : Qp]. In this setting the problem is still tractable
without being a trivial generalization of the case over Qp, and we will show
a technique allowing to handle very easily the case of degree p2.

When studying the norm map of a wildly ramified extension L/K gen-
erated by an Eisenstein polynomial, the Artin-Hasse exponential function
comes into play, and we use it to clarify the connection between the image of
the norm map and the coefficients of the generating Eisenstein polynomial.

While some of the conditions we deduce are necessary for the splitting
field to be a p-extension, the remaining conditions can be tested in their
order on a candidate polynomial, and the first one that fails gives informa-
tion on the Galois group of the splitting field. Taking into account another
family of polynomials that can never provide a cyclic extension of degree
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p2, we give a full classification of the polynomials of degree p2 whose nor-
mal closure is a p-extension, providing a complete description of the Galois
group of the normal closure with its ramification filtration. See [Cap07] for
an abstract classification of all such extensions when the base field is Qp.

The same methods apply to characterize Eisenstein polynomials of de-
gree p3 generating a cyclic extension. In this case the characterization is
substantially more complicated, but the strategy used in degree p2 can still
be applied in a relatively straightforward way. It should be quite easy to ap-
ply the same methods to other abelian groups, and should even be possible
to obtain a characterization for some non-abelian group.

In the last section we give a combinatorial interpretation of certain sums
of roots of the unity appearing during the proof, it is actually more general
than what is needed in the present paper, but it has some interest on its
own.

Overview on the general strategy. We give here an overview of our
strategy for deducing conditions on coefficients of generating Eisenstein
polynomials. Let K be a p-adic field that is unramified over Qp, p 6= 2, so
that p is a uniformizing element ofK. Let f(T ) be an Eisenstein polynomial
of degree n say, and π be a root in a fixed algebraic closure. Let L = K(π)
be the extension generated by π over K.

Let G be an abelian group of order n equal to the degree [L : K]. By local
class field theory the totally ramified extension L/K is Galois with group
isomorphic to G if and only if NL/K(UL) has index n in UK , and quotient
UK/NL/K(UL) isomorphic to G. When n is a power of p the groups UK
and UL can be replaced with the 1-units U1,K and U1,L, so we only need to
check whether U1,K/NL/K(U1,L) is isomorphic to G.

When G is a cyclic group of order pk, it turns out that N = NL/K(U1,L)
should have a special form. In particular, U1,K/N is cyclic of order pk if
and only if there exists a subgroup V ⊆ Ok that is the preimage of a Fp-
subspace V̄ of codimension 1 in κK (with respect to the canonical projection
Ok → κk), and

(1) (N ∩ Ui,K) ⊆ 1 + piV , for all 1 ≤ i ≤ k,
(2) N ⊇ Uk+1,K .

Note also that if (UK : N) ≤ n, then the last condition is automatically
satisfied. A similar characterization is possible for general abelian p-groups,
but here we will restrict to the case of cyclic group.

If the first condition is verified for i = 1, then N mod p2
K is already

sufficient to determine uniquely V . So if N has the requested form for
a suitable V , to test whether UK/N is cyclic of order pk we can verify
whether N ∩ Ui,K ⊂ 1 + piV for 2 ≤ i ≤ k. We will test this condition on
N = NL/K(U1,L), for an extension L/K.
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By the structure of the norm map over local fields (see [FV02, Chap. 3,
§3, Prop. 3.1]), we have that if j = ψL/K(k), then NL/K(Uj+1,L) ⊆ Uk+1,K .
Since the above conditions are all stated modulo Uk+1,K , we can just con-
sider the subgroup of U1,K/Uk+1,K generated by elements NL/K(αm), for
a set αm of generators of U1,L/Uj+1,L. If each combination that belongs to
Ui,K turns out to be also in 1 + piV , then the extension is verified to be
Galois with group G.

A suitable set of generator is formed by the elements of the form 1+θπm

with (m, p) = 1 and θ ∈ UK . Consider the group generated by their norms
in U1,K/Uk+1,K . Each norm NK(π)/K(1+θπm) can be expressed as function
of the coefficients of the minimal polynomial of f(T ), and in principle the
constraints on the structure of N/Uk+1,K can be translated into conditions
on the coefficients of f(T ).

Unluckily the norms NK(π)/K(1+θπm) have a quite complicated expres-
sion in terms of the coefficients. Let E(x) be the Artin-Hasse exponential
function, then the elements of the form E(θπm) give an alternative set of
generators of U1,L/Uj+1,L, and it turns out that their norms can be ex-
pressed rather easily in terms of the coefficients of f(T ).

This method can be extended to classify completely the polynomials of
degree p2 whose splitting field is p-extension. In degree p2, a subset of the
condition on the coefficients for the extension to be cyclic will be shown to
be equivalent to be satisfied if and only if L/K is decomposable in a double
cyclic extension; that is, there exists an intermediate extension F such that
L/F and F/K are cyclic of degree p.

This condition is verified if an only if the Galois closure is a p-extension,
and the group of the normal closure L̃ satisfies the exact sequence

1→ Gal(L̃/F )→ Gal(L̃/K)→ Gal(F/K)→ 1.

Gal(L̃/F ) is a cyclic and indecomposable Gal(F/K)-module of length ≤
p, and the isomorphism class of the group Gal(L̃/F ) is identified by the
length of Gal(L̃/F ) as Gal(F/K)-module, and by its exponent (see [MS05,
Wat94]).

If K is unramified over Qp, it turns out that the ramification breaks
coincide with those of a cyclic extension of degree p2 only when Gal(L̃/K)
has exponent p2, so under suitable ramification hypotheses the exponent is
easily determined. Furthermore, after requesting N ∩ U1,K ⊆ 1 + pV , the
other conditions that characterize the polynomials with group isomorphic
to Z/p2Z allow more in general to recover the biggest i (if any) such that
the condition NL/K(Ui,L) ∩ U2,K ⊆ 1 + p2V fails. This i can be related to
the length of Gal(L̃/F ), applying the functorial properties of the reciprocity
map.
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When L has a suitable intermediate extension, but the ramification
breaks do not coincide with those of a cyclic extension, then the prob-
lem turns out to be slightly easier, because Gal(L̃/K) is always a semidirect
product, and the ramification data give almost complete information about
the group. In this way we obtain a characterization of all polynomials of
degree p2 whose Galois group is a p-group.

2. Preliminaries
Let K be a p-adic field, p 6= 2. As usual we will denote with [K×]K the

group of p-th power classes K×/(K×)p. For integers a, b, we will denote by
Ja, bK the set of integers a ≤ i ≤ b such that (i, p) = 1.

We start computing modulo which power of p an Eisenstein polynomial
identifies uniquely the extension it generates (this computation is very well
known, see [Kra62] for example): let f(X) =

∑n
i=0 fn−iX

i and g(X) =∑n
i=0 gn−iX

i be Eisenstein polynomials of degree n say, ρ a root of g, π =
π1, π2, . . . the roots of f , with π the nearest one to ρ, and put L = K(π). Let
v be the biggest lower ramification break and Df = f ′(π) be the different,
if ∣∣∣(fn−i − gn−i)πi∣∣∣ < ∣∣∣πv+1Df

∣∣∣
for each 0 ≤ i ≤ n, then being

f(ρ) = f(ρ)− g(ρ) =
n∑
i=0

(fn−i − gn−i) ρi

we obtain |f(ρ)| < |πv+1Df |. We have∣∣∣∣∣(ρ− π) ·
n∏
i=2

(π − πi)
∣∣∣∣∣ ≤

∣∣∣∣∣
n∏
i=1

(ρ− πi)
∣∣∣∣∣ < ∣∣∣πv+1Df

∣∣∣ ,
because |π − πi| ≤ |ρ − πi| for i ≥ 2, being π the root of f that is nearest
to ρ. Consequently |ρ− π| < |πv+1|, which is equal to the minimum of the
|π − πi|, and hence K(π) ⊆ K(ρ) by Krasner’s lemma, and K(ρ) = K(π)
having the same degree.

Ramification breaks. Let now K be unramified over Qp, then Up
i

1,K =
Ui+1,K , and consequently by local class field theory the upper ramification
breaks of a cyclic p-extension are 1, 2, 3, . . . , and the lower ramification
breaks are 1, p+ 1, p2 + p+ 1, . . . .

For an extension of degree pk having exactly k lower ramification breaks
t0 < t1 < · · · < tk−1 we can compute vL(DL/K) as

∑k
i=1(pi − pi−1)tk−i,

which for a cyclic L/K of degree p2 or p3 is 3p2−p−2 (resp. 4p3−p2−p−2),
while vL(πv+1DL/K) is respectively 3p2 = vL(p3) and 4p3 = vL(p4). Hence
we obtain the condition on the precision of the coefficients, which we state
in a proposition for convenience:
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Proposition 2.1. Let L/K be a totally ramified cyclic extension of degree
n = p2 (resp. n = p3) determined by the Eisenstein polynomial f(X) =∑n
i=0 fn−iX

n. Then the lower ramification breaks are 1, p + 1 (resp. 1,
p+1, p2 +p+1), vL(DL/K) is equal to 3p2−p−2 (resp. is 4p3−p2−p−2),
and the extension is uniquely determined by the classes of fn (mod p4)
and fi (mod p3) for 0 ≤ i < n (resp. by the classes of fn (mod p5) and fi
(mod p4) for 0 ≤ i < n, for n = p3).

2.1. Additive polynomials. We will need a few facts about additive
polynomials, and in particular formulæ to express in terms of the coef-
ficients that an additive polynomial has range contained in the range of
another additive polynomial. We resume what we need in the following

Proposition 2.2. Let A(Y ) = apY
p + a1Y be an additive polynomial in

κK [Y ] such that A′(0) 6= 0 and all the roots of A(Y ) are in κK , and let
B(Y ) = bpY

p + b1Y , C(Y ) = cp2Y p2 + cpY
p + c1Y and D(Y ) = dp3Y p3 +

dp2Y p2 + dpY
p + d1Y be any three other additive polynomials in κK [Y ].

Then
• B(κK) ⊆ A(κK) if and only if bp = ap(b1/a1)p, and in this case B(Y ) is
equal to A(b1/a1Y ),
• C(κK) ⊆ A(κK) if and only if cp = ap(c1/a1)p +a1(cp2/ap)1/p, and in this
case C(Y ) can be written as A(βY p + c1/a1Y ) with β = (cp2/ap)1/p or
equivalently β = cp/a1 − ap/a1(c1/a1)p.
• D(κK) ⊆ A(κK) if and only if a1/ap(dp3/ap)1/p + (dp/a1)p = dp2/ap +

(ap/a1)p(d1/a1)p
2.

Note that being κK finite and hence perfect the map x 7→ xp is an
automorphism, and we just denote by x 7→ x1/p the inverse automorphism.

Proof. Since A′(0) 6= 0 and all the roots of A(Y ) are in κK we have from
the theory of additive polynomials (see [FV02, Chap. 5, §2, Corollary 2.4])
that if B(κK) ⊆ A(κK) then B(Y ) = A(G(Y )) where G(Y ) is an additive
polynomial, which will be linear considering the degrees, G(Y ) = αY say.
Consequently it has to be B(Y ) = apα

pY p + a1αY , and comparing the
coefficients we obtain that αp = (b1/a1)p and should also be equal to bp/ap.
Similarly if C(κK) ⊆ A(κK) it can be written as

C(Y ) = A(βY p + αY ) = apβ
pY p2 + (apαp + a1β)Y p + a1αY,

and we deduce α = c1/a1, βp = cp2/ap; and we obtain the condition substi-
tuting α, β in cp = apα

p + a1β. If D(κK) ⊆ A(κK) then D(Y ) has to be of
the form A(γY p2 + βY p + αY ) and hence

apγ
pY p3 + (apβp + a1γ)Y p2 + (apαp + a1β)Y p + a1αY,
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α = d1/a1, γ = (dp3/ap)1/p, and βp can be written in two different ways as
dp2/ap − a1/ap(dp3/ap)1/p = (dp/a1 − ap/a1(d1/a1)p)p.

The condition is clearly also sufficient. �

The following proposition will also be useful. It gives a criterion to verify
if the splitting field of an additive polynomial of degree p2 is a p-extension
(that is, either trivial, or cyclic of degree p), which is slightly easier to test
than the condition itself.
Proposition 2.3. Let A(Y ) = Y p2 + aY p + bY be an additive polynomial
in κK [Y ], than the splitting field is a p-extension over κK precisely when
A(Y ) has a root in κ×K , and b ∈ (κ×K)p−1.
Proof. If the Galois group is a p-group then any non-trivial orbit has car-
dinality divisible by p, and the action on the roots of A(Y ) should have
a fixed point other than 0, η ∈ κ×K say. If β = ηp−1 then the roots of
Y p − βY are a subset of the roots of A(Y ). Consequently by [FV02, Chap.
5, §2, Prop. 2.5] A(Y ) can be expressed as B(Y p − βY ) for some additive
polynomial B(Y ), which has to be monic too, B(Y ) = Y p − αY say. The
roots of B(Y ) have to be in κK or it, and hence A(Y ), would generate an
extension of order prime with p, and consequently α has to be in (κ×K)p−1,
and b = αβ ∈ (κ×K)p−1 as well.

In the other hand if a root η is in κK we can write A(Y ) = B(Y p − βY )
for β = ηp−1, and replacing Y by ηZ we can consider B(ηp(Zp − Z)), and
the generated extension is an Artin-Schreier extension over the extension
determined by B(Y ). Consequently we only need the extension determined
by B(Y ) to be trivial, and this condition is verified precisely when b ∈
(κ×K)p−1. �

2.2. Sum of roots of the unity. Let ζ` be a primitive `-th root of the
unity for some ` ≥ 1 (in any suitable field of characteristic 0), we define for
each tuple λ = (λ1, λ2, . . . , λr) of r integers the sum

Σλ(`) =
∑

ι=(ι1,...,ιr)
ζι1λ1+ι2λ2+···+ιrλr
` ,

where the sum ranges over all the r-tuples ι = (ι1, . . . , ιr) such that 0 ≤
ιi ≤ `− 1 for each i, and the ιi are all different.

We deduce some property of the sums Σλ(`) to help expanding the ex-
pressions that will appear. For each λ = (λ1, λ2, . . . ) and integer k put kλ
for the tuple (kλ1, kλ2, . . . ). For integers `, k,m let’s define the functions

δ
[m]
`,k =

{
` if ` ≥ m and ` | k,
0 in any other case,

and put δ`,k = δ
[1]
`,k for short. Then we have
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Proposition 2.4. Assume (`, p) = 1, ` > 1. For each tuple λ we have
Σpλ(`) = Σλ(`). For k ≥ 1 we have Σ(k)(`) = δ`,k, and Σ(k,1)(`) = δ

[2]
`,k+1,

and if (k, p) = 1 we also have Σ(k,p)(`) = δ
[2]
`,k+p and Σ(k,p2)(`) = δ

[2]
`,k+p2.

Furthermore we have Σ(1,1,1)(`) = δ
[3]
`,3, Σ(p,1,1)(`) = δ

[3]
`,p+2 and Σ(p,p,1)(`) =

δ
[3]
`,2p+1.
The proof can be obtained via an easy computation, but we omit it being

also an immediate consequence of the more general Lemma 6.1 proved in
the last section.

3. Polynomials of degree p2 generating a cyclic extension
3.1. Conditions on the valuations of coefficients. We deduce now the
necessary conditions on the valuations of coefficients for the Galois group
to be cyclic of order p2. Let as above f be an Eisenstein polynomial of
order p2 with coefficients in K unramified over Qp, p 6= 2, π a root in the
algebraic closure and L = K(π).

By Prop. 2.1 the different f ′(π) has L-valuation equal to 3p2 − p− 2, so
in the expression of f ′(π) the valuation comes from a term fp+1X

p2−p−1

with vp(fp+1) = 2, we must have vp(fi) ≥ 2 for all (i, p) = 1, and vp(fi) ≥ 3
if furthermore i > p+ 1.

Since the first ramification break is at 1, coefficient of Xp in the ramifi-
cation polynomial f(X+π) needs to have L-valuation equal to (p2−p) ·2 =
2p2−2p (because p2−p roots of f(X+π) have L-valuation 2). A monomial
fp2−i(X +π)i contributes at most one term

(i
p

)
fp2−iπ

i−pXp in Xp; the val-
uations of these terms have different remainders modulo the degree p2, and
consequently the smallest valuation of the

(i
p

)
fp2−iπ

i−p has to be 2p2 − 2p.
The minimum is achieved for i = p2−p and we must have vp(fp) = 1, while
vp(fpk) ≥ 2 for all 2 ≤ k ≤ p− 1.

We have deduced the following
Condition 3.1. We must have

• vp(fp) = 1, and vp(fpi) ≥ 2 for i ∈ J2, p− 1K,
• vp(fi) ≥ 2 for i ∈ J1, p − 1K, v(fp+1) = 2 and vp(fi) ≥ 3 for i ∈

Jp+ 2, p2 − 1K.
Turning to 0 all the fi divisible by p3 for i 6= p2, a change that preserves

the generated extension by Prop. 2.1, f(X) can be written as
(3.1)

f(X) = Xp2 + fpX
p2−p + fp2︸ ︷︷ ︸∈

pO[X]

+
∑

j∈J2,p−1K

fpjX
p2−pj +

∑
k∈J1,p+1K

fkX
p2−k

︸ ︷︷ ︸∈

p2O[X]

.
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3.2. Conditions on the norms of units. Let L be the extension gen-
erated by a root π of the polynomial f(X), by local class field theory it
is a totally ramified abelian extension precisely when NL/K(L×) ∩ U1,K =
NL/K(U1,L) has index p2 in U1,K and the corresponding quotient is cyclic.

Because Ui+1,K = Up
i

1,K for each i ≥ 1, to have a cyclic extension
NL/K(U1,L)U2,K must have index p in U1,K , and NL/K(U1,L) ∩ U2,K in-
dex p in U2,K .

For each i ≥ 0 we have a natural map (×p) : piK/pi+1
K → pi+1

K /pi+2
K induced

by multiplication by p, and for i ≥ 1 being (1 + θpi)p = 1 + θpi+1 +O(pi+2)
we have a natural map (↑ p) : Ui,K/Ui+1,K → Ui+1,K/Ui+2,K induced by taking
p-th powers. The diagram

(3.2)

piK/pi+1
K

×p //

µi

��

pi+1
K /pi+2

K

µi+1

��
Ui,K/Ui+1,K

↑p // Ui+1,K/Ui+2,K

,

where µi is induced by x 7→ 1 + x, is commutative.
So if the quotient is cyclic of order p2 then NL/K(U1,L) ∩ U2,K will cer-

tainly contain NL/K(U1,L)pU3,K , which has index p in U2,K , and conse-
quently has to be equal to it. For L/K to be Galois cyclic we need

(3.3) NL/K(U1,L) ⊆ 1 + pV, NL/K(U1,L) ∩ U2,K ⊆ 1 + p2V

for some V ⊂ OK that is preimage of an Fp-subspace of OK/pK of codi-
mension 1. Note that V is uniquely determined by NL/K(U1,L)U2,K as a
subgroup of U1,K .

If i ≥ 1 then NL/K(Ui+1,L) ⊆ UφL/K(i)+1,K (see [FV02, Chap. 3, §3.3 and
§3.4], like in [FV02] we put Ux,K = Udxe,K when x is not an integer), in our
case this amounts to NL/K(U2,L) ⊆ U2,K and NL/K(Up+2,L) ⊆ U3,K .

Consequently, when the correct ramification hypotheses are verified, the
extension L/K of degree p2 will be cyclic if and only if

(1) given a set of elements whose images generate U1,L/U2,L, their norms
are contained in 1 + pV for V ⊂ OK as above, and

(2) given a set of elements whose reduction modulo Up+2,L generates
U1,L/Up+2,L, each x obtained as combination of said elements and
such that NL/K(x) ∈ U2,K satisfies NL/K(x) ∈ 1 + p2V .

3.3. Expression of norms of units. We will take as (redundant) gen-
erators of U1,L/Up+1,L the elements of the form (1 − θπ`) for ` ∈ J1, p + 1K,
plus those of the forms (1− θπ)p, for θ ∈ O×K that are multiplicative repre-
sentatives. The generators of the form (1− θπ)p can be discarded from the
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check, considering that we are already requesting NL/K(1− θπ) ∈ 1 + pV ,
so their norm is certainly in 1 + p2V .

The norm of an element of the form 1− θπ` can be expressed as

NL/K(1− θπ`) =
∏

πi|f(πi)=0
(1− θπ`i ) = ResX(1− θX`, f(X)),

where πi are the roots of f(X) and we denote by ResX the resultant in X.
For a polynomial a(X) of degree d let’s denote by ã(X) the conjugate

polynomial Xda(X−1). Then for each pair of polynomials a(X), b(X) we
have ResX(a(X), b(X)) = ResX(b̃(X), ã(X)).

Consequently NL/K(1− θπ`) can also we written as

ResX(f̃(X), X` − θ) =
`−1∏
i=0

f̃(ζi`θ
1/`)

for some primitive `-th root of the unity. Expanding of the right hand side,
only integral powers of θ will appear, being invariant under the substitution
θ1/` → ζ`θ

1/`. In the same way while the terms in the expression belong
to K(ζ`), the result is always in K, and the above expansion should be
regarded as a combinatorial trick.

Let’s put T = θ1/` and consider it as an indeterminate. From the expres-
sion of f(X) in the (3.1), NL/K(1− θπ`) can be expanded as

`−1∏
i=0

(
1 + fpζ

ip
` T

p + fp2ζip
2

` T p
2

︸ ︷︷ ︸∈

pK

+
∑

j∈J2,p−1K

fpjζ
ipj
` T pj +

∑
k∈J1,p+1K

fkζ
ik
` T

k

︸ ︷︷ ︸∈

p2
K

)
.

For each tuple λ = (λ1, λ2, . . . , λr) of r integers put fλT |λ| for the term∏r
i=1 fλiT

λi , that can appear in the expansion of the above product. For
each k ≥ 0 let mk(λ) denote the number of parts λi equal to k.

In the term fλT
|λ|, the coefficient fk appears at themk(λ)-th power. Such

mk(λ) coefficients come frommk(λ) factors of product, and in the i-th factor
fkT

k has a coefficient ζik` , if present. Consequently the coefficient of fλT |λ|
in the expansion can be computed over all the ways we can partition the
1, ζ`, ζ2

` , . . . in sets Ik of cardinality mk(λ), for k ≥ 0, and computing the
sum of

∏
k≥0,x∈Ik x

k, over all possible choices. Note that while computing

Σλ(`) =
∑

ι=(ι1,...,ιr)
ζι1λ1+ι2λ2+···+ιrλr
` ,

the mk(λ) parts of λ equal to k correspond to factors of the form
∏
x∈Ik x

k,
and we have one such factor for each ordered choice of mk(λ) elements
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of 1, ζ`, ζ2
` , . . . . Consequently the coefficient of fλT |λ| in the expansion is

exactly 1∏
k≥1 mk(λ)! · Σλ(`).

In particular, discarding the terms with valuation ≥ 3 and subtracting
1, the above product can be expanded modulo p3 as

pK 3
[

Σ(p)(`) · fpT p + Σ(p2)(`) · fp2T p
2

p2
K 3


+1

2Σ(p,p)(`) · f2
pT

2p + Σ(p2,p)(`) · fpfp2T p
2+p + 1

2Σ(p2,p2)(`) · f2
p2T 2p2

+
∑

j∈J2,p−1K

(
Σ(pj)(`) · fpjT pj

)
+

∑
k∈J1,p+1K

(
Σ(k)(`) · fkT k

)
,

which applying Prop. 2.4 can be rewritten as

(3.4)

pK 3
[

δ`,1fpT
p + δ`,1fp2T p

2

p2
K 3

−
1
2δ

[2]
`,2f

2
pT

2p − δ[2]
`,p+1fpfp2T p

2+p − 1
2δ

[2]
`,2f

2
p2T 2p2

+
∑

j∈J2,p−1K

δ`,jfpjT
pj +

∑
k∈J1,p+1K

δ`,kfkT
k.

Recall that δ`,1 = 0, unless ` = 1. For ` = 1, the expansion reduced
modulo p2 tells us that the norms in U1,K are of the form 1 + fpT

p +
fp2T p

2 + O(p2) for some T . Consequently put Fp = fp/p, Fp2 = fp2/p and
consider the additive polynomial

(3.5) A(Y ) = Fp2Y p + FpY

over the residue field. It defines a linear function, if V is the range A(κK)
then NL/K(U1,L)U2,K is contained in 1 + pV , and V has codimension 1
precisely when the map defined by A has a kernel of dimension 1, that is
when −Fp/Fp2 is a (p − 1)-th power (if K = Qp we must have V = 0 and
the condition is Fp2 = −Fp).

Condition 3.2. We must have −Fp/Fp2 ∈ κp−1
K .

Now for ` ≥ 2 the first part of the expansion (3.4) is 0, and we must
check if the remaining part is in p2V , for each ` and each value of T ` = θ.

Note that we only consider the ` prime with p, we are allowed to do so
because all the δ[m]

`,i appearing satisfy (i, p) = 1. Consequently for ` ≥ 2
the expansion can be written as a polynomial C`(T `) = `

∑
(k,p)=1 ck`(T k`),

where for each ` prime with p we denote by c`(T `) the polynomial of T `

obtained evaluating equation (3.4), but changing the definition of δ[m]
a,b to

be 1 if a = b, and 0 if a 6= b (so in particular c` = 0 if ` > p+ 1).
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Fix ` ≥ 2, then c`(T `) can be obtained via Möbius inversion

∑
(k,p)=1

µ(k)Ck`(T
k`)

k`
=

∑
(k,p)=1

µ(k) ·
∑

(j,p)=1
cjk`(T jk`)


=

∑
(i,p)=1

ci`(T i`) ·∑
k|i
µ(k)


by change of variable i = jk, obtaining c`(T `) by the properties of the
Möbius function µ. In view of the isomorphism p2

K/p3
K → U2,K/U3,K induced

by x 7→ 1 + x and specializing the argument T k` of Ck`(T k`) to θk we have
that

1 + 1
k
Ck`(θk) ≡ NL/K

(
1− θkπk`

)1/k
(mod p3),

for each `, k prime with p and each θ = T `. Consequently 1 + ` · c`(θ) is
congruent modulo p3 to the norm of∏

(k,p)=1

(
1− θkπk`

)µ(k)/k
≡ E(θπ`) (mod p3

K),

where E(x) is the Artin-Hasse exponential function (in its original form,
according to [FV02, Chap. 3, §9.1]). We can equivalently require all
NL/K(E(θπ`)) to be in 1 + p2V , for ` ∈ J2, p+ 1K and θ ∈ UK .

Put A`(Y ) = c`(Y )/p2, depending on ` we obtain

−FpFp2Y p +Gp+1Y ` = p+ 1,
Gp`Y

p +G`Y ` ∈ J3, p− 1K,
−1

2F
2
p2Y p2 +

(
G2p − 1

2F
2
p

)
Y p +G2Y ` = 2,

where for convenience we have put Gi = fi/p2 for each i 6= p, p2. They are
all additive polynomials.

Hence we have obtained the

Condition 3.3. For each ` ∈ J2, p + 1K, it is necessary that A`(κK) ⊆
A(κK).

We are now left to consider the norms of elements of the form 1 + θπ
but such that NL/K(1 + θπ) ∈ U2,K . This is the case if and only if θ is such
that θp2−p ≡ −fp/fp2 (mod p). Consider again the (3.4) for ` = 1, in this
case

∑
(k,p)=1 ck(T k) differs from C1(T ) = NL/K(1 − Tπ) − 1 by the extra

term

−1
2f

2
pT

2p − fpfp2T p
2+p − 1

2f
2
p2T 2p2 = −1

2
(
fpT

p + fp2T p
2)2

,
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which is however even contained in p4 for T = θ. Since we already required
all polynomials ck(Y k) to take values in p2V when k ≥ 2, our requirement
becomes that

c1(θ) = fp2θp
2 + fpθ

p + f1θ

should be contained in p2V too, for each θ as above. Hence we have the

Condition 3.4. Let θ be such that θp2−p ≡ −fp/fp2 (mod p), it is necessary
that c1(θ)/p2 ∈ V .

Collecting all the above conditions, and applying Prop. 2.2 to obtain
conditions on the coefficients, we obtain the following theorem.

Theorem 3.1. Let K be an unramified extension of Qp, p 6= 2. The Eisen-
stein polynomial f(X) = Xp2 + f1X

p2−1 + · · ·+ fp2−1X + fp2 determines a
cyclic extension of degree p2 over K if and only if
(1) vp(fp) = 1, and vp(fpi) ≥ 2 for i ∈ J2, p− 1K,
(2) vp(fi) ≥ 2 for i ∈ J1, p − 1K, v(fp+1) = 2 and vp(fi) ≥ 3 for i ∈

Jp+ 2, p2 − 1K,
putting Fp = fp/p, Fp2 = fp2/p, and Gi = fi/p2 for all i 6= p, p2 we have

(3) −Fp/Fp2 ∈ κp−1
K ,

(4) Gpp+1 = −F p+1
p ,

(5) Gp` = Fp2 (G`/Fp)p, for all ` ∈ J3, p− 1K,
(6) G2p = Fp2 (G2/Fp)p + 1

2Fp
(
Fp − F

1/p
p2

)
,

for each θ such that θ̄p(p−1) = −Fp/Fp2, we have that

(7) Fp2Xp + FpX − 1
p2

(
fp2θp

2 + fpθp
)
−G1θ̄ has a root in κK .

4. Polynomials of degree p2 whose Galois group is a p-group
In this section we consider different families of polynomials that generate

extensions of degree p2 whose Galois closure is a p-group, and we will begin
considering polynomials that satisfy a subset of the conditions stated in
Theorem 3.1. We prove a preliminary proposition, first.

4.1. Galois actions in tower of degree p2. Let K be unramified over
Qp, p 6= 2, F/K and L/F totally ramified extensions of degree p such that
L/F has ramification break > 1, and F/K has ramification break 1 and is
cyclic, with group generated by σ say. In the notation of Theorem 3.1, if
L/K is generated by an Eisenstein polynomial having a root π, then the
only fi with vp(fi) = 1 are fp and fp2 .
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Let πF be a uniformizing element of F . For some θ ∈ K we can write

π
(σ−1)
F = 1− θpπF + . . .

= NL/F (1− θπ) +O(π2
F )

by [FV02, Chap. 3, §1, Prop. 1.5], because L/F has ramification break > 1.
Assume πF = NL/F (π), since π(σ−1)

F is killed by NF/K and NF/K(U2,F ) ⊆
U2,K we have NL/K(1 − θπ) ∈ U2,K , the first part of the expression (3.4)
should vanish, for ` = 1 and T = θ. Consequently we have θ̄p(p−1) =
−Fp/Fp2 . Its easy to verify that the same holds for any other uniformizer
πF of F , writing it as power series in πF (and indeed Fp/Fp2 is an invariant
of the extension F/K not depending on the choice of the uniformizer πF ,
as can be proved using the theory of residual polynomials [Ore28], see also
[MP99, GP12]).

We obtain inductively the following proposition.

Proposition 4.1. For each 1 ≤ ` < p we have

π
(σ−1)`
F = 1− kθp`π`F + . . . ,

for some integer k prime with p, where θ̄p(p−1) = −Fp/Fp2.

4.2. Lower ramification breaks 1, p + 1. We return to the study of
the extensions of degree p2 whose Galois closure is a p-group, considering
the first case. Let’s keep the hypotheses on the ramification breaks of The-
orem 3.1 (and consequently conditions 1 and 2 of the theorem), we will
describe the Galois group of the normal closure when not all the remaining
conditions are satisfied.

We will also assume condition 3, it is satisfied if and only if L contains
a Galois extension of degree p of K, a necessary condition for the normal
closure of L/K to be a p-group. Note that this hypothesis is always satisfied
for f(X) if K is replaced by a suitable unramified extension.

In view of the proof of Theorem 3.1, the first failing condition among the
4, 5 (for ` as big as possible), 6 and 7 in Theorem 3.1 allows to determine
the biggest possible ` such that NL/K(U`,L) ∩ U2,K is not contained in
1 + p2V , with V defined as in the proof. We expect this observation to
provide information about the Galois group of the normal closure.

Let L/K be totally ramified, and generated by an Eisenstein polynomial
of degree p2 satisfying conditions 1,2 and 3 of Theorem 3.1. Let F be the
Galois extension of degree p of K contained in L corresponding to the
ramification break 1, then L/F has ramification break p+ 1.

We need L/F to be Galois: by local class field theory this is the case
precisely when the map Up+1,L/Up+2,L → Up+1,F/Up+2,F induced by NL/F is
not surjective. Since the map Up+1,F/Up+2,F → U2,K/U3,K induced by NF/K is
an isomorphism by [FV02, Chap. 3, §1, Prop. 1.5], we are reduced to study
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the image of Up+1,L/Up+2,L in U2,K/U3,K . Considering elements of the form
E(θπp+1) for θ ∈ O×K , by the proof of Theorem 3.1 this map is described
by the additive polynomial Ap+1(Y ), and is non-surjective precisely when
Gp+1/FpFp2 is in κp−1

K . Consequently we will always assume the

Condition 4.1. We require Gp+1/FpFp2 ∈ κp−1
K .

This condition is necessary and sufficient for the Galois closure of L/K
to be a p-group, and again is always satisfied if we replace K by a suitable
unramified extension.

For an Fp[G]-module M we respectively denote by soci(M) and radi(M)
the i-th socle and radical ofM . If σ is a generator of G, the radical of Fp[G]
is generated by σ − 1, and we have

radi(M) = M (σ−1)i , soci(M) =
{
x : x(σ−1)i = 0

}
.

Let G = Gal(F/K) and L̃ be the Galois closure of L over K, we want to
compute the length of Gal(L̃/F ) as a Fp[G]-module using the first un-
satisfied condition when applying Theorem 3.1, and we will show that
such length determines completely Gal(L̃/K) in the present case. If F (p) is
the maximal abelian elementary p-extension of F , considering Gal(F (p)/F )
as an Fp[G]-module this amounts to computing the smallest m such that
radm(Gal(F (p)/F )) is contained in Gal(F (p)/L).

For 0 ≤ i ≤ p let’s consider the submodules Si = socp−i(PF ) of PF =
[F×]F (PF ∼= Gal(F (p)/F ) canonically, via local class field theory), and let
Ki be the class field corresponding to Si over F . For 0 ≤ i < p we have
[Ui+1,F ] ⊆ Si and thus the highest upper ramification break of Gal(Ki/F )
is < p, and in particular being p+ 1 the unique ramification break of L/F
we have thatKi + L for i < p. Note also thatK1 is the maximal elementary
abelian p-extension of K.

Let K ′ be the field corresponding to rad1(PF ), it is the maximal p-
elementary abelian extension of F that is abelian over K, and as such
it corresponds to NF/K(F×)p via the class field theory of K (because F
corresponds to NF/K(F×)). Considering the structure of PF ∼= Fp[G]⊕f⊕Fp
as a Galois module we have that

radi(PF ) = socp−i(PF ) ∩ rad1(PF ) = Si ∩ rad1(PF ),
for each i, and radi(PF ) corresponds to K ′Ki via class field theory of F ,
so we are looking for the smallest m such that L ⊂ K ′Km. Since L and
K ′ are never contained in Ki for i < p and K ′ has degree p over K1, this
inclusion holds if and only if L and K ′ generate the same extension over
Km (and L̃ will too, being K ′Km Galois over K). This is the case if and
only if K ′ ⊂ LKm, and this condition is consequently equivalent to the
Fp[G]-module Gal(L̃/F ) having length ≤ m.
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Proposition 4.2. For each 1 ≤ m < p, Gal(L̃/F ) has length ≤ m if an
only if K ′ ⊂ LKm.

We can now show that if K ′ ⊂ LKm for some m < p, then Gal(L̃/K)
cannot be the split extension of Gal(F/K) by Gal(L̃/F ). This is essentially
a consequence of Gal(Km/K) being the quotient of Gal(Km+1/K) by its
socle. Indeed, Gal(Km+1/K) lives in the exact sequence

1→ PF/Sm+1 → Gal(Km+1/K)→ G→ 1,

and all p-th powers in Gal(Km+1/K) are clearly G-invariant elements of
PF/Sm+1, and hence contained in Sm/Sm+1. It follows that the quotient
Gal(Km/K) has exponent p since we quotiented out all p-th powers. On
the other hand Gal(K ′/K) has exponent p2 so if K ′ ⊂ LKm then also
Gal(L̃Km/K) does, having Gal(Km/K) exponent p we would have a con-
tradiction if Gal(L̃/K) had exponent p too. If Gal(L̃/F ) has greatest pos-
sible length m = p, then there is only one possibility for the isomorphism
class, which is the wreath product of two cyclic groups of order p, see
[MS05, Wat94].

The above observation can be viewed as the fact that, for m < p, Km

is the compositum of all extensions of degree p whose normal closure has
group over F of length ≤ m as Fp[G]-module, and whose group overK is the
semidirect product extension (and hence has exponent p). The extensions of
F whose group of the normal closure over K is not the semidirect product
and the length is m are obtained taking a subextension of KmK

′ that is
not contained in Km, nor in Km−1K

′.
Now K ′ is not contained in LKm precisely when there exist an element in

Gal(Kalg/K) fixing LKm but not K ′; any such element is in Gal(Kalg/L)
and we can consider its projection to Gal(Lab/L). Since the image of the
Artin map ΨL : L× → Gal(Lab/L) is dense in Gal(Lab/L), we can take
such element of the form ΨL(α) for some α ∈ L×. Having to fix K1 we will
have NL/K(α) ∈ (K×)p by the functoriality property of the reciprocity map
(see [FV02, Chap. 4, Theorem 4.2]), [NL/F (α)]F ∈ Sm because Km is fixed,
and NL/K(α) /∈ NF/K(F×)p because the action is non-trivial on K ′. On
the other hand the existence of such an element ensures that K ′ * LKm.

If L and K are as above, we have proved the following proposition.

Proposition 4.3. Let 1 ≤ m ≤ p be the smallest possible integer such that
for all α ∈ L× satisfying NL/K(α) ∈ (K×)p and [NL/F (α)]F ∈ Sm we have
NL/K(α) ∈ NF/K(F×)p. Then Gal(L̃/K) is the unique p-group that has
exponent p2 and is an extension of G = Gal(F/K) by an indecomposable
Fp[G]-module of length m.
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We now determine the (p −m)-th socle Sm of PF for each 0 ≤ m ≤ p,
and deduce the ramification breaks of the normal closure.

Consider the images Vi = [Ui,F ]F of the Ui,F in PF for i ≥ 1, and put
V0 = PF for convenience. If G is generated by σ say, the radical of Fp[G]
is generated by (σ − 1) and we have V σ−1

i ⊆ Vi+1. Since Vp = Vp+1 and
Vp+2 = 1 we have that Vp is killed by σ − 1, Vp−1 by (σ − 1)2 and so
on, so that Vk+1 ⊆ socp−k PF = Sk for 0 ≤ k < p, while clearly Sp = 0.
Furthermore if πF is a uniformizing element of F we have π(σ−1)k

F ∈ Vk\Vk+1

and π(σ−1)k
F ∈ Sk for 0 ≤ k < p, so comparing the dimensions we have that

Sk = 〈π(σ−1)k
F 〉+ Vk+1.

If m is like in the proposition and ≥ 2, let α ∈ L× be an element
that provides a counterexample to the proposition for m − 1, and such
that t = vF (1 − NL/F (α)) is as big as possible. Then ψLKm−1/F (t) is the
ramification break of K ′LKm−1/LKm−1, which is also equal to that of
LK ′Km−1/K

′Km−1 considering that K ′Km−1/Km−1 and LKm−1/Km−1
have the same ramification break equal to ψKm−1/F (p + 1), and the total
set of breaks of K ′LKm−1/Km−1 has to be preserved. By the definition of
Sm−1 and Sm we have that t can be either m−1 or m, unless m = p where
t is either p− 1 or p+ 1.

By local class field theory K ′Km−1/F corresponds to the subgroup A =
radm−1(PF ) of PF , and LK ′Km−1/F to another subgroup B with index p
in A, and t is the biggest t such that some x ∈ Vt ∩A has non-trivial image
in A/B. Passing to the groups A′ and B′ of the elements sent by σ− 1 into
A and B respectively, A′ = socp−m+2(PF ) corresponds to Km−2, and B′ to
L′Km−2 where L′ is the subfield of L̃ corresponding to soc1(Gal(L̃/F )) as
Fp[G]-module. The upper ramification break of the new relative extension
is ψKm−2/F (s) where s is the biggest integer such that some y ∈ Vs ∩ A′ is
nontrivial in A′/B′. Being A = radm−1(PF ) each x ∈ A \ B is of the form
x = yσ−1 for some y ∈ A′\B′, so s = t−1 unless t = p+1 where it becomes
s = p− 1.

Because Gal(L′/F ) has length m − 1 and the field L′′ fixed by
soc1(Gal(L′/L)) is contained in Km−2, and Vm−2 ⊇ A′ ⊇ Vm−1, we have
that s is also the ramification break of L′/L′′ with respect to F , that is
the break is ψL′′/F (s). Repeating this observation for m− 1 steps we have
that the upper ramification breaks over F are either 1, 2, . . . ,m− 1, p+ 1,
either 0, 1, . . . ,m − 2, p + 1 depending on whether an element α ∈ Sm−1
contradicting the proposition form−1 can be found in Vm or not, where for
convenience a “ramification break” of 0 indicates an unramified extension.

We proved the
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Proposition 4.4. Let 1 ≤ m ≤ p be like in the Prop. 4.3, if we can find an
α such that NL/K(α) ∈ (K×)p \NF/K(F×)p such that [NL/F (α)]F ∈ Vm ⊂
Sm, then the normal closure L̃/F is totally ramified with breaks 1, 2, . . . ,m−
1, p+1. If not, then L̃/F has inertia degree p and upper ramification breaks
1, 2, . . . ,m− 2, p+ 1.

For an extension determined by an Eisenstein polynomial f(T ), we will
determined the biggest 1 ≤ ` ≤ p−1 such that the requirements of Prop. 4.3
fail for ` = m−1. For all ` = p−1, . . . , 2, 1 in descending order, if we cannot
find a suitable α with [NL/F (α)]F ∈ V`+1, we inductively test S` ⊃ V`+1
(deducing that Gal(L̃/F ) has length `+1 and there is an unramified part),
and whether V` ⊇ S` (in this case Gal(L̃/F ) has length ` and the extension
is totally ramified).

Testing the existence of an α such that [NL/F (α)]F ∈ V`+1 is easy, and
is the condition of the theorem connected to Ap+1(Y ) for ` = p − 1, or to
A`+1 if ` < p − 1. At the subsequent step we allow [NL/F (α)]F to be in
S` = 〈π(σ−1)`

F 〉 + V`+1: by Prop. 4.1 for θ̄p(p−1) = −Fp/Fp2 and for some k
prime with p we have

π
(σ−1)`
F = 1− kθp`π`F + . . .

= NL/F (1− kθ`π`) +O(π`+1
F ),

in view of [FV02, Chap. 3, §1, Prop. 1.5] and being ` smaller than the
ramification break p+1. In particular the image of NL/F (1−θ`π`) generates
S`/V`+1, and testing the condition for S` is equivalent to verifying whether
A`(θ̄`) ∈ V .

Note that A2(θ̄2) has the simplified form G2pθ̄
2p + G2θ̄

2, and testing if
Fp2Xp + FpX = A`(θ̄`) has solution in κK is equivalent to checking, after
replacing X by θ̄`X and dividing by θ̄`, if there are solutions to

Fp2(−Fp/Fp2) /̀pXp + FpX −Gp`(−Fp/Fp2) /̀p −G` = 0.

Note that for ` = 1 we just test if c1(θ)/p2 is in V , like in the last condition
of Theorem 3.1.

We have the
Theorem 4.1. Let K be an unramified extension of Qp, p 6= 2. Assume that
f(X) satisfies conditions 1, 2, 3 of Theorem 3.1, and keeping the notation
assume additionally that
(1) Gp+1/FpFp2 ∈ κp−1

K .
Let L be the extension determined by f(X), L̃ the normal closure over K,
and F the unique subextension of degree p contained in L. Then Gal(L̃/K)
is an extension of G = Gal(F/K) by the indecomposable Fp[G]-module
M = Gal(L̃/F ), Gal(L̃/K) has exponent p2 and is a non-split extension
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unless M has length p. Considering the first of the following conditions that
fails for a given polynomial, we obtain depending on the case:
(I) if Gpp+1 6= −F p+1

p , then M has length p and L/F is totally ramified
with upper ramification breaks 1, 2, . . . , p− 1, p+ 1;

assuming equality in the previous condition,
(II) if Gp` 6= Fp2 (G`/Fp)p for some ` ∈ J3, p − 1K (that we select as big

as possible), or if said equality always holds but G2p 6= Fp2 (G2/Fp)p +
1
2Fp

(
Fp − F

1/p
p2

)
(and in this case we put ` = 2), then let

U(X) = Fp2(−Fp/Fp2) /̀pXp + FpX −Gp`(−Fp/Fp2) /̀p −G`;

we have that
• if U(X) has no root in κK , then M has length `+ 1 and L̃/F has
inertia degree p, and upper ramification breaks 1, 2, . . . , `−1, p+1,
• if U(X) has some root in κK , then M has length ` and L̃/F is a
totally ramified with upper ramification breaks 1, 2, . . . , `−1, p+1;

assuming equality in all previous conditions, and putting θ̄p(p−1) = −Fp/Fp2,

(III) if Fp2Xp + FpX − 1
p2

(
fp2θp

2 + fpθp
)
−G1θ̄ has no root in κK , then

M has length 2 and L̃/F has inertia degree p, and upper ramification
break p+ 1.

All conditions are satisfied precisely when all requirements of Theorem 3.1
are satisfied, and in this case L/F is Galois cyclic of degree p2.

4.3. Lower ramification breaks 1, `, 1 < ` ≤ p − 1. It turns out that
we just worked out the hard case of the classification of all polynomials of
degree p2 whose Galois group is a p-group.

We keep the notation of the previous part of this section. We have clas-
sified in Theorem 4.1 all polynomials such that L/F has ramification break
at p+1 and the normal closure is a p-group, and it turned out that the con-
dition on the ramification break is sufficient to guarantee that the Galois
group of the normal closure has exponent p2. Conversely if the ramification
break is ≤ p− 1 then either L ⊂ Km for some m < p, Gal(L̃/F ) has length
≤ m, and Gal(L̃/K) is the splitting extension of G; either Gal(L̃/F ) has
length p. In the latter case there is only one possible isomorphism class
for Gal(L̃/K), which is both a split extension and has exponent p2, and is
isomorphic to the wreath product of two cyclic groups of order p.

As above, let ` be the smallest integer such that [NL/F (L×)]F con-
tains V`+1. The ramification break of L/F is equal to `, and the length of
Gal(L̃/K) as G-module can be ` when the norms also contain S`, or `+ 1
if this is not the case. Since S` = 〈π(σ−1)`

F 〉+ V`+1 to resolve this ambiguity
we should test whether [π(σ−1)`

F ]F ∈ [NL/F (L×)]F . Since π(σ−1)`
F ∈ U`,F and
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we assumed NL/F (L×) ⊃ U`+1,F , we can just test whether

NL/F (1 + θπ`) = π
(σ−1)`
F +O(p`+1)

for some unit θ ∈ UK .
Let’s focus in the extension generated by f(T ); we start deducing the

condition for L/F to be Galois, and will subsequently determine the above
length. Factoring (in L) the ramification polynomial f(X + π) over the
Newton polygon we have that f(X + π) = Xg(X)h(X), where g(X) has
degree p− 1 with roots of valuation `+ 1 and h(X) degree p2− p and roots
with valuation 2. We can take g(X) to be monic and with roots τ i(π)− π,
where τ is an automorphism of order p of the normal closure of L over F and
1 ≤ i < p, note that L/F is Galois if and only if g(X) = Xp−1+· · ·+g1X+g0
splits into linear factors in L.

If we can write τ(π)−π = ηπ`+1 + . . . with η ∈ UK , then F (π) = L con-
tains an element that approximates τ(π) better than any other conjugate
of τ(π), and consequently F (τ(π)) ⊆ L by Krasner lemma, and it follows
that L/F is Galois being L = F (π). On the other hand if L/K is Galois
we certainly have such an expression for some η. Since

g0 =
p−1∏
i=1

(τ iπ − π)(4.1)

≡
p−1∏
i=1

iηπ`+1 ≡ −ηp−1π(p−1)(`+1)(4.2)

we have that L/F is Galois if and only if −g0 is a (p− 1)-th power.
The term in Xp of f(X + π) is (up to higher order)(

p2 − p
p

)
fpπ

p2−2pXp = h0X
p

where h0 is the constant term of h(X), while the term in X is

Xf ′(π) = (p2 − r)frπp
2−r−1X = g0h0X

where r should be p2 − (p− 1)`+ p and vp(fr) = 2, considering that f ′(π)
is the different and has valuation (p2 − p) · 2 + (p− 1) · (`+ 1).

Since
(p2−p

p

)
≡ −1 (mod p), by the definition of r we have taking the

ratio of the coefficients of the monomials above that
g0

π(p−1)(`+1) = −rfrπ
(p−1)`−p−1

−fpπp2−2p · π−(p−1)(`+1) + . . .

= rfr/fp · π−p
2 + · · · = −rfr/fpfp2 + . . . ,

being πp2 = −f0 + . . . .
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Since r ≡ ` (mod p) we obtained that η̄p−1 is equal to `fr/fpfp2 , and it
is contained in κp−1

K if and only if g0 is a (p− 1)-th power in L. Put again
Fp = fp/p, Fp2 = Fp2/p and Gi = fi/p2 for i 6= p, p2.

Condition 4.2. L/F is Galois if and only if `Gr/FpFp2 is in κp−1
K , where r

is equal to p2 − (p− 1)`+ p.

We will now determine the exact length of the Galois module. Let’s recall
from [FV02, Chap. 3, §1, Prop. 1.5] that

NL/F (1 + θπ`) = 1 + (θp − ηp−1θ)π`F + . . . ,

while
π

(σ−1)`
F = 1− kρ`π`F + . . .

for ρ̄p−1 = −Fp/Fp2 and some integer k prime with p, by Prop. 4.1. For a
suitable σ we can assume k = −1, then we must test the existence of a θ
making the above expressions equal modulo p`+1. It follows that the length
of Gal(L̃/K) is precisely ` when Xp − `Gr/FpFp2X = ρ̄` has solution in κK ,
and ` + 1 if this is not the case. Replacing X by ρ̄`X and dividing by ρ̄`
this is equivalent to testing whether

(−Fp/Fp2)`Xp − `Gr/FpFp2X − 1 = 0
has solution in κK .

Consequently we obtain

Theorem 4.2. Let K be an unramified extension of Qp, p 6= 2. Let 2 ≤
` ≤ p−1 an let r = p2−(p−1)`+p, and assume that f(X) is an Eisenstein
polynomial such that
(1) vp(fp) = 1, and vp(fpi) ≥ 2 for i ∈ J2, p− 1K,
(2) vp(fi) ≥ 2 for i ∈ J1, r − 1K, v(fr) = 2 and vp(fi) ≥ 3 for i ∈

Jr + 1, p2 − 1K,
and putting Fp = fp/p, Fp2 = fp2/p, Gi = fi/p2 for all i 6= p, p2 we have
(3) −Fp/Fp2 = ρ̄p−1 for some ρ̄ ∈ κ×K ,
(4) `Gr/FpFp2 = η̄p−1 for some η̄ ∈ κ×K .

Let L be the extension determined by f(X), L̃ the normal closure over K,
and F the unique subextension of degree p contained in L. Then Gal(L̃/K)
is a split extension of G = Gal(F/K) by the indecomposable Fp[G]-module
M = Gal(L̃/F ). Furthermore for

U(X) = (−Fp/Fp2)`Xp − `Gr/FpFp2X − 1
we have that
• if U(X) has no root in κK , thenM has length `+1, and L̃/F has inertia
degree p and upper ramification breaks 1, 2, . . . , `,
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• if U(X) has some root in κK , then M has length `, and L̃/F is totally
ramified with upper ramification breaks 1, 2, . . . , `.

4.4. Lower ramification break 1 (with multiplicity 2). What is
left is the easy case for ` = 1, which is studied separately. In this case
L/K has 1 as unique ramification break, vp(f1) = 1 while vp(fi) ≥ 2 for
i ∈ J2, p2 − 1K, and consequently put Fi = fi/p for i = 1, p, p2. The map
U1,L/U2,L → U1,K/U2,K induced by NL/K is described by the additive poly-
nomial A(Y ) = Fp2Y p2 + FpY

p + F1Y , and L/K is Galois precisely when
NL/K(U1,L) = 1 + pW for a subspace W of codimension 2 in κK , that is
when A(Y ) splits completely in κK . On the other hand the normal closure
L̃/K is a p-extension if and only if L becomes abelian elementary over the
unique unramified extension of degree p of K, or equivalently if A(Y ) splits
completely over the unique extension of degree p of κK . Applying Prop. 2.3
to the polynomial A(Y ) we obtain the following theorem.

Theorem 4.3. Let K be an unramified extension of Qp, p 6= 2. Assume
that f(X) is an Eisenstein polynomial such that

(1) vp(fp) ≤ 1, and vp(fpi) ≥ 2 for i ∈ J2, p− 1K,
(2) vp(f1) = 1, and v(fi) ≥ 2 for i ∈ J2, p2 − 1K,

and putting Fi = fi/p for i = 1, p, p2

(3) the polynomial Fp2Y p2 + FpY
p + F1Y has a root in κ×K , and F1/Fp2 ∈

(κ×K)p−1.

Let L be the extension determined by f(X), and L̃ be the normal closure
over K. Then

• if Fp2Y p2 +FpY p+F1Y does not split completely in κK , then L/K has a
unique subextension F , Gal(L̃/F ) has length 2, L̃/F has inertia degree
p and upper ramification break 1, and Gal(L̃/K) is a split extension of
Gal(F/K) by Gal(L̃/F ),
• if Fp2Y p2 + FpY

p + F1Y has all roots in κK then L/K is a totally
ramified abelian elementary p-extension.

Theorems 4.1, 4.2 and 4.3 cover all possible ramification breaks of the ex-
tension L/F , so they completely describe the Galois groups of polynomials
of degree p2 whose splitting field is a p-extension.
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5. Polynomials of degree p3 generating a cyclic extension
We proceed with the same strategy used for the polynomials of degree

p2, starting from the conditions on the valuations of the coefficients.
Let f(X) = Xp3 + · · ·+ fp3−1X + fp3 , since the different has now valua-

tion 4p3 − p2 − p − 2 it will come from the monomial fp2+p+1X
p3−p2−p−1,

vp(fp2+p+1) = 3, vp(fi) ≥ 3 if (i, p) = 1 and vp(fi) ≥ 4 if furthermore
i > p2 + p+ 1. Let π be a root, the coefficient of the term of degree p of the
ramification polynomial f(X + π) will have valuation (p3 − p2) · 2 + (p2 −
p) · (p+ 1) = 3p3− p2− 2p and has to come from a monomial fp3−i(X +π)i

contributing the term
(i
p

)
fp3−iX

pπi−p. We deduce that i = p3 − p2 − p,
vp(fp2+p) = 2, vp(fpi) ≥ 2 for (i, p) = 1 and vp(fpi) ≥ 3 if furthermore
i ≥ p + 2. Similarly, considering the coefficient of the term of degree p2 of
the ramification polygon, which must have valuation 2p3 − 2p2, we obtain
that vp(fp2) = 1 and vp(fp2i) ≥ 2 for all indices such that (i, p) = 1.

Condition 5.1. We must have

(1) vp(fp2) = 1 and vp(fp2i) ≥ 2 for i ∈ J2, p− 1K,
(2) vp(fpi) ≥ 2 for all i ∈ J1, p− 1K, vp(fp2+p) = 2, and vp(fpi) ≥ 3 for

all i ∈ Jp+ 1, p2 − 1K,
(3) vp(fi) ≥ 3 for all i ∈ J1, p2 + p− 1K, vp(fp2+p+1) = 3 and vp(fi) ≥ 4

for all i ∈ Jp2 + p+ 2, p3 − 1K.

Working like in degree p2, we require NL/K(U1,L)pi−1 ∩Ui+1,L to be con-
tained in 1 + piV for 1 ≤ i ≤ 3 and some Fp-vector space V , and after
determining V we will have to verify the condition on the combinations of
the norms of elements of the form 1+θπ` for a unit θ, and 1 ≤ ` ≤ p2 +p+1
and (`, p) = 1.

Let’s expand again
∏`
i=0 f̃(ζi`T ) modulo p4. Taking into account the val-

uations of the fi and evaluating directly the Σλ(`) via Prop. 2.4, it can be
written (ordering terms by increasing valuation) as

pK 3
[

+δ`,1fp2T p
2 + δ`,1fp3T p

3(5.1)

p2
K 3


+1

2δ
[2]
`,2f

2
p2T 2p2 + δ

[2]
`,p+1fp2fp3T p

3+p2 + 1
2δ

[2]
`,2f

2
p3T 2p3

+
∑

j∈J2,p−1K

δ`,jfp2jT
p2j +

∑
k∈J1,p+1K

δ`,kfpkT
pk(5.2)
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p3
K 3



+1
3δ

[3]
`,3f

3
p2T 3p2 + δ

[3]
`,p+2fp3f2

p2T p
3+2p2 + δ

[3]
`,2p+1f

2
p3fp2T 2p3+p2

+1
3δ

[3]
`,3f

3
p3T 3p3 +

∑
j∈J2,p−2K

δ
[2]
`,j+1fp2fp2jT

p2+p2j + δ
[2]
`,1fp2fp3−p2T p

3

+
∑

k∈J1,p+1K

δ
[2]
`,k+pfp2fpkT

p2+pk +
∑

j∈J2,p−1K

δ
[2]
`,j+pfp3fp2jT

p3+p2j

+
∑

k∈J1,p+1K

δ
[2]
`,k+p2fp3fpkT

p3+pk +
∑

j∈Jp+2,p2−1K

δ`,jfpjT
pj

+
∑

k∈J1,p2+p+1K

δ`,kfkT
k

(5.3)

While this expansion looks scary we can start noticing that because the p-
th power map induces an automorphism of multiplicative representatives,
considering the expansion modulo p3 all conditions stated in Theorem 3.1
must be satisfied with fpi in place of fi. Consequently put Fi = fi/p for
i = p2, p3, Gi = gi/p2 for i ∈ pJ1, p + 1K or i ∈ p2J2, p − 1K, let A(Y ) =
Fp3Y p+Fp2Y and put V = A(κK). Such conditions are satisfied if and only
if V has codimension 1 in κK and the norms contained in U1,K or U2,K are
respectively in 1 + pV and 1 + p2V , so we will only have to consider the
norms in U3,K .

Like in degree p2, for ` ≥ 2 the above expression can be written as
D`(θ) = ` ·

∑
`|k dk(θk) where the d`(T `) are the polynomial obtained inter-

preting δ[m]
`,i as a Kronecker’s delta, and 1+` ·d`(θ) ≡ N(E(θπ`)) (mod p4).

For ` = 1 there are exceptions because δ[m]
`,i = 0 for ` < m.

The norms contained in U3,K are required to be in 1 + p3V , and let’s
concentrate first on the case of ` ∈ Jp + 2, p2 + p + 1K so that the norms
NL/K(1+θπ`) already live in U3,K , and the first few terms of the expansion
disappear. For such indices `, d`(θ) must be in p3V for each representative
θ, and dividing by p3 we can consider the additive polynomials A`(Y ) =
d`(Y )/p3, which, depending on `, are

−Gp(`−p2)Fp3Y p +H`Y ` ∈ Jp2 + 1, p2 + p+ 1K,
Hp`Y

p +H`Y ` ∈ J2p+ 2, p2 − 1K,
F 2
p3Fp2Y p2 + (Hp` − Fp2Gp(p+1))Y p +H`Y ` = 2p+ 1,

−Fp3Fp2(`−p)Y
p2 + (Hp` − Fp2Gp(`−p))Y p +H`Y ` ∈ Jp+ 3, 2p− 1K,

(Fp3F 2
p2 − Fp3F2p2)Y p2+ (Hp` − Fp2G2p)Y p +H`Y ` = p+ 2,

where we have put Hk = fk/p3 for k ∈ J1, p2 +p+1K and k ∈ pJp+2, p2−1K.

Condition 5.2. For each ` ∈ Jp+2, p2+p+1K we require A`(κK) ⊆ A(κK).
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For ` ≤ p+ 1 the problem is a bit more complicated because in general
the norms of 1−θπ` will not be contained in U3,K , but a proper combination
of norms of elements of this form may be, and we should require it to be in
1+p3V . However the elements of the form NL/K(1−ηπ)p for some η ∈ O×K
have norms covering all possible classes in U2,K/U3,K , and consequently
each NL/K(1− θπ`) can be reduced into U3,K multiplying it by an suitable
NL/K(1 − ηπ)p for a certain η; we must test whether all such ratios are
actually in 1 + p3V , more complicated combinations will be automatically
ensured to be in 1 + p3V .

Since the map p2
K/p4

K → U2,K/U4,K induced by x 7→ 1 + x is still an iso-
morphism we have that a suitable combination of the of 1 + θπ` (e.g. via
the Artin-Hasse exponential) has norm of the form 1 + d`(θ). Depending
on 2 ≤ ` ≤ p+ 1, the remaining term, which we call g`(Y ), is{

−fp3fp2Y p2 + fp2+pY
p
}
− fp2fpY

p + fp+1Y ` = p+ 1,{
fp2`Y

p2 + fp`Y
p
}
− fp2fp2(`−1)Y

p2 + f`Y ` ∈ [4, p− 1],{
f3p2Y p2 + f3pY

p
}

+ 1
3f

3
p3Y p3 + 1

3f
3
p2Y p2

−fp2f2p2Y p2 + f3Y ` = 3,{
−1

2f
2
p3Y p3 +

(
f2p2 − 1

2f
2
p2

)
Y p2 + f2pY

p
}

+ f2Y ` = 2,

where under braces are the terms that are not identically in p3
K . On the

other hand

N(1 + ηπ) = 1 + fp3ηp
3 + fp2ηp

2 + fpη
p mod p2V

and consequently

N(1 + ηπ)p = 1 +
{
pfp3ηp

3 + pfp2ηp
2}+ pfpη

p mod p3V,

where the terms under braces are again those not identically in p3
K . Con-

sequently let’s consider the polynomial

h(Z) = {pfp3Zp
2 + pfp2Zp}+ pfpZ,

for fixed Y we will look for Z = φ`(Y ) such that g`(Y ) − h(φ`(Y )) ∈ p3
K ,

in order to require it to be in p3V as well. Since we obtain an additive
polynomial when g` and h are divided by p2 and reduced to κK , for each
` we can take a φ` that is the preimage of a suitable additive polynomial
with coefficients in κK .

The additive polynomials g`(Y )/p2, which we denote by B`(Y p) replacing
Y p by Y , are forced to have image contained V , that is the image of h(Y )/p2 =
A(Y p), and the condition is that B`(Y ) = A(D`(Y )) for some other additive
polynomial D`(Y ) whose coefficients can be deduced easily.
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In particular, being A(Y ) = Fp3Y p + Fp2Y and B`(Y ) the polynomials

(5.4)
−Fp2Fp3Y p +Gp2+pY ` = p+ 1,

Gp2`Y
p +Gp`Y ` ∈ [3, p− 1],

−1
2F

2
p3Y p2 +

(
G2p2 − 1

2F
2
p2

)
Y p +G2pY ` = 2,

in view of Prop. 2.2 we can take as D`(Y ) the polynomials

(5.5)
Gp`/Fp2Y ` ∈ [3, p+ 1],

−1
2F

1/p
p3 Y

p2 + G2p/Fp2Y ` = 2.

Now, B`(Y p) = A((D1/p
` (Y ))p) where D1/p

` (Y ) is D`(Y ) with the map
x 7→ x1/p applied to the coefficients. Given the definitions of A(Y ) and
B`(Y ) in terms of the h(Y ) and g`(Y ), we can take as φ`(Y ) any lifting of
D

1/p
` (Y ) to OK [Y ].
For 3 ≤ ` ≤ p + 1 let’s take a ρ ∈ OK such that ρ̄p = Gp`/Fp2 = fp`/pfp2 ,

then D`(Y ) = ρ̄pY and we can take φ`(Y ) = ρY , and the condition is that
all polynomials 1

p3 (g`(Y )− h(φ`(Y ))) must take values in V . Considering
that

h(φ`(Y )) =
{
pfp3ρp

2
Y p2 + pfp2ρpY p

}
+ pfpρY,

depending on ` they are(
−fp3fp2/p3 − fp3ρp

2
/p2
)
Y p2

+
[
(fp2+p/p3 − fp2ρp/p2)− Fp2Gp

]
Y p + (Hp+1 −Gpρ̄)Y

for ` = p+ 1, [(
−fp2`/p3 − fp3ρp

2
/p2
)
− Fp2Gp2(`−1)

]
Y p2

+(fp`/p3 − fp2ρp/p2)Y p + (H` −Gpρ̄)Y,

for 4 ≤ ` = p− 1, and

1
3F

3
p3Y p3 +

[(
f3p2/p3 − fp3ρp

2
/p2
)

+ 1
3F

3
p2 − Fp2G2p2

]
Y p2

+(f3p/p3 − fp2ρp/p2)Y p + (H3 −Gpρ̄)Y

for ` = 3.
For ` = 2 let’s take ρ, τ ∈ OK such that ρ̄p = Gp2/Fp2 = fp2/pfp2 and

τ̄p
2 = −1

2Fp3 = −1
2
fp3/p3. Then D`(Y ) = τ̄pY p + ρ̄pY so that we can take
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φ2(Y ) = τY p + ρY , and we have

h(φ2(Y )) =
{
pfp3(τY p + ρY )p2 + pfp2(τY p + ρY )p

}
+ pfp(τY p + ρY )

= pfp3τp
3
Y p3 + pfp3ρp

2
Y p2 + pfp3

p−1∑
i=1

(
p2

ip

)
τ ipρ(p−i)pY ip2+(p−1)p +O(p4)

+pfp2τp
2
Y p2 + pfp2ρpY p + pfp2

p−1∑
i=1

(
p

i

)
τ iρ(p−i)Y ip+(p−1)

+pfpτY p + pfpρY.

Considering that 1
p

(p
i

)
≡ 1

p

(p2

ip

)
(mod p) and the terms in the sums can be

paired in elements that are pfp3
(p2

ip

)
Zp+pfp2

(p
i

)
Z for Z = τ iρ(p−i)Y ip+(p−1)

and hence in p3V for each Z, it follows that up to some element in p3V we
can write h(φ2(Y )) as

pfp3τp
3
Y p3 + (pfp3ρp

2 + pfp2τp
2)Y p2 + (pfp2ρp + pfpτ)Y p + pfpρY.

Consequently up to some element of V the polynomial 1
p3 (g2(Y )− h(φ2(Y )))

is the(
−1

2
f2
p3/p3 − fp3τp

3
/p2

)
Y p3 +

(
f2p2/p3 − 1

2
f2
p2/p3 − fp3ρp

2
/p2 − fp2τp

2
/p2

)
Y p2

+
(
(f2p/p3 − fp2ρp/p2)−Gpτ

)
Y p + (H2 −Gpρ̄)Y,

which is required to take values in V .
One last effort is required: for ` = 1 in the case that 1− θπ has norm in

U2,K (and hence in 1 + p2V ). That is, when θ is such that A(θ̄p2) = 0, the
norm of (1− θπ)(1− ηπ)−p must be ∈ 1 + p3V , for all η making said norm
in U3,K .

Let θ = T be as required, the terms that disappear because ` = 1 are
1
2f

2
p2T 2p2 + fp3fp2T p

3+p2 + 1
2f

2
p3T 2p3 = 1

2
(
fp2T p

2 + fp3T p
3)2

,

then

1
3f

3
p2T 3p2 + fp3f2

p2T p
3+2p2 + f2

p3fp2T 2p3+p2 + 1
3f

3
p3T 3p3 =
1
3
(
fp2T p

2 + fp3T p
3)3

,

and the sums can be decomposed as sums of (fp2T p
2 + fp3T p

3)fp2jT
p2j

and of (fp2T p
2 + fp3T p

3)fpkT pk, and in particular all such terms are in p4
K

considering the hypotheses on T .
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Consequently such terms can be assumed to be present, and removing
the extra terms we already studied (or considering the norm of E(θπ)) the
remaining terms are

w(T ) = fp3T p
3 + fp2T p

2 − fp2fp3−p2T p
2 + fpT

p + f1T.

Assume 1
p2

(
fp3θp

3 + fp3θp
2 + fpθp

)
can be written as Fp3ᾱp

2 + Fp2ᾱp for
some ᾱ, then taking any lift α of ᾱ we can consider w(θ) − h(α), which
comes from a norm of the required type, and should be in p3V .

At last, we can state the

Theorem 5.1. Let K be an unramified extension of Qp, p 6= 2. The Eisen-
stein polynomial f(X) = Xp3 + f1X

p3−1 + · · ·+ fp3−1X + fp3 determines a
cyclic extension of degree p3 over K if and only if

(1) vp(fp2) = 1 and vp(fp2i) ≥ 2 for i ∈ J2, p− 1K,
(2) vp(fpi) ≥ 2 for all i ∈ J1, p− 1K, vp(fp2+p) = 2, and vp(fpi) ≥ 3 for

all i ∈ Jp+ 1, p2 − 1K,
(3) vp(fi) ≥ 3 for all i ∈ J1, p2 + p− 1K, vp(fp2+p+1) = 3 and vp(fi) ≥ 4

for all i ∈ Jp2 + p+ 2, p3 − 1K,
putting Fp2 = fp2/p, Fp3 = fp3/p, and Gi = fi/p2 for all i in p2J2, p − 1K or
in pJ1, p+ 1K we have

(4) −Fp2/Fp3 ∈ κp−1
K ,

(5) Gpp(p+1) = −F p+1
p2 ,

(6) Gp2` = Fp3

(
G`p/Fp2

)p
for ` ∈ J3, p− 1K,

(7) G2p2 = Fp3

(
G2p/Fp2

)p
+ 1

2Fp2

(
Fp2 − F 1/p

p3

)
,

if ρ is such that ρ̄p(p−1) = −Fp2/Fp3 we have (independently of ρ)

(8) 1
p2

(
fp3ρp

2 + fp2ρp + fpρ
)

= Fp3αp + Fp2α for some α ∈ κK ,

putting Hi = fi/p3 for i in J1, p2 + p+ 1K or in pJp+ 2, p2 − 1K we have
(9) −Gp(`−p2)Fp3 = Fp3(H`/Fp2)p for ` ∈ Jp2 + 1, p2 + p+ 1K,
(10) Hp` = Fp3(H`/Fp2)p for ` ∈ J2p+ 2, p2 − 1K,
(11) Hp(2p+1) − Fp2Gp(p+1) = Fp3(H2p+1/Fp2)p + Fp2(Fp3Fp2)1/p,
(12) Hp` − Fp2Gp(`−p) = Fp3(H`/Fp2)p − Fp2(Fp2(`−p))

1/p for ` ∈ Jp + 3,
2p− 1K,

(13) Hp(p+2) − Fp2G2p = Fp3(Hp+2/Fp2)p + Fp2(F 2
p2 − F2p2)1/p,

for each ` ∈ J3, p+ 1K, let ρ` be such that ρ̄p` = Gp`/Fp2. Then
(14) putting Pp+1 = Hp+1 −Gpρ̄p+1,

Qp+1 = (fp2+p/p3 − fp2ρ
p
p+1/p2)− Fp2Gp, Rp+1 =

(
−fp3fp2/p3 − fp3ρ

p2
p+1/p2

)
,
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we have Qp+1 = Fp3(Pp+1/Fp2)p + Fp2(Rp+1/Fp3)1/p,
(15) for each 4 ≤ ` ≤ p− 1 putting P` = H` −Gpρ̄`,

Q` = (fp`/p3 − fp2ρ
p
`/p2)−Fp2Gp, R` =

(
−fp2`/p3 − fp3ρ

p2
` /p2

)
−Fp2Gp2(`−1),

we have Q` = Fp3(P`/Fp2)p + Fp2(R`/Fp3)1/p,
(16) putting P3 = H3 −Gpρ̄3,

Q3 = (f3p/p3 − fp2ρ
p
3/p2), R3 =

(
f3p2/p3 − fp3ρ

p2
3 /p2

)
+ 1

3F
3
p2 − Fp2G2p2

we have 1
3Fp2(F 2

p3)1/p + Fp3(Q3/Fp2)p = R3 + Fp3(Fp3/Fp2)p(P3/Fp2)p2,

let ρ2, τ2 ∈ OK such that ρ̄p2 = Gp2/Fp2 and τ̄p
2

2 = −1
2Fp3. Then

(17) putting

P2 = H2 −Gpρ̄, Q2 = (f2p/p3 − fp2ρp/p2)−Gpτ̄ ,

R2 =
(
f2p2/p3 − 1

2
f2
p2/p3 − fp3ρp

2
/p2 − fp2τp

2
/p2

)
, S2 =

(
−1

2
f2
p3/p3 − fp3τp

3
/p2

)
we have Fp2(S2/Fp3)1/p+Fp3(Q2/Fp2)p = R2 +Fp3(Fp3/Fp2)p(P2/Fp2)p2,

if ρ, ξ are such that ρ̄p2(p−1) = −Fp2/Fp3 and

1
p2

(
fp3ρp

3 + fp2ρp
2 + fpρp

)
= Fp3 ξ̄p

2 + Fp2 ξ̄p,

(18) we have that

1
p3

(
fp3(ρp3 − ξp2) + fp2(ρp2 − ξp) + fp(ρp − ξ)− fp2fp3−p2ρp

2 + f1ρ
)

is also of the form Fp3ω̄p + Fp2ω̄ for some ω̄ ∈ κK .

6. Sums of roots of unity
We finally prove the lemma about the Σλ(`), it is actually much more

than needed but nevertheless is has a nice statement, and could be useful
in similar circumstances:

Lemma 6.1. Let λ = (λ1, λ2, . . . , λr) be an r-tuple, then

Σλ(`) =
∑

λ=tj∈Jλ(j)

`#J ·
∏
j∈J

(−1)#λ(j)−1(#λ(j) − 1)!

where the sum is over all partitions λ =
⊔
j∈J λ

(j) (as set) such that for
each j ∈ J the sum |λ(j)| of the elements in λ(j) is multiple of ` and #λ(j)

is the cardinality of the subset λ(j).
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Proof. Let A0 the set of all possible indices in the sum (with no constraint)

A0 = {0, 1, . . . , `− 1}r =
{

(ι1, . . . , ιr) | ιi ∈ {0, 1, . . . , `− 1}, ∀i
}
,

and, for each pair of integers (i, j), let A(i,j) be the subset of of indices
(ι1, . . . , ιr) such that ιi = ιj . For each A ⊆ A0 denote by Σ(A) the sum
over all the indices in A. By inclusion-exclusion we have that

Σλ(`) = Σ(A0)− Σ(∪(i,j)A(i,j))

= Σ(A0)−
∑
(i,j)

Σ(A(i,j)) +
∑

(i,j)6=(i′,j′)
Σ(A(i,j) ∩A(i′,j′))− . . .

Now let A be the intersection of all the sets A(ik,jk) for any collection of
pairs

P = {(i1, j1), . . . , (is, js)}s∈S
(indexed by s ∈ S, say). Let’s consider the graph with R = {1, . . . , r}
as vertices and the (ik, jk) as edges; splitting R in connected components
R = tt∈TRt (indexed by t ∈ T , say) we can see that the allowed indices
ι ∈ A are those constant on each Rt; calling ιt the value taken on Rt the
sum Σ(A) becomes

Σ(A) =
∏
t∈T

`−1∑
ιt=0

ζ
ιt(
∑

r∈Rt
λr)

` ,

and this sum is `#T when all the
∑
r∈Rt λr are multiple of `, and 0 if

not. Note that Σ(A) appears with sign equal to (−1)#S in the inclusion-
exclusion, so for each partition of R in sets Rt such that the sum of λr for
r ∈ Rt is multiple of ` we have to consider the all graphs with set of vertices
R and such that each Rt is a connected component, and count the number
of graphs with an even number of edges minus those with a odd number of
edges. Now the total difference is the product of the differences over all the
connected components, so we have

Σλ(`) =
∑

λ=tj∈Jλ(j)

`#J ·
∏

K#λ(j)

where for each i we denote by Ki the difference of the numbers of connected
graphs on i vertices having an even and odd number of edges.

The difference of the number of connected graphs Ki on i vertices with
an even or odd number of vertices can be computed fixing an edge, and
considering the graphs obtained adding or removing that edge. Those such
that with or without it are connected come in pairs with an even and
odd number of edges, the other graphs are obtained connecting two other
connected graphs on j and i−j vertices. In particular choosing j−1 vertices
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to make one component with the first vertex of our distinguished edge we
obtain

Ki+2 = −
i∑

j=0

(
i

j

)
Ki−j+1Kj+1

for i ≥ 0, and K1 = 1. Calling G(X) the exponential generating function∑∞
i=0

Ki+1
i! Xi we obtain that

d

dX
G(X) = −G(X)2

with the additional condition that K1 = 1, and this equation is clearly
satisfied by 1/(1+X), which can be the only solution. Consequently Ki+1 =
(−1)i · i! and the lemma is proved. �
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