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Hecke operators in half-integral weight

par Soma PURKAIT

Résumé. Dans [6], Shimura a introduit la notion de formes mo-
dulaires de poids demi-entier et leurs algèbres de Hecke ; il a aussi
établi leur lien avec les formes modulaires de poids entier via la
correspondance de Shimura. Pour les formes modulaires de poids
entier, les bornes de Sturm permettent de déterminer des généra-
teurs de l’algèbre de Hecke comme module. L’on dispose également
de formules de récurrence bien connues pour les opérateurs Tp` en
les p premiers. Le but de cet article est d’établir des résultats ana-
logues dans le cas de poids demi-entier. Nous donnons également
une formule explicite sur la commutativité des opérateurs Tp` avec
la correspondance de Shimura.

Abstract. In [6], Shimura introduced modular forms of half-
integral weight, their Hecke algebras and their relation to integral
weight modular forms via the Shimura correspondence. For mod-
ular forms of integral weight, Sturm’s bounds give generators of
the Hecke algebra as a module. We also have well-known recursion
formulae for the operators Tp` with p prime. It is the purpose of
this paper to prove analogous results in the half-integral weight
setting. We also give an explicit formula for how operators Tp`

commute with the Shimura correspondence.

1. Introduction
In [6], Shimura introduced modular forms of half-integral weight, their

Hecke algebras and their relation to integral weight modular forms via the
Shimura correspondence. For modular forms of integral weight, Sturm’s
bounds give generators of the Hecke algebra as a module. We also have
well-known recursion formulae for the operators Tp` with p prime. It is the
purpose of this paper to prove analogous results in the half-integral weight
setting. We also give an explicit formula for how operators Tp` commute
with the Shimura correspondence.

Let k, N be positive integers with k odd and 4 | N . Let χ be a Dirichlet
character modulo N . We shall denote by Mk/2(N,χ) the space of modular
forms of weight k/2, level N and character χ, and by Sk/2(N,χ) the sub-
space of cusp forms. We shall write Tk/2 for the Hecke algebra acting on
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these spaces. For definitions we refer to Shimura’s paper [6]. It is well-known
[6, page 450] that Tn = 0 for n not square.

Theorem 1.1. Let p be a prime and ` ≥ 2 be a positive integer. If p | N
then as Hecke operators in Tk/2,

Tp2` = (Tp2)`.
If p - N then

Tp2`+2 = Tp2Tp2` − χ(p2)pk−2Tp2`−2

as Hecke operators in Tk/2.

Let N ′ = N/2. Let t be a square-free positive integer. For k ≥ 3,
Shimura [6] proved the so-called ‘Shimura correspondence’

Sht : Sk/2(N,χ)→Mk−1(N ′, χ2),

where Mk−1(N ′, χ2) denotes the usual space of modular forms of integral
weight k − 1, level N ′ and character χ2. Note that in Shimura’s proof, N ′
was taken to be N and he conjectured that N ′ = N/2, which was later
proven by Niwa [4].

It is well-known [2] and [5, page 53] that for p - tN ,
Sht(Tp2f) = Tp(Sht(f))

where Tp is the usual integral weight Hecke operator. Our next theorem
shows that the same identity holds even when p | tN , and also gives the
precise relationship of how Tp2` commutes with Sht for all primes p, and
for ` ≥ 2.

Theorem 1.2. Let p be a prime and let f ∈ Sk/2(N,χ). Let t be a square-
free positive integer. Then

Sht(Tp2f) = Tp(Sht(f)).
Let ` ≥ 2. Then

(a) If p | N then
Sht(Tp2`f) = Tp`(Sht(f)).

(b) If p - N then

Sht(Tp2`f) = (Tp` − χ(p2)pk−3Tp`−2)(Sht(f)).

We would like to point out that in the case p | N , it is easy to see that
Tp2` = (Tp2)` when viewed as the U -operator. This is well-known but is
included in the Theorem 1.1 and Lemma 4.1 for completeness.

It is well-known [6, page 478] that the space S3/2(N,χ) contains single-
variable theta-series and we denote by S0(N,χ) the subspace generated by
these single-variable theta-series. The interesting part of the space S3/2(N,χ)
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is the orthogonal complement of S0(N,χ) with respect to the Petersson in-
ner product. We will use the following notation:

S′k/2(N,χ) :=
{
S0(N,χ)⊥ k = 3
Sk/2(N,χ) for k ≥ 5.

The Hecke algebra Tk/2 preserves S′k/2(N,χ). We denote

T′k/2 =
{
T |S′

k/2(N,χ) : T ∈ Tk/2
}

;

this is the restriction of the Hecke algebra to S′k/2(N,χ).

Theorem 1.3. Let k, N be positive integers with k ≥ 3 odd, and 4 | N .
Let χ be a Dirichlet character modulo N . Let N ′ = N/2. Write

m = N ′
2 ∏
p|N ′

(
1− 1

p2

)
, R = (k − 1)m

12 − m− 1
N ′

.

Then Ti2 for i ≤ R generate T′k/2 as a Z[ζϕ(N)]-module. In particular the
set of operators Tp2 for primes p ≤ R forms a generating set as an algebra.
Moreover, if χ is a quadratic character, then the same result holds as above
with

m = N ′
∏
p|N ′

(
1 + 1

p

)
, R = (k − 1)m

12 − m− 1
N ′

.

2. Hecke operators
2.1. Integral weight Hecke operators. Let k, N be positive integers
and χ be a Dirichlet character modulo N . Let Mk(N,χ) be the space of
modular forms of weight k, level N and character χ and Sk(N,χ) be the
subspace of cusp forms. Recall that given a positive integer n one can
define Hecke operators Tn and T(n,n) (when (n,N) = 1) acting on the space
Mk(N,χ) that also preserve Sk(N,χ).

The following proposition lists the important properties of these Hecke
operators.

Proposition 2.1. (a) If (m,n) = 1, then Tmn = TmTn.
(b) If p is a prime dividing N , then Tpe = T ep for any positive integer

e.
(c) If p is a prime such that (p,N) = 1, then for any positive integer

e, Tpe+1 = TpTpe − pT(p,p)Tpe−1 where for f ∈ Mk(N,χ) the action
of T(p,p) can be explicitly expressed as T(p,p)(f) = pk−2χ(p)f .

Proof. See [3, Lemma 4.5.7] and [3, Pages 142-143]. �
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Note that when p | N then the operator Tp can be viewed as the U(p)-
operator.

The Hecke algebra on Mk(N,χ), which we denote by Tk is an algebra
over Z generated by Tp, T(p,p) and Tr where p, r varies over primes with
p - N and r | N . We can write the action of Hecke operators in terms of
q-expansions.

Proposition 2.2. Let f be a modular form in Mk(N,χ) with q-expansion
f(z) =

∑∞
n=0 anq

n. Then Tp(f)(z) =
∑∞
n=0 bnq

n where,

bn = apn + χ(p)pk−1an/p.

Here we take an/p = 0 if p - n.

Proof. See [3, Lemma 4.5.14]. �

2.2. Half-integral weight forms and Hecke operators. Let G be the
group consisting of all ordered pairs (α, φ(z)), where α =

[
a b
c d

]
∈ GL+

2 (Q)
and φ(z) is a holomorphic function on H satisfying

φ(z)2 = t
cz + d√
detα

for some t ∈ {±1}, with the group law defined by

(α, φ(z)) · (β, ψ(z)) = (αβ, φ(βz)ψ(z)).

Let P : G→ GL+
2 (Q) be the homomorphism given by the projection map

onto the first coordinate. Let k be positive odd integer. The group G acts on
the space of complex-valued functions on H by f |[ξ]k/2(z) := f(αz)φ(z)−k,
where ξ = (α, φ(z)) ∈ G and f : H→ C.

Let N be a positive integer with 4 | N . Then for γ =
[
a b
c d

]
∈ Γ0(N)

define

j(γ, z) :=
(
c

d

)
ε−1
d

√
cz + d, ∆0(N) := {γ̃ := (γ, j(γ, z))|γ ∈ Γ0(N)},

where εd = 1 or
√
−1 according as d ≡ 1 or 3 (mod 4).

Note that ∆0(N) is a subgroup of G. The map L : Γ0(4) → G given by
γ 7→ γ̃ defines an isomorphism onto ∆0(4). Thus P |∆0(4) : ∆0(4) → Γ0(4)
and L : Γ0(4) → ∆0(4) are inverse of each other. Denote by ∆1(N) and
∆(N) respectively the images of Γ1(N) and Γ(N).

Let χ be a Dirichlet character modulo N andMk/2(N,χ) and Sk/2(N,χ)
be the spaces of modular forms and cusp forms of weight k/2, level N and
character χ. The space Mk/2(N,χ) is {0} unless χ is even, so henceforth
we will be assuming χ to be even. As in the integral weight case one can
define the Hecke operators on the spaces Mk/2(N,χ) and Sk/2(N,χ).
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Let ξ be an element of G such that ∆1(N) and ξ−1∆1(N)ξ are commen-
surable. Define an operator |[∆1(N)ξ∆1(N)]k/2 on Mk/2(Γ1(N)) by

f |[∆1(N)ξ∆1(N)]k/2 = det(ξ)k/4−1∑
ν

f |[ξν ]k/2

where ∆1(N)ξ∆1(N) =
⋃
ν ∆1(N)ξν .

Now suppose m is a positive integer and α = [ 1 0
0 m ], ξ = (α,m1/4). Then

the Hecke operator Tm is defined as the restriction of |[∆1(N)ξ∆1(N)]k/2
to Mk/2(N,χ). It is to be noted that by [6, Proposition 1.0], if m is not a
square and (m,N) = 1 then |[∆1(N)ξ∆1(N)]k/2 is the zero operator. So
we assume that m = n2 for a positive integer n. Shimura writes the Hecke
operator Tn2 as

Tn2(f) := n
k
2−2∑

ν

χ(aν)f |[ξν ]k/2,

where ξν are the right coset representatives of ∆0(N) in ∆0(N)ξ∆0(N)
such that P (ξν) = [ aν ∗∗ ∗ ]. We have the following theorem.

Theorem 2.1. (Shimura) Let f(z) =
∑∞
n=0 anq

n ∈ Mk/2(N,χ). Then
Tp2(f)(z) =

∑∞
n=0 bnq

n where,

bn = ap2n + χ(p)
(−1
p

)λ (n
p

)
pλ−1an + χ(p2)pk−2an/p2 ,

and λ = (k − 1)/2 and an/p2 = 0 whenever p2 - n.

Proof. See [6, Theorem 1.7]. �

3. Shimura Correspondence
For this section fix positive integers k, N with k ≥ 3 odd and 4 | N . Let

χ be an even Dirichlet character of modulus N . Let N ′ = N/2. We recall
Shimura’s Theorem.

Theorem 3.1. (Shimura) Let λ = (k − 1)/2. Let f(z) =
∑∞
n=1 anq

n ∈
Sk/2(N,χ). Let t be a square-free integer and let ψt be the Dirichlet char-
acter modulo tN defined by

ψt(m) = χ(m)
(−1
m

)λ ( t

m

)
.

Let At(n) be the complex numbers defined by

(3.1)
∞∑
n=1

At(n)n−s =
( ∞∑
i=1

ψt(i)iλ−1−s
) ∞∑

j=1
atj2j−s

 .
Let Sht(f)(z) =

∑∞
n=1At(n)qn. Then

(i) Sht(f) ∈Mk−1(N ′, χ2).
(ii) If k ≥ 5 then Sht(f) is a cusp form.
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(iii) If k = 3 and f ∈ S′3/2(N,χ) then Sht(f) is a cusp form.

Proof. For (i) and (ii) see [6, Section 3, Main Theorem], for the rest see [5,
Theorem 3.14]. In particular, the fact that N ′ = N/2 was proved by Niwa
[4, Section 3]. �

The form Sht(f) is called the Shimura lift of f corresponding to t. The
following is clear from Equation(3.1).
Lemma 3.1. The Shimura lift Sht is linear.
Lemma 3.2. If Sht(f) = 0 for all positive square-free integers t then f = 0.
Proof. By Equation (3.1) we know that atj2 = 0 for all positive square-free
integers t and all positive integers j. Then an = 0 for all n. �

In Ono’s book [5, Chapter 3, Corollary 3.16] and several other places [2]
we find the following result stated without proof.
Proposition 3.1. Suppose f ∈ Sk/2(N,χ). Let t be a square-free positive
integer. If p - tN is a prime then

Sht(Tp2f) = Tp Sht(f).
Here Tp2 is the Hecke operator in Tk/2 and Tp is the Hecke operator in

Tk−1. For what follows we shall need the following strengthening of this
result.
Proposition 3.2. Suppose f ∈ Sk/2(N,χ) and t a square-free positive
integer. If p is a prime then

Sht(Tp2f) = Tp Sht(f).

We do not know why the above references impose the condition p - tN .
We shall give a careful proof that does not use this assumption.

Proof of Proposition 3.2. The proof uses the explicit formulae for Hecke
operators in terms of q-expansions. As in Shimura’s Theorem above, write
f(z) =

∑∞
n=1 anq

n. Fix t to be a positive square-free integer. To simplify
notation, we shall write An for At(n). Thus we have the relation

∞∑
n=1

Ann
−s =

( ∞∑
i=1

ψt(i)iλ−1−s
) ∞∑

j=1
atj2j−s

 .
We may rewrite this as
(3.2) An =

∑
ij=n

ψt(i)iλ−1atj2 .

Let
Tp2(f)(z) =

∞∑
n=1

bnq
n.
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Then using Theorem 2.1 we get,

(3.3) bn = ap2n + ψ1(p)
(
n

p

)
pλ−1an + χ2(p)pk−2an/p2 .

The reader will recall that if n/p2 is not an integer then we take an/p2 = 0.
Let g = Sht(f)(z) =

∑∞
n=1Anq

n. Write

Tp(g)(z) =
∞∑
n=1

Bnq
n.

Let

Sht(Tp2f)(z) =
∞∑
n=1

Cnq
n.

To prove the proposition, it is enough to show that Bn = Cn for all n. We
shall do this by direct calculation, expressing both Bn and Cn in terms of
the ai.

Since g(z) =
∑
Anq

n ∈ Mk−1(N ′, χ2) and Tp(g)(z) =
∑
Bnq

n we know
by Proposition 2.2 that

Bn = Apn + χ2(p)pk−2An/p.

Substituting from (3.2) we have

(3.4) Bn =
∑
ij=pn

ψt(i)iλ−1atj2 +
∑

ij=n/p
χ2(p)ψt(i)pk−2iλ−1atj2 ;

here the second sum is understood to vanish if p - n.
Recall Tp2f(z) =

∑
bnq

n and Sht(Tp2f)(z) =
∑
Cnq

n. Hence by (3.2) we
have

Cn =
∑
ij=n

ψt(i)iλ−1btj2 .

Using (3.3) we obtain

Cn =
∑
ij=n

ψt(i)iλ−1
(
ap2tj2 + ψ1(p)

(
tj2

p

)
pλ−1atj2 + χ2(p)pk−2atj2/p2

)
.

Note that ψ1(p)
(
tj2

p

)
= ψt(p)

(
j2

p

)
. So we can rewrite Cn as

(3.5)

Cn =
∑
ij=n

ψt(i)iλ−1
(
ap2tj2 + ψt(p)

(
j2

p

)
pλ−1atj2 + χ2(p)pk−2atj2/p2

)
.

Note that the Legendre symbol here is 1 unless of course p | j in which case
it is 0. Moreover atj2/p2 = 0 whenever p - j; this is because t is square-free.

We consider the following two cases.
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Case p - n. In this case the formulae for Bn and Cn simplify as follows.

Bn =
∑
ij=pn

ψt(i)iλ−1atj2

=
∑
ij=n

ψt(pi)(pi)λ−1atj2 + ψt(i)iλ−1atp2j2

=
∑
ij=n

ψt(i)iλ−1(atp2j2 + ψt(p)pλ−1atj2)

= Cn.

Case p | n. Write n = prm where r ≥ 1 and p - m. We rewrite (3.4) as
follows.

Bn =
∑

j|pr+1m

ψt(pr+1m/j)(pr+1m/j)λ−1atj2

+
∑

j|pr−1m

χ2(p)ψt(pr−1m/j)pk−2(pr−1m/j)λ−1atj2 .

This may be re-expressed as Bn = B
(1)
n +B

(2)
n where

B(1)
n =

r+1∑
u=0

∑
k|m

ψt(pr+1−um/k)(pr+1−um/k)λ−1atp2uk2

and

B(2)
n =

r−1∑
u=0

∑
k|m

χ2(p)ψt(pr−1−um/k)pk−2(pr−1−um/k)λ−1atp2uk2 .

Moreover, we can rewrite (3.5) as follows.

Cn =
∑
j|prm

ψt(prm/j)(prm/j)λ−1

(
ap2tj2 + ψt(p)

(
j2

p

)
pλ−1atj2 + χ2(p)pk−2atj2/p2

)
.

Thus we can write Cn = C
(1)
n + C

(2)
n + C

(3)
n where

C(1)
n =

r∑
u=0

∑
k|m

ψt(pr−um/k)(pr−um/k)λ−1atp2u+2k2 ,

and
C(2)
n =

∑
k|m

ψt(pr+1m/k)(pr+1m/k)λ−1atk2 ,
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and

C(3)
n =

r∑
u=1

∑
k|m

χ2(p)ψt(pr−um/k)(pr−um/k)λ−1pk−2atp2u−2k2 .

It is clear that B(2)
n = C

(3)
n , and also that B(1)

n = C
(1)
n + C

(2)
n ; here C(2)

n

corresponds to the u = 0 terms in B
(1)
n . Thus Bn = Cn completing the

proof. �

4. Recursion Formula for the Hecke Operators Tp2`

We keep the notation as in the previous section. Let ` be a positive
integer and p be a prime. In this section we are interested in the action of
the Hecke operator Tp2` on the spaceMk/2(N,χ). In the case p | N we have
the following easy lemma.

Lemma 4.1. Let ` be a positive integer and p be a prime dividing N . Let
t be a square-free positive integer. Then

(i) Tp2` = (Tp2)`.
(ii) Sht(Tp2`f) = Tp`(Sht(f)) for f ∈ Sk/2(N,χ).

In the above statements Tp2` ∈ Tk/2 and Tp` ∈ Tk−1.

Proof. Let f =
∑∞
n=0 anq

n ∈ Mk/2(N,χ). It follows using [6, Proposition
1.5] that Tp2`(f) =

∑∞
n=1 anp2`qn. Now part (i) follows using Theorem 2.1.

Part (ii) follows by using Proposition 3.2 and part (b) of Proposition 2.1
since p | N ′. �

We will assume that p - N for the rest of this section. The main aim of
this section is to prove the following result.

Theorem 4.1. Let p - N be a prime and ` ≥ 2 be a positive integer. Then

Tp2`+2 = Tp2Tp2` − χ(p2)pk−2Tp2`−2

as Hecke operators in Tk/2.

It is to be noted that for ` = 1 the above relation does not hold. One
can check directly that in Tk/2,

Tp4 = (Tp2)2 − χ(p2)(pk−3 + pk−2).
We need the following lemma on Gauss sums which can be easily deduced

from [3, Lemma 3.1.3]:

Lemma 4.2. Let p be an odd prime and n, α be a given positive integer.
Then

(i)
∑pα−1
m=0

(
m
p

)
e

2πimn
pα =

0 if pα−1 - n
pα−1

(
n′

p

)
εp
√
p if n = pα−1n′.



242 Soma Purkait

(ii)
∑pα−1
m=0 e

2πimn
pα =

{
0 pα - n
pα pα | n.

Proof of Theorem 4.1. Let f ∈ Mk/2(N,χ). Let α = [ 1 0
0 p2` ], ξ = (α, p`/2).

Using [3, Lemma 4.5.6] we know that

Γ0(N)αΓ0(N) =
⋃
ν,m

Γ0(N)αν,m, αν,m =
[
p2`−ν m

0 pν

]

where 0 ≤ ν ≤ 2`, 0 ≤ m < pν and gcd(m, pν , p2`−ν) = 1. Let G be the
group defined as above. Let ξν,m ∈ G be given by

ξν,m =


(
αν,m, p

−2`+2ν
4 ε−1

p

(
−m
p

))
if ν is odd

(αν,m, p
−2`+2ν

4 ) if ν is even.

One can verify that ξν,m with ν and m varying as above form a set of right
coset representatives of ∆0(N) in ∆0(N)ξ∆0(N) (see [6, Proposition 1.1]).
Then we know by definition of Tp2` (see Subsection 2.2) that

(4.1) Tp2`f = (p2`)
k
4−1

(
A0 +A2` +

2`−1∑
ν=1

Aν

)
,

where

Aν =
pν−1∑
m=0

(m,p)=1

χ(p2`−ν)f |[ξν,m]k/2,

A2` =
p2`−1∑
m=0

f |[ξ2`,m]k/2,

A0 = χ(p2`)f |[ξ0,0]k/2.

Applying Tp2 to Equation (4.1) we obtain

Tp2Tp2`f = (p2`)
k
4−1

(2`−1∑
ν=1

Tp2Aν + Tp2A2` + Tp2A0

)

= (p2`+2)
k
4−1

(2`−1∑
ν=1

Bν +B2` +B0

)
,

(4.2)
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where for ν with 0 ≤ ν ≤ 2`− 2 we have

Bν = χ(p2`−ν+2)
pν−1∑
m=0

(m,p)=1

f |[([ p2`−ν+2 m
0 pν

], p
−2`+2ν−2

4 rν,m)]k/2

+ χ(p2`−ν+1)
p−1∑
m′=1

pν−1∑
m=0

(m,p)=1

f |[([ p
2`−ν+1 p2`−νm′+mp

0 pν+1 ], p
−2`+2ν

4 sν,m,m′)]k/2

+ χ(p2`−ν)
p2−1∑
m′=0

pν−1∑
m=0

(m,p)=1

f |[([ p
2`−ν p2`−νm′+mp2

0 pν+2 ], p
−2`+2ν+2

4 rν,m)]k/2,

where

rν,m =

ε−1
p

(
−m
p

)
ν odd

1 ν even
, sν,m,m′ =

ε
−2
p

(
mm′

p

)
ν odd

ε−1
p

(
−m′
p

)
ν even,

and B2` has the same expression as above with ν = 2` but without any
coprimality condition on m, that is, we do not have (m, p) = 1 in the above
terms while writing the expression for B2`.

We express Tp2`+2f as in Equation (4.1) and compare it with Equa-
tion (4.2). Ruling out some of the terms using Euclidean algorithm and
rewriting the action of matrices (we will give an example of the calculation
later) we obtain

(4.3) (Tp2`+2 − Tp2Tp2`)(f) = −(p2`+2)
k
4−1

(
S0 + S2` +

2`−1∑
ν=1

(Dν + Eν)
)

where

S0 =
p2−1∑
m′=0

χ(p2`)f |[([ p
2` p2`m′

0 p2 ], p
−`+1

2 )]k/2

S2` =
p2`−1∑
m=0

(m,p)6=1

χ(p2)f |[([ p
2 m

0 p2` ], p
`−1

2 )]k/2

Dν = χ(p2`−ν)
p2−1∑
m′=0

pν−1∑
m=0

(m,p)=1

f |[([ p
2`−ν p2`−νm′+mp2

0 pν+2 ], p
−2`+2ν+2

4 rν,m)]k/2

Eν = χ(p2`−ν+1)
p−1∑
m′=1

pν−1∑
m=0

(m,p)=1

f |[([ p
2`−ν+1 p2`−νm′+mp

0 pν+1 ], p
−2`+2ν

4 sν,m,m′)]k/2.
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Further

(4.4) χ(p2)pk−2Tp2`−2f = p2(p2`+2)
k
4−1

(2`−3∑
ν=1

Cν + C2`−2 + C0

)
,

where for ν with 0 ≤ ν ≤ 2`− 3 we have

Cν =
pν−1∑
m=0

(m,p)=1

χ(p2`−ν)f |[([ p2`−ν−2 m
0 pν

], p
−2`+2ν+2

4 rν,m)]k/2

and C2`−2 has the same expression as above with ν = 2` − 2 but without
the condition (m, p) = 1 in the above sum. We first claim that the following
relations hold:

(i) Dν = p2Cν for 1 ≤ ν ≤ 2`− 3, and S0 = p2C0.
(ii) Eν = 0 for 1 ≤ ν ≤ 2`− 2.

We will only show the computation for part (ii) for case ν odd. The rest of
the claim follows by similar method. Fix an odd ν with 1 ≤ ν ≤ 2`− 3. Fix
1 ≤ m′ ≤ p − 1. Then for each m with 0 ≤ m ≤ pν − 1 there exist unique
a and b with 0 ≤ b ≤ pν − 1 such that m+ p2`−ν−1m′ = apν + b. Moreover
m ≡ b (mod p). Hence

(m, p) = 1 ⇐⇒ (b, p) = 1,
(−m

p

)
=
(−b
p

)
.

We can rewrite Eν as

Eν = χ(p2`−ν+1)
p−1∑
m′=1

pν−1∑
m=0

(m,p)=1

f

(
p2`−ν+1z + p2`−νm′ +mp

pν+1

)

(
p
−2`+2ν

4 ε−2
p

(
mm′

p

))−k

= χ(p2`−ν+1)εkp
p−1∑
m′=1

(−m′
p

)
pν−1∑
m=0

(m,p)=1

f

∣∣∣∣∣
[(

[ p2`−ν p2`−ν−1m′+m
0 pν

], p
−2`+2ν

4 ε−1
p

(−m
p

))]
k/2

= χ(p2`−ν+1)εkp
p−1∑
m′=1

(−m′
p

)
pν−1∑
b=0

(b,p)=1

f

∣∣∣∣∣
[(

[ p2`−ν b
0 pν

], p
−2`+2ν

4 ε−1
p

(−b
p

))]
k/2

= 0.
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The second last equality follows since as elements of G we have(
[ p2`−ν p2`−ν−1m′+m

0 pν
], p

−2`+2ν
4 ε−1

p

(−m
p

))
=([ 1 a

0 1 ], 1) ·
(
[ p2`−ν b

0 pν
], p

−2`+2ν
4 ε−1

p

(−b
p

))
.

By working out similarly as above one can further see that

p2C2`−2 −D2`−2 = χ(p2)
p2−1∑
m′=0

p2`−2−1∑
m=0

(m,p)6=1

f |[([ p
2 p2m′+mp2

0 p2` ], p
`−1

2 )]k/2 =: F2`−2.

Thus to prove the theorem we are left to show that
F2`−2 − S2` − E2`−1 −D2`−1 = 0.

We claim that D2`−1 = 0 and F2`−2 − S2` − E2`−1 = 0 which proves the
theorem.

We first show that D2`−1 = 0. Let f(z) =
∑∞
n=0 ane(nz) where e(nz) =

e2πinz. Rewriting D2`−1 in terms of coefficients an we obtain

D2`−1

= χ(p)p
−`k

2 εkp

(−1
p

) p2−1∑
m′=0

p2`−1−1∑
m=0

(m,p)=1

∞∑
n=0

ane

(
npz + npm′ + nmp2

p2`+1

)(
m

p

)

= χ(p)p
−`k

2 εkp

(−1
p

) ∞∑
n=0

ane

(
nz

p2`

) p2−1∑
m′=0

e

(
nm′

p2`

) p2`−1−1∑
m=0

e

(
nm

p2`−1

)(
m

p

)

= χ(p)p
−`k+4`−3

2 εk+1
p

(−1
p

) ∞∑
n=0

p2`−2|n

ane

(
nz

p2`

)(
n/p2`−2

p

)

p2−1∑
m′=0

e

(
nm′/p2`−2

p2

)
= 0,

where last two equalities follows using Lemma 4.2 on Gauss sums. In order
to prove the final claim we again use the coefficients method as above to
obtain

F2`−2 − S2` = χ(p2)p
(−`+1)k+4`−2

2

∞∑
n=0

p2`−2‖n

ane

(
nz

p2`−2

)
,

E2`−1 = χ(p2)p
(−`+1)k+4`−2

2 ε2k+2
p

∞∑
n=0

p2`−2‖n

ane

(
nz

p2`−2

)
.
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Now ε2k+2
p = 1 since 2k + 2 ≡ 0 (mod 4). Hence we are done. �

Corollary 4.1. Let p - N be a prime and ` ≥ 2. Let f ∈ Sk/2(N,χ). Then

Sht(Tp2`f) = (Tp` − χ(p2)pk−3Tp`−2)(Sht f),

where as before Tp2` ∈ Tk/2 and Tp`, Tp`−2 ∈ Tk−1.

Proof. We use induction on `. Recall from part (c) of Proposition 2.1 that
for prime p - N , we have

(4.5) Tpe+1(Sht f) = (TpTpe − χ(p2)pk−2Tpe−1)(Sht f).

As we remarked earlier, for l = 2 we have the following relation in Tk/2:

Tp4 = (Tp2)2 − χ(p2)(pk−3 + pk−2).

Hence we get

Sht(Tp4f) = Sht((Tp2)2f)− χ(p2)(pk−3 + pk−2)(Sht f)
= ((Tp)2 − χ(p2)pk−2)(Sht f)− χ(p2)pk−3(Sht f)
= (Tp2 − χ(p2)pk−3)(Sht f).

Assume the statement holds for all ` ≤ e. Then

Sht(Tp2e+2f) = Sht(Tp2Tp2ef)− χ(p2)pk−2 Sht(Tp2e−2f)
= Tp(Sht(Tp2ef))− χ(p2)pk−2 Sht(Tp2e−2f)
= (TpTpe − χ(p2)(pk−3TpTpe−2 + pk−2Tpe−1) + χ(p4)p2k−5Tpe−3)(Sht f)
= (Tpe+1 − χ(p2)pk−3(Tpe−1 + χ(p2)pk−2Tpe−3) + χ(p4)p2k−5Tpe−3)(Sht f)
= (Tpe+1 − χ(p2)pk−3Tpe−1)(Sht f).

The first equality uses Theorem 4.1, third equality follows by using in-
ductive hypothesis for ` = e and ` = e − 1, the others follow by using
Equation (4.5). �

We also prove the following proposition, independently of the proof of
Theorem 4.1.

Proposition 4.1. Let p - N be a prime and ` be a positive integer. For
positive integers r such that 1 ≤ r ≤ b `2c we give the following recursive
construction of sequences Ar,`(m) and Br,`(m):

A1,`(m) = 1, Ar,`(m) = Ar−1,`(m)−
(
`− 2(r − 1)
m− (r − 1)

)
Ar−1,`(r − 1);

B1,`(m) =
(
`

m

)
− 1, Br,`(m) = Br−1,`(m)−

(
`− 2(r − 1)
m− (r − 1)

)
Br−1,`(r − 1).
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Let αr,` = Ar,`(r) and βr,` = Br,`(r). Then

Tp2` = (Tp2)` −
b `2 c∑
r=1

χ(p2r)(αr,`pr(k−2)−1 + βr,`p
r(k−2))(Tp2)`−2r

as Hecke operators in Tk/2.

Proof. Let f =
∑∞
n=0 a(n)qn ∈Mk/2(N,χ). Our strategy will be to compare

the n-th coefficient of action of the above operators on f on both sides.
Substituting the q-expansion of f in Equation (4.1) and using Lemma 4.2
on Gauss sums we obtain

Tp2`f = I0 + I2` +
2`−1∑
ν=1
νodd

Ioddν +
2`−1∑
ν=1
νeven

Ievenν

where

I0 = χ(p2`)p(k−2)`
∞∑
n=0

a(n/p2`)qn, I2` =
∞∑
n=0

a(np2`)qn,

Ioddν = χ(p2` − ν)p( k2−1)(2`−ν)− 1
2 εk+1
p

(−1
p

)
∞∑
n=0

p2`−ν−1|n

a(n/p2`−2ν)
(
n/p2`−ν−1

p

)
qn,

Ievenν = χ(p2` − ν)p( k2−1)(2`−ν)−1

( ∞∑
n=0

p2`−ν |n

a(n/p2`−2ν)(p− 1)qn −
∞∑
n=0

p2`−ν−1‖n

a(n/p2`−2ν)qn
)
.

Let n be a positive integer with p2(`−1) | n. We can write the n-th coefficient
of T `p2f as

a(np2`) +
`−1∑
m=1

(
`

m

)
χ(p2m)p(k−2)ma(np2`−4m)

+ χ(p2`−1)
(−1
p

) k−1
2
(
n/p2`−2

p

)
p
k−3

2 +(k−2)(`−1)a(n/p2`−2)

+ χ(p2`)p(k−2)`a(n/p2`).
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Thus the n-th coefficient of T `p2f − Tp2`f is
`−1∑
m=1

((
`

m

)
− 1

)
χ(p2m)p(k−2)ma(np2`−4m)

+
`−1∑
m=1

χ(p2m)p(k−2)m−1a(np2`−4m).

We want to subtract a suitable multiple of T `−2
p2 f from the above so as

to remove the terms involving a(np2`−4) and a(np4−2`), thereby reducing
the number of terms in the above sum. Indeed we obtain that the n-th
coefficient of
(T `p2 − Tp2` − χ(p2)(pk−3 + (`− 1)pk−2)T `−2

p2 )f is

`−2∑
m=2

(
1−

(
`− 2
m− 1

))
χ(p2m)p(k−2)m−1a(np2`−4m)+

`−2∑
m=2

((
`

m

)
− 1− (`− 1)

(
`− 2
m− 1

))
χ(p2m)p(k−2)ma(np2`−4m).

We iterate this process of subtracting suitable multiples of T `−2r
p2 f which

leads us to the recursive formulae for αr,` and βr,`. �

We obtain the following combinatorial result as a corollary of Theo-
rem 4.1 and Proposition 4.1

Corollary 4.2. Keeping the notation as in the previous proposition we get
the following combinatorial identities for 2 ≤ r ≤ b `2c − 1:

αr−1,`−2 + αr,` − αr,`−1 = 0, βr−1,`−2 + βr,` − βr,`−1 = 0.

Proof. Let p - N be any prime. We substitute the formula for Tp2` given by
Proposition 4.1 in the identity of Theorem 4.1,

Tp2`+2 − Tp2Tp2` + χ(p2)pk−2Tp2`−2 = 0

to obtain

−
b `2 c∑
r=2

χ(p2r)(αr,`pr(k−2)−1 + βr,`p
r(k−2))(Tp2)`−2r

+
b `−1

2 c∑
r=2

χ(p2r)(αr,`−1p
r(k−2)−1 + βr,`−1p

r(k−2))(Tp2)`−2r

−
b `−2

2 c+1∑
r=2

χ(p2r)(αr−1,`−2p
r(k−2)−1 + βr−1,`−2p

r(k−2))(Tp2)`−2r = 0.
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It is clear, with fixed ` and varying r, that the operators (Tp2)`−2r are
linearly independent elements of Tk/2 and hence

−αr,` + αr,`−1 − αr−1,`−2 + (βr,` + βr,`−1 − βr−1,`−2)p = 0.

Since this holds for any prime p with p - N the above corollary follows.
�

5. Generators for the Hecke Action
Theorem 5.1. Let k, N be positive integers with k ≥ 3 odd, and 4 | N . Let
χ be a Dirichlet character modulo N . Let N ′ = N/2. Let T be the restriction
of Hecke algebra Tk−1 to Sk−1(N ′, χ2) and suppose T is generated as a Z-
module by the Hecke operators Ti for i ≤ r. Then the Hecke operators Ti2
for i ≤ r generate T′k/2 as a Z[ζϕ(N)]-module. In particular, f ∈ S′k/2(N,χ)
is an eigenform for all Hecke operators if and only if it is an eigenform for
Ti2 for i ≤ r.

Proof. Let n be a positive integer such that n = pn1
1 pn2

2 · · · pnss , where pi are
distinct primes. Let f ∈ S′k/2(N,χ). Let t be a square-free positive integer.
Using Theorem 4.1 or Proposition 4.1, for any prime p and a positive integer
` we can express the action of Tp2` as

(5.1) Tp2` =
∑̀
j=0

γjT
j
p2 , γj ∈ Z[ζϕ(N)].

Note that in the above expression γ` = 1 and hence the Hecke operators
T jp2 with 1 ≤ j ≤ ` generates the same Z[ζϕ(N)]-module as does the Hecke
operators Tp2j with 1 ≤ j ≤ `. Thus we have

Sht(Tn2f) = Sht(Tp2n1
1
T
p

2n2
2
· · ·Tp2ns

s
f)

= Sht

 n1∑
j1=0

γj1T
j1
p2

1

 · · ·
 ns∑
js=0

γjsT
js
p2
s

 f


=

 n1∑
j1=0

γj1T
j1
p1

 · · ·
 ns∑
js=0

γjsT
js
ps

 (Sht f)

=
r∑
i=1

δiTi(Sht f),

(5.2)

where the last equality follows since the Ti, with 1 ≤ i ≤ r, generate T as
a Z-module, while the second last equality follows by Proposition 3.2.
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Recall from Proposition 2.1, for any prime q and a positive integer `, the
action of Hecke operator Tq` on Sk−1(N ′, χ2) can be expressed as

Tq` =
∑̀
j=0

αjT
j
q , αj ∈ Z[ζϕ(N ′)] ⊂ Z[ζϕ(N)].

Let 1 ≤ i ≤ r has prime factorization i = qm1
1 qm2

2 · · · qmvv . Then each
term Ti(Sht f) in Equation (5.2) can be written as

Ti(Sht f) = Tqm1
1
Tqm2

2
· · ·Tqmvv (Sht f)

=

 m1∑
j1=0

αj1T
j1
q1

 · · ·
 mv∑
jv=0

αjvT
jv
qv

 (Sht f)

= Sht

 m1∑
j1=0

αj1T
j1
q2

1

 · · ·
 mv∑
jv=0

αjvT
jv
q2
v

 f


= Sht

 m1∑
j1=0

βj1Tq2j1
1

 · · ·
 mv∑
jv=0

βjvTq2jv
v

 f


= Sht

 i∑
j=1

AjTj2f

 ,

(5.3)

where Aj ∈ Z[ζϕ(N)]. In the above equalities we repeatedly use Proposi-
tion 3.2 and Equation (5.1). For the second last equality we use the remark
below Equation (5.1). Now using Equations (5.2) and (5.3) we get

Sht(Tn2f) = Sht

(
r∑
i=1

BiTi2f

)
, Bi ∈ Z[ζϕ(N)].

Since this is true for all positive square-free integers t, using Lemma 3.2 we
deduce that

Tn2f =
r∑
i=1

BiTi2f.

Hence Ti2 with i ≤ r generate T′k/2 as a Z[ζϕ(N)]-module. �

We shall need the following theorem which is a consequence of Sturm’s
bound [8].

Theorem 5.2. (Stein [7, Theorem 9.23]) Suppose Γ is a congruence sub-
group that contains Γ1(N). Let

r = km

12 −
m− 1
N

, m = [SL2(Z) : Γ].

Then the Hecke algebra
T = Z[. . . , Tn, . . . ] ⊂ End(Sk(Γ))
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is generated as a Z-module by the Hecke operators Tn for n ≤ r.

From Theorem 5.2 we deduce the following corollary.

Corollary 5.1. Let k, N be positive integers with k ≥ 3 odd, and 4 | N .
Let χ be a Dirichlet character modulo N . Let N ′ = N/2. Write

m = N ′
2 ∏
p|N ′

(
1− 1

p2

)
, R = (k − 1)m

12 − m− 1
N ′

.

Then Ti2 for i ≤ R generate T′k/2 as a Z[ζϕ(N)]-module. In particular the
set of operators Tp2 for primes p ≤ R forms a generating set as an algebra.
Moreover, if χ is a quadratic character, then the same result holds as above
with

m = N ′
∏
p|N ′

(
1 + 1

p

)
, R = (k − 1)m

12 − m− 1
N ′

.

Proof. Note that Sk−1(N ′, χ2) ⊂ Sk−1(Γ1(N ′)). The first part of the corol-
lary follows by applying Theorem 5.1 and Theorem 5.2 to the congruence
subgroup Γ1(N ′) and using the formula for [SL2(Z) : Γ1(N ′)] that can be
found for example in [1, Page 14].

Now suppose χ is a quadratic character. Then Sk−1(N ′, χ2) = Sk−1(N ′).
So we apply Theorem 5.2 to the group Γ0(N ′) and we now use the formula
for [SL2(Z) : Γ0(N ′)]. �
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