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de Bordeaux 26 (2014), 269–279

Modular lattices from finite projective planes

par Tathagata BASAK

Résumé. En utilisant la géométrie du plan projectif sur un corps
fini Fq, nous construisons un réseau hermitien de type Lorentz Lq

de dimension (q2 + q + 2) defini sur un certain anneau d’entiers
O dépendant de q. Nous montrons qu’une infinité de ces réseaux
sont p-modulaires, c’est-à-dire que pL′

q = Lq, où p est un premier
de O tel que |p|2 = q.

Les réseaux lorentziens Lq mènent parfois à la construction de
réseaux définis positifs intéressants. En particulier, si q ≡ 3 mod 4
est tel que (q2 +q+1) est la norme d’un élément de Q[

√
−q], alors

nous obtenons un réseau entier unimodulaire Mq défini positif et
de dimension paire 2q(q+1) tel que Aut(Mq) ⊇ PGL(3,Fq). Nous
prouvons que M3 est le réseau de Leech.

Abstract. Using the geometry of the projective plane over the
finite field Fq, we construct a Hermitian Lorentzian lattice Lq of
dimension (q2 + q + 2) defined over a certain number ring O that
depends on q. We show that infinitely many of these lattices are
p-modular, that is, pL′

q = Lq, where p is some prime in O such
that |p|2 = q.

The Lorentzian lattices Lq sometimes lead to construction of
interesting positive definite lattices. In particular, if q ≡ 3 mod 4
is a rational prime such that (q2+q+1) is norm of some element in
Q[
√
−q], then we find a 2q(q+1) dimensional even unimodular pos-

itive definite integer lattice Mq such that Aut(Mq) ⊇ PGL(3,Fq).
We find that M3 is the Leech lattice.

1. Introduction
1.1. Results: Let q be a rational prime power and n = (q2 + q+ 1). Let O
be either the ring of rational integers or the ring of integers in a quadratic
imaginary number field or Hurwitz’s ring of integral quaternions. Let p ∈ O
be a prime element such that |p|2 = q, and z̄ = z mod pO for all z ∈ O.
Given such a triple (O, p, q), we shall construct a Hermitian O-lattice Lq of
signature (1, n) such that PGL(3,Fq) acts naturally on Lq and Lq ⊆ pL′q.
If q happens to be a rational prime, then we show that Lq is p-modular,
that is Lq = pL′q (see 2.8).

Manuscrit reçu le 31 décembre 2012, accepté le 3 septembre 2013.
Classification math. 11H56, 51E20, 11E12, 11E39.
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If Lq contains a norm zero vector fixed by PGL(3,Fq), then we can split
Lq as direct sum of a definite lattice Λq and a hyperbolic cell, where Λq is
stable under PGL(3,Fq) action. If p =

√
−3, q = 3 and O = Z[1+p

2 ], then
Λq is a form of Leech lattice defined over O. We show that if q ≡ 3 mod 4
is a rational prime and n is norm of some element in Q[

√
−q], then Λq

is p-modular and Aut(Λq) ⊇ PGL(3,Fq) (see 3.3, 3.6). An appropriately
scaled real form of Λq gives us a positive definite even unimodular 2q(q+1)
dimensional Z-lattice Mq such that PGL(3,Fq) naturally acts on Mq (see
3.7). Such examples exists for q = 3, 47, 59, 71, 131, · · · . General conjectures
in analytic number theory (for example, the Bateman-Horn conjecture)
suggest that there are infinitely many such primes.

So far, we have applications of our construction only for q = 3 and q = 2
(see 1.2 and 1.3). However the construction goes through for a general q
with no extra work. So we have chosen to present it in that form.

1.2. Examples:
(1) Let q to be a rational prime; q ≡ 3 mod 4. Let p =

√
−q and

O = Z[1+p
2 ]. Then the assumptions in 1.1 is satisfied. So we get

infinitely many p-modular Hermitian lattices Lq.
(2) Among the lattices in (1), the lattice L3 obtained for q = 3 seems

to be especially interesting. The reflection group of L3 gives us
a complex hyperbolic reflection group in PU(1, 13) having finite
co-volume. Thirteen is the largest dimension in which a finite co-
volume discrete reflection group in PU(1, n) is known. The lattice
L3 and its construction given here plays a major role in an ongoing
project (see [1], [2], [5], [7]) trying to relate the complex reflection
group of L3 and the monster via the Conway-Ivanov-Norton pre-
sentation of the bimonster (see [9], [10], [14], [15]). The construction
described here came up while studying this example.

(3) Our construction also goes through if O is the ring of Hurwitz’s
quaternionic integers and p = (1− i). In this case, we obtain the di-
rect sum of a quaternionic form of the Leech lattice and a hyperbolic
cell. The reflection group of this lattice has properties analogous to
the reflection group of the lattice L3 mentioned in (2); see [6].

1.3. Remarks on the construction:
• Suppose z is a primitive vector of norm 0 in Lq fixed by PGL(3,Fq)
or some large subgroup of PGL(3,Fq). The definite lattices z⊥/z
are sometimes interesting. In the examples (2) (resp. (3)) of 1.2
this yields a complex (resp. quaternionic) form of the Leech lattice
that makes PGL(3,F3) (resp. PGL(3,F2)) symmetry visible.
• Using the construction given here, we were able to find genera-
tors and relations for the reflection groups of the complex and
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quaternionic hyperbolic lattices described in 1.2(2) and 1.2(3). The
Coxeter-Dynkin diagram determined by these generators and re-
lations are the incidence graphs of P2(F3) and P2(F2) respectively
(see [5], [6]).
• The definition of the lattices Lq given in 2.5 is similar to the defini-
tion of a root lattice. In this analogy, the incidence graph of P2(Fq)
plays the role of a Dynkin diagram. This analogy has proved to be
an useful one in understanding the reflection group of the lattice L3
mentioned in 1.2(2), and its connection with the monster (see. [5]).
• Nice lattices are often constructed using nice error correcting codes.
For example see [11], pp. 197-198 and pp. 211-212. One can view
our construction in this spirit, with the code being given by the
incidence matrix of the points and lines of P2(Fq).
• Bacher and Venkov, in [4], constructed a 28 dimensional integer lat-
tices of minimal norm 3 whose shortest vectors are parametrized by
the Lagrangian subspaces in 6 dimensional symplectic vector space
over F3. This example also seems to be related to our construction
(Boris Venkov, private communications).
• Alexey Bondal pointed out to me that the construction in this pa-
per bears similarity with his method of construction of lattices in
simple Lie algebras which are invariant under the automorphisms
that preserve a decomposition of the Lie algebra into mutually or-
thogonal Cartan subalgebras. (for example, see [8] or [16], ch. 9).
• The lattices that satisfy pL′ = L are called p-modular. These behave
much like unimodular lattices, for example, see [17]. Appropriately
scaled real form of the lattices described in (2) and (3) of 1.2 are
the even unimodular lattices II2,26 and II4,28 respectively.
• The construction given in 2.5 probably yields more examples of
Hermitian lattices defined over other rings O, for example, certain
maximal orders in rational quaternion algebras. But for simplicity
of presentation we shall restrict ourselves to O being a ring as in
1.1.

2. Lorentzian lattices with symmetries of finite projective planes
Definition 2.1 (Hermitian lattices). Let O be a ring as in 1.1. Let Frac(O)
be its fraction field. Let L be a projective O-module of rank n with a O-
valued Hermitian form 〈 | 〉 : L × L → O. We shall always assume that
the Hermitian form is linear in the second variable. The dual module of L,
denoted L′, is the set of all O-valued linear functionals on L. The Hermitian
form induces a natural map L→ L′ given by x 7→ 〈x| 〉. The kernel of this
map is called the radical of L, and is denoted by Rad(L). We say (L, 〈 | 〉)
is non-singular if Rad(L) = 0. If (L, 〈 | 〉) is non-singular, then we say
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(L, 〈 | 〉) is an O-lattice of rank n. If Rad(L) 6= 0, we say (L, 〈 | 〉) is a
singular O-lattice.

We shall denote a lattice (L, 〈 | 〉) simply by L. The dual of a lattice is a
lattice. We may identify a lattice inside its dual using the Hermitian form.
One says that L is unimodular if L′ = L. One says L is p-modular for some
p ∈ O, if L′ = p−1L. A lattice L has signature (m, k) if L⊗O Frac(O) has
a basis whose matrix of inner products have m positive eigenvalues and k
negative eigenvalues. A lattice is Lorentzian if it has signature (1, k).

We let O1,k be the free O-module of rank (k + 1) with the Hermitian
form

〈(u0, u1, · · · , uk)|(v0, v1, · · · , vk)〉 = ū0v0 − ū1v1 − · · · − ūkvk.

Then O1,k is unimodular while pO1,k is q-modular.

Definition 2.2. Let (O, p, q) be as in 1.1. Let P2(Fq) be the projective
plane over Fq. Let

n = q2 + q + 1.
Let P be the set of points and L be the set of lines of P2(Fq). The sets P
and L have n elements each. If a point x ∈ P is incident on a line l ∈ L,
then we write x ∈ l. Let D be the (directed) incidence graph of P2(Fq). The
vertex set of D is P ∪ L. There is a directed edge in D from a vertex l to
a vertex x, if x ∈ P, l ∈ L and x ∈ l.

Let L◦q be the free O–module of rank 2n with basis vectors indexed by
D = P ∪ L. Let r, s ∈ D. Define a Hermitian form 〈 | 〉 : L◦q × L◦q → O by

(2.1) 〈r|s〉 =


−q if r = s ∈ D,
p if r ∈ P, s ∈ L, r ∈ s,
p̄ if r ∈ L, s ∈ P, s ∈ r,
0 otherwise.

Lemma 2.3. Given l ∈ L, let wl = p̄l +
∑

x∈l x. Then 〈x′|wl〉 = 0 and
〈wl|l′〉 = p for all x′ ∈ P and l′ ∈ L.

Proof. The inner products are easily calculated from equation (2.1). For
example, since each line l has (q + 1) points on it, we have

〈wl|l〉 = p.(−q) + (q + 1)p = p.

If l and l′ are two distinct lines, then they meet at one point. So
〈wl|l′〉 = p.0 + p = p.

�

Proposition 2.4. The radical of L0
q has rank (n − 1) and Rad(L0

q) ⊗O
Frac(O) is spanned by the vectors (wl1 − wl2) for l1, l2 in L.
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Proof. If l1, l2 belong to L, then lemma 2.3 implies that (wl1 − wl2) ∈
Rad(L◦q). Let U be the O-module of rank (n−1) spanned by (wl1−wl2) for
all l1, l2 ∈ L. Then L◦q/U is a O–module of rank (n+1). Since U ⊆ Rad(L◦q),
the Hermitian form on L◦q descends to a Hermitian form on L◦q/U , which is
again denoted by 〈 | 〉. For each l ∈ L, the vectors wl have the same image
in L◦q/U ; call this image wP . Lemma 2.3 implies that wP is orthogonal (in
L◦q/U) to each x ∈ P and 〈wP |l〉 = p for all l ∈ L. So

〈wP |wP〉 = 〈p̄l +
∑
x∈l

x|wP〉 = p〈l|wP〉 = q.

The matrix of inner products of the (n + 1) vectors P ∪ {wP} in L◦q/U is
a diagonal matrix with diagonal entries (−q,−q, · · · ,−q, q). So L◦q/U is a
non-degenerate O–module of signature (1, n). It follows that

U ⊗O Frac(O) = Rad(L◦q)⊗O Frac(O). �

Definition 2.5. Let Lq be the quotient of L◦q by its radical. Then Lq is
finitely generated and torsion free. So if O is a Dedekind domain, then Lq

is projective. Over Hurwitz’s integral quaternions H, a finitely generated
torsion-free module is free, since H is an Euclidean domain.

The proof of 2.4 shows that the Hermitian form on L◦q induces a non-
degenerate Hermitian form on Lq of signature (1, n). The basis vectors of
L◦q defines 2n vectors in Lq indexed by the points and lines of P2(Fq). These
will be denoted by x0, · · · , xn−1 and l0, · · · , ln−1 respectively.

We have two more distinguished vectors wP and wL in Lq. We already
defined wP above. For x ∈ P, let wx = px +

∑
x∈l l. As above, one checks

that (wx − wx′) ∈ Rad(L◦q) for x, x′ ∈ P. We let wL be the image of the
vectors wx in Lq. So

(2.2) wP = p̄l +
∑
x′∈l

x′ and wL = px+
∑
x∈l′

l′,

for any x ∈ P and l ∈ L. Using equation (2.1) one checks that for all x ∈ P
and l ∈ L, we have,

(2.3) 〈wP |x〉 = 〈wL|l〉 = 0, 〈wP |l〉 = 〈x|wL〉 = p,

|wP |2 = |wL|2 = q, 〈wP |wL〉 = (q + 1)p.

2.6. Line Coordinates on Lq: Let LL and LP be the sublattice of Lq

spanned by {wL, l0, · · · , ln−1} and {wP , x0, · · · , xn−1} respectively. Then
Lq = LP + LL. From equation (2.1) and (2.3), we observe that

LP ' LL ' pO1,n.
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By looking at the inner products, we get the following inclusions:

LP � o

��@
@@

@@
@@

@ p−1LP � t

''OOOOOOOOOOO

LP ∩ LL � s

%%KKKKKKKKKKK

+ �

99sssssssssss
Lq � q

""EE
EE

EE
EE

E

- 


<<yyyyyyyyy
p−1Lq ⊆ L′q

LL
/ �

??~~~~~~~~
p−1LL

* 


77ppppppppppp

Let us identify p−1LL with O1,n. Then Lq becomes a sub-lattice of the
unimodular O-lattice O1,n. Following [3], we call this the line coordinates
on Lq. In other words, the line coordinates for v = p−1(v∞wL+v0l0 + · · ·+
vn−1ln−1) is (v∞; v0, v1, · · · , vn−1). The following lemma is well known and
it will help us decide when Lq is p-modular.

Lemma 2.7. Let (O, p) be as in 1.1. Let M be an unimodular Hermitian
O-lattice. Then W = M/pM is a O/pO-vector space. Let π : M → W be
the projection. Let L be a sublattice of M . Let X = π(L).

(a) The Hermitian form on M induces a non-degenerate symmetric bi-
linear form on the O/pO-module W given by (π(x), π(y)) = 〈x|y〉 mod pO.

(b) X is isotropic if and only if L ⊆ pL′.
(c) There is a bijection between p-modular lattices L lying between M

and pM and subspaces X ⊆ W such that X = X⊥, given by X = π(L).
Such subspaces X are maximal isotropic.

Proof. (a) Since M is unimodular, the form on W is non-degenerate. Since
the form 〈 | 〉 on M is Hermitian and z̄ ≡ z mod pO for all z ∈ O, the form
on W is symmetric. This proves (a). Part (b) is clear.

(c) Since pM ⊆ L ⊆M and M is unimodular, L′ ⊆ p−1M ; so pL′ ⊆M .
Part (c) follows, once one verifies that π−1(X⊥) = pL′. �

Theorem 2.8. Let (O, p, q) be as in 1.1. Suppose q is a rational prime and
O/pO ' Fq. Then the lattice Lq is p-modular, that is, pL′q = Lq.

Theorem 2.8 follows from theorem 2.9 quoted below. The proof of 2.9 uses
the fact that the incidence matrix of P2(Fq) generates a “cyclic difference
set code" (see [19]).

Theorem 2.9 ([13], theorem 2′, page 1067). Let q = ld be a power of a
rational prime l. Then the Fq-rank of the incidence matrix of P2(Fq) is
equal to

(l+1
2
)d + 1.

proof of theorem 2.8. Identify Lq inside the unimodular lattice p−1LL =
O1,n = M using the line coordinates. Then equation (2.2) implies that
xi = (1; ε1, · · · , εn), where the εj ’s are either −1 or 0 and the −1’s occur
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at the coordinates corresponding to the lines that pass through xi. Con-
sider the subspace X = L/pM of the Fq-vector space M/pM . Since X is
isotropic with respect to the induced non-degenerate form on M/pM , we
have dimFq (X) ≤ 1

2 dimFq (M/pM) = 1
2(n+ 1).

Note that X is spanned by the images of the vectors x0, · · · , xn−1. Let Ã
be the n×(n+1) matrix whose i-th row is xi. Let A be the matrix obtained
from Ã by deleting the first column of all 1’s. Each row of Ã add up to −q,
so A and Ã have the same Fq-rank. Since (−A) is the incidence matrix of
P2(Fq), theorem 2.9 implies that rankFq (A) = n+1

2 . So dimFq (X) = n+1
2 .

ThusX is maximal isotropic; so lemma 2.7 implies that Lq is p-modular. �

Corollary 2.10. Suppose the assumptions of theorem 2.8 hold. Identify
p−1LL with O1,n. Then

Lq = {v ∈ O1,n : 〈x|v〉 ≡ 0 mod pO for all x ∈ P}.

Remark 2.11. LetO be the ring of integers in a quadratic imaginary number
field. Identify p−1LL with Om as O-modules. Then (pO)m ⊆ Lq ⊆ Om.
There exists a unique fractional ideal I = [Om : Lq] of O such that the
ideal class of I (called the Steinitz class of Lq) determines the isomorphism
type of Lq as an O-module (see [12], p. 94-95). Let J be a prime ideal of O
different from p. Since (pO)m ⊆ Lq ⊆ Om, the localization (Lq)J is equal
to Om

J . It follows that [Om : Lq] is some power of the principal ideal pO
(see [12], p. 94-95). So the Steinitz class of Lq is trivial and Lq is a free
O-module.

3. Positive definite lattices with symmetry of finite projective
planes

Lemma 3.1. Let (O, p) be as in 1.1. Let L be a Hermitian O-lattice such
that pL′ = L. If z is a primitive element of L, then 〈L|z〉 = pO. Since
p̄O = pO, we also have 〈z|L〉 = pO.

Proof. The lemma holds when O = H is the ring of Hurwitz integers
since every ideal in H is principal. Otherwise, we may assume that O is
a Dedekind domain. Suppose 〈L|p−1z〉 = I is a proper ideal in O. Sup-
pose I ∩ Z = sZ. There exists an ideal J such that IJ = sO. Then, for
all j ∈ J , we have 〈L|s−1p−1jz〉 ⊆ s−1jI ⊆ s−1JI ⊆ O. It follows that
s−1p−1jz ∈ L′ = p−1L, so s−1jz ∈ L for all j ∈ J . Since z is primitive,
s−1j ∈ O for all j ∈ J , so J ⊆ sO. But IJ = sO, so I = O. �

Lemma 3.2. Let (O, p) be as in 1.1. Let L be a p-modular Lorentzian
Hermitian O-lattice. Let z be a primitive norm 0 vector in L. Then L splits
off a hyperbolic cell containing z, that is, there exists a lattice H of signature
(1, 1) containing z such that L = H ⊕ Λ for a definite lattice Λ ' z⊥/z.
Further, Λ is also p-modular.
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Proof. Lemma 3.1 implies that there exists f ∈ L such that 〈z|f〉 = p.
Then H = Oz +Of is a hyperbolic cell. Note that πH , given by

πH(x) = (p̄−1〈f |x〉 − |p|−2|f |2 〈z|x〉)z + p−1〈z|x〉f

is the orthogonal projection of L⊗ Frac(O) to H ⊗ Frac(O) and πH maps
L into H. It follows that L = H ⊕Λ, where Λ = H⊥. So z⊥ = Λ⊕Oz and
z⊥/z ' Λ.

It remains to see that pΛ′ = Λ. If λ ∈ Λ, then 〈λ|L〉 ∈ pO, so 〈λ|Λ〉 ∈ pO,
that is Λ ⊆ pΛ′. Suppose φ ∈ Λ′. Since L = Λ ⊕ H, we can extend φ to
an element of L′ by defining φ to be 0 on H. Since L′ = p−1L, there exists
x ∈ L such that φ(·) = 〈p−1x|·〉. But then φ(λ) = 〈p−1(x − πH(x))|λ〉 for
all λ ∈ Λ and (x− πH(x)) ∈ Λ. �

3.3. Positive definite modular lattices with PGL(3,Fq) symmetry:
Let (O, p, q) be as in 1.1 and Lq be the lattice defined in 2.5 from this
data. Suppose Lq has a primitive norm zero vector z fixed by PGL(3,Fq).
Suppose g ∈ PGL(3,Fq) acts trivially on z⊥/z. Since g has finite order,
it must fix z⊥ point-wise. But g also point-wise fixes the span of wP and
wL. So g must be trivial. So the automorphism group of z⊥/z contains
PGL(3,Fq). It follows that z⊥/z is a positive definite (n − 1) = q2 + q
dimensional O-lattice, whose automorphism group contains PGL(3,Fq). If
L is p-modular, then lemma 3.2 implies that the positive definite lattice
z⊥/z is also p-modular.

For example, if O = Z[1+
√
−3

2 ] and q = 3, then we may take z = wP +
1
2(−1 + p)p̄wL. To find more examples of z (see 3.6), we need the lemma
below. It might be known in the literature but we include a proof since we
could not find a references.

Lemma 3.4. Let q ≡ 3 mod 4 be a rational prime, n = q2 + q + 1. If p
is a rational prime, write n = pvp(n)m with p - m. Then the following are
equivalent:

(a) The integer n is a norm of some element in Q[
√
−q].

(b) The ternary quadratic form

(3.1) z2 + qx2 − ny2

represents 0 over Z.
(c) If vp(n) is odd for some rational prime p, then p ≡ 1 mod 4.

Proof. The equivalence of (a) and (b) is clear. Assume (b). Let (z, x, y) be
a zero of the ternary form (z2 + qx2 − ny2) over Z such that the greatest
common divisor of x, y and z is equal to 1. Let p be a prime; p ≡ 3 mod 4.
Suppose, if possible vp(n) = 2r + 1. Since q3 ≡ 1 mod p,

z2 + (q−1x)2 ≡ z2 + q3(q−1x)2 ≡ z2 + qx2 ≡ 0 mod p,
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where q−1 denotes the inverse of q modulo p. The equation Z2 + X2 = 0
has no nontrivial solution in Fp. So p must divide both z and x and hence
p does not divide y. So vp(z2 + qx2) = vp(n) = 2r + 1. If vp(z) 6= vp(x),
then vp(z2 + qx2) = 2 min{vp(z), vp(x)} is even, which is not possible. So
let vp(z) = vp(x) = j. Writing z = pjz1 and x = pjx1 we find that vp(z2

1 +
qx2

1) + 2j = 2r + 1, so vp(z2
1 + qx2

1) > 0. But this again leads to

z2
1 + (q−1x1)2 ≡ z2

1 + qx2
1 ≡ 0 mod p,

which is a contradiction, since p does not divide z1 and x1. Thus (b) implies
(c).

Conversely, assume (c). The ternary form represents 0 over R, so it suf-
fices to check that it represents 0 over Qp for all but one rational prime
p, that is, the local Hilbert symbols (−q, n)p = 1. Because of the product
formula ([18] Ch. 3, theorem 3, pp. 23) we can omit one prime.

Note that (q+1, 1, 1) is a nontrivial solution to (z2−qx2−ny2) = 0 over
Z, so (q, n)p = 1 for all prime p. So, for p 6= 2, using [18] Ch. 3, theorem 1,
pp. 20, we get

(−q, n)p = (−1, n)p(q, n)p = (−1, n)p =
(−1
p

)vp(n)
.

But our assumption states that if vp(n) is odd, then p ≡ 1 mod 4, so −1 is
a quadratic residue modulo p. �

Remark 3.5. Suppose q 6= 3 is a prime such that the conditions of lemma
3.4 are satisfied. If q is of the form 3k + 1, then n = 9k2 + 9k + 3, so
v3(n) = 1, which is not possible. So if q 6= 3, then we must have q ≡
−1 mod 12. The first few primes q satisfying the conditions in 3.4(c), are
q = 3, 47, 59, 71, 131. For example, if q = 3, then (z, x, y) = (1, 2, 1) is a
solution to the ternary form in (3.1). If q = 47, then (z, x, y) = (47, 27, 4)
is a solution. General conjectures like Schinzel’s hypothesis H or Bateman-
Horn conjecture imply that there are infinitely such primes.

Example 3.6. (1) Let (O, p, q) be as in 1.2(1). One verifies that the set of
fixed points of the group PGL(3,Fq) acting on Lq ⊗O Q[

√
−q] is the two

dimensional subspace spanned by wP and wL. So Lq contains a norm zero
vector fixed by PGL(3,Fq) if and only if (wP+cwL) has norm zero for some
c ∈ Q[

√
−q]. Using equation (2.3), one verifies that

|wP + cwL|2 = |cp+ q + 1|2 − (q2 + q + 1).
So |wP + cwL|2 = 0 if and only if (q2 + q + 1) is a norm of some element
of Q[

√
−q]. Suppose q is such that the conditions in lemma 3.4 hold. Then

there exists a primitive norm zero vector z in Lq fixed by PGL(3,Fq). By
lemma 3.1, there exists a lattice vector f such that 〈z|f〉 = p. So we can
take H = Oz + Of . Writing Lq = Λq ⊕ H as in 3.2, we get a p-modular
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Hermitian lattice Λq defined over Z[(1 + p)/2], whose automorphism group
contains PGL(3,Fq). For q = 3 we find that Λq is the Leech lattice defined
over Eisenstein integers.

(2) Let O = H be the ring of Hurwitz integers, p = (1− i) and q = 2. Let
LH2 be the lattice obtained from this data. (Of course in this case one has to
be careful to phrase everything in terms of right modules or left modules.)
The reflection group of LH2 was studied in [6] where we always considered
right H-modules. One checks that z = wP + wLp̄(−1 + i + j + k)/2 is a
primitive null vector in LH2 . So we can write LH2 = Λ⊕H, so that Λ ' z⊥/z
and H is a hyperbolic cell. The lattice Λ is a quaternionic form of Leech
lattice defined of Hurwitz integers.

3.7. Even unimodular positive definite Z-lattices with PGL(3,Fq)
symmetry: Let q be a rational prime; q ≡ 3 mod 4. Suppose q satisfies the
conditions in lemma 3.4. Let Λq be the definite Hermitian O-lattice from
3.6(1). Let Mq be the underlying Z-module of Λq with the integral bilinear
form

(x, y) = −2q−1 Re〈x|y〉.
Then Mq is a positive definite, even, unimodular Z-lattice of dimension
2q(q + 1) such that Aut(Mq) ⊇ PGL(3,Fq). If q = 3, then Mq is the Leech
lattice.

proof that Mq is unimodular: Identify the vector spaces Λq⊗OQ(
√
−q) and

Mq ⊗Z Q. All the lattices in question can be identified inside this vector
space. Suppose µ ∈ M ′q. Let 〈µ|y〉 = (u + pv)/2 with u, v ∈ R. Since
(µ, y) = −2q−1 Re〈µ|y〉 ∈ Z, we have u ∈ qZ. Also

(µ, (1+p)
2 y) = −2q−1 Re〈µ| (1+p)

2 y〉 = (qv − u)/2q ∈ Z.

So v ∈ q−1u + 2Z. It follows that v ∈ Z and u ≡ v mod 2. So 〈µ|y〉 ∈ pO.
So p−1µ ∈ Λ′q = p−1Λq, so µ ∈ Λq, that is µ ∈Mq. �
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